Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #define DEBUG_TYPE "scalar-evolution"
     62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     63 #include "llvm/Constants.h"
     64 #include "llvm/DerivedTypes.h"
     65 #include "llvm/GlobalVariable.h"
     66 #include "llvm/GlobalAlias.h"
     67 #include "llvm/Instructions.h"
     68 #include "llvm/LLVMContext.h"
     69 #include "llvm/Operator.h"
     70 #include "llvm/Analysis/ConstantFolding.h"
     71 #include "llvm/Analysis/Dominators.h"
     72 #include "llvm/Analysis/InstructionSimplify.h"
     73 #include "llvm/Analysis/LoopInfo.h"
     74 #include "llvm/Analysis/ValueTracking.h"
     75 #include "llvm/Assembly/Writer.h"
     76 #include "llvm/Target/TargetData.h"
     77 #include "llvm/Target/TargetLibraryInfo.h"
     78 #include "llvm/Support/CommandLine.h"
     79 #include "llvm/Support/ConstantRange.h"
     80 #include "llvm/Support/Debug.h"
     81 #include "llvm/Support/ErrorHandling.h"
     82 #include "llvm/Support/GetElementPtrTypeIterator.h"
     83 #include "llvm/Support/InstIterator.h"
     84 #include "llvm/Support/MathExtras.h"
     85 #include "llvm/Support/raw_ostream.h"
     86 #include "llvm/ADT/Statistic.h"
     87 #include "llvm/ADT/STLExtras.h"
     88 #include "llvm/ADT/SmallPtrSet.h"
     89 #include <algorithm>
     90 using namespace llvm;
     91 
     92 STATISTIC(NumArrayLenItCounts,
     93           "Number of trip counts computed with array length");
     94 STATISTIC(NumTripCountsComputed,
     95           "Number of loops with predictable loop counts");
     96 STATISTIC(NumTripCountsNotComputed,
     97           "Number of loops without predictable loop counts");
     98 STATISTIC(NumBruteForceTripCountsComputed,
     99           "Number of loops with trip counts computed by force");
    100 
    101 static cl::opt<unsigned>
    102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    103                         cl::desc("Maximum number of iterations SCEV will "
    104                                  "symbolically execute a constant "
    105                                  "derived loop"),
    106                         cl::init(100));
    107 
    108 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
    109                 "Scalar Evolution Analysis", false, true)
    110 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    111 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    113 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
    114                 "Scalar Evolution Analysis", false, true)
    115 char ScalarEvolution::ID = 0;
    116 
    117 //===----------------------------------------------------------------------===//
    118 //                           SCEV class definitions
    119 //===----------------------------------------------------------------------===//
    120 
    121 //===----------------------------------------------------------------------===//
    122 // Implementation of the SCEV class.
    123 //
    124 
    125 void SCEV::dump() const {
    126   print(dbgs());
    127   dbgs() << '\n';
    128 }
    129 
    130 void SCEV::print(raw_ostream &OS) const {
    131   switch (getSCEVType()) {
    132   case scConstant:
    133     WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
    134     return;
    135   case scTruncate: {
    136     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    137     const SCEV *Op = Trunc->getOperand();
    138     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    139        << *Trunc->getType() << ")";
    140     return;
    141   }
    142   case scZeroExtend: {
    143     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    144     const SCEV *Op = ZExt->getOperand();
    145     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    146        << *ZExt->getType() << ")";
    147     return;
    148   }
    149   case scSignExtend: {
    150     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    151     const SCEV *Op = SExt->getOperand();
    152     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    153        << *SExt->getType() << ")";
    154     return;
    155   }
    156   case scAddRecExpr: {
    157     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    158     OS << "{" << *AR->getOperand(0);
    159     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    160       OS << ",+," << *AR->getOperand(i);
    161     OS << "}<";
    162     if (AR->getNoWrapFlags(FlagNUW))
    163       OS << "nuw><";
    164     if (AR->getNoWrapFlags(FlagNSW))
    165       OS << "nsw><";
    166     if (AR->getNoWrapFlags(FlagNW) &&
    167         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    168       OS << "nw><";
    169     WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
    170     OS << ">";
    171     return;
    172   }
    173   case scAddExpr:
    174   case scMulExpr:
    175   case scUMaxExpr:
    176   case scSMaxExpr: {
    177     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    178     const char *OpStr = 0;
    179     switch (NAry->getSCEVType()) {
    180     case scAddExpr: OpStr = " + "; break;
    181     case scMulExpr: OpStr = " * "; break;
    182     case scUMaxExpr: OpStr = " umax "; break;
    183     case scSMaxExpr: OpStr = " smax "; break;
    184     }
    185     OS << "(";
    186     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    187          I != E; ++I) {
    188       OS << **I;
    189       if (llvm::next(I) != E)
    190         OS << OpStr;
    191     }
    192     OS << ")";
    193     switch (NAry->getSCEVType()) {
    194     case scAddExpr:
    195     case scMulExpr:
    196       if (NAry->getNoWrapFlags(FlagNUW))
    197         OS << "<nuw>";
    198       if (NAry->getNoWrapFlags(FlagNSW))
    199         OS << "<nsw>";
    200     }
    201     return;
    202   }
    203   case scUDivExpr: {
    204     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    205     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    206     return;
    207   }
    208   case scUnknown: {
    209     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    210     Type *AllocTy;
    211     if (U->isSizeOf(AllocTy)) {
    212       OS << "sizeof(" << *AllocTy << ")";
    213       return;
    214     }
    215     if (U->isAlignOf(AllocTy)) {
    216       OS << "alignof(" << *AllocTy << ")";
    217       return;
    218     }
    219 
    220     Type *CTy;
    221     Constant *FieldNo;
    222     if (U->isOffsetOf(CTy, FieldNo)) {
    223       OS << "offsetof(" << *CTy << ", ";
    224       WriteAsOperand(OS, FieldNo, false);
    225       OS << ")";
    226       return;
    227     }
    228 
    229     // Otherwise just print it normally.
    230     WriteAsOperand(OS, U->getValue(), false);
    231     return;
    232   }
    233   case scCouldNotCompute:
    234     OS << "***COULDNOTCOMPUTE***";
    235     return;
    236   default: break;
    237   }
    238   llvm_unreachable("Unknown SCEV kind!");
    239 }
    240 
    241 Type *SCEV::getType() const {
    242   switch (getSCEVType()) {
    243   case scConstant:
    244     return cast<SCEVConstant>(this)->getType();
    245   case scTruncate:
    246   case scZeroExtend:
    247   case scSignExtend:
    248     return cast<SCEVCastExpr>(this)->getType();
    249   case scAddRecExpr:
    250   case scMulExpr:
    251   case scUMaxExpr:
    252   case scSMaxExpr:
    253     return cast<SCEVNAryExpr>(this)->getType();
    254   case scAddExpr:
    255     return cast<SCEVAddExpr>(this)->getType();
    256   case scUDivExpr:
    257     return cast<SCEVUDivExpr>(this)->getType();
    258   case scUnknown:
    259     return cast<SCEVUnknown>(this)->getType();
    260   case scCouldNotCompute:
    261     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    262   default:
    263     llvm_unreachable("Unknown SCEV kind!");
    264   }
    265 }
    266 
    267 bool SCEV::isZero() const {
    268   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    269     return SC->getValue()->isZero();
    270   return false;
    271 }
    272 
    273 bool SCEV::isOne() const {
    274   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    275     return SC->getValue()->isOne();
    276   return false;
    277 }
    278 
    279 bool SCEV::isAllOnesValue() const {
    280   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    281     return SC->getValue()->isAllOnesValue();
    282   return false;
    283 }
    284 
    285 /// isNonConstantNegative - Return true if the specified scev is negated, but
    286 /// not a constant.
    287 bool SCEV::isNonConstantNegative() const {
    288   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    289   if (!Mul) return false;
    290 
    291   // If there is a constant factor, it will be first.
    292   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    293   if (!SC) return false;
    294 
    295   // Return true if the value is negative, this matches things like (-42 * V).
    296   return SC->getValue()->getValue().isNegative();
    297 }
    298 
    299 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    300   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    301 
    302 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    303   return S->getSCEVType() == scCouldNotCompute;
    304 }
    305 
    306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    307   FoldingSetNodeID ID;
    308   ID.AddInteger(scConstant);
    309   ID.AddPointer(V);
    310   void *IP = 0;
    311   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    312   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    313   UniqueSCEVs.InsertNode(S, IP);
    314   return S;
    315 }
    316 
    317 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
    318   return getConstant(ConstantInt::get(getContext(), Val));
    319 }
    320 
    321 const SCEV *
    322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    323   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    324   return getConstant(ConstantInt::get(ITy, V, isSigned));
    325 }
    326 
    327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    328                            unsigned SCEVTy, const SCEV *op, Type *ty)
    329   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    330 
    331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    332                                    const SCEV *op, Type *ty)
    333   : SCEVCastExpr(ID, scTruncate, op, ty) {
    334   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    335          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    336          "Cannot truncate non-integer value!");
    337 }
    338 
    339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    340                                        const SCEV *op, Type *ty)
    341   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    342   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    343          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    344          "Cannot zero extend non-integer value!");
    345 }
    346 
    347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    348                                        const SCEV *op, Type *ty)
    349   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    350   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    351          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    352          "Cannot sign extend non-integer value!");
    353 }
    354 
    355 void SCEVUnknown::deleted() {
    356   // Clear this SCEVUnknown from various maps.
    357   SE->forgetMemoizedResults(this);
    358 
    359   // Remove this SCEVUnknown from the uniquing map.
    360   SE->UniqueSCEVs.RemoveNode(this);
    361 
    362   // Release the value.
    363   setValPtr(0);
    364 }
    365 
    366 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    367   // Clear this SCEVUnknown from various maps.
    368   SE->forgetMemoizedResults(this);
    369 
    370   // Remove this SCEVUnknown from the uniquing map.
    371   SE->UniqueSCEVs.RemoveNode(this);
    372 
    373   // Update this SCEVUnknown to point to the new value. This is needed
    374   // because there may still be outstanding SCEVs which still point to
    375   // this SCEVUnknown.
    376   setValPtr(New);
    377 }
    378 
    379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    380   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    381     if (VCE->getOpcode() == Instruction::PtrToInt)
    382       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    383         if (CE->getOpcode() == Instruction::GetElementPtr &&
    384             CE->getOperand(0)->isNullValue() &&
    385             CE->getNumOperands() == 2)
    386           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    387             if (CI->isOne()) {
    388               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    389                                  ->getElementType();
    390               return true;
    391             }
    392 
    393   return false;
    394 }
    395 
    396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    397   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    398     if (VCE->getOpcode() == Instruction::PtrToInt)
    399       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    400         if (CE->getOpcode() == Instruction::GetElementPtr &&
    401             CE->getOperand(0)->isNullValue()) {
    402           Type *Ty =
    403             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    404           if (StructType *STy = dyn_cast<StructType>(Ty))
    405             if (!STy->isPacked() &&
    406                 CE->getNumOperands() == 3 &&
    407                 CE->getOperand(1)->isNullValue()) {
    408               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    409                 if (CI->isOne() &&
    410                     STy->getNumElements() == 2 &&
    411                     STy->getElementType(0)->isIntegerTy(1)) {
    412                   AllocTy = STy->getElementType(1);
    413                   return true;
    414                 }
    415             }
    416         }
    417 
    418   return false;
    419 }
    420 
    421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    422   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    423     if (VCE->getOpcode() == Instruction::PtrToInt)
    424       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    425         if (CE->getOpcode() == Instruction::GetElementPtr &&
    426             CE->getNumOperands() == 3 &&
    427             CE->getOperand(0)->isNullValue() &&
    428             CE->getOperand(1)->isNullValue()) {
    429           Type *Ty =
    430             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    431           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    432           // emit getelementptrs that index into vectors.
    433           if (Ty->isStructTy() || Ty->isArrayTy()) {
    434             CTy = Ty;
    435             FieldNo = CE->getOperand(2);
    436             return true;
    437           }
    438         }
    439 
    440   return false;
    441 }
    442 
    443 //===----------------------------------------------------------------------===//
    444 //                               SCEV Utilities
    445 //===----------------------------------------------------------------------===//
    446 
    447 namespace {
    448   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    449   /// than the complexity of the RHS.  This comparator is used to canonicalize
    450   /// expressions.
    451   class SCEVComplexityCompare {
    452     const LoopInfo *const LI;
    453   public:
    454     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    455 
    456     // Return true or false if LHS is less than, or at least RHS, respectively.
    457     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    458       return compare(LHS, RHS) < 0;
    459     }
    460 
    461     // Return negative, zero, or positive, if LHS is less than, equal to, or
    462     // greater than RHS, respectively. A three-way result allows recursive
    463     // comparisons to be more efficient.
    464     int compare(const SCEV *LHS, const SCEV *RHS) const {
    465       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    466       if (LHS == RHS)
    467         return 0;
    468 
    469       // Primarily, sort the SCEVs by their getSCEVType().
    470       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    471       if (LType != RType)
    472         return (int)LType - (int)RType;
    473 
    474       // Aside from the getSCEVType() ordering, the particular ordering
    475       // isn't very important except that it's beneficial to be consistent,
    476       // so that (a + b) and (b + a) don't end up as different expressions.
    477       switch (LType) {
    478       case scUnknown: {
    479         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    480         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    481 
    482         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    483         // not as complete as it could be.
    484         const Value *LV = LU->getValue(), *RV = RU->getValue();
    485 
    486         // Order pointer values after integer values. This helps SCEVExpander
    487         // form GEPs.
    488         bool LIsPointer = LV->getType()->isPointerTy(),
    489              RIsPointer = RV->getType()->isPointerTy();
    490         if (LIsPointer != RIsPointer)
    491           return (int)LIsPointer - (int)RIsPointer;
    492 
    493         // Compare getValueID values.
    494         unsigned LID = LV->getValueID(),
    495                  RID = RV->getValueID();
    496         if (LID != RID)
    497           return (int)LID - (int)RID;
    498 
    499         // Sort arguments by their position.
    500         if (const Argument *LA = dyn_cast<Argument>(LV)) {
    501           const Argument *RA = cast<Argument>(RV);
    502           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    503           return (int)LArgNo - (int)RArgNo;
    504         }
    505 
    506         // For instructions, compare their loop depth, and their operand
    507         // count.  This is pretty loose.
    508         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    509           const Instruction *RInst = cast<Instruction>(RV);
    510 
    511           // Compare loop depths.
    512           const BasicBlock *LParent = LInst->getParent(),
    513                            *RParent = RInst->getParent();
    514           if (LParent != RParent) {
    515             unsigned LDepth = LI->getLoopDepth(LParent),
    516                      RDepth = LI->getLoopDepth(RParent);
    517             if (LDepth != RDepth)
    518               return (int)LDepth - (int)RDepth;
    519           }
    520 
    521           // Compare the number of operands.
    522           unsigned LNumOps = LInst->getNumOperands(),
    523                    RNumOps = RInst->getNumOperands();
    524           return (int)LNumOps - (int)RNumOps;
    525         }
    526 
    527         return 0;
    528       }
    529 
    530       case scConstant: {
    531         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    532         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    533 
    534         // Compare constant values.
    535         const APInt &LA = LC->getValue()->getValue();
    536         const APInt &RA = RC->getValue()->getValue();
    537         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    538         if (LBitWidth != RBitWidth)
    539           return (int)LBitWidth - (int)RBitWidth;
    540         return LA.ult(RA) ? -1 : 1;
    541       }
    542 
    543       case scAddRecExpr: {
    544         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    545         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    546 
    547         // Compare addrec loop depths.
    548         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    549         if (LLoop != RLoop) {
    550           unsigned LDepth = LLoop->getLoopDepth(),
    551                    RDepth = RLoop->getLoopDepth();
    552           if (LDepth != RDepth)
    553             return (int)LDepth - (int)RDepth;
    554         }
    555 
    556         // Addrec complexity grows with operand count.
    557         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    558         if (LNumOps != RNumOps)
    559           return (int)LNumOps - (int)RNumOps;
    560 
    561         // Lexicographically compare.
    562         for (unsigned i = 0; i != LNumOps; ++i) {
    563           long X = compare(LA->getOperand(i), RA->getOperand(i));
    564           if (X != 0)
    565             return X;
    566         }
    567 
    568         return 0;
    569       }
    570 
    571       case scAddExpr:
    572       case scMulExpr:
    573       case scSMaxExpr:
    574       case scUMaxExpr: {
    575         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    576         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    577 
    578         // Lexicographically compare n-ary expressions.
    579         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    580         for (unsigned i = 0; i != LNumOps; ++i) {
    581           if (i >= RNumOps)
    582             return 1;
    583           long X = compare(LC->getOperand(i), RC->getOperand(i));
    584           if (X != 0)
    585             return X;
    586         }
    587         return (int)LNumOps - (int)RNumOps;
    588       }
    589 
    590       case scUDivExpr: {
    591         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    592         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    593 
    594         // Lexicographically compare udiv expressions.
    595         long X = compare(LC->getLHS(), RC->getLHS());
    596         if (X != 0)
    597           return X;
    598         return compare(LC->getRHS(), RC->getRHS());
    599       }
    600 
    601       case scTruncate:
    602       case scZeroExtend:
    603       case scSignExtend: {
    604         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    605         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    606 
    607         // Compare cast expressions by operand.
    608         return compare(LC->getOperand(), RC->getOperand());
    609       }
    610 
    611       default:
    612         llvm_unreachable("Unknown SCEV kind!");
    613       }
    614     }
    615   };
    616 }
    617 
    618 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    619 /// complexity, and group objects of the same complexity together by value.
    620 /// When this routine is finished, we know that any duplicates in the vector are
    621 /// consecutive and that complexity is monotonically increasing.
    622 ///
    623 /// Note that we go take special precautions to ensure that we get deterministic
    624 /// results from this routine.  In other words, we don't want the results of
    625 /// this to depend on where the addresses of various SCEV objects happened to
    626 /// land in memory.
    627 ///
    628 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    629                               LoopInfo *LI) {
    630   if (Ops.size() < 2) return;  // Noop
    631   if (Ops.size() == 2) {
    632     // This is the common case, which also happens to be trivially simple.
    633     // Special case it.
    634     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    635     if (SCEVComplexityCompare(LI)(RHS, LHS))
    636       std::swap(LHS, RHS);
    637     return;
    638   }
    639 
    640   // Do the rough sort by complexity.
    641   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    642 
    643   // Now that we are sorted by complexity, group elements of the same
    644   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    645   // be extremely short in practice.  Note that we take this approach because we
    646   // do not want to depend on the addresses of the objects we are grouping.
    647   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    648     const SCEV *S = Ops[i];
    649     unsigned Complexity = S->getSCEVType();
    650 
    651     // If there are any objects of the same complexity and same value as this
    652     // one, group them.
    653     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    654       if (Ops[j] == S) { // Found a duplicate.
    655         // Move it to immediately after i'th element.
    656         std::swap(Ops[i+1], Ops[j]);
    657         ++i;   // no need to rescan it.
    658         if (i == e-2) return;  // Done!
    659       }
    660     }
    661   }
    662 }
    663 
    664 
    665 
    666 //===----------------------------------------------------------------------===//
    667 //                      Simple SCEV method implementations
    668 //===----------------------------------------------------------------------===//
    669 
    670 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    671 /// Assume, K > 0.
    672 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    673                                        ScalarEvolution &SE,
    674                                        Type *ResultTy) {
    675   // Handle the simplest case efficiently.
    676   if (K == 1)
    677     return SE.getTruncateOrZeroExtend(It, ResultTy);
    678 
    679   // We are using the following formula for BC(It, K):
    680   //
    681   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    682   //
    683   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    684   // overflow.  Hence, we must assure that the result of our computation is
    685   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    686   // safe in modular arithmetic.
    687   //
    688   // However, this code doesn't use exactly that formula; the formula it uses
    689   // is something like the following, where T is the number of factors of 2 in
    690   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    691   // exponentiation:
    692   //
    693   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    694   //
    695   // This formula is trivially equivalent to the previous formula.  However,
    696   // this formula can be implemented much more efficiently.  The trick is that
    697   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    698   // arithmetic.  To do exact division in modular arithmetic, all we have
    699   // to do is multiply by the inverse.  Therefore, this step can be done at
    700   // width W.
    701   //
    702   // The next issue is how to safely do the division by 2^T.  The way this
    703   // is done is by doing the multiplication step at a width of at least W + T
    704   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    705   // when we perform the division by 2^T (which is equivalent to a right shift
    706   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    707   // truncated out after the division by 2^T.
    708   //
    709   // In comparison to just directly using the first formula, this technique
    710   // is much more efficient; using the first formula requires W * K bits,
    711   // but this formula less than W + K bits. Also, the first formula requires
    712   // a division step, whereas this formula only requires multiplies and shifts.
    713   //
    714   // It doesn't matter whether the subtraction step is done in the calculation
    715   // width or the input iteration count's width; if the subtraction overflows,
    716   // the result must be zero anyway.  We prefer here to do it in the width of
    717   // the induction variable because it helps a lot for certain cases; CodeGen
    718   // isn't smart enough to ignore the overflow, which leads to much less
    719   // efficient code if the width of the subtraction is wider than the native
    720   // register width.
    721   //
    722   // (It's possible to not widen at all by pulling out factors of 2 before
    723   // the multiplication; for example, K=2 can be calculated as
    724   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    725   // extra arithmetic, so it's not an obvious win, and it gets
    726   // much more complicated for K > 3.)
    727 
    728   // Protection from insane SCEVs; this bound is conservative,
    729   // but it probably doesn't matter.
    730   if (K > 1000)
    731     return SE.getCouldNotCompute();
    732 
    733   unsigned W = SE.getTypeSizeInBits(ResultTy);
    734 
    735   // Calculate K! / 2^T and T; we divide out the factors of two before
    736   // multiplying for calculating K! / 2^T to avoid overflow.
    737   // Other overflow doesn't matter because we only care about the bottom
    738   // W bits of the result.
    739   APInt OddFactorial(W, 1);
    740   unsigned T = 1;
    741   for (unsigned i = 3; i <= K; ++i) {
    742     APInt Mult(W, i);
    743     unsigned TwoFactors = Mult.countTrailingZeros();
    744     T += TwoFactors;
    745     Mult = Mult.lshr(TwoFactors);
    746     OddFactorial *= Mult;
    747   }
    748 
    749   // We need at least W + T bits for the multiplication step
    750   unsigned CalculationBits = W + T;
    751 
    752   // Calculate 2^T, at width T+W.
    753   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
    754 
    755   // Calculate the multiplicative inverse of K! / 2^T;
    756   // this multiplication factor will perform the exact division by
    757   // K! / 2^T.
    758   APInt Mod = APInt::getSignedMinValue(W+1);
    759   APInt MultiplyFactor = OddFactorial.zext(W+1);
    760   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
    761   MultiplyFactor = MultiplyFactor.trunc(W);
    762 
    763   // Calculate the product, at width T+W
    764   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
    765                                                       CalculationBits);
    766   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
    767   for (unsigned i = 1; i != K; ++i) {
    768     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
    769     Dividend = SE.getMulExpr(Dividend,
    770                              SE.getTruncateOrZeroExtend(S, CalculationTy));
    771   }
    772 
    773   // Divide by 2^T
    774   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
    775 
    776   // Truncate the result, and divide by K! / 2^T.
    777 
    778   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
    779                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
    780 }
    781 
    782 /// evaluateAtIteration - Return the value of this chain of recurrences at
    783 /// the specified iteration number.  We can evaluate this recurrence by
    784 /// multiplying each element in the chain by the binomial coefficient
    785 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
    786 ///
    787 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
    788 ///
    789 /// where BC(It, k) stands for binomial coefficient.
    790 ///
    791 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
    792                                                 ScalarEvolution &SE) const {
    793   const SCEV *Result = getStart();
    794   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
    795     // The computation is correct in the face of overflow provided that the
    796     // multiplication is performed _after_ the evaluation of the binomial
    797     // coefficient.
    798     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
    799     if (isa<SCEVCouldNotCompute>(Coeff))
    800       return Coeff;
    801 
    802     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
    803   }
    804   return Result;
    805 }
    806 
    807 //===----------------------------------------------------------------------===//
    808 //                    SCEV Expression folder implementations
    809 //===----------------------------------------------------------------------===//
    810 
    811 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
    812                                              Type *Ty) {
    813   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
    814          "This is not a truncating conversion!");
    815   assert(isSCEVable(Ty) &&
    816          "This is not a conversion to a SCEVable type!");
    817   Ty = getEffectiveSCEVType(Ty);
    818 
    819   FoldingSetNodeID ID;
    820   ID.AddInteger(scTruncate);
    821   ID.AddPointer(Op);
    822   ID.AddPointer(Ty);
    823   void *IP = 0;
    824   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    825 
    826   // Fold if the operand is constant.
    827   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    828     return getConstant(
    829       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
    830                                                getEffectiveSCEVType(Ty))));
    831 
    832   // trunc(trunc(x)) --> trunc(x)
    833   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
    834     return getTruncateExpr(ST->getOperand(), Ty);
    835 
    836   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
    837   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    838     return getTruncateOrSignExtend(SS->getOperand(), Ty);
    839 
    840   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
    841   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    842     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
    843 
    844   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
    845   // eliminate all the truncates.
    846   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
    847     SmallVector<const SCEV *, 4> Operands;
    848     bool hasTrunc = false;
    849     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
    850       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
    851       hasTrunc = isa<SCEVTruncateExpr>(S);
    852       Operands.push_back(S);
    853     }
    854     if (!hasTrunc)
    855       return getAddExpr(Operands);
    856     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    857   }
    858 
    859   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
    860   // eliminate all the truncates.
    861   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
    862     SmallVector<const SCEV *, 4> Operands;
    863     bool hasTrunc = false;
    864     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
    865       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
    866       hasTrunc = isa<SCEVTruncateExpr>(S);
    867       Operands.push_back(S);
    868     }
    869     if (!hasTrunc)
    870       return getMulExpr(Operands);
    871     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    872   }
    873 
    874   // If the input value is a chrec scev, truncate the chrec's operands.
    875   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    876     SmallVector<const SCEV *, 4> Operands;
    877     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
    878       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
    879     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
    880   }
    881 
    882   // As a special case, fold trunc(undef) to undef. We don't want to
    883   // know too much about SCEVUnknowns, but this special case is handy
    884   // and harmless.
    885   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
    886     if (isa<UndefValue>(U->getValue()))
    887       return getSCEV(UndefValue::get(Ty));
    888 
    889   // The cast wasn't folded; create an explicit cast node. We can reuse
    890   // the existing insert position since if we get here, we won't have
    891   // made any changes which would invalidate it.
    892   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
    893                                                  Op, Ty);
    894   UniqueSCEVs.InsertNode(S, IP);
    895   return S;
    896 }
    897 
    898 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
    899                                                Type *Ty) {
    900   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
    901          "This is not an extending conversion!");
    902   assert(isSCEVable(Ty) &&
    903          "This is not a conversion to a SCEVable type!");
    904   Ty = getEffectiveSCEVType(Ty);
    905 
    906   // Fold if the operand is constant.
    907   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    908     return getConstant(
    909       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
    910                                               getEffectiveSCEVType(Ty))));
    911 
    912   // zext(zext(x)) --> zext(x)
    913   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    914     return getZeroExtendExpr(SZ->getOperand(), Ty);
    915 
    916   // Before doing any expensive analysis, check to see if we've already
    917   // computed a SCEV for this Op and Ty.
    918   FoldingSetNodeID ID;
    919   ID.AddInteger(scZeroExtend);
    920   ID.AddPointer(Op);
    921   ID.AddPointer(Ty);
    922   void *IP = 0;
    923   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    924 
    925   // zext(trunc(x)) --> zext(x) or x or trunc(x)
    926   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    927     // It's possible the bits taken off by the truncate were all zero bits. If
    928     // so, we should be able to simplify this further.
    929     const SCEV *X = ST->getOperand();
    930     ConstantRange CR = getUnsignedRange(X);
    931     unsigned TruncBits = getTypeSizeInBits(ST->getType());
    932     unsigned NewBits = getTypeSizeInBits(Ty);
    933     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
    934             CR.zextOrTrunc(NewBits)))
    935       return getTruncateOrZeroExtend(X, Ty);
    936   }
    937 
    938   // If the input value is a chrec scev, and we can prove that the value
    939   // did not overflow the old, smaller, value, we can zero extend all of the
    940   // operands (often constants).  This allows analysis of something like
    941   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
    942   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    943     if (AR->isAffine()) {
    944       const SCEV *Start = AR->getStart();
    945       const SCEV *Step = AR->getStepRecurrence(*this);
    946       unsigned BitWidth = getTypeSizeInBits(AR->getType());
    947       const Loop *L = AR->getLoop();
    948 
    949       // If we have special knowledge that this addrec won't overflow,
    950       // we don't need to do any further analysis.
    951       if (AR->getNoWrapFlags(SCEV::FlagNUW))
    952         return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    953                              getZeroExtendExpr(Step, Ty),
    954                              L, AR->getNoWrapFlags());
    955 
    956       // Check whether the backedge-taken count is SCEVCouldNotCompute.
    957       // Note that this serves two purposes: It filters out loops that are
    958       // simply not analyzable, and it covers the case where this code is
    959       // being called from within backedge-taken count analysis, such that
    960       // attempting to ask for the backedge-taken count would likely result
    961       // in infinite recursion. In the later case, the analysis code will
    962       // cope with a conservative value, and it will take care to purge
    963       // that value once it has finished.
    964       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
    965       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
    966         // Manually compute the final value for AR, checking for
    967         // overflow.
    968 
    969         // Check whether the backedge-taken count can be losslessly casted to
    970         // the addrec's type. The count is always unsigned.
    971         const SCEV *CastedMaxBECount =
    972           getTruncateOrZeroExtend(MaxBECount, Start->getType());
    973         const SCEV *RecastedMaxBECount =
    974           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
    975         if (MaxBECount == RecastedMaxBECount) {
    976           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
    977           // Check whether Start+Step*MaxBECount has no unsigned overflow.
    978           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
    979           const SCEV *Add = getAddExpr(Start, ZMul);
    980           const SCEV *OperandExtendedAdd =
    981             getAddExpr(getZeroExtendExpr(Start, WideTy),
    982                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
    983                                   getZeroExtendExpr(Step, WideTy)));
    984           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
    985             // Cache knowledge of AR NUW, which is propagated to this AddRec.
    986             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
    987             // Return the expression with the addrec on the outside.
    988             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    989                                  getZeroExtendExpr(Step, Ty),
    990                                  L, AR->getNoWrapFlags());
    991           }
    992           // Similar to above, only this time treat the step value as signed.
    993           // This covers loops that count down.
    994           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
    995           Add = getAddExpr(Start, SMul);
    996           OperandExtendedAdd =
    997             getAddExpr(getZeroExtendExpr(Start, WideTy),
    998                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
    999                                   getSignExtendExpr(Step, WideTy)));
   1000           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
   1001             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1002             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1003             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1004             // Return the expression with the addrec on the outside.
   1005             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1006                                  getSignExtendExpr(Step, Ty),
   1007                                  L, AR->getNoWrapFlags());
   1008           }
   1009         }
   1010 
   1011         // If the backedge is guarded by a comparison with the pre-inc value
   1012         // the addrec is safe. Also, if the entry is guarded by a comparison
   1013         // with the start value and the backedge is guarded by a comparison
   1014         // with the post-inc value, the addrec is safe.
   1015         if (isKnownPositive(Step)) {
   1016           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1017                                       getUnsignedRange(Step).getUnsignedMax());
   1018           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1019               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1020                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1021                                            AR->getPostIncExpr(*this), N))) {
   1022             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1023             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1024             // Return the expression with the addrec on the outside.
   1025             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1026                                  getZeroExtendExpr(Step, Ty),
   1027                                  L, AR->getNoWrapFlags());
   1028           }
   1029         } else if (isKnownNegative(Step)) {
   1030           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1031                                       getSignedRange(Step).getSignedMin());
   1032           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1033               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1034                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1035                                            AR->getPostIncExpr(*this), N))) {
   1036             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1037             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1038             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1039             // Return the expression with the addrec on the outside.
   1040             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1041                                  getSignExtendExpr(Step, Ty),
   1042                                  L, AR->getNoWrapFlags());
   1043           }
   1044         }
   1045       }
   1046     }
   1047 
   1048   // The cast wasn't folded; create an explicit cast node.
   1049   // Recompute the insert position, as it may have been invalidated.
   1050   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1051   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1052                                                    Op, Ty);
   1053   UniqueSCEVs.InsertNode(S, IP);
   1054   return S;
   1055 }
   1056 
   1057 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1058 // signed overflow as long as the value of the recurrence within the loop does
   1059 // not exceed this limit before incrementing.
   1060 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1061                                            ICmpInst::Predicate *Pred,
   1062                                            ScalarEvolution *SE) {
   1063   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1064   if (SE->isKnownPositive(Step)) {
   1065     *Pred = ICmpInst::ICMP_SLT;
   1066     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1067                            SE->getSignedRange(Step).getSignedMax());
   1068   }
   1069   if (SE->isKnownNegative(Step)) {
   1070     *Pred = ICmpInst::ICMP_SGT;
   1071     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1072                        SE->getSignedRange(Step).getSignedMin());
   1073   }
   1074   return 0;
   1075 }
   1076 
   1077 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
   1078 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
   1079 // or postincrement sibling. This allows normalizing a sign extended AddRec as
   1080 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
   1081 // result, the expression "Step + sext(PreIncAR)" is congruent with
   1082 // "sext(PostIncAR)"
   1083 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
   1084                                             Type *Ty,
   1085                                             ScalarEvolution *SE) {
   1086   const Loop *L = AR->getLoop();
   1087   const SCEV *Start = AR->getStart();
   1088   const SCEV *Step = AR->getStepRecurrence(*SE);
   1089 
   1090   // Check for a simple looking step prior to loop entry.
   1091   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1092   if (!SA)
   1093     return 0;
   1094 
   1095   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1096   // subtraction is expensive. For this purpose, perform a quick and dirty
   1097   // difference, by checking for Step in the operand list.
   1098   SmallVector<const SCEV *, 4> DiffOps;
   1099   for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
   1100        I != E; ++I) {
   1101     if (*I != Step)
   1102       DiffOps.push_back(*I);
   1103   }
   1104   if (DiffOps.size() == SA->getNumOperands())
   1105     return 0;
   1106 
   1107   // This is a postinc AR. Check for overflow on the preinc recurrence using the
   1108   // same three conditions that getSignExtendedExpr checks.
   1109 
   1110   // 1. NSW flags on the step increment.
   1111   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
   1112   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1113     SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1114 
   1115   if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
   1116     return PreStart;
   1117 
   1118   // 2. Direct overflow check on the step operation's expression.
   1119   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1120   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1121   const SCEV *OperandExtendedStart =
   1122     SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
   1123                    SE->getSignExtendExpr(Step, WideTy));
   1124   if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
   1125     // Cache knowledge of PreAR NSW.
   1126     if (PreAR)
   1127       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
   1128     // FIXME: this optimization needs a unit test
   1129     DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
   1130     return PreStart;
   1131   }
   1132 
   1133   // 3. Loop precondition.
   1134   ICmpInst::Predicate Pred;
   1135   const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
   1136 
   1137   if (OverflowLimit &&
   1138       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
   1139     return PreStart;
   1140   }
   1141   return 0;
   1142 }
   1143 
   1144 // Get the normalized sign-extended expression for this AddRec's Start.
   1145 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
   1146                                             Type *Ty,
   1147                                             ScalarEvolution *SE) {
   1148   const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
   1149   if (!PreStart)
   1150     return SE->getSignExtendExpr(AR->getStart(), Ty);
   1151 
   1152   return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
   1153                         SE->getSignExtendExpr(PreStart, Ty));
   1154 }
   1155 
   1156 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1157                                                Type *Ty) {
   1158   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1159          "This is not an extending conversion!");
   1160   assert(isSCEVable(Ty) &&
   1161          "This is not a conversion to a SCEVable type!");
   1162   Ty = getEffectiveSCEVType(Ty);
   1163 
   1164   // Fold if the operand is constant.
   1165   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1166     return getConstant(
   1167       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
   1168                                               getEffectiveSCEVType(Ty))));
   1169 
   1170   // sext(sext(x)) --> sext(x)
   1171   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1172     return getSignExtendExpr(SS->getOperand(), Ty);
   1173 
   1174   // sext(zext(x)) --> zext(x)
   1175   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1176     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1177 
   1178   // Before doing any expensive analysis, check to see if we've already
   1179   // computed a SCEV for this Op and Ty.
   1180   FoldingSetNodeID ID;
   1181   ID.AddInteger(scSignExtend);
   1182   ID.AddPointer(Op);
   1183   ID.AddPointer(Ty);
   1184   void *IP = 0;
   1185   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1186 
   1187   // If the input value is provably positive, build a zext instead.
   1188   if (isKnownNonNegative(Op))
   1189     return getZeroExtendExpr(Op, Ty);
   1190 
   1191   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1192   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1193     // It's possible the bits taken off by the truncate were all sign bits. If
   1194     // so, we should be able to simplify this further.
   1195     const SCEV *X = ST->getOperand();
   1196     ConstantRange CR = getSignedRange(X);
   1197     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1198     unsigned NewBits = getTypeSizeInBits(Ty);
   1199     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1200             CR.sextOrTrunc(NewBits)))
   1201       return getTruncateOrSignExtend(X, Ty);
   1202   }
   1203 
   1204   // If the input value is a chrec scev, and we can prove that the value
   1205   // did not overflow the old, smaller, value, we can sign extend all of the
   1206   // operands (often constants).  This allows analysis of something like
   1207   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1208   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1209     if (AR->isAffine()) {
   1210       const SCEV *Start = AR->getStart();
   1211       const SCEV *Step = AR->getStepRecurrence(*this);
   1212       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1213       const Loop *L = AR->getLoop();
   1214 
   1215       // If we have special knowledge that this addrec won't overflow,
   1216       // we don't need to do any further analysis.
   1217       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1218         return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1219                              getSignExtendExpr(Step, Ty),
   1220                              L, SCEV::FlagNSW);
   1221 
   1222       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1223       // Note that this serves two purposes: It filters out loops that are
   1224       // simply not analyzable, and it covers the case where this code is
   1225       // being called from within backedge-taken count analysis, such that
   1226       // attempting to ask for the backedge-taken count would likely result
   1227       // in infinite recursion. In the later case, the analysis code will
   1228       // cope with a conservative value, and it will take care to purge
   1229       // that value once it has finished.
   1230       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1231       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1232         // Manually compute the final value for AR, checking for
   1233         // overflow.
   1234 
   1235         // Check whether the backedge-taken count can be losslessly casted to
   1236         // the addrec's type. The count is always unsigned.
   1237         const SCEV *CastedMaxBECount =
   1238           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1239         const SCEV *RecastedMaxBECount =
   1240           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1241         if (MaxBECount == RecastedMaxBECount) {
   1242           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1243           // Check whether Start+Step*MaxBECount has no signed overflow.
   1244           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1245           const SCEV *Add = getAddExpr(Start, SMul);
   1246           const SCEV *OperandExtendedAdd =
   1247             getAddExpr(getSignExtendExpr(Start, WideTy),
   1248                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
   1249                                   getSignExtendExpr(Step, WideTy)));
   1250           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
   1251             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1252             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1253             // Return the expression with the addrec on the outside.
   1254             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1255                                  getSignExtendExpr(Step, Ty),
   1256                                  L, AR->getNoWrapFlags());
   1257           }
   1258           // Similar to above, only this time treat the step value as unsigned.
   1259           // This covers loops that count up with an unsigned step.
   1260           const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
   1261           Add = getAddExpr(Start, UMul);
   1262           OperandExtendedAdd =
   1263             getAddExpr(getSignExtendExpr(Start, WideTy),
   1264                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
   1265                                   getZeroExtendExpr(Step, WideTy)));
   1266           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
   1267             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1268             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1269             // Return the expression with the addrec on the outside.
   1270             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1271                                  getZeroExtendExpr(Step, Ty),
   1272                                  L, AR->getNoWrapFlags());
   1273           }
   1274         }
   1275 
   1276         // If the backedge is guarded by a comparison with the pre-inc value
   1277         // the addrec is safe. Also, if the entry is guarded by a comparison
   1278         // with the start value and the backedge is guarded by a comparison
   1279         // with the post-inc value, the addrec is safe.
   1280         ICmpInst::Predicate Pred;
   1281         const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
   1282         if (OverflowLimit &&
   1283             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1284              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1285               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1286                                           OverflowLimit)))) {
   1287           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1288           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1289           return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1290                                getSignExtendExpr(Step, Ty),
   1291                                L, AR->getNoWrapFlags());
   1292         }
   1293       }
   1294     }
   1295 
   1296   // The cast wasn't folded; create an explicit cast node.
   1297   // Recompute the insert position, as it may have been invalidated.
   1298   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1299   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1300                                                    Op, Ty);
   1301   UniqueSCEVs.InsertNode(S, IP);
   1302   return S;
   1303 }
   1304 
   1305 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1306 /// unspecified bits out to the given type.
   1307 ///
   1308 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1309                                               Type *Ty) {
   1310   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1311          "This is not an extending conversion!");
   1312   assert(isSCEVable(Ty) &&
   1313          "This is not a conversion to a SCEVable type!");
   1314   Ty = getEffectiveSCEVType(Ty);
   1315 
   1316   // Sign-extend negative constants.
   1317   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1318     if (SC->getValue()->getValue().isNegative())
   1319       return getSignExtendExpr(Op, Ty);
   1320 
   1321   // Peel off a truncate cast.
   1322   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1323     const SCEV *NewOp = T->getOperand();
   1324     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1325       return getAnyExtendExpr(NewOp, Ty);
   1326     return getTruncateOrNoop(NewOp, Ty);
   1327   }
   1328 
   1329   // Next try a zext cast. If the cast is folded, use it.
   1330   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1331   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1332     return ZExt;
   1333 
   1334   // Next try a sext cast. If the cast is folded, use it.
   1335   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1336   if (!isa<SCEVSignExtendExpr>(SExt))
   1337     return SExt;
   1338 
   1339   // Force the cast to be folded into the operands of an addrec.
   1340   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1341     SmallVector<const SCEV *, 4> Ops;
   1342     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   1343          I != E; ++I)
   1344       Ops.push_back(getAnyExtendExpr(*I, Ty));
   1345     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1346   }
   1347 
   1348   // As a special case, fold anyext(undef) to undef. We don't want to
   1349   // know too much about SCEVUnknowns, but this special case is handy
   1350   // and harmless.
   1351   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
   1352     if (isa<UndefValue>(U->getValue()))
   1353       return getSCEV(UndefValue::get(Ty));
   1354 
   1355   // If the expression is obviously signed, use the sext cast value.
   1356   if (isa<SCEVSMaxExpr>(Op))
   1357     return SExt;
   1358 
   1359   // Absent any other information, use the zext cast value.
   1360   return ZExt;
   1361 }
   1362 
   1363 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1364 /// a list of operands to be added under the given scale, update the given
   1365 /// map. This is a helper function for getAddRecExpr. As an example of
   1366 /// what it does, given a sequence of operands that would form an add
   1367 /// expression like this:
   1368 ///
   1369 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
   1370 ///
   1371 /// where A and B are constants, update the map with these values:
   1372 ///
   1373 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1374 ///
   1375 /// and add 13 + A*B*29 to AccumulatedConstant.
   1376 /// This will allow getAddRecExpr to produce this:
   1377 ///
   1378 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1379 ///
   1380 /// This form often exposes folding opportunities that are hidden in
   1381 /// the original operand list.
   1382 ///
   1383 /// Return true iff it appears that any interesting folding opportunities
   1384 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1385 /// the common case where no interesting opportunities are present, and
   1386 /// is also used as a check to avoid infinite recursion.
   1387 ///
   1388 static bool
   1389 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1390                              SmallVector<const SCEV *, 8> &NewOps,
   1391                              APInt &AccumulatedConstant,
   1392                              const SCEV *const *Ops, size_t NumOperands,
   1393                              const APInt &Scale,
   1394                              ScalarEvolution &SE) {
   1395   bool Interesting = false;
   1396 
   1397   // Iterate over the add operands. They are sorted, with constants first.
   1398   unsigned i = 0;
   1399   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1400     ++i;
   1401     // Pull a buried constant out to the outside.
   1402     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1403       Interesting = true;
   1404     AccumulatedConstant += Scale * C->getValue()->getValue();
   1405   }
   1406 
   1407   // Next comes everything else. We're especially interested in multiplies
   1408   // here, but they're in the middle, so just visit the rest with one loop.
   1409   for (; i != NumOperands; ++i) {
   1410     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1411     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1412       APInt NewScale =
   1413         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
   1414       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1415         // A multiplication of a constant with another add; recurse.
   1416         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1417         Interesting |=
   1418           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1419                                        Add->op_begin(), Add->getNumOperands(),
   1420                                        NewScale, SE);
   1421       } else {
   1422         // A multiplication of a constant with some other value. Update
   1423         // the map.
   1424         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1425         const SCEV *Key = SE.getMulExpr(MulOps);
   1426         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1427           M.insert(std::make_pair(Key, NewScale));
   1428         if (Pair.second) {
   1429           NewOps.push_back(Pair.first->first);
   1430         } else {
   1431           Pair.first->second += NewScale;
   1432           // The map already had an entry for this value, which may indicate
   1433           // a folding opportunity.
   1434           Interesting = true;
   1435         }
   1436       }
   1437     } else {
   1438       // An ordinary operand. Update the map.
   1439       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1440         M.insert(std::make_pair(Ops[i], Scale));
   1441       if (Pair.second) {
   1442         NewOps.push_back(Pair.first->first);
   1443       } else {
   1444         Pair.first->second += Scale;
   1445         // The map already had an entry for this value, which may indicate
   1446         // a folding opportunity.
   1447         Interesting = true;
   1448       }
   1449     }
   1450   }
   1451 
   1452   return Interesting;
   1453 }
   1454 
   1455 namespace {
   1456   struct APIntCompare {
   1457     bool operator()(const APInt &LHS, const APInt &RHS) const {
   1458       return LHS.ult(RHS);
   1459     }
   1460   };
   1461 }
   1462 
   1463 /// getAddExpr - Get a canonical add expression, or something simpler if
   1464 /// possible.
   1465 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1466                                         SCEV::NoWrapFlags Flags) {
   1467   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1468          "only nuw or nsw allowed");
   1469   assert(!Ops.empty() && "Cannot get empty add!");
   1470   if (Ops.size() == 1) return Ops[0];
   1471 #ifndef NDEBUG
   1472   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1473   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1474     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1475            "SCEVAddExpr operand types don't match!");
   1476 #endif
   1477 
   1478   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1479   // And vice-versa.
   1480   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1481   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1482   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1483     bool All = true;
   1484     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1485          E = Ops.end(); I != E; ++I)
   1486       if (!isKnownNonNegative(*I)) {
   1487         All = false;
   1488         break;
   1489       }
   1490     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1491   }
   1492 
   1493   // Sort by complexity, this groups all similar expression types together.
   1494   GroupByComplexity(Ops, LI);
   1495 
   1496   // If there are any constants, fold them together.
   1497   unsigned Idx = 0;
   1498   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1499     ++Idx;
   1500     assert(Idx < Ops.size());
   1501     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1502       // We found two constants, fold them together!
   1503       Ops[0] = getConstant(LHSC->getValue()->getValue() +
   1504                            RHSC->getValue()->getValue());
   1505       if (Ops.size() == 2) return Ops[0];
   1506       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1507       LHSC = cast<SCEVConstant>(Ops[0]);
   1508     }
   1509 
   1510     // If we are left with a constant zero being added, strip it off.
   1511     if (LHSC->getValue()->isZero()) {
   1512       Ops.erase(Ops.begin());
   1513       --Idx;
   1514     }
   1515 
   1516     if (Ops.size() == 1) return Ops[0];
   1517   }
   1518 
   1519   // Okay, check to see if the same value occurs in the operand list more than
   1520   // once.  If so, merge them together into an multiply expression.  Since we
   1521   // sorted the list, these values are required to be adjacent.
   1522   Type *Ty = Ops[0]->getType();
   1523   bool FoundMatch = false;
   1524   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   1525     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   1526       // Scan ahead to count how many equal operands there are.
   1527       unsigned Count = 2;
   1528       while (i+Count != e && Ops[i+Count] == Ops[i])
   1529         ++Count;
   1530       // Merge the values into a multiply.
   1531       const SCEV *Scale = getConstant(Ty, Count);
   1532       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   1533       if (Ops.size() == Count)
   1534         return Mul;
   1535       Ops[i] = Mul;
   1536       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   1537       --i; e -= Count - 1;
   1538       FoundMatch = true;
   1539     }
   1540   if (FoundMatch)
   1541     return getAddExpr(Ops, Flags);
   1542 
   1543   // Check for truncates. If all the operands are truncated from the same
   1544   // type, see if factoring out the truncate would permit the result to be
   1545   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   1546   // if the contents of the resulting outer trunc fold to something simple.
   1547   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   1548     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   1549     Type *DstType = Trunc->getType();
   1550     Type *SrcType = Trunc->getOperand()->getType();
   1551     SmallVector<const SCEV *, 8> LargeOps;
   1552     bool Ok = true;
   1553     // Check all the operands to see if they can be represented in the
   1554     // source type of the truncate.
   1555     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1556       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   1557         if (T->getOperand()->getType() != SrcType) {
   1558           Ok = false;
   1559           break;
   1560         }
   1561         LargeOps.push_back(T->getOperand());
   1562       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1563         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   1564       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   1565         SmallVector<const SCEV *, 8> LargeMulOps;
   1566         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   1567           if (const SCEVTruncateExpr *T =
   1568                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   1569             if (T->getOperand()->getType() != SrcType) {
   1570               Ok = false;
   1571               break;
   1572             }
   1573             LargeMulOps.push_back(T->getOperand());
   1574           } else if (const SCEVConstant *C =
   1575                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
   1576             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   1577           } else {
   1578             Ok = false;
   1579             break;
   1580           }
   1581         }
   1582         if (Ok)
   1583           LargeOps.push_back(getMulExpr(LargeMulOps));
   1584       } else {
   1585         Ok = false;
   1586         break;
   1587       }
   1588     }
   1589     if (Ok) {
   1590       // Evaluate the expression in the larger type.
   1591       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   1592       // If it folds to something simple, use it. Otherwise, don't.
   1593       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   1594         return getTruncateExpr(Fold, DstType);
   1595     }
   1596   }
   1597 
   1598   // Skip past any other cast SCEVs.
   1599   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   1600     ++Idx;
   1601 
   1602   // If there are add operands they would be next.
   1603   if (Idx < Ops.size()) {
   1604     bool DeletedAdd = false;
   1605     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   1606       // If we have an add, expand the add operands onto the end of the operands
   1607       // list.
   1608       Ops.erase(Ops.begin()+Idx);
   1609       Ops.append(Add->op_begin(), Add->op_end());
   1610       DeletedAdd = true;
   1611     }
   1612 
   1613     // If we deleted at least one add, we added operands to the end of the list,
   1614     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1615     // any operands we just acquired.
   1616     if (DeletedAdd)
   1617       return getAddExpr(Ops);
   1618   }
   1619 
   1620   // Skip over the add expression until we get to a multiply.
   1621   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1622     ++Idx;
   1623 
   1624   // Check to see if there are any folding opportunities present with
   1625   // operands multiplied by constant values.
   1626   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   1627     uint64_t BitWidth = getTypeSizeInBits(Ty);
   1628     DenseMap<const SCEV *, APInt> M;
   1629     SmallVector<const SCEV *, 8> NewOps;
   1630     APInt AccumulatedConstant(BitWidth, 0);
   1631     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1632                                      Ops.data(), Ops.size(),
   1633                                      APInt(BitWidth, 1), *this)) {
   1634       // Some interesting folding opportunity is present, so its worthwhile to
   1635       // re-generate the operands list. Group the operands by constant scale,
   1636       // to avoid multiplying by the same constant scale multiple times.
   1637       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   1638       for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
   1639            E = NewOps.end(); I != E; ++I)
   1640         MulOpLists[M.find(*I)->second].push_back(*I);
   1641       // Re-generate the operands list.
   1642       Ops.clear();
   1643       if (AccumulatedConstant != 0)
   1644         Ops.push_back(getConstant(AccumulatedConstant));
   1645       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
   1646            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
   1647         if (I->first != 0)
   1648           Ops.push_back(getMulExpr(getConstant(I->first),
   1649                                    getAddExpr(I->second)));
   1650       if (Ops.empty())
   1651         return getConstant(Ty, 0);
   1652       if (Ops.size() == 1)
   1653         return Ops[0];
   1654       return getAddExpr(Ops);
   1655     }
   1656   }
   1657 
   1658   // If we are adding something to a multiply expression, make sure the
   1659   // something is not already an operand of the multiply.  If so, merge it into
   1660   // the multiply.
   1661   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   1662     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   1663     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   1664       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   1665       if (isa<SCEVConstant>(MulOpSCEV))
   1666         continue;
   1667       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   1668         if (MulOpSCEV == Ops[AddOp]) {
   1669           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   1670           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   1671           if (Mul->getNumOperands() != 2) {
   1672             // If the multiply has more than two operands, we must get the
   1673             // Y*Z term.
   1674             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1675                                                 Mul->op_begin()+MulOp);
   1676             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1677             InnerMul = getMulExpr(MulOps);
   1678           }
   1679           const SCEV *One = getConstant(Ty, 1);
   1680           const SCEV *AddOne = getAddExpr(One, InnerMul);
   1681           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   1682           if (Ops.size() == 2) return OuterMul;
   1683           if (AddOp < Idx) {
   1684             Ops.erase(Ops.begin()+AddOp);
   1685             Ops.erase(Ops.begin()+Idx-1);
   1686           } else {
   1687             Ops.erase(Ops.begin()+Idx);
   1688             Ops.erase(Ops.begin()+AddOp-1);
   1689           }
   1690           Ops.push_back(OuterMul);
   1691           return getAddExpr(Ops);
   1692         }
   1693 
   1694       // Check this multiply against other multiplies being added together.
   1695       for (unsigned OtherMulIdx = Idx+1;
   1696            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   1697            ++OtherMulIdx) {
   1698         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   1699         // If MulOp occurs in OtherMul, we can fold the two multiplies
   1700         // together.
   1701         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   1702              OMulOp != e; ++OMulOp)
   1703           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   1704             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   1705             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   1706             if (Mul->getNumOperands() != 2) {
   1707               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1708                                                   Mul->op_begin()+MulOp);
   1709               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1710               InnerMul1 = getMulExpr(MulOps);
   1711             }
   1712             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   1713             if (OtherMul->getNumOperands() != 2) {
   1714               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   1715                                                   OtherMul->op_begin()+OMulOp);
   1716               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   1717               InnerMul2 = getMulExpr(MulOps);
   1718             }
   1719             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   1720             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   1721             if (Ops.size() == 2) return OuterMul;
   1722             Ops.erase(Ops.begin()+Idx);
   1723             Ops.erase(Ops.begin()+OtherMulIdx-1);
   1724             Ops.push_back(OuterMul);
   1725             return getAddExpr(Ops);
   1726           }
   1727       }
   1728     }
   1729   }
   1730 
   1731   // If there are any add recurrences in the operands list, see if any other
   1732   // added values are loop invariant.  If so, we can fold them into the
   1733   // recurrence.
   1734   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1735     ++Idx;
   1736 
   1737   // Scan over all recurrences, trying to fold loop invariants into them.
   1738   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1739     // Scan all of the other operands to this add and add them to the vector if
   1740     // they are loop invariant w.r.t. the recurrence.
   1741     SmallVector<const SCEV *, 8> LIOps;
   1742     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1743     const Loop *AddRecLoop = AddRec->getLoop();
   1744     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1745       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1746         LIOps.push_back(Ops[i]);
   1747         Ops.erase(Ops.begin()+i);
   1748         --i; --e;
   1749       }
   1750 
   1751     // If we found some loop invariants, fold them into the recurrence.
   1752     if (!LIOps.empty()) {
   1753       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   1754       LIOps.push_back(AddRec->getStart());
   1755 
   1756       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1757                                              AddRec->op_end());
   1758       AddRecOps[0] = getAddExpr(LIOps);
   1759 
   1760       // Build the new addrec. Propagate the NUW and NSW flags if both the
   1761       // outer add and the inner addrec are guaranteed to have no overflow.
   1762       // Always propagate NW.
   1763       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   1764       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   1765 
   1766       // If all of the other operands were loop invariant, we are done.
   1767       if (Ops.size() == 1) return NewRec;
   1768 
   1769       // Otherwise, add the folded AddRec by the non-invariant parts.
   1770       for (unsigned i = 0;; ++i)
   1771         if (Ops[i] == AddRec) {
   1772           Ops[i] = NewRec;
   1773           break;
   1774         }
   1775       return getAddExpr(Ops);
   1776     }
   1777 
   1778     // Okay, if there weren't any loop invariants to be folded, check to see if
   1779     // there are multiple AddRec's with the same loop induction variable being
   1780     // added together.  If so, we can fold them.
   1781     for (unsigned OtherIdx = Idx+1;
   1782          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1783          ++OtherIdx)
   1784       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   1785         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   1786         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1787                                                AddRec->op_end());
   1788         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1789              ++OtherIdx)
   1790           if (const SCEVAddRecExpr *OtherAddRec =
   1791                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   1792             if (OtherAddRec->getLoop() == AddRecLoop) {
   1793               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   1794                    i != e; ++i) {
   1795                 if (i >= AddRecOps.size()) {
   1796                   AddRecOps.append(OtherAddRec->op_begin()+i,
   1797                                    OtherAddRec->op_end());
   1798                   break;
   1799                 }
   1800                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   1801                                           OtherAddRec->getOperand(i));
   1802               }
   1803               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   1804             }
   1805         // Step size has changed, so we cannot guarantee no self-wraparound.
   1806         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   1807         return getAddExpr(Ops);
   1808       }
   1809 
   1810     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   1811     // next one.
   1812   }
   1813 
   1814   // Okay, it looks like we really DO need an add expr.  Check to see if we
   1815   // already have one, otherwise create a new one.
   1816   FoldingSetNodeID ID;
   1817   ID.AddInteger(scAddExpr);
   1818   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1819     ID.AddPointer(Ops[i]);
   1820   void *IP = 0;
   1821   SCEVAddExpr *S =
   1822     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1823   if (!S) {
   1824     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   1825     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   1826     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   1827                                         O, Ops.size());
   1828     UniqueSCEVs.InsertNode(S, IP);
   1829   }
   1830   S->setNoWrapFlags(Flags);
   1831   return S;
   1832 }
   1833 
   1834 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   1835   uint64_t k = i*j;
   1836   if (j > 1 && k / j != i) Overflow = true;
   1837   return k;
   1838 }
   1839 
   1840 /// Compute the result of "n choose k", the binomial coefficient.  If an
   1841 /// intermediate computation overflows, Overflow will be set and the return will
   1842 /// be garbage. Overflow is not cleared on absense of overflow.
   1843 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   1844   // We use the multiplicative formula:
   1845   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   1846   // At each iteration, we take the n-th term of the numeral and divide by the
   1847   // (k-n)th term of the denominator.  This division will always produce an
   1848   // integral result, and helps reduce the chance of overflow in the
   1849   // intermediate computations. However, we can still overflow even when the
   1850   // final result would fit.
   1851 
   1852   if (n == 0 || n == k) return 1;
   1853   if (k > n) return 0;
   1854 
   1855   if (k > n/2)
   1856     k = n-k;
   1857 
   1858   uint64_t r = 1;
   1859   for (uint64_t i = 1; i <= k; ++i) {
   1860     r = umul_ov(r, n-(i-1), Overflow);
   1861     r /= i;
   1862   }
   1863   return r;
   1864 }
   1865 
   1866 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   1867 /// possible.
   1868 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1869                                         SCEV::NoWrapFlags Flags) {
   1870   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   1871          "only nuw or nsw allowed");
   1872   assert(!Ops.empty() && "Cannot get empty mul!");
   1873   if (Ops.size() == 1) return Ops[0];
   1874 #ifndef NDEBUG
   1875   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1876   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1877     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1878            "SCEVMulExpr operand types don't match!");
   1879 #endif
   1880 
   1881   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1882   // And vice-versa.
   1883   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1884   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1885   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1886     bool All = true;
   1887     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1888          E = Ops.end(); I != E; ++I)
   1889       if (!isKnownNonNegative(*I)) {
   1890         All = false;
   1891         break;
   1892       }
   1893     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1894   }
   1895 
   1896   // Sort by complexity, this groups all similar expression types together.
   1897   GroupByComplexity(Ops, LI);
   1898 
   1899   // If there are any constants, fold them together.
   1900   unsigned Idx = 0;
   1901   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1902 
   1903     // C1*(C2+V) -> C1*C2 + C1*V
   1904     if (Ops.size() == 2)
   1905       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   1906         if (Add->getNumOperands() == 2 &&
   1907             isa<SCEVConstant>(Add->getOperand(0)))
   1908           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   1909                             getMulExpr(LHSC, Add->getOperand(1)));
   1910 
   1911     ++Idx;
   1912     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1913       // We found two constants, fold them together!
   1914       ConstantInt *Fold = ConstantInt::get(getContext(),
   1915                                            LHSC->getValue()->getValue() *
   1916                                            RHSC->getValue()->getValue());
   1917       Ops[0] = getConstant(Fold);
   1918       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1919       if (Ops.size() == 1) return Ops[0];
   1920       LHSC = cast<SCEVConstant>(Ops[0]);
   1921     }
   1922 
   1923     // If we are left with a constant one being multiplied, strip it off.
   1924     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   1925       Ops.erase(Ops.begin());
   1926       --Idx;
   1927     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   1928       // If we have a multiply of zero, it will always be zero.
   1929       return Ops[0];
   1930     } else if (Ops[0]->isAllOnesValue()) {
   1931       // If we have a mul by -1 of an add, try distributing the -1 among the
   1932       // add operands.
   1933       if (Ops.size() == 2) {
   1934         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   1935           SmallVector<const SCEV *, 4> NewOps;
   1936           bool AnyFolded = false;
   1937           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
   1938                  E = Add->op_end(); I != E; ++I) {
   1939             const SCEV *Mul = getMulExpr(Ops[0], *I);
   1940             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   1941             NewOps.push_back(Mul);
   1942           }
   1943           if (AnyFolded)
   1944             return getAddExpr(NewOps);
   1945         }
   1946         else if (const SCEVAddRecExpr *
   1947                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   1948           // Negation preserves a recurrence's no self-wrap property.
   1949           SmallVector<const SCEV *, 4> Operands;
   1950           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
   1951                  E = AddRec->op_end(); I != E; ++I) {
   1952             Operands.push_back(getMulExpr(Ops[0], *I));
   1953           }
   1954           return getAddRecExpr(Operands, AddRec->getLoop(),
   1955                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   1956         }
   1957       }
   1958     }
   1959 
   1960     if (Ops.size() == 1)
   1961       return Ops[0];
   1962   }
   1963 
   1964   // Skip over the add expression until we get to a multiply.
   1965   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1966     ++Idx;
   1967 
   1968   // If there are mul operands inline them all into this expression.
   1969   if (Idx < Ops.size()) {
   1970     bool DeletedMul = false;
   1971     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   1972       // If we have an mul, expand the mul operands onto the end of the operands
   1973       // list.
   1974       Ops.erase(Ops.begin()+Idx);
   1975       Ops.append(Mul->op_begin(), Mul->op_end());
   1976       DeletedMul = true;
   1977     }
   1978 
   1979     // If we deleted at least one mul, we added operands to the end of the list,
   1980     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1981     // any operands we just acquired.
   1982     if (DeletedMul)
   1983       return getMulExpr(Ops);
   1984   }
   1985 
   1986   // If there are any add recurrences in the operands list, see if any other
   1987   // added values are loop invariant.  If so, we can fold them into the
   1988   // recurrence.
   1989   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1990     ++Idx;
   1991 
   1992   // Scan over all recurrences, trying to fold loop invariants into them.
   1993   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1994     // Scan all of the other operands to this mul and add them to the vector if
   1995     // they are loop invariant w.r.t. the recurrence.
   1996     SmallVector<const SCEV *, 8> LIOps;
   1997     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1998     const Loop *AddRecLoop = AddRec->getLoop();
   1999     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2000       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   2001         LIOps.push_back(Ops[i]);
   2002         Ops.erase(Ops.begin()+i);
   2003         --i; --e;
   2004       }
   2005 
   2006     // If we found some loop invariants, fold them into the recurrence.
   2007     if (!LIOps.empty()) {
   2008       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   2009       SmallVector<const SCEV *, 4> NewOps;
   2010       NewOps.reserve(AddRec->getNumOperands());
   2011       const SCEV *Scale = getMulExpr(LIOps);
   2012       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2013         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2014 
   2015       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2016       // outer mul and the inner addrec are guaranteed to have no overflow.
   2017       //
   2018       // No self-wrap cannot be guaranteed after changing the step size, but
   2019       // will be inferred if either NUW or NSW is true.
   2020       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2021       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2022 
   2023       // If all of the other operands were loop invariant, we are done.
   2024       if (Ops.size() == 1) return NewRec;
   2025 
   2026       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2027       for (unsigned i = 0;; ++i)
   2028         if (Ops[i] == AddRec) {
   2029           Ops[i] = NewRec;
   2030           break;
   2031         }
   2032       return getMulExpr(Ops);
   2033     }
   2034 
   2035     // Okay, if there weren't any loop invariants to be folded, check to see if
   2036     // there are multiple AddRec's with the same loop induction variable being
   2037     // multiplied together.  If so, we can fold them.
   2038     for (unsigned OtherIdx = Idx+1;
   2039          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2040          ++OtherIdx) {
   2041       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   2042         // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2043         // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2044         //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2045         //   ]]],+,...up to x=2n}.
   2046         // Note that the arguments to choose() are always integers with values
   2047         // known at compile time, never SCEV objects.
   2048         //
   2049         // The implementation avoids pointless extra computations when the two
   2050         // addrec's are of different length (mathematically, it's equivalent to
   2051         // an infinite stream of zeros on the right).
   2052         bool OpsModified = false;
   2053         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2054              ++OtherIdx)
   2055           if (const SCEVAddRecExpr *OtherAddRec =
   2056                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   2057             if (OtherAddRec->getLoop() == AddRecLoop) {
   2058               bool Overflow = false;
   2059               Type *Ty = AddRec->getType();
   2060               bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2061               SmallVector<const SCEV*, 7> AddRecOps;
   2062               for (int x = 0, xe = AddRec->getNumOperands() +
   2063                      OtherAddRec->getNumOperands() - 1;
   2064                    x != xe && !Overflow; ++x) {
   2065                 const SCEV *Term = getConstant(Ty, 0);
   2066                 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2067                   uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2068                   for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2069                          ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2070                        z < ze && !Overflow; ++z) {
   2071                     uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2072                     uint64_t Coeff;
   2073                     if (LargerThan64Bits)
   2074                       Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2075                     else
   2076                       Coeff = Coeff1*Coeff2;
   2077                     const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2078                     const SCEV *Term1 = AddRec->getOperand(y-z);
   2079                     const SCEV *Term2 = OtherAddRec->getOperand(z);
   2080                     Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2081                   }
   2082                 }
   2083                 AddRecOps.push_back(Term);
   2084               }
   2085               if (!Overflow) {
   2086                 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
   2087                                                       AddRec->getLoop(),
   2088                                                       SCEV::FlagAnyWrap);
   2089                 if (Ops.size() == 2) return NewAddRec;
   2090                 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
   2091                 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2092                 OpsModified = true;
   2093               }
   2094             }
   2095         if (OpsModified)
   2096           return getMulExpr(Ops);
   2097       }
   2098     }
   2099 
   2100     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2101     // next one.
   2102   }
   2103 
   2104   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2105   // already have one, otherwise create a new one.
   2106   FoldingSetNodeID ID;
   2107   ID.AddInteger(scMulExpr);
   2108   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2109     ID.AddPointer(Ops[i]);
   2110   void *IP = 0;
   2111   SCEVMulExpr *S =
   2112     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2113   if (!S) {
   2114     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2115     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2116     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2117                                         O, Ops.size());
   2118     UniqueSCEVs.InsertNode(S, IP);
   2119   }
   2120   S->setNoWrapFlags(Flags);
   2121   return S;
   2122 }
   2123 
   2124 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2125 /// simpler if possible.
   2126 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2127                                          const SCEV *RHS) {
   2128   assert(getEffectiveSCEVType(LHS->getType()) ==
   2129          getEffectiveSCEVType(RHS->getType()) &&
   2130          "SCEVUDivExpr operand types don't match!");
   2131 
   2132   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2133     if (RHSC->getValue()->equalsInt(1))
   2134       return LHS;                               // X udiv 1 --> x
   2135     // If the denominator is zero, the result of the udiv is undefined. Don't
   2136     // try to analyze it, because the resolution chosen here may differ from
   2137     // the resolution chosen in other parts of the compiler.
   2138     if (!RHSC->getValue()->isZero()) {
   2139       // Determine if the division can be folded into the operands of
   2140       // its operands.
   2141       // TODO: Generalize this to non-constants by using known-bits information.
   2142       Type *Ty = LHS->getType();
   2143       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
   2144       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2145       // For non-power-of-two values, effectively round the value up to the
   2146       // nearest power of two.
   2147       if (!RHSC->getValue()->getValue().isPowerOf2())
   2148         ++MaxShiftAmt;
   2149       IntegerType *ExtTy =
   2150         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2151       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2152         if (const SCEVConstant *Step =
   2153             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2154           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2155           const APInt &StepInt = Step->getValue()->getValue();
   2156           const APInt &DivInt = RHSC->getValue()->getValue();
   2157           if (!StepInt.urem(DivInt) &&
   2158               getZeroExtendExpr(AR, ExtTy) ==
   2159               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2160                             getZeroExtendExpr(Step, ExtTy),
   2161                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2162             SmallVector<const SCEV *, 4> Operands;
   2163             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
   2164               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
   2165             return getAddRecExpr(Operands, AR->getLoop(),
   2166                                  SCEV::FlagNW);
   2167           }
   2168           /// Get a canonical UDivExpr for a recurrence.
   2169           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2170           // We can currently only fold X%N if X is constant.
   2171           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2172           if (StartC && !DivInt.urem(StepInt) &&
   2173               getZeroExtendExpr(AR, ExtTy) ==
   2174               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2175                             getZeroExtendExpr(Step, ExtTy),
   2176                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2177             const APInt &StartInt = StartC->getValue()->getValue();
   2178             const APInt &StartRem = StartInt.urem(StepInt);
   2179             if (StartRem != 0)
   2180               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2181                                   AR->getLoop(), SCEV::FlagNW);
   2182           }
   2183         }
   2184       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2185       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2186         SmallVector<const SCEV *, 4> Operands;
   2187         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
   2188           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
   2189         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2190           // Find an operand that's safely divisible.
   2191           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2192             const SCEV *Op = M->getOperand(i);
   2193             const SCEV *Div = getUDivExpr(Op, RHSC);
   2194             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2195               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2196                                                       M->op_end());
   2197               Operands[i] = Div;
   2198               return getMulExpr(Operands);
   2199             }
   2200           }
   2201       }
   2202       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2203       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2204         SmallVector<const SCEV *, 4> Operands;
   2205         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
   2206           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
   2207         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2208           Operands.clear();
   2209           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2210             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2211             if (isa<SCEVUDivExpr>(Op) ||
   2212                 getMulExpr(Op, RHS) != A->getOperand(i))
   2213               break;
   2214             Operands.push_back(Op);
   2215           }
   2216           if (Operands.size() == A->getNumOperands())
   2217             return getAddExpr(Operands);
   2218         }
   2219       }
   2220 
   2221       // Fold if both operands are constant.
   2222       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2223         Constant *LHSCV = LHSC->getValue();
   2224         Constant *RHSCV = RHSC->getValue();
   2225         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2226                                                                    RHSCV)));
   2227       }
   2228     }
   2229   }
   2230 
   2231   FoldingSetNodeID ID;
   2232   ID.AddInteger(scUDivExpr);
   2233   ID.AddPointer(LHS);
   2234   ID.AddPointer(RHS);
   2235   void *IP = 0;
   2236   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2237   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2238                                              LHS, RHS);
   2239   UniqueSCEVs.InsertNode(S, IP);
   2240   return S;
   2241 }
   2242 
   2243 
   2244 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2245 /// Simplify the expression as much as possible.
   2246 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2247                                            const Loop *L,
   2248                                            SCEV::NoWrapFlags Flags) {
   2249   SmallVector<const SCEV *, 4> Operands;
   2250   Operands.push_back(Start);
   2251   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2252     if (StepChrec->getLoop() == L) {
   2253       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2254       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2255     }
   2256 
   2257   Operands.push_back(Step);
   2258   return getAddRecExpr(Operands, L, Flags);
   2259 }
   2260 
   2261 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2262 /// Simplify the expression as much as possible.
   2263 const SCEV *
   2264 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2265                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2266   if (Operands.size() == 1) return Operands[0];
   2267 #ifndef NDEBUG
   2268   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2269   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2270     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2271            "SCEVAddRecExpr operand types don't match!");
   2272   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2273     assert(isLoopInvariant(Operands[i], L) &&
   2274            "SCEVAddRecExpr operand is not loop-invariant!");
   2275 #endif
   2276 
   2277   if (Operands.back()->isZero()) {
   2278     Operands.pop_back();
   2279     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2280   }
   2281 
   2282   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2283   // use that information to infer NUW and NSW flags. However, computing a
   2284   // BE count requires calling getAddRecExpr, so we may not yet have a
   2285   // meaningful BE count at this point (and if we don't, we'd be stuck
   2286   // with a SCEVCouldNotCompute as the cached BE count).
   2287 
   2288   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   2289   // And vice-versa.
   2290   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   2291   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   2292   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   2293     bool All = true;
   2294     for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
   2295          E = Operands.end(); I != E; ++I)
   2296       if (!isKnownNonNegative(*I)) {
   2297         All = false;
   2298         break;
   2299       }
   2300     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   2301   }
   2302 
   2303   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2304   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2305     const Loop *NestedLoop = NestedAR->getLoop();
   2306     if (L->contains(NestedLoop) ?
   2307         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
   2308         (!NestedLoop->contains(L) &&
   2309          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2310       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2311                                                   NestedAR->op_end());
   2312       Operands[0] = NestedAR->getStart();
   2313       // AddRecs require their operands be loop-invariant with respect to their
   2314       // loops. Don't perform this transformation if it would break this
   2315       // requirement.
   2316       bool AllInvariant = true;
   2317       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2318         if (!isLoopInvariant(Operands[i], L)) {
   2319           AllInvariant = false;
   2320           break;
   2321         }
   2322       if (AllInvariant) {
   2323         // Create a recurrence for the outer loop with the same step size.
   2324         //
   2325         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2326         // inner recurrence has the same property.
   2327         SCEV::NoWrapFlags OuterFlags =
   2328           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2329 
   2330         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2331         AllInvariant = true;
   2332         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
   2333           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
   2334             AllInvariant = false;
   2335             break;
   2336           }
   2337         if (AllInvariant) {
   2338           // Ok, both add recurrences are valid after the transformation.
   2339           //
   2340           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2341           // the outer recurrence has the same property.
   2342           SCEV::NoWrapFlags InnerFlags =
   2343             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2344           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2345         }
   2346       }
   2347       // Reset Operands to its original state.
   2348       Operands[0] = NestedAR;
   2349     }
   2350   }
   2351 
   2352   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2353   // already have one, otherwise create a new one.
   2354   FoldingSetNodeID ID;
   2355   ID.AddInteger(scAddRecExpr);
   2356   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2357     ID.AddPointer(Operands[i]);
   2358   ID.AddPointer(L);
   2359   void *IP = 0;
   2360   SCEVAddRecExpr *S =
   2361     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2362   if (!S) {
   2363     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2364     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2365     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2366                                            O, Operands.size(), L);
   2367     UniqueSCEVs.InsertNode(S, IP);
   2368   }
   2369   S->setNoWrapFlags(Flags);
   2370   return S;
   2371 }
   2372 
   2373 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2374                                          const SCEV *RHS) {
   2375   SmallVector<const SCEV *, 2> Ops;
   2376   Ops.push_back(LHS);
   2377   Ops.push_back(RHS);
   2378   return getSMaxExpr(Ops);
   2379 }
   2380 
   2381 const SCEV *
   2382 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2383   assert(!Ops.empty() && "Cannot get empty smax!");
   2384   if (Ops.size() == 1) return Ops[0];
   2385 #ifndef NDEBUG
   2386   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2387   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2388     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2389            "SCEVSMaxExpr operand types don't match!");
   2390 #endif
   2391 
   2392   // Sort by complexity, this groups all similar expression types together.
   2393   GroupByComplexity(Ops, LI);
   2394 
   2395   // If there are any constants, fold them together.
   2396   unsigned Idx = 0;
   2397   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2398     ++Idx;
   2399     assert(Idx < Ops.size());
   2400     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2401       // We found two constants, fold them together!
   2402       ConstantInt *Fold = ConstantInt::get(getContext(),
   2403                               APIntOps::smax(LHSC->getValue()->getValue(),
   2404                                              RHSC->getValue()->getValue()));
   2405       Ops[0] = getConstant(Fold);
   2406       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2407       if (Ops.size() == 1) return Ops[0];
   2408       LHSC = cast<SCEVConstant>(Ops[0]);
   2409     }
   2410 
   2411     // If we are left with a constant minimum-int, strip it off.
   2412     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   2413       Ops.erase(Ops.begin());
   2414       --Idx;
   2415     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   2416       // If we have an smax with a constant maximum-int, it will always be
   2417       // maximum-int.
   2418       return Ops[0];
   2419     }
   2420 
   2421     if (Ops.size() == 1) return Ops[0];
   2422   }
   2423 
   2424   // Find the first SMax
   2425   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   2426     ++Idx;
   2427 
   2428   // Check to see if one of the operands is an SMax. If so, expand its operands
   2429   // onto our operand list, and recurse to simplify.
   2430   if (Idx < Ops.size()) {
   2431     bool DeletedSMax = false;
   2432     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   2433       Ops.erase(Ops.begin()+Idx);
   2434       Ops.append(SMax->op_begin(), SMax->op_end());
   2435       DeletedSMax = true;
   2436     }
   2437 
   2438     if (DeletedSMax)
   2439       return getSMaxExpr(Ops);
   2440   }
   2441 
   2442   // Okay, check to see if the same value occurs in the operand list twice.  If
   2443   // so, delete one.  Since we sorted the list, these values are required to
   2444   // be adjacent.
   2445   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2446     //  X smax Y smax Y  -->  X smax Y
   2447     //  X smax Y         -->  X, if X is always greater than Y
   2448     if (Ops[i] == Ops[i+1] ||
   2449         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   2450       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2451       --i; --e;
   2452     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   2453       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2454       --i; --e;
   2455     }
   2456 
   2457   if (Ops.size() == 1) return Ops[0];
   2458 
   2459   assert(!Ops.empty() && "Reduced smax down to nothing!");
   2460 
   2461   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   2462   // already have one, otherwise create a new one.
   2463   FoldingSetNodeID ID;
   2464   ID.AddInteger(scSMaxExpr);
   2465   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2466     ID.AddPointer(Ops[i]);
   2467   void *IP = 0;
   2468   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2469   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2470   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2471   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   2472                                              O, Ops.size());
   2473   UniqueSCEVs.InsertNode(S, IP);
   2474   return S;
   2475 }
   2476 
   2477 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   2478                                          const SCEV *RHS) {
   2479   SmallVector<const SCEV *, 2> Ops;
   2480   Ops.push_back(LHS);
   2481   Ops.push_back(RHS);
   2482   return getUMaxExpr(Ops);
   2483 }
   2484 
   2485 const SCEV *
   2486 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2487   assert(!Ops.empty() && "Cannot get empty umax!");
   2488   if (Ops.size() == 1) return Ops[0];
   2489 #ifndef NDEBUG
   2490   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2491   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2492     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2493            "SCEVUMaxExpr operand types don't match!");
   2494 #endif
   2495 
   2496   // Sort by complexity, this groups all similar expression types together.
   2497   GroupByComplexity(Ops, LI);
   2498 
   2499   // If there are any constants, fold them together.
   2500   unsigned Idx = 0;
   2501   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2502     ++Idx;
   2503     assert(Idx < Ops.size());
   2504     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2505       // We found two constants, fold them together!
   2506       ConstantInt *Fold = ConstantInt::get(getContext(),
   2507                               APIntOps::umax(LHSC->getValue()->getValue(),
   2508                                              RHSC->getValue()->getValue()));
   2509       Ops[0] = getConstant(Fold);
   2510       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2511       if (Ops.size() == 1) return Ops[0];
   2512       LHSC = cast<SCEVConstant>(Ops[0]);
   2513     }
   2514 
   2515     // If we are left with a constant minimum-int, strip it off.
   2516     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   2517       Ops.erase(Ops.begin());
   2518       --Idx;
   2519     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   2520       // If we have an umax with a constant maximum-int, it will always be
   2521       // maximum-int.
   2522       return Ops[0];
   2523     }
   2524 
   2525     if (Ops.size() == 1) return Ops[0];
   2526   }
   2527 
   2528   // Find the first UMax
   2529   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   2530     ++Idx;
   2531 
   2532   // Check to see if one of the operands is a UMax. If so, expand its operands
   2533   // onto our operand list, and recurse to simplify.
   2534   if (Idx < Ops.size()) {
   2535     bool DeletedUMax = false;
   2536     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   2537       Ops.erase(Ops.begin()+Idx);
   2538       Ops.append(UMax->op_begin(), UMax->op_end());
   2539       DeletedUMax = true;
   2540     }
   2541 
   2542     if (DeletedUMax)
   2543       return getUMaxExpr(Ops);
   2544   }
   2545 
   2546   // Okay, check to see if the same value occurs in the operand list twice.  If
   2547   // so, delete one.  Since we sorted the list, these values are required to
   2548   // be adjacent.
   2549   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2550     //  X umax Y umax Y  -->  X umax Y
   2551     //  X umax Y         -->  X, if X is always greater than Y
   2552     if (Ops[i] == Ops[i+1] ||
   2553         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   2554       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2555       --i; --e;
   2556     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   2557       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2558       --i; --e;
   2559     }
   2560 
   2561   if (Ops.size() == 1) return Ops[0];
   2562 
   2563   assert(!Ops.empty() && "Reduced umax down to nothing!");
   2564 
   2565   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   2566   // already have one, otherwise create a new one.
   2567   FoldingSetNodeID ID;
   2568   ID.AddInteger(scUMaxExpr);
   2569   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2570     ID.AddPointer(Ops[i]);
   2571   void *IP = 0;
   2572   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2573   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2574   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2575   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   2576                                              O, Ops.size());
   2577   UniqueSCEVs.InsertNode(S, IP);
   2578   return S;
   2579 }
   2580 
   2581 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   2582                                          const SCEV *RHS) {
   2583   // ~smax(~x, ~y) == smin(x, y).
   2584   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2585 }
   2586 
   2587 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   2588                                          const SCEV *RHS) {
   2589   // ~umax(~x, ~y) == umin(x, y)
   2590   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2591 }
   2592 
   2593 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
   2594   // If we have TargetData, we can bypass creating a target-independent
   2595   // constant expression and then folding it back into a ConstantInt.
   2596   // This is just a compile-time optimization.
   2597   if (TD)
   2598     return getConstant(TD->getIntPtrType(getContext()),
   2599                        TD->getTypeAllocSize(AllocTy));
   2600 
   2601   Constant *C = ConstantExpr::getSizeOf(AllocTy);
   2602   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2603     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2604       C = Folded;
   2605   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2606   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2607 }
   2608 
   2609 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
   2610   Constant *C = ConstantExpr::getAlignOf(AllocTy);
   2611   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2612     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2613       C = Folded;
   2614   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2615   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2616 }
   2617 
   2618 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
   2619                                              unsigned FieldNo) {
   2620   // If we have TargetData, we can bypass creating a target-independent
   2621   // constant expression and then folding it back into a ConstantInt.
   2622   // This is just a compile-time optimization.
   2623   if (TD)
   2624     return getConstant(TD->getIntPtrType(getContext()),
   2625                        TD->getStructLayout(STy)->getElementOffset(FieldNo));
   2626 
   2627   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
   2628   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2629     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2630       C = Folded;
   2631   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
   2632   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2633 }
   2634 
   2635 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
   2636                                              Constant *FieldNo) {
   2637   Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
   2638   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2639     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2640       C = Folded;
   2641   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
   2642   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2643 }
   2644 
   2645 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   2646   // Don't attempt to do anything other than create a SCEVUnknown object
   2647   // here.  createSCEV only calls getUnknown after checking for all other
   2648   // interesting possibilities, and any other code that calls getUnknown
   2649   // is doing so in order to hide a value from SCEV canonicalization.
   2650 
   2651   FoldingSetNodeID ID;
   2652   ID.AddInteger(scUnknown);
   2653   ID.AddPointer(V);
   2654   void *IP = 0;
   2655   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   2656     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   2657            "Stale SCEVUnknown in uniquing map!");
   2658     return S;
   2659   }
   2660   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   2661                                             FirstUnknown);
   2662   FirstUnknown = cast<SCEVUnknown>(S);
   2663   UniqueSCEVs.InsertNode(S, IP);
   2664   return S;
   2665 }
   2666 
   2667 //===----------------------------------------------------------------------===//
   2668 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   2669 //
   2670 
   2671 /// isSCEVable - Test if values of the given type are analyzable within
   2672 /// the SCEV framework. This primarily includes integer types, and it
   2673 /// can optionally include pointer types if the ScalarEvolution class
   2674 /// has access to target-specific information.
   2675 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   2676   // Integers and pointers are always SCEVable.
   2677   return Ty->isIntegerTy() || Ty->isPointerTy();
   2678 }
   2679 
   2680 /// getTypeSizeInBits - Return the size in bits of the specified type,
   2681 /// for which isSCEVable must return true.
   2682 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   2683   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2684 
   2685   // If we have a TargetData, use it!
   2686   if (TD)
   2687     return TD->getTypeSizeInBits(Ty);
   2688 
   2689   // Integer types have fixed sizes.
   2690   if (Ty->isIntegerTy())
   2691     return Ty->getPrimitiveSizeInBits();
   2692 
   2693   // The only other support type is pointer. Without TargetData, conservatively
   2694   // assume pointers are 64-bit.
   2695   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
   2696   return 64;
   2697 }
   2698 
   2699 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   2700 /// the given type and which represents how SCEV will treat the given
   2701 /// type, for which isSCEVable must return true. For pointer types,
   2702 /// this is the pointer-sized integer type.
   2703 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   2704   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2705 
   2706   if (Ty->isIntegerTy())
   2707     return Ty;
   2708 
   2709   // The only other support type is pointer.
   2710   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   2711   if (TD) return TD->getIntPtrType(getContext());
   2712 
   2713   // Without TargetData, conservatively assume pointers are 64-bit.
   2714   return Type::getInt64Ty(getContext());
   2715 }
   2716 
   2717 const SCEV *ScalarEvolution::getCouldNotCompute() {
   2718   return &CouldNotCompute;
   2719 }
   2720 
   2721 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   2722 /// expression and create a new one.
   2723 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   2724   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   2725 
   2726   ValueExprMapType::const_iterator I = ValueExprMap.find(V);
   2727   if (I != ValueExprMap.end()) return I->second;
   2728   const SCEV *S = createSCEV(V);
   2729 
   2730   // The process of creating a SCEV for V may have caused other SCEVs
   2731   // to have been created, so it's necessary to insert the new entry
   2732   // from scratch, rather than trying to remember the insert position
   2733   // above.
   2734   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   2735   return S;
   2736 }
   2737 
   2738 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   2739 ///
   2740 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
   2741   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2742     return getConstant(
   2743                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   2744 
   2745   Type *Ty = V->getType();
   2746   Ty = getEffectiveSCEVType(Ty);
   2747   return getMulExpr(V,
   2748                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
   2749 }
   2750 
   2751 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   2752 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   2753   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2754     return getConstant(
   2755                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   2756 
   2757   Type *Ty = V->getType();
   2758   Ty = getEffectiveSCEVType(Ty);
   2759   const SCEV *AllOnes =
   2760                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   2761   return getMinusSCEV(AllOnes, V);
   2762 }
   2763 
   2764 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   2765 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   2766                                           SCEV::NoWrapFlags Flags) {
   2767   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
   2768 
   2769   // Fast path: X - X --> 0.
   2770   if (LHS == RHS)
   2771     return getConstant(LHS->getType(), 0);
   2772 
   2773   // X - Y --> X + -Y
   2774   return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
   2775 }
   2776 
   2777 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2778 /// input value to the specified type.  If the type must be extended, it is zero
   2779 /// extended.
   2780 const SCEV *
   2781 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   2782   Type *SrcTy = V->getType();
   2783   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2784          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2785          "Cannot truncate or zero extend with non-integer arguments!");
   2786   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2787     return V;  // No conversion
   2788   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2789     return getTruncateExpr(V, Ty);
   2790   return getZeroExtendExpr(V, Ty);
   2791 }
   2792 
   2793 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   2794 /// input value to the specified type.  If the type must be extended, it is sign
   2795 /// extended.
   2796 const SCEV *
   2797 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   2798                                          Type *Ty) {
   2799   Type *SrcTy = V->getType();
   2800   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2801          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2802          "Cannot truncate or zero extend with non-integer arguments!");
   2803   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2804     return V;  // No conversion
   2805   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2806     return getTruncateExpr(V, Ty);
   2807   return getSignExtendExpr(V, Ty);
   2808 }
   2809 
   2810 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2811 /// input value to the specified type.  If the type must be extended, it is zero
   2812 /// extended.  The conversion must not be narrowing.
   2813 const SCEV *
   2814 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   2815   Type *SrcTy = V->getType();
   2816   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2817          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2818          "Cannot noop or zero extend with non-integer arguments!");
   2819   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2820          "getNoopOrZeroExtend cannot truncate!");
   2821   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2822     return V;  // No conversion
   2823   return getZeroExtendExpr(V, Ty);
   2824 }
   2825 
   2826 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   2827 /// input value to the specified type.  If the type must be extended, it is sign
   2828 /// extended.  The conversion must not be narrowing.
   2829 const SCEV *
   2830 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   2831   Type *SrcTy = V->getType();
   2832   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2833          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2834          "Cannot noop or sign extend with non-integer arguments!");
   2835   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2836          "getNoopOrSignExtend cannot truncate!");
   2837   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2838     return V;  // No conversion
   2839   return getSignExtendExpr(V, Ty);
   2840 }
   2841 
   2842 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   2843 /// the input value to the specified type. If the type must be extended,
   2844 /// it is extended with unspecified bits. The conversion must not be
   2845 /// narrowing.
   2846 const SCEV *
   2847 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   2848   Type *SrcTy = V->getType();
   2849   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2850          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2851          "Cannot noop or any extend with non-integer arguments!");
   2852   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2853          "getNoopOrAnyExtend cannot truncate!");
   2854   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2855     return V;  // No conversion
   2856   return getAnyExtendExpr(V, Ty);
   2857 }
   2858 
   2859 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   2860 /// input value to the specified type.  The conversion must not be widening.
   2861 const SCEV *
   2862 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   2863   Type *SrcTy = V->getType();
   2864   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2865          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2866          "Cannot truncate or noop with non-integer arguments!");
   2867   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   2868          "getTruncateOrNoop cannot extend!");
   2869   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2870     return V;  // No conversion
   2871   return getTruncateExpr(V, Ty);
   2872 }
   2873 
   2874 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   2875 /// the types using zero-extension, and then perform a umax operation
   2876 /// with them.
   2877 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   2878                                                         const SCEV *RHS) {
   2879   const SCEV *PromotedLHS = LHS;
   2880   const SCEV *PromotedRHS = RHS;
   2881 
   2882   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2883     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2884   else
   2885     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2886 
   2887   return getUMaxExpr(PromotedLHS, PromotedRHS);
   2888 }
   2889 
   2890 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   2891 /// the types using zero-extension, and then perform a umin operation
   2892 /// with them.
   2893 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   2894                                                         const SCEV *RHS) {
   2895   const SCEV *PromotedLHS = LHS;
   2896   const SCEV *PromotedRHS = RHS;
   2897 
   2898   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2899     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2900   else
   2901     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2902 
   2903   return getUMinExpr(PromotedLHS, PromotedRHS);
   2904 }
   2905 
   2906 /// getPointerBase - Transitively follow the chain of pointer-type operands
   2907 /// until reaching a SCEV that does not have a single pointer operand. This
   2908 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   2909 /// but corner cases do exist.
   2910 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   2911   // A pointer operand may evaluate to a nonpointer expression, such as null.
   2912   if (!V->getType()->isPointerTy())
   2913     return V;
   2914 
   2915   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   2916     return getPointerBase(Cast->getOperand());
   2917   }
   2918   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   2919     const SCEV *PtrOp = 0;
   2920     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   2921          I != E; ++I) {
   2922       if ((*I)->getType()->isPointerTy()) {
   2923         // Cannot find the base of an expression with multiple pointer operands.
   2924         if (PtrOp)
   2925           return V;
   2926         PtrOp = *I;
   2927       }
   2928     }
   2929     if (!PtrOp)
   2930       return V;
   2931     return getPointerBase(PtrOp);
   2932   }
   2933   return V;
   2934 }
   2935 
   2936 /// PushDefUseChildren - Push users of the given Instruction
   2937 /// onto the given Worklist.
   2938 static void
   2939 PushDefUseChildren(Instruction *I,
   2940                    SmallVectorImpl<Instruction *> &Worklist) {
   2941   // Push the def-use children onto the Worklist stack.
   2942   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   2943        UI != UE; ++UI)
   2944     Worklist.push_back(cast<Instruction>(*UI));
   2945 }
   2946 
   2947 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   2948 /// instructions that depend on the given instruction and removes them from
   2949 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   2950 /// resolution.
   2951 void
   2952 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   2953   SmallVector<Instruction *, 16> Worklist;
   2954   PushDefUseChildren(PN, Worklist);
   2955 
   2956   SmallPtrSet<Instruction *, 8> Visited;
   2957   Visited.insert(PN);
   2958   while (!Worklist.empty()) {
   2959     Instruction *I = Worklist.pop_back_val();
   2960     if (!Visited.insert(I)) continue;
   2961 
   2962     ValueExprMapType::iterator It =
   2963       ValueExprMap.find(static_cast<Value *>(I));
   2964     if (It != ValueExprMap.end()) {
   2965       const SCEV *Old = It->second;
   2966 
   2967       // Short-circuit the def-use traversal if the symbolic name
   2968       // ceases to appear in expressions.
   2969       if (Old != SymName && !hasOperand(Old, SymName))
   2970         continue;
   2971 
   2972       // SCEVUnknown for a PHI either means that it has an unrecognized
   2973       // structure, it's a PHI that's in the progress of being computed
   2974       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   2975       // additional loop trip count information isn't going to change anything.
   2976       // In the second case, createNodeForPHI will perform the necessary
   2977       // updates on its own when it gets to that point. In the third, we do
   2978       // want to forget the SCEVUnknown.
   2979       if (!isa<PHINode>(I) ||
   2980           !isa<SCEVUnknown>(Old) ||
   2981           (I != PN && Old == SymName)) {
   2982         forgetMemoizedResults(Old);
   2983         ValueExprMap.erase(It);
   2984       }
   2985     }
   2986 
   2987     PushDefUseChildren(I, Worklist);
   2988   }
   2989 }
   2990 
   2991 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
   2992 /// a loop header, making it a potential recurrence, or it doesn't.
   2993 ///
   2994 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   2995   if (const Loop *L = LI->getLoopFor(PN->getParent()))
   2996     if (L->getHeader() == PN->getParent()) {
   2997       // The loop may have multiple entrances or multiple exits; we can analyze
   2998       // this phi as an addrec if it has a unique entry value and a unique
   2999       // backedge value.
   3000       Value *BEValueV = 0, *StartValueV = 0;
   3001       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   3002         Value *V = PN->getIncomingValue(i);
   3003         if (L->contains(PN->getIncomingBlock(i))) {
   3004           if (!BEValueV) {
   3005             BEValueV = V;
   3006           } else if (BEValueV != V) {
   3007             BEValueV = 0;
   3008             break;
   3009           }
   3010         } else if (!StartValueV) {
   3011           StartValueV = V;
   3012         } else if (StartValueV != V) {
   3013           StartValueV = 0;
   3014           break;
   3015         }
   3016       }
   3017       if (BEValueV && StartValueV) {
   3018         // While we are analyzing this PHI node, handle its value symbolically.
   3019         const SCEV *SymbolicName = getUnknown(PN);
   3020         assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
   3021                "PHI node already processed?");
   3022         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3023 
   3024         // Using this symbolic name for the PHI, analyze the value coming around
   3025         // the back-edge.
   3026         const SCEV *BEValue = getSCEV(BEValueV);
   3027 
   3028         // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3029         // has a special value for the first iteration of the loop.
   3030 
   3031         // If the value coming around the backedge is an add with the symbolic
   3032         // value we just inserted, then we found a simple induction variable!
   3033         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3034           // If there is a single occurrence of the symbolic value, replace it
   3035           // with a recurrence.
   3036           unsigned FoundIndex = Add->getNumOperands();
   3037           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3038             if (Add->getOperand(i) == SymbolicName)
   3039               if (FoundIndex == e) {
   3040                 FoundIndex = i;
   3041                 break;
   3042               }
   3043 
   3044           if (FoundIndex != Add->getNumOperands()) {
   3045             // Create an add with everything but the specified operand.
   3046             SmallVector<const SCEV *, 8> Ops;
   3047             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3048               if (i != FoundIndex)
   3049                 Ops.push_back(Add->getOperand(i));
   3050             const SCEV *Accum = getAddExpr(Ops);
   3051 
   3052             // This is not a valid addrec if the step amount is varying each
   3053             // loop iteration, but is not itself an addrec in this loop.
   3054             if (isLoopInvariant(Accum, L) ||
   3055                 (isa<SCEVAddRecExpr>(Accum) &&
   3056                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3057               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3058 
   3059               // If the increment doesn't overflow, then neither the addrec nor
   3060               // the post-increment will overflow.
   3061               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3062                 if (OBO->hasNoUnsignedWrap())
   3063                   Flags = setFlags(Flags, SCEV::FlagNUW);
   3064                 if (OBO->hasNoSignedWrap())
   3065                   Flags = setFlags(Flags, SCEV::FlagNSW);
   3066               } else if (const GEPOperator *GEP =
   3067                          dyn_cast<GEPOperator>(BEValueV)) {
   3068                 // If the increment is an inbounds GEP, then we know the address
   3069                 // space cannot be wrapped around. We cannot make any guarantee
   3070                 // about signed or unsigned overflow because pointers are
   3071                 // unsigned but we may have a negative index from the base
   3072                 // pointer.
   3073                 if (GEP->isInBounds())
   3074                   Flags = setFlags(Flags, SCEV::FlagNW);
   3075               }
   3076 
   3077               const SCEV *StartVal = getSCEV(StartValueV);
   3078               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3079 
   3080               // Since the no-wrap flags are on the increment, they apply to the
   3081               // post-incremented value as well.
   3082               if (isLoopInvariant(Accum, L))
   3083                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
   3084                                     Accum, L, Flags);
   3085 
   3086               // Okay, for the entire analysis of this edge we assumed the PHI
   3087               // to be symbolic.  We now need to go back and purge all of the
   3088               // entries for the scalars that use the symbolic expression.
   3089               ForgetSymbolicName(PN, SymbolicName);
   3090               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3091               return PHISCEV;
   3092             }
   3093           }
   3094         } else if (const SCEVAddRecExpr *AddRec =
   3095                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
   3096           // Otherwise, this could be a loop like this:
   3097           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3098           // In this case, j = {1,+,1}  and BEValue is j.
   3099           // Because the other in-value of i (0) fits the evolution of BEValue
   3100           // i really is an addrec evolution.
   3101           if (AddRec->getLoop() == L && AddRec->isAffine()) {
   3102             const SCEV *StartVal = getSCEV(StartValueV);
   3103 
   3104             // If StartVal = j.start - j.stride, we can use StartVal as the
   3105             // initial step of the addrec evolution.
   3106             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
   3107                                          AddRec->getOperand(1))) {
   3108               // FIXME: For constant StartVal, we should be able to infer
   3109               // no-wrap flags.
   3110               const SCEV *PHISCEV =
   3111                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
   3112                               SCEV::FlagAnyWrap);
   3113 
   3114               // Okay, for the entire analysis of this edge we assumed the PHI
   3115               // to be symbolic.  We now need to go back and purge all of the
   3116               // entries for the scalars that use the symbolic expression.
   3117               ForgetSymbolicName(PN, SymbolicName);
   3118               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3119               return PHISCEV;
   3120             }
   3121           }
   3122         }
   3123       }
   3124     }
   3125 
   3126   // If the PHI has a single incoming value, follow that value, unless the
   3127   // PHI's incoming blocks are in a different loop, in which case doing so
   3128   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3129   // it doesn't have DominatorTree information, so it may miss cases.
   3130   if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
   3131     if (LI->replacementPreservesLCSSAForm(PN, V))
   3132       return getSCEV(V);
   3133 
   3134   // If it's not a loop phi, we can't handle it yet.
   3135   return getUnknown(PN);
   3136 }
   3137 
   3138 /// createNodeForGEP - Expand GEP instructions into add and multiply
   3139 /// operations. This allows them to be analyzed by regular SCEV code.
   3140 ///
   3141 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   3142 
   3143   // Don't blindly transfer the inbounds flag from the GEP instruction to the
   3144   // Add expression, because the Instruction may be guarded by control flow
   3145   // and the no-overflow bits may not be valid for the expression in any
   3146   // context.
   3147   bool isInBounds = GEP->isInBounds();
   3148 
   3149   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   3150   Value *Base = GEP->getOperand(0);
   3151   // Don't attempt to analyze GEPs over unsized objects.
   3152   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
   3153     return getUnknown(GEP);
   3154   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
   3155   gep_type_iterator GTI = gep_type_begin(GEP);
   3156   for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
   3157                                       E = GEP->op_end();
   3158        I != E; ++I) {
   3159     Value *Index = *I;
   3160     // Compute the (potentially symbolic) offset in bytes for this index.
   3161     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
   3162       // For a struct, add the member offset.
   3163       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
   3164       const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
   3165 
   3166       // Add the field offset to the running total offset.
   3167       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3168     } else {
   3169       // For an array, add the element offset, explicitly scaled.
   3170       const SCEV *ElementSize = getSizeOfExpr(*GTI);
   3171       const SCEV *IndexS = getSCEV(Index);
   3172       // Getelementptr indices are signed.
   3173       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
   3174 
   3175       // Multiply the index by the element size to compute the element offset.
   3176       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
   3177                                            isInBounds ? SCEV::FlagNSW :
   3178                                            SCEV::FlagAnyWrap);
   3179 
   3180       // Add the element offset to the running total offset.
   3181       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3182     }
   3183   }
   3184 
   3185   // Get the SCEV for the GEP base.
   3186   const SCEV *BaseS = getSCEV(Base);
   3187 
   3188   // Add the total offset from all the GEP indices to the base.
   3189   return getAddExpr(BaseS, TotalOffset,
   3190                     isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
   3191 }
   3192 
   3193 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   3194 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   3195 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   3196 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   3197 uint32_t
   3198 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   3199   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3200     return C->getValue()->getValue().countTrailingZeros();
   3201 
   3202   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   3203     return std::min(GetMinTrailingZeros(T->getOperand()),
   3204                     (uint32_t)getTypeSizeInBits(T->getType()));
   3205 
   3206   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3207     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3208     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3209              getTypeSizeInBits(E->getType()) : OpRes;
   3210   }
   3211 
   3212   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   3213     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3214     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3215              getTypeSizeInBits(E->getType()) : OpRes;
   3216   }
   3217 
   3218   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   3219     // The result is the min of all operands results.
   3220     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3221     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3222       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3223     return MinOpRes;
   3224   }
   3225 
   3226   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   3227     // The result is the sum of all operands results.
   3228     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   3229     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   3230     for (unsigned i = 1, e = M->getNumOperands();
   3231          SumOpRes != BitWidth && i != e; ++i)
   3232       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   3233                           BitWidth);
   3234     return SumOpRes;
   3235   }
   3236 
   3237   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   3238     // The result is the min of all operands results.
   3239     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3240     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3241       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3242     return MinOpRes;
   3243   }
   3244 
   3245   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   3246     // The result is the min of all operands results.
   3247     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3248     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3249       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3250     return MinOpRes;
   3251   }
   3252 
   3253   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   3254     // The result is the min of all operands results.
   3255     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3256     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3257       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3258     return MinOpRes;
   3259   }
   3260 
   3261   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3262     // For a SCEVUnknown, ask ValueTracking.
   3263     unsigned BitWidth = getTypeSizeInBits(U->getType());
   3264     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3265     ComputeMaskedBits(U->getValue(), Zeros, Ones);
   3266     return Zeros.countTrailingOnes();
   3267   }
   3268 
   3269   // SCEVUDivExpr
   3270   return 0;
   3271 }
   3272 
   3273 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
   3274 ///
   3275 ConstantRange
   3276 ScalarEvolution::getUnsignedRange(const SCEV *S) {
   3277   // See if we've computed this range already.
   3278   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
   3279   if (I != UnsignedRanges.end())
   3280     return I->second;
   3281 
   3282   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3283     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
   3284 
   3285   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3286   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3287 
   3288   // If the value has known zeros, the maximum unsigned value will have those
   3289   // known zeros as well.
   3290   uint32_t TZ = GetMinTrailingZeros(S);
   3291   if (TZ != 0)
   3292     ConservativeResult =
   3293       ConstantRange(APInt::getMinValue(BitWidth),
   3294                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   3295 
   3296   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3297     ConstantRange X = getUnsignedRange(Add->getOperand(0));
   3298     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3299       X = X.add(getUnsignedRange(Add->getOperand(i)));
   3300     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
   3301   }
   3302 
   3303   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3304     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
   3305     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3306       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
   3307     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
   3308   }
   3309 
   3310   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3311     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
   3312     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3313       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
   3314     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
   3315   }
   3316 
   3317   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3318     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
   3319     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3320       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
   3321     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
   3322   }
   3323 
   3324   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3325     ConstantRange X = getUnsignedRange(UDiv->getLHS());
   3326     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
   3327     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3328   }
   3329 
   3330   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3331     ConstantRange X = getUnsignedRange(ZExt->getOperand());
   3332     return setUnsignedRange(ZExt,
   3333       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3334   }
   3335 
   3336   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3337     ConstantRange X = getUnsignedRange(SExt->getOperand());
   3338     return setUnsignedRange(SExt,
   3339       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3340   }
   3341 
   3342   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3343     ConstantRange X = getUnsignedRange(Trunc->getOperand());
   3344     return setUnsignedRange(Trunc,
   3345       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3346   }
   3347 
   3348   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3349     // If there's no unsigned wrap, the value will never be less than its
   3350     // initial value.
   3351     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   3352       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   3353         if (!C->getValue()->isZero())
   3354           ConservativeResult =
   3355             ConservativeResult.intersectWith(
   3356               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
   3357 
   3358     // TODO: non-affine addrec
   3359     if (AddRec->isAffine()) {
   3360       Type *Ty = AddRec->getType();
   3361       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3362       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3363           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3364         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3365 
   3366         const SCEV *Start = AddRec->getStart();
   3367         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3368 
   3369         ConstantRange StartRange = getUnsignedRange(Start);
   3370         ConstantRange StepRange = getSignedRange(Step);
   3371         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3372         ConstantRange EndRange =
   3373           StartRange.add(MaxBECountRange.multiply(StepRange));
   3374 
   3375         // Check for overflow. This must be done with ConstantRange arithmetic
   3376         // because we could be called from within the ScalarEvolution overflow
   3377         // checking code.
   3378         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
   3379         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3380         ConstantRange ExtMaxBECountRange =
   3381           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3382         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
   3383         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3384             ExtEndRange)
   3385           return setUnsignedRange(AddRec, ConservativeResult);
   3386 
   3387         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
   3388                                    EndRange.getUnsignedMin());
   3389         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
   3390                                    EndRange.getUnsignedMax());
   3391         if (Min.isMinValue() && Max.isMaxValue())
   3392           return setUnsignedRange(AddRec, ConservativeResult);
   3393         return setUnsignedRange(AddRec,
   3394           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3395       }
   3396     }
   3397 
   3398     return setUnsignedRange(AddRec, ConservativeResult);
   3399   }
   3400 
   3401   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3402     // For a SCEVUnknown, ask ValueTracking.
   3403     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3404     ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
   3405     if (Ones == ~Zeros + 1)
   3406       return setUnsignedRange(U, ConservativeResult);
   3407     return setUnsignedRange(U,
   3408       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
   3409   }
   3410 
   3411   return setUnsignedRange(S, ConservativeResult);
   3412 }
   3413 
   3414 /// getSignedRange - Determine the signed range for a particular SCEV.
   3415 ///
   3416 ConstantRange
   3417 ScalarEvolution::getSignedRange(const SCEV *S) {
   3418   // See if we've computed this range already.
   3419   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
   3420   if (I != SignedRanges.end())
   3421     return I->second;
   3422 
   3423   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3424     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
   3425 
   3426   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3427   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3428 
   3429   // If the value has known zeros, the maximum signed value will have those
   3430   // known zeros as well.
   3431   uint32_t TZ = GetMinTrailingZeros(S);
   3432   if (TZ != 0)
   3433     ConservativeResult =
   3434       ConstantRange(APInt::getSignedMinValue(BitWidth),
   3435                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   3436 
   3437   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3438     ConstantRange X = getSignedRange(Add->getOperand(0));
   3439     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3440       X = X.add(getSignedRange(Add->getOperand(i)));
   3441     return setSignedRange(Add, ConservativeResult.intersectWith(X));
   3442   }
   3443 
   3444   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3445     ConstantRange X = getSignedRange(Mul->getOperand(0));
   3446     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3447       X = X.multiply(getSignedRange(Mul->getOperand(i)));
   3448     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
   3449   }
   3450 
   3451   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3452     ConstantRange X = getSignedRange(SMax->getOperand(0));
   3453     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3454       X = X.smax(getSignedRange(SMax->getOperand(i)));
   3455     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
   3456   }
   3457 
   3458   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3459     ConstantRange X = getSignedRange(UMax->getOperand(0));
   3460     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3461       X = X.umax(getSignedRange(UMax->getOperand(i)));
   3462     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
   3463   }
   3464 
   3465   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3466     ConstantRange X = getSignedRange(UDiv->getLHS());
   3467     ConstantRange Y = getSignedRange(UDiv->getRHS());
   3468     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3469   }
   3470 
   3471   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3472     ConstantRange X = getSignedRange(ZExt->getOperand());
   3473     return setSignedRange(ZExt,
   3474       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3475   }
   3476 
   3477   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3478     ConstantRange X = getSignedRange(SExt->getOperand());
   3479     return setSignedRange(SExt,
   3480       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3481   }
   3482 
   3483   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3484     ConstantRange X = getSignedRange(Trunc->getOperand());
   3485     return setSignedRange(Trunc,
   3486       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3487   }
   3488 
   3489   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3490     // If there's no signed wrap, and all the operands have the same sign or
   3491     // zero, the value won't ever change sign.
   3492     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   3493       bool AllNonNeg = true;
   3494       bool AllNonPos = true;
   3495       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   3496         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   3497         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   3498       }
   3499       if (AllNonNeg)
   3500         ConservativeResult = ConservativeResult.intersectWith(
   3501           ConstantRange(APInt(BitWidth, 0),
   3502                         APInt::getSignedMinValue(BitWidth)));
   3503       else if (AllNonPos)
   3504         ConservativeResult = ConservativeResult.intersectWith(
   3505           ConstantRange(APInt::getSignedMinValue(BitWidth),
   3506                         APInt(BitWidth, 1)));
   3507     }
   3508 
   3509     // TODO: non-affine addrec
   3510     if (AddRec->isAffine()) {
   3511       Type *Ty = AddRec->getType();
   3512       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3513       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3514           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3515         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3516 
   3517         const SCEV *Start = AddRec->getStart();
   3518         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3519 
   3520         ConstantRange StartRange = getSignedRange(Start);
   3521         ConstantRange StepRange = getSignedRange(Step);
   3522         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3523         ConstantRange EndRange =
   3524           StartRange.add(MaxBECountRange.multiply(StepRange));
   3525 
   3526         // Check for overflow. This must be done with ConstantRange arithmetic
   3527         // because we could be called from within the ScalarEvolution overflow
   3528         // checking code.
   3529         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
   3530         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3531         ConstantRange ExtMaxBECountRange =
   3532           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3533         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
   3534         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3535             ExtEndRange)
   3536           return setSignedRange(AddRec, ConservativeResult);
   3537 
   3538         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
   3539                                    EndRange.getSignedMin());
   3540         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
   3541                                    EndRange.getSignedMax());
   3542         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
   3543           return setSignedRange(AddRec, ConservativeResult);
   3544         return setSignedRange(AddRec,
   3545           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3546       }
   3547     }
   3548 
   3549     return setSignedRange(AddRec, ConservativeResult);
   3550   }
   3551 
   3552   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3553     // For a SCEVUnknown, ask ValueTracking.
   3554     if (!U->getValue()->getType()->isIntegerTy() && !TD)
   3555       return setSignedRange(U, ConservativeResult);
   3556     unsigned NS = ComputeNumSignBits(U->getValue(), TD);
   3557     if (NS == 1)
   3558       return setSignedRange(U, ConservativeResult);
   3559     return setSignedRange(U, ConservativeResult.intersectWith(
   3560       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   3561                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
   3562   }
   3563 
   3564   return setSignedRange(S, ConservativeResult);
   3565 }
   3566 
   3567 /// createSCEV - We know that there is no SCEV for the specified value.
   3568 /// Analyze the expression.
   3569 ///
   3570 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   3571   if (!isSCEVable(V->getType()))
   3572     return getUnknown(V);
   3573 
   3574   unsigned Opcode = Instruction::UserOp1;
   3575   if (Instruction *I = dyn_cast<Instruction>(V)) {
   3576     Opcode = I->getOpcode();
   3577 
   3578     // Don't attempt to analyze instructions in blocks that aren't
   3579     // reachable. Such instructions don't matter, and they aren't required
   3580     // to obey basic rules for definitions dominating uses which this
   3581     // analysis depends on.
   3582     if (!DT->isReachableFromEntry(I->getParent()))
   3583       return getUnknown(V);
   3584   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   3585     Opcode = CE->getOpcode();
   3586   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   3587     return getConstant(CI);
   3588   else if (isa<ConstantPointerNull>(V))
   3589     return getConstant(V->getType(), 0);
   3590   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   3591     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   3592   else
   3593     return getUnknown(V);
   3594 
   3595   Operator *U = cast<Operator>(V);
   3596   switch (Opcode) {
   3597   case Instruction::Add: {
   3598     // The simple thing to do would be to just call getSCEV on both operands
   3599     // and call getAddExpr with the result. However if we're looking at a
   3600     // bunch of things all added together, this can be quite inefficient,
   3601     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   3602     // Instead, gather up all the operands and make a single getAddExpr call.
   3603     // LLVM IR canonical form means we need only traverse the left operands.
   3604     //
   3605     // Don't apply this instruction's NSW or NUW flags to the new
   3606     // expression. The instruction may be guarded by control flow that the
   3607     // no-wrap behavior depends on. Non-control-equivalent instructions can be
   3608     // mapped to the same SCEV expression, and it would be incorrect to transfer
   3609     // NSW/NUW semantics to those operations.
   3610     SmallVector<const SCEV *, 4> AddOps;
   3611     AddOps.push_back(getSCEV(U->getOperand(1)));
   3612     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
   3613       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
   3614       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
   3615         break;
   3616       U = cast<Operator>(Op);
   3617       const SCEV *Op1 = getSCEV(U->getOperand(1));
   3618       if (Opcode == Instruction::Sub)
   3619         AddOps.push_back(getNegativeSCEV(Op1));
   3620       else
   3621         AddOps.push_back(Op1);
   3622     }
   3623     AddOps.push_back(getSCEV(U->getOperand(0)));
   3624     return getAddExpr(AddOps);
   3625   }
   3626   case Instruction::Mul: {
   3627     // Don't transfer NSW/NUW for the same reason as AddExpr.
   3628     SmallVector<const SCEV *, 4> MulOps;
   3629     MulOps.push_back(getSCEV(U->getOperand(1)));
   3630     for (Value *Op = U->getOperand(0);
   3631          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
   3632          Op = U->getOperand(0)) {
   3633       U = cast<Operator>(Op);
   3634       MulOps.push_back(getSCEV(U->getOperand(1)));
   3635     }
   3636     MulOps.push_back(getSCEV(U->getOperand(0)));
   3637     return getMulExpr(MulOps);
   3638   }
   3639   case Instruction::UDiv:
   3640     return getUDivExpr(getSCEV(U->getOperand(0)),
   3641                        getSCEV(U->getOperand(1)));
   3642   case Instruction::Sub:
   3643     return getMinusSCEV(getSCEV(U->getOperand(0)),
   3644                         getSCEV(U->getOperand(1)));
   3645   case Instruction::And:
   3646     // For an expression like x&255 that merely masks off the high bits,
   3647     // use zext(trunc(x)) as the SCEV expression.
   3648     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3649       if (CI->isNullValue())
   3650         return getSCEV(U->getOperand(1));
   3651       if (CI->isAllOnesValue())
   3652         return getSCEV(U->getOperand(0));
   3653       const APInt &A = CI->getValue();
   3654 
   3655       // Instcombine's ShrinkDemandedConstant may strip bits out of
   3656       // constants, obscuring what would otherwise be a low-bits mask.
   3657       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
   3658       // knew about to reconstruct a low-bits mask value.
   3659       unsigned LZ = A.countLeadingZeros();
   3660       unsigned BitWidth = A.getBitWidth();
   3661       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   3662       ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
   3663 
   3664       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
   3665 
   3666       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
   3667         return
   3668           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
   3669                                 IntegerType::get(getContext(), BitWidth - LZ)),
   3670                             U->getType());
   3671     }
   3672     break;
   3673 
   3674   case Instruction::Or:
   3675     // If the RHS of the Or is a constant, we may have something like:
   3676     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   3677     // optimizations will transparently handle this case.
   3678     //
   3679     // In order for this transformation to be safe, the LHS must be of the
   3680     // form X*(2^n) and the Or constant must be less than 2^n.
   3681     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3682       const SCEV *LHS = getSCEV(U->getOperand(0));
   3683       const APInt &CIVal = CI->getValue();
   3684       if (GetMinTrailingZeros(LHS) >=
   3685           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   3686         // Build a plain add SCEV.
   3687         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   3688         // If the LHS of the add was an addrec and it has no-wrap flags,
   3689         // transfer the no-wrap flags, since an or won't introduce a wrap.
   3690         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   3691           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   3692           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   3693             OldAR->getNoWrapFlags());
   3694         }
   3695         return S;
   3696       }
   3697     }
   3698     break;
   3699   case Instruction::Xor:
   3700     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3701       // If the RHS of the xor is a signbit, then this is just an add.
   3702       // Instcombine turns add of signbit into xor as a strength reduction step.
   3703       if (CI->getValue().isSignBit())
   3704         return getAddExpr(getSCEV(U->getOperand(0)),
   3705                           getSCEV(U->getOperand(1)));
   3706 
   3707       // If the RHS of xor is -1, then this is a not operation.
   3708       if (CI->isAllOnesValue())
   3709         return getNotSCEV(getSCEV(U->getOperand(0)));
   3710 
   3711       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   3712       // This is a variant of the check for xor with -1, and it handles
   3713       // the case where instcombine has trimmed non-demanded bits out
   3714       // of an xor with -1.
   3715       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   3716         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   3717           if (BO->getOpcode() == Instruction::And &&
   3718               LCI->getValue() == CI->getValue())
   3719             if (const SCEVZeroExtendExpr *Z =
   3720                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   3721               Type *UTy = U->getType();
   3722               const SCEV *Z0 = Z->getOperand();
   3723               Type *Z0Ty = Z0->getType();
   3724               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   3725 
   3726               // If C is a low-bits mask, the zero extend is serving to
   3727               // mask off the high bits. Complement the operand and
   3728               // re-apply the zext.
   3729               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   3730                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   3731 
   3732               // If C is a single bit, it may be in the sign-bit position
   3733               // before the zero-extend. In this case, represent the xor
   3734               // using an add, which is equivalent, and re-apply the zext.
   3735               APInt Trunc = CI->getValue().trunc(Z0TySize);
   3736               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   3737                   Trunc.isSignBit())
   3738                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   3739                                          UTy);
   3740             }
   3741     }
   3742     break;
   3743 
   3744   case Instruction::Shl:
   3745     // Turn shift left of a constant amount into a multiply.
   3746     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3747       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3748 
   3749       // If the shift count is not less than the bitwidth, the result of
   3750       // the shift is undefined. Don't try to analyze it, because the
   3751       // resolution chosen here may differ from the resolution chosen in
   3752       // other parts of the compiler.
   3753       if (SA->getValue().uge(BitWidth))
   3754         break;
   3755 
   3756       Constant *X = ConstantInt::get(getContext(),
   3757         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3758       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3759     }
   3760     break;
   3761 
   3762   case Instruction::LShr:
   3763     // Turn logical shift right of a constant into a unsigned divide.
   3764     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3765       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3766 
   3767       // If the shift count is not less than the bitwidth, the result of
   3768       // the shift is undefined. Don't try to analyze it, because the
   3769       // resolution chosen here may differ from the resolution chosen in
   3770       // other parts of the compiler.
   3771       if (SA->getValue().uge(BitWidth))
   3772         break;
   3773 
   3774       Constant *X = ConstantInt::get(getContext(),
   3775         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3776       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3777     }
   3778     break;
   3779 
   3780   case Instruction::AShr:
   3781     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   3782     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   3783       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   3784         if (L->getOpcode() == Instruction::Shl &&
   3785             L->getOperand(1) == U->getOperand(1)) {
   3786           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   3787 
   3788           // If the shift count is not less than the bitwidth, the result of
   3789           // the shift is undefined. Don't try to analyze it, because the
   3790           // resolution chosen here may differ from the resolution chosen in
   3791           // other parts of the compiler.
   3792           if (CI->getValue().uge(BitWidth))
   3793             break;
   3794 
   3795           uint64_t Amt = BitWidth - CI->getZExtValue();
   3796           if (Amt == BitWidth)
   3797             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   3798           return
   3799             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   3800                                               IntegerType::get(getContext(),
   3801                                                                Amt)),
   3802                               U->getType());
   3803         }
   3804     break;
   3805 
   3806   case Instruction::Trunc:
   3807     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   3808 
   3809   case Instruction::ZExt:
   3810     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3811 
   3812   case Instruction::SExt:
   3813     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3814 
   3815   case Instruction::BitCast:
   3816     // BitCasts are no-op casts so we just eliminate the cast.
   3817     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   3818       return getSCEV(U->getOperand(0));
   3819     break;
   3820 
   3821   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   3822   // lead to pointer expressions which cannot safely be expanded to GEPs,
   3823   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   3824   // simplifying integer expressions.
   3825 
   3826   case Instruction::GetElementPtr:
   3827     return createNodeForGEP(cast<GEPOperator>(U));
   3828 
   3829   case Instruction::PHI:
   3830     return createNodeForPHI(cast<PHINode>(U));
   3831 
   3832   case Instruction::Select:
   3833     // This could be a smax or umax that was lowered earlier.
   3834     // Try to recover it.
   3835     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
   3836       Value *LHS = ICI->getOperand(0);
   3837       Value *RHS = ICI->getOperand(1);
   3838       switch (ICI->getPredicate()) {
   3839       case ICmpInst::ICMP_SLT:
   3840       case ICmpInst::ICMP_SLE:
   3841         std::swap(LHS, RHS);
   3842         // fall through
   3843       case ICmpInst::ICMP_SGT:
   3844       case ICmpInst::ICMP_SGE:
   3845         // a >s b ? a+x : b+x  ->  smax(a, b)+x
   3846         // a >s b ? b+x : a+x  ->  smin(a, b)+x
   3847         if (LHS->getType() == U->getType()) {
   3848           const SCEV *LS = getSCEV(LHS);
   3849           const SCEV *RS = getSCEV(RHS);
   3850           const SCEV *LA = getSCEV(U->getOperand(1));
   3851           const SCEV *RA = getSCEV(U->getOperand(2));
   3852           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3853           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3854           if (LDiff == RDiff)
   3855             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   3856           LDiff = getMinusSCEV(LA, RS);
   3857           RDiff = getMinusSCEV(RA, LS);
   3858           if (LDiff == RDiff)
   3859             return getAddExpr(getSMinExpr(LS, RS), LDiff);
   3860         }
   3861         break;
   3862       case ICmpInst::ICMP_ULT:
   3863       case ICmpInst::ICMP_ULE:
   3864         std::swap(LHS, RHS);
   3865         // fall through
   3866       case ICmpInst::ICMP_UGT:
   3867       case ICmpInst::ICMP_UGE:
   3868         // a >u b ? a+x : b+x  ->  umax(a, b)+x
   3869         // a >u b ? b+x : a+x  ->  umin(a, b)+x
   3870         if (LHS->getType() == U->getType()) {
   3871           const SCEV *LS = getSCEV(LHS);
   3872           const SCEV *RS = getSCEV(RHS);
   3873           const SCEV *LA = getSCEV(U->getOperand(1));
   3874           const SCEV *RA = getSCEV(U->getOperand(2));
   3875           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3876           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3877           if (LDiff == RDiff)
   3878             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   3879           LDiff = getMinusSCEV(LA, RS);
   3880           RDiff = getMinusSCEV(RA, LS);
   3881           if (LDiff == RDiff)
   3882             return getAddExpr(getUMinExpr(LS, RS), LDiff);
   3883         }
   3884         break;
   3885       case ICmpInst::ICMP_NE:
   3886         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   3887         if (LHS->getType() == U->getType() &&
   3888             isa<ConstantInt>(RHS) &&
   3889             cast<ConstantInt>(RHS)->isZero()) {
   3890           const SCEV *One = getConstant(LHS->getType(), 1);
   3891           const SCEV *LS = getSCEV(LHS);
   3892           const SCEV *LA = getSCEV(U->getOperand(1));
   3893           const SCEV *RA = getSCEV(U->getOperand(2));
   3894           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3895           const SCEV *RDiff = getMinusSCEV(RA, One);
   3896           if (LDiff == RDiff)
   3897             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3898         }
   3899         break;
   3900       case ICmpInst::ICMP_EQ:
   3901         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   3902         if (LHS->getType() == U->getType() &&
   3903             isa<ConstantInt>(RHS) &&
   3904             cast<ConstantInt>(RHS)->isZero()) {
   3905           const SCEV *One = getConstant(LHS->getType(), 1);
   3906           const SCEV *LS = getSCEV(LHS);
   3907           const SCEV *LA = getSCEV(U->getOperand(1));
   3908           const SCEV *RA = getSCEV(U->getOperand(2));
   3909           const SCEV *LDiff = getMinusSCEV(LA, One);
   3910           const SCEV *RDiff = getMinusSCEV(RA, LS);
   3911           if (LDiff == RDiff)
   3912             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3913         }
   3914         break;
   3915       default:
   3916         break;
   3917       }
   3918     }
   3919 
   3920   default: // We cannot analyze this expression.
   3921     break;
   3922   }
   3923 
   3924   return getUnknown(V);
   3925 }
   3926 
   3927 
   3928 
   3929 //===----------------------------------------------------------------------===//
   3930 //                   Iteration Count Computation Code
   3931 //
   3932 
   3933 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   3934 /// normal unsigned value. Returns 0 if the trip count is unknown or not
   3935 /// constant. Will also return 0 if the maximum trip count is very large (>=
   3936 /// 2^32).
   3937 ///
   3938 /// This "trip count" assumes that control exits via ExitingBlock. More
   3939 /// precisely, it is the number of times that control may reach ExitingBlock
   3940 /// before taking the branch. For loops with multiple exits, it may not be the
   3941 /// number times that the loop header executes because the loop may exit
   3942 /// prematurely via another branch.
   3943 unsigned ScalarEvolution::
   3944 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
   3945   const SCEVConstant *ExitCount =
   3946     dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   3947   if (!ExitCount)
   3948     return 0;
   3949 
   3950   ConstantInt *ExitConst = ExitCount->getValue();
   3951 
   3952   // Guard against huge trip counts.
   3953   if (ExitConst->getValue().getActiveBits() > 32)
   3954     return 0;
   3955 
   3956   // In case of integer overflow, this returns 0, which is correct.
   3957   return ((unsigned)ExitConst->getZExtValue()) + 1;
   3958 }
   3959 
   3960 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   3961 /// trip count of this loop as a normal unsigned value, if possible. This
   3962 /// means that the actual trip count is always a multiple of the returned
   3963 /// value (don't forget the trip count could very well be zero as well!).
   3964 ///
   3965 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   3966 /// multiple of a constant (which is also the case if the trip count is simply
   3967 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   3968 /// if the trip count is very large (>= 2^32).
   3969 ///
   3970 /// As explained in the comments for getSmallConstantTripCount, this assumes
   3971 /// that control exits the loop via ExitingBlock.
   3972 unsigned ScalarEvolution::
   3973 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
   3974   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   3975   if (ExitCount == getCouldNotCompute())
   3976     return 1;
   3977 
   3978   // Get the trip count from the BE count by adding 1.
   3979   const SCEV *TCMul = getAddExpr(ExitCount,
   3980                                  getConstant(ExitCount->getType(), 1));
   3981   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   3982   // to factor simple cases.
   3983   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   3984     TCMul = Mul->getOperand(0);
   3985 
   3986   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   3987   if (!MulC)
   3988     return 1;
   3989 
   3990   ConstantInt *Result = MulC->getValue();
   3991 
   3992   // Guard against huge trip counts.
   3993   if (!Result || Result->getValue().getActiveBits() > 32)
   3994     return 1;
   3995 
   3996   return (unsigned)Result->getZExtValue();
   3997 }
   3998 
   3999 // getExitCount - Get the expression for the number of loop iterations for which
   4000 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return
   4001 // SCEVCouldNotCompute.
   4002 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   4003   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   4004 }
   4005 
   4006 /// getBackedgeTakenCount - If the specified loop has a predictable
   4007 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   4008 /// object. The backedge-taken count is the number of times the loop header
   4009 /// will be branched to from within the loop. This is one less than the
   4010 /// trip count of the loop, since it doesn't count the first iteration,
   4011 /// when the header is branched to from outside the loop.
   4012 ///
   4013 /// Note that it is not valid to call this method on a loop without a
   4014 /// loop-invariant backedge-taken count (see
   4015 /// hasLoopInvariantBackedgeTakenCount).
   4016 ///
   4017 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   4018   return getBackedgeTakenInfo(L).getExact(this);
   4019 }
   4020 
   4021 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   4022 /// return the least SCEV value that is known never to be less than the
   4023 /// actual backedge taken count.
   4024 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4025   return getBackedgeTakenInfo(L).getMax(this);
   4026 }
   4027 
   4028 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4029 /// onto the given Worklist.
   4030 static void
   4031 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4032   BasicBlock *Header = L->getHeader();
   4033 
   4034   // Push all Loop-header PHIs onto the Worklist stack.
   4035   for (BasicBlock::iterator I = Header->begin();
   4036        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4037     Worklist.push_back(PN);
   4038 }
   4039 
   4040 const ScalarEvolution::BackedgeTakenInfo &
   4041 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4042   // Initially insert an invalid entry for this loop. If the insertion
   4043   // succeeds, proceed to actually compute a backedge-taken count and
   4044   // update the value. The temporary CouldNotCompute value tells SCEV
   4045   // code elsewhere that it shouldn't attempt to request a new
   4046   // backedge-taken count, which could result in infinite recursion.
   4047   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4048     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4049   if (!Pair.second)
   4050     return Pair.first->second;
   4051 
   4052   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
   4053   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4054   // must be cleared in this scope.
   4055   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
   4056 
   4057   if (Result.getExact(this) != getCouldNotCompute()) {
   4058     assert(isLoopInvariant(Result.getExact(this), L) &&
   4059            isLoopInvariant(Result.getMax(this), L) &&
   4060            "Computed backedge-taken count isn't loop invariant for loop!");
   4061     ++NumTripCountsComputed;
   4062   }
   4063   else if (Result.getMax(this) == getCouldNotCompute() &&
   4064            isa<PHINode>(L->getHeader()->begin())) {
   4065     // Only count loops that have phi nodes as not being computable.
   4066     ++NumTripCountsNotComputed;
   4067   }
   4068 
   4069   // Now that we know more about the trip count for this loop, forget any
   4070   // existing SCEV values for PHI nodes in this loop since they are only
   4071   // conservative estimates made without the benefit of trip count
   4072   // information. This is similar to the code in forgetLoop, except that
   4073   // it handles SCEVUnknown PHI nodes specially.
   4074   if (Result.hasAnyInfo()) {
   4075     SmallVector<Instruction *, 16> Worklist;
   4076     PushLoopPHIs(L, Worklist);
   4077 
   4078     SmallPtrSet<Instruction *, 8> Visited;
   4079     while (!Worklist.empty()) {
   4080       Instruction *I = Worklist.pop_back_val();
   4081       if (!Visited.insert(I)) continue;
   4082 
   4083       ValueExprMapType::iterator It =
   4084         ValueExprMap.find(static_cast<Value *>(I));
   4085       if (It != ValueExprMap.end()) {
   4086         const SCEV *Old = It->second;
   4087 
   4088         // SCEVUnknown for a PHI either means that it has an unrecognized
   4089         // structure, or it's a PHI that's in the progress of being computed
   4090         // by createNodeForPHI.  In the former case, additional loop trip
   4091         // count information isn't going to change anything. In the later
   4092         // case, createNodeForPHI will perform the necessary updates on its
   4093         // own when it gets to that point.
   4094         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4095           forgetMemoizedResults(Old);
   4096           ValueExprMap.erase(It);
   4097         }
   4098         if (PHINode *PN = dyn_cast<PHINode>(I))
   4099           ConstantEvolutionLoopExitValue.erase(PN);
   4100       }
   4101 
   4102       PushDefUseChildren(I, Worklist);
   4103     }
   4104   }
   4105 
   4106   // Re-lookup the insert position, since the call to
   4107   // ComputeBackedgeTakenCount above could result in a
   4108   // recusive call to getBackedgeTakenInfo (on a different
   4109   // loop), which would invalidate the iterator computed
   4110   // earlier.
   4111   return BackedgeTakenCounts.find(L)->second = Result;
   4112 }
   4113 
   4114 /// forgetLoop - This method should be called by the client when it has
   4115 /// changed a loop in a way that may effect ScalarEvolution's ability to
   4116 /// compute a trip count, or if the loop is deleted.
   4117 void ScalarEvolution::forgetLoop(const Loop *L) {
   4118   // Drop any stored trip count value.
   4119   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   4120     BackedgeTakenCounts.find(L);
   4121   if (BTCPos != BackedgeTakenCounts.end()) {
   4122     BTCPos->second.clear();
   4123     BackedgeTakenCounts.erase(BTCPos);
   4124   }
   4125 
   4126   // Drop information about expressions based on loop-header PHIs.
   4127   SmallVector<Instruction *, 16> Worklist;
   4128   PushLoopPHIs(L, Worklist);
   4129 
   4130   SmallPtrSet<Instruction *, 8> Visited;
   4131   while (!Worklist.empty()) {
   4132     Instruction *I = Worklist.pop_back_val();
   4133     if (!Visited.insert(I)) continue;
   4134 
   4135     ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
   4136     if (It != ValueExprMap.end()) {
   4137       forgetMemoizedResults(It->second);
   4138       ValueExprMap.erase(It);
   4139       if (PHINode *PN = dyn_cast<PHINode>(I))
   4140         ConstantEvolutionLoopExitValue.erase(PN);
   4141     }
   4142 
   4143     PushDefUseChildren(I, Worklist);
   4144   }
   4145 
   4146   // Forget all contained loops too, to avoid dangling entries in the
   4147   // ValuesAtScopes map.
   4148   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   4149     forgetLoop(*I);
   4150 }
   4151 
   4152 /// forgetValue - This method should be called by the client when it has
   4153 /// changed a value in a way that may effect its value, or which may
   4154 /// disconnect it from a def-use chain linking it to a loop.
   4155 void ScalarEvolution::forgetValue(Value *V) {
   4156   Instruction *I = dyn_cast<Instruction>(V);
   4157   if (!I) return;
   4158 
   4159   // Drop information about expressions based on loop-header PHIs.
   4160   SmallVector<Instruction *, 16> Worklist;
   4161   Worklist.push_back(I);
   4162 
   4163   SmallPtrSet<Instruction *, 8> Visited;
   4164   while (!Worklist.empty()) {
   4165     I = Worklist.pop_back_val();
   4166     if (!Visited.insert(I)) continue;
   4167 
   4168     ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
   4169     if (It != ValueExprMap.end()) {
   4170       forgetMemoizedResults(It->second);
   4171       ValueExprMap.erase(It);
   4172       if (PHINode *PN = dyn_cast<PHINode>(I))
   4173         ConstantEvolutionLoopExitValue.erase(PN);
   4174     }
   4175 
   4176     PushDefUseChildren(I, Worklist);
   4177   }
   4178 }
   4179 
   4180 /// getExact - Get the exact loop backedge taken count considering all loop
   4181 /// exits. A computable result can only be return for loops with a single exit.
   4182 /// Returning the minimum taken count among all exits is incorrect because one
   4183 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
   4184 /// the limit of each loop test is never skipped. This is a valid assumption as
   4185 /// long as the loop exits via that test. For precise results, it is the
   4186 /// caller's responsibility to specify the relevant loop exit using
   4187 /// getExact(ExitingBlock, SE).
   4188 const SCEV *
   4189 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   4190   // If any exits were not computable, the loop is not computable.
   4191   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   4192 
   4193   // We need exactly one computable exit.
   4194   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   4195   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   4196 
   4197   const SCEV *BECount = 0;
   4198   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4199        ENT != 0; ENT = ENT->getNextExit()) {
   4200 
   4201     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   4202 
   4203     if (!BECount)
   4204       BECount = ENT->ExactNotTaken;
   4205     else if (BECount != ENT->ExactNotTaken)
   4206       return SE->getCouldNotCompute();
   4207   }
   4208   assert(BECount && "Invalid not taken count for loop exit");
   4209   return BECount;
   4210 }
   4211 
   4212 /// getExact - Get the exact not taken count for this loop exit.
   4213 const SCEV *
   4214 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   4215                                              ScalarEvolution *SE) const {
   4216   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4217        ENT != 0; ENT = ENT->getNextExit()) {
   4218 
   4219     if (ENT->ExitingBlock == ExitingBlock)
   4220       return ENT->ExactNotTaken;
   4221   }
   4222   return SE->getCouldNotCompute();
   4223 }
   4224 
   4225 /// getMax - Get the max backedge taken count for the loop.
   4226 const SCEV *
   4227 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   4228   return Max ? Max : SE->getCouldNotCompute();
   4229 }
   4230 
   4231 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   4232 /// computable exit into a persistent ExitNotTakenInfo array.
   4233 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   4234   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   4235   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   4236 
   4237   if (!Complete)
   4238     ExitNotTaken.setIncomplete();
   4239 
   4240   unsigned NumExits = ExitCounts.size();
   4241   if (NumExits == 0) return;
   4242 
   4243   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   4244   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   4245   if (NumExits == 1) return;
   4246 
   4247   // Handle the rare case of multiple computable exits.
   4248   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   4249 
   4250   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   4251   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   4252     PrevENT->setNextExit(ENT);
   4253     ENT->ExitingBlock = ExitCounts[i].first;
   4254     ENT->ExactNotTaken = ExitCounts[i].second;
   4255   }
   4256 }
   4257 
   4258 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   4259 void ScalarEvolution::BackedgeTakenInfo::clear() {
   4260   ExitNotTaken.ExitingBlock = 0;
   4261   ExitNotTaken.ExactNotTaken = 0;
   4262   delete[] ExitNotTaken.getNextExit();
   4263 }
   4264 
   4265 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
   4266 /// of the specified loop will execute.
   4267 ScalarEvolution::BackedgeTakenInfo
   4268 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
   4269   SmallVector<BasicBlock *, 8> ExitingBlocks;
   4270   L->getExitingBlocks(ExitingBlocks);
   4271 
   4272   // Examine all exits and pick the most conservative values.
   4273   const SCEV *MaxBECount = getCouldNotCompute();
   4274   bool CouldComputeBECount = true;
   4275   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   4276   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   4277     ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
   4278     if (EL.Exact == getCouldNotCompute())
   4279       // We couldn't compute an exact value for this exit, so
   4280       // we won't be able to compute an exact value for the loop.
   4281       CouldComputeBECount = false;
   4282     else
   4283       ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
   4284 
   4285     if (MaxBECount == getCouldNotCompute())
   4286       MaxBECount = EL.Max;
   4287     else if (EL.Max != getCouldNotCompute()) {
   4288       // We cannot take the "min" MaxBECount, because non-unit stride loops may
   4289       // skip some loop tests. Taking the max over the exits is sufficiently
   4290       // conservative.  TODO: We could do better taking into consideration
   4291       // that (1) the loop has unit stride (2) the last loop test is
   4292       // less-than/greater-than (3) any loop test is less-than/greater-than AND
   4293       // falls-through some constant times less then the other tests.
   4294       MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
   4295     }
   4296   }
   4297 
   4298   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   4299 }
   4300 
   4301 /// ComputeExitLimit - Compute the number of times the backedge of the specified
   4302 /// loop will execute if it exits via the specified block.
   4303 ScalarEvolution::ExitLimit
   4304 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   4305 
   4306   // Okay, we've chosen an exiting block.  See what condition causes us to
   4307   // exit at this block.
   4308   //
   4309   // FIXME: we should be able to handle switch instructions (with a single exit)
   4310   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   4311   if (ExitBr == 0) return getCouldNotCompute();
   4312   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
   4313 
   4314   // At this point, we know we have a conditional branch that determines whether
   4315   // the loop is exited.  However, we don't know if the branch is executed each
   4316   // time through the loop.  If not, then the execution count of the branch will
   4317   // not be equal to the trip count of the loop.
   4318   //
   4319   // Currently we check for this by checking to see if the Exit branch goes to
   4320   // the loop header.  If so, we know it will always execute the same number of
   4321   // times as the loop.  We also handle the case where the exit block *is* the
   4322   // loop header.  This is common for un-rotated loops.
   4323   //
   4324   // If both of those tests fail, walk up the unique predecessor chain to the
   4325   // header, stopping if there is an edge that doesn't exit the loop. If the
   4326   // header is reached, the execution count of the branch will be equal to the
   4327   // trip count of the loop.
   4328   //
   4329   //  More extensive analysis could be done to handle more cases here.
   4330   //
   4331   if (ExitBr->getSuccessor(0) != L->getHeader() &&
   4332       ExitBr->getSuccessor(1) != L->getHeader() &&
   4333       ExitBr->getParent() != L->getHeader()) {
   4334     // The simple checks failed, try climbing the unique predecessor chain
   4335     // up to the header.
   4336     bool Ok = false;
   4337     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
   4338       BasicBlock *Pred = BB->getUniquePredecessor();
   4339       if (!Pred)
   4340         return getCouldNotCompute();
   4341       TerminatorInst *PredTerm = Pred->getTerminator();
   4342       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
   4343         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
   4344         if (PredSucc == BB)
   4345           continue;
   4346         // If the predecessor has a successor that isn't BB and isn't
   4347         // outside the loop, assume the worst.
   4348         if (L->contains(PredSucc))
   4349           return getCouldNotCompute();
   4350       }
   4351       if (Pred == L->getHeader()) {
   4352         Ok = true;
   4353         break;
   4354       }
   4355       BB = Pred;
   4356     }
   4357     if (!Ok)
   4358       return getCouldNotCompute();
   4359   }
   4360 
   4361   // Proceed to the next level to examine the exit condition expression.
   4362   return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
   4363                                   ExitBr->getSuccessor(0),
   4364                                   ExitBr->getSuccessor(1));
   4365 }
   4366 
   4367 /// ComputeExitLimitFromCond - Compute the number of times the
   4368 /// backedge of the specified loop will execute if its exit condition
   4369 /// were a conditional branch of ExitCond, TBB, and FBB.
   4370 ScalarEvolution::ExitLimit
   4371 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
   4372                                           Value *ExitCond,
   4373                                           BasicBlock *TBB,
   4374                                           BasicBlock *FBB) {
   4375   // Check if the controlling expression for this loop is an And or Or.
   4376   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   4377     if (BO->getOpcode() == Instruction::And) {
   4378       // Recurse on the operands of the and.
   4379       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4380       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4381       const SCEV *BECount = getCouldNotCompute();
   4382       const SCEV *MaxBECount = getCouldNotCompute();
   4383       if (L->contains(TBB)) {
   4384         // Both conditions must be true for the loop to continue executing.
   4385         // Choose the less conservative count.
   4386         if (EL0.Exact == getCouldNotCompute() ||
   4387             EL1.Exact == getCouldNotCompute())
   4388           BECount = getCouldNotCompute();
   4389         else
   4390           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4391         if (EL0.Max == getCouldNotCompute())
   4392           MaxBECount = EL1.Max;
   4393         else if (EL1.Max == getCouldNotCompute())
   4394           MaxBECount = EL0.Max;
   4395         else
   4396           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4397       } else {
   4398         // Both conditions must be true at the same time for the loop to exit.
   4399         // For now, be conservative.
   4400         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   4401         if (EL0.Max == EL1.Max)
   4402           MaxBECount = EL0.Max;
   4403         if (EL0.Exact == EL1.Exact)
   4404           BECount = EL0.Exact;
   4405       }
   4406 
   4407       return ExitLimit(BECount, MaxBECount);
   4408     }
   4409     if (BO->getOpcode() == Instruction::Or) {
   4410       // Recurse on the operands of the or.
   4411       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4412       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4413       const SCEV *BECount = getCouldNotCompute();
   4414       const SCEV *MaxBECount = getCouldNotCompute();
   4415       if (L->contains(FBB)) {
   4416         // Both conditions must be false for the loop to continue executing.
   4417         // Choose the less conservative count.
   4418         if (EL0.Exact == getCouldNotCompute() ||
   4419             EL1.Exact == getCouldNotCompute())
   4420           BECount = getCouldNotCompute();
   4421         else
   4422           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4423         if (EL0.Max == getCouldNotCompute())
   4424           MaxBECount = EL1.Max;
   4425         else if (EL1.Max == getCouldNotCompute())
   4426           MaxBECount = EL0.Max;
   4427         else
   4428           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4429       } else {
   4430         // Both conditions must be false at the same time for the loop to exit.
   4431         // For now, be conservative.
   4432         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   4433         if (EL0.Max == EL1.Max)
   4434           MaxBECount = EL0.Max;
   4435         if (EL0.Exact == EL1.Exact)
   4436           BECount = EL0.Exact;
   4437       }
   4438 
   4439       return ExitLimit(BECount, MaxBECount);
   4440     }
   4441   }
   4442 
   4443   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   4444   // Proceed to the next level to examine the icmp.
   4445   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   4446     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
   4447 
   4448   // Check for a constant condition. These are normally stripped out by
   4449   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   4450   // preserve the CFG and is temporarily leaving constant conditions
   4451   // in place.
   4452   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   4453     if (L->contains(FBB) == !CI->getZExtValue())
   4454       // The backedge is always taken.
   4455       return getCouldNotCompute();
   4456     else
   4457       // The backedge is never taken.
   4458       return getConstant(CI->getType(), 0);
   4459   }
   4460 
   4461   // If it's not an integer or pointer comparison then compute it the hard way.
   4462   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4463 }
   4464 
   4465 /// ComputeExitLimitFromICmp - Compute the number of times the
   4466 /// backedge of the specified loop will execute if its exit condition
   4467 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
   4468 ScalarEvolution::ExitLimit
   4469 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
   4470                                           ICmpInst *ExitCond,
   4471                                           BasicBlock *TBB,
   4472                                           BasicBlock *FBB) {
   4473 
   4474   // If the condition was exit on true, convert the condition to exit on false
   4475   ICmpInst::Predicate Cond;
   4476   if (!L->contains(FBB))
   4477     Cond = ExitCond->getPredicate();
   4478   else
   4479     Cond = ExitCond->getInversePredicate();
   4480 
   4481   // Handle common loops like: for (X = "string"; *X; ++X)
   4482   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   4483     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   4484       ExitLimit ItCnt =
   4485         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   4486       if (ItCnt.hasAnyInfo())
   4487         return ItCnt;
   4488     }
   4489 
   4490   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   4491   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   4492 
   4493   // Try to evaluate any dependencies out of the loop.
   4494   LHS = getSCEVAtScope(LHS, L);
   4495   RHS = getSCEVAtScope(RHS, L);
   4496 
   4497   // At this point, we would like to compute how many iterations of the
   4498   // loop the predicate will return true for these inputs.
   4499   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   4500     // If there is a loop-invariant, force it into the RHS.
   4501     std::swap(LHS, RHS);
   4502     Cond = ICmpInst::getSwappedPredicate(Cond);
   4503   }
   4504 
   4505   // Simplify the operands before analyzing them.
   4506   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   4507 
   4508   // If we have a comparison of a chrec against a constant, try to use value
   4509   // ranges to answer this query.
   4510   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   4511     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   4512       if (AddRec->getLoop() == L) {
   4513         // Form the constant range.
   4514         ConstantRange CompRange(
   4515             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
   4516 
   4517         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   4518         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   4519       }
   4520 
   4521   switch (Cond) {
   4522   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   4523     // Convert to: while (X-Y != 0)
   4524     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
   4525     if (EL.hasAnyInfo()) return EL;
   4526     break;
   4527   }
   4528   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   4529     // Convert to: while (X-Y == 0)
   4530     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   4531     if (EL.hasAnyInfo()) return EL;
   4532     break;
   4533   }
   4534   case ICmpInst::ICMP_SLT: {
   4535     ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
   4536     if (EL.hasAnyInfo()) return EL;
   4537     break;
   4538   }
   4539   case ICmpInst::ICMP_SGT: {
   4540     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4541                                              getNotSCEV(RHS), L, true);
   4542     if (EL.hasAnyInfo()) return EL;
   4543     break;
   4544   }
   4545   case ICmpInst::ICMP_ULT: {
   4546     ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
   4547     if (EL.hasAnyInfo()) return EL;
   4548     break;
   4549   }
   4550   case ICmpInst::ICMP_UGT: {
   4551     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4552                                              getNotSCEV(RHS), L, false);
   4553     if (EL.hasAnyInfo()) return EL;
   4554     break;
   4555   }
   4556   default:
   4557 #if 0
   4558     dbgs() << "ComputeBackedgeTakenCount ";
   4559     if (ExitCond->getOperand(0)->getType()->isUnsigned())
   4560       dbgs() << "[unsigned] ";
   4561     dbgs() << *LHS << "   "
   4562          << Instruction::getOpcodeName(Instruction::ICmp)
   4563          << "   " << *RHS << "\n";
   4564 #endif
   4565     break;
   4566   }
   4567   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4568 }
   4569 
   4570 static ConstantInt *
   4571 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   4572                                 ScalarEvolution &SE) {
   4573   const SCEV *InVal = SE.getConstant(C);
   4574   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   4575   assert(isa<SCEVConstant>(Val) &&
   4576          "Evaluation of SCEV at constant didn't fold correctly?");
   4577   return cast<SCEVConstant>(Val)->getValue();
   4578 }
   4579 
   4580 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
   4581 /// 'icmp op load X, cst', try to see if we can compute the backedge
   4582 /// execution count.
   4583 ScalarEvolution::ExitLimit
   4584 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
   4585   LoadInst *LI,
   4586   Constant *RHS,
   4587   const Loop *L,
   4588   ICmpInst::Predicate predicate) {
   4589 
   4590   if (LI->isVolatile()) return getCouldNotCompute();
   4591 
   4592   // Check to see if the loaded pointer is a getelementptr of a global.
   4593   // TODO: Use SCEV instead of manually grubbing with GEPs.
   4594   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   4595   if (!GEP) return getCouldNotCompute();
   4596 
   4597   // Make sure that it is really a constant global we are gepping, with an
   4598   // initializer, and make sure the first IDX is really 0.
   4599   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   4600   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   4601       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   4602       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   4603     return getCouldNotCompute();
   4604 
   4605   // Okay, we allow one non-constant index into the GEP instruction.
   4606   Value *VarIdx = 0;
   4607   std::vector<Constant*> Indexes;
   4608   unsigned VarIdxNum = 0;
   4609   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   4610     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   4611       Indexes.push_back(CI);
   4612     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   4613       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   4614       VarIdx = GEP->getOperand(i);
   4615       VarIdxNum = i-2;
   4616       Indexes.push_back(0);
   4617     }
   4618 
   4619   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   4620   if (!VarIdx)
   4621     return getCouldNotCompute();
   4622 
   4623   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   4624   // Check to see if X is a loop variant variable value now.
   4625   const SCEV *Idx = getSCEV(VarIdx);
   4626   Idx = getSCEVAtScope(Idx, L);
   4627 
   4628   // We can only recognize very limited forms of loop index expressions, in
   4629   // particular, only affine AddRec's like {C1,+,C2}.
   4630   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   4631   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   4632       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   4633       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   4634     return getCouldNotCompute();
   4635 
   4636   unsigned MaxSteps = MaxBruteForceIterations;
   4637   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   4638     ConstantInt *ItCst = ConstantInt::get(
   4639                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   4640     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   4641 
   4642     // Form the GEP offset.
   4643     Indexes[VarIdxNum] = Val;
   4644 
   4645     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   4646                                                          Indexes);
   4647     if (Result == 0) break;  // Cannot compute!
   4648 
   4649     // Evaluate the condition for this iteration.
   4650     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   4651     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   4652     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   4653 #if 0
   4654       dbgs() << "\n***\n*** Computed loop count " << *ItCst
   4655              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
   4656              << "***\n";
   4657 #endif
   4658       ++NumArrayLenItCounts;
   4659       return getConstant(ItCst);   // Found terminating iteration!
   4660     }
   4661   }
   4662   return getCouldNotCompute();
   4663 }
   4664 
   4665 
   4666 /// CanConstantFold - Return true if we can constant fold an instruction of the
   4667 /// specified type, assuming that all operands were constants.
   4668 static bool CanConstantFold(const Instruction *I) {
   4669   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   4670       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   4671       isa<LoadInst>(I))
   4672     return true;
   4673 
   4674   if (const CallInst *CI = dyn_cast<CallInst>(I))
   4675     if (const Function *F = CI->getCalledFunction())
   4676       return canConstantFoldCallTo(F);
   4677   return false;
   4678 }
   4679 
   4680 /// Determine whether this instruction can constant evolve within this loop
   4681 /// assuming its operands can all constant evolve.
   4682 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   4683   // An instruction outside of the loop can't be derived from a loop PHI.
   4684   if (!L->contains(I)) return false;
   4685 
   4686   if (isa<PHINode>(I)) {
   4687     if (L->getHeader() == I->getParent())
   4688       return true;
   4689     else
   4690       // We don't currently keep track of the control flow needed to evaluate
   4691       // PHIs, so we cannot handle PHIs inside of loops.
   4692       return false;
   4693   }
   4694 
   4695   // If we won't be able to constant fold this expression even if the operands
   4696   // are constants, bail early.
   4697   return CanConstantFold(I);
   4698 }
   4699 
   4700 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   4701 /// recursing through each instruction operand until reaching a loop header phi.
   4702 static PHINode *
   4703 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   4704                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   4705 
   4706   // Otherwise, we can evaluate this instruction if all of its operands are
   4707   // constant or derived from a PHI node themselves.
   4708   PHINode *PHI = 0;
   4709   for (Instruction::op_iterator OpI = UseInst->op_begin(),
   4710          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
   4711 
   4712     if (isa<Constant>(*OpI)) continue;
   4713 
   4714     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
   4715     if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
   4716 
   4717     PHINode *P = dyn_cast<PHINode>(OpInst);
   4718     if (!P)
   4719       // If this operand is already visited, reuse the prior result.
   4720       // We may have P != PHI if this is the deepest point at which the
   4721       // inconsistent paths meet.
   4722       P = PHIMap.lookup(OpInst);
   4723     if (!P) {
   4724       // Recurse and memoize the results, whether a phi is found or not.
   4725       // This recursive call invalidates pointers into PHIMap.
   4726       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   4727       PHIMap[OpInst] = P;
   4728     }
   4729     if (P == 0) return 0;        // Not evolving from PHI
   4730     if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
   4731     PHI = P;
   4732   }
   4733   // This is a expression evolving from a constant PHI!
   4734   return PHI;
   4735 }
   4736 
   4737 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   4738 /// in the loop that V is derived from.  We allow arbitrary operations along the
   4739 /// way, but the operands of an operation must either be constants or a value
   4740 /// derived from a constant PHI.  If this expression does not fit with these
   4741 /// constraints, return null.
   4742 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   4743   Instruction *I = dyn_cast<Instruction>(V);
   4744   if (I == 0 || !canConstantEvolve(I, L)) return 0;
   4745 
   4746   if (PHINode *PN = dyn_cast<PHINode>(I)) {
   4747     return PN;
   4748   }
   4749 
   4750   // Record non-constant instructions contained by the loop.
   4751   DenseMap<Instruction *, PHINode *> PHIMap;
   4752   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   4753 }
   4754 
   4755 /// EvaluateExpression - Given an expression that passes the
   4756 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   4757 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   4758 /// reason, return null.
   4759 static Constant *EvaluateExpression(Value *V, const Loop *L,
   4760                                     DenseMap<Instruction *, Constant *> &Vals,
   4761                                     const TargetData *TD,
   4762                                     const TargetLibraryInfo *TLI) {
   4763   // Convenient constant check, but redundant for recursive calls.
   4764   if (Constant *C = dyn_cast<Constant>(V)) return C;
   4765   Instruction *I = dyn_cast<Instruction>(V);
   4766   if (!I) return 0;
   4767 
   4768   if (Constant *C = Vals.lookup(I)) return C;
   4769 
   4770   // An instruction inside the loop depends on a value outside the loop that we
   4771   // weren't given a mapping for, or a value such as a call inside the loop.
   4772   if (!canConstantEvolve(I, L)) return 0;
   4773 
   4774   // An unmapped PHI can be due to a branch or another loop inside this loop,
   4775   // or due to this not being the initial iteration through a loop where we
   4776   // couldn't compute the evolution of this particular PHI last time.
   4777   if (isa<PHINode>(I)) return 0;
   4778 
   4779   std::vector<Constant*> Operands(I->getNumOperands());
   4780 
   4781   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   4782     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   4783     if (!Operand) {
   4784       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   4785       if (!Operands[i]) return 0;
   4786       continue;
   4787     }
   4788     Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
   4789     Vals[Operand] = C;
   4790     if (!C) return 0;
   4791     Operands[i] = C;
   4792   }
   4793 
   4794   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   4795     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   4796                                            Operands[1], TD, TLI);
   4797   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   4798     if (!LI->isVolatile())
   4799       return ConstantFoldLoadFromConstPtr(Operands[0], TD);
   4800   }
   4801   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
   4802                                   TLI);
   4803 }
   4804 
   4805 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   4806 /// in the header of its containing loop, we know the loop executes a
   4807 /// constant number of times, and the PHI node is just a recurrence
   4808 /// involving constants, fold it.
   4809 Constant *
   4810 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   4811                                                    const APInt &BEs,
   4812                                                    const Loop *L) {
   4813   DenseMap<PHINode*, Constant*>::const_iterator I =
   4814     ConstantEvolutionLoopExitValue.find(PN);
   4815   if (I != ConstantEvolutionLoopExitValue.end())
   4816     return I->second;
   4817 
   4818   if (BEs.ugt(MaxBruteForceIterations))
   4819     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
   4820 
   4821   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   4822 
   4823   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4824   BasicBlock *Header = L->getHeader();
   4825   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4826 
   4827   // Since the loop is canonicalized, the PHI node must have two entries.  One
   4828   // entry must be a constant (coming in from outside of the loop), and the
   4829   // second must be derived from the same PHI.
   4830   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4831   PHINode *PHI = 0;
   4832   for (BasicBlock::iterator I = Header->begin();
   4833        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4834     Constant *StartCST =
   4835       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4836     if (StartCST == 0) continue;
   4837     CurrentIterVals[PHI] = StartCST;
   4838   }
   4839   if (!CurrentIterVals.count(PN))
   4840     return RetVal = 0;
   4841 
   4842   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   4843 
   4844   // Execute the loop symbolically to determine the exit value.
   4845   if (BEs.getActiveBits() >= 32)
   4846     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
   4847 
   4848   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   4849   unsigned IterationNum = 0;
   4850   for (; ; ++IterationNum) {
   4851     if (IterationNum == NumIterations)
   4852       return RetVal = CurrentIterVals[PN];  // Got exit value!
   4853 
   4854     // Compute the value of the PHIs for the next iteration.
   4855     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   4856     DenseMap<Instruction *, Constant *> NextIterVals;
   4857     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
   4858                                            TLI);
   4859     if (NextPHI == 0)
   4860       return 0;        // Couldn't evaluate!
   4861     NextIterVals[PN] = NextPHI;
   4862 
   4863     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   4864 
   4865     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   4866     // cease to be able to evaluate one of them or if they stop evolving,
   4867     // because that doesn't necessarily prevent us from computing PN.
   4868     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   4869     for (DenseMap<Instruction *, Constant *>::const_iterator
   4870            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4871       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4872       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   4873       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
   4874     }
   4875     // We use two distinct loops because EvaluateExpression may invalidate any
   4876     // iterators into CurrentIterVals.
   4877     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
   4878              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
   4879       PHINode *PHI = I->first;
   4880       Constant *&NextPHI = NextIterVals[PHI];
   4881       if (!NextPHI) {   // Not already computed.
   4882         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4883         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4884       }
   4885       if (NextPHI != I->second)
   4886         StoppedEvolving = false;
   4887     }
   4888 
   4889     // If all entries in CurrentIterVals == NextIterVals then we can stop
   4890     // iterating, the loop can't continue to change.
   4891     if (StoppedEvolving)
   4892       return RetVal = CurrentIterVals[PN];
   4893 
   4894     CurrentIterVals.swap(NextIterVals);
   4895   }
   4896 }
   4897 
   4898 /// ComputeExitCountExhaustively - If the loop is known to execute a
   4899 /// constant number of times (the condition evolves only from constants),
   4900 /// try to evaluate a few iterations of the loop until we get the exit
   4901 /// condition gets a value of ExitWhen (true or false).  If we cannot
   4902 /// evaluate the trip count of the loop, return getCouldNotCompute().
   4903 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
   4904                                                           Value *Cond,
   4905                                                           bool ExitWhen) {
   4906   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   4907   if (PN == 0) return getCouldNotCompute();
   4908 
   4909   // If the loop is canonicalized, the PHI will have exactly two entries.
   4910   // That's the only form we support here.
   4911   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   4912 
   4913   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4914   BasicBlock *Header = L->getHeader();
   4915   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4916 
   4917   // One entry must be a constant (coming in from outside of the loop), and the
   4918   // second must be derived from the same PHI.
   4919   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4920   PHINode *PHI = 0;
   4921   for (BasicBlock::iterator I = Header->begin();
   4922        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4923     Constant *StartCST =
   4924       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4925     if (StartCST == 0) continue;
   4926     CurrentIterVals[PHI] = StartCST;
   4927   }
   4928   if (!CurrentIterVals.count(PN))
   4929     return getCouldNotCompute();
   4930 
   4931   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   4932   // the loop symbolically to determine when the condition gets a value of
   4933   // "ExitWhen".
   4934 
   4935   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   4936   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   4937     ConstantInt *CondVal =
   4938       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
   4939                                                        TD, TLI));
   4940 
   4941     // Couldn't symbolically evaluate.
   4942     if (!CondVal) return getCouldNotCompute();
   4943 
   4944     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   4945       ++NumBruteForceTripCountsComputed;
   4946       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   4947     }
   4948 
   4949     // Update all the PHI nodes for the next iteration.
   4950     DenseMap<Instruction *, Constant *> NextIterVals;
   4951 
   4952     // Create a list of which PHIs we need to compute. We want to do this before
   4953     // calling EvaluateExpression on them because that may invalidate iterators
   4954     // into CurrentIterVals.
   4955     SmallVector<PHINode *, 8> PHIsToCompute;
   4956     for (DenseMap<Instruction *, Constant *>::const_iterator
   4957            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4958       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4959       if (!PHI || PHI->getParent() != Header) continue;
   4960       PHIsToCompute.push_back(PHI);
   4961     }
   4962     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
   4963              E = PHIsToCompute.end(); I != E; ++I) {
   4964       PHINode *PHI = *I;
   4965       Constant *&NextPHI = NextIterVals[PHI];
   4966       if (NextPHI) continue;    // Already computed!
   4967 
   4968       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4969       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4970     }
   4971     CurrentIterVals.swap(NextIterVals);
   4972   }
   4973 
   4974   // Too many iterations were needed to evaluate.
   4975   return getCouldNotCompute();
   4976 }
   4977 
   4978 /// getSCEVAtScope - Return a SCEV expression for the specified value
   4979 /// at the specified scope in the program.  The L value specifies a loop
   4980 /// nest to evaluate the expression at, where null is the top-level or a
   4981 /// specified loop is immediately inside of the loop.
   4982 ///
   4983 /// This method can be used to compute the exit value for a variable defined
   4984 /// in a loop by querying what the value will hold in the parent loop.
   4985 ///
   4986 /// In the case that a relevant loop exit value cannot be computed, the
   4987 /// original value V is returned.
   4988 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   4989   // Check to see if we've folded this expression at this loop before.
   4990   std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
   4991   std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
   4992     Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
   4993   if (!Pair.second)
   4994     return Pair.first->second ? Pair.first->second : V;
   4995 
   4996   // Otherwise compute it.
   4997   const SCEV *C = computeSCEVAtScope(V, L);
   4998   ValuesAtScopes[V][L] = C;
   4999   return C;
   5000 }
   5001 
   5002 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   5003 /// will return Constants for objects which aren't represented by a
   5004 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   5005 /// Returns NULL if the SCEV isn't representable as a Constant.
   5006 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   5007   switch (V->getSCEVType()) {
   5008     default:  // TODO: smax, umax.
   5009     case scCouldNotCompute:
   5010     case scAddRecExpr:
   5011       break;
   5012     case scConstant:
   5013       return cast<SCEVConstant>(V)->getValue();
   5014     case scUnknown:
   5015       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   5016     case scSignExtend: {
   5017       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   5018       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   5019         return ConstantExpr::getSExt(CastOp, SS->getType());
   5020       break;
   5021     }
   5022     case scZeroExtend: {
   5023       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   5024       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   5025         return ConstantExpr::getZExt(CastOp, SZ->getType());
   5026       break;
   5027     }
   5028     case scTruncate: {
   5029       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   5030       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   5031         return ConstantExpr::getTrunc(CastOp, ST->getType());
   5032       break;
   5033     }
   5034     case scAddExpr: {
   5035       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   5036       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   5037         if (C->getType()->isPointerTy())
   5038           C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
   5039         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   5040           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   5041           if (!C2) return 0;
   5042 
   5043           // First pointer!
   5044           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   5045             std::swap(C, C2);
   5046             // The offsets have been converted to bytes.  We can add bytes to an
   5047             // i8* by GEP with the byte count in the first index.
   5048             C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
   5049           }
   5050 
   5051           // Don't bother trying to sum two pointers. We probably can't
   5052           // statically compute a load that results from it anyway.
   5053           if (C2->getType()->isPointerTy())
   5054             return 0;
   5055 
   5056           if (C->getType()->isPointerTy()) {
   5057             if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
   5058               C2 = ConstantExpr::getIntegerCast(
   5059                   C2, Type::getInt32Ty(C->getContext()), true);
   5060             C = ConstantExpr::getGetElementPtr(C, C2);
   5061           } else
   5062             C = ConstantExpr::getAdd(C, C2);
   5063         }
   5064         return C;
   5065       }
   5066       break;
   5067     }
   5068     case scMulExpr: {
   5069       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   5070       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   5071         // Don't bother with pointers at all.
   5072         if (C->getType()->isPointerTy()) return 0;
   5073         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   5074           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   5075           if (!C2 || C2->getType()->isPointerTy()) return 0;
   5076           C = ConstantExpr::getMul(C, C2);
   5077         }
   5078         return C;
   5079       }
   5080       break;
   5081     }
   5082     case scUDivExpr: {
   5083       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   5084       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   5085         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   5086           if (LHS->getType() == RHS->getType())
   5087             return ConstantExpr::getUDiv(LHS, RHS);
   5088       break;
   5089     }
   5090   }
   5091   return 0;
   5092 }
   5093 
   5094 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   5095   if (isa<SCEVConstant>(V)) return V;
   5096 
   5097   // If this instruction is evolved from a constant-evolving PHI, compute the
   5098   // exit value from the loop without using SCEVs.
   5099   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   5100     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   5101       const Loop *LI = (*this->LI)[I->getParent()];
   5102       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   5103         if (PHINode *PN = dyn_cast<PHINode>(I))
   5104           if (PN->getParent() == LI->getHeader()) {
   5105             // Okay, there is no closed form solution for the PHI node.  Check
   5106             // to see if the loop that contains it has a known backedge-taken
   5107             // count.  If so, we may be able to force computation of the exit
   5108             // value.
   5109             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   5110             if (const SCEVConstant *BTCC =
   5111                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   5112               // Okay, we know how many times the containing loop executes.  If
   5113               // this is a constant evolving PHI node, get the final value at
   5114               // the specified iteration number.
   5115               Constant *RV = getConstantEvolutionLoopExitValue(PN,
   5116                                                    BTCC->getValue()->getValue(),
   5117                                                                LI);
   5118               if (RV) return getSCEV(RV);
   5119             }
   5120           }
   5121 
   5122       // Okay, this is an expression that we cannot symbolically evaluate
   5123       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   5124       // the arguments into constants, and if so, try to constant propagate the
   5125       // result.  This is particularly useful for computing loop exit values.
   5126       if (CanConstantFold(I)) {
   5127         SmallVector<Constant *, 4> Operands;
   5128         bool MadeImprovement = false;
   5129         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5130           Value *Op = I->getOperand(i);
   5131           if (Constant *C = dyn_cast<Constant>(Op)) {
   5132             Operands.push_back(C);
   5133             continue;
   5134           }
   5135 
   5136           // If any of the operands is non-constant and if they are
   5137           // non-integer and non-pointer, don't even try to analyze them
   5138           // with scev techniques.
   5139           if (!isSCEVable(Op->getType()))
   5140             return V;
   5141 
   5142           const SCEV *OrigV = getSCEV(Op);
   5143           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   5144           MadeImprovement |= OrigV != OpV;
   5145 
   5146           Constant *C = BuildConstantFromSCEV(OpV);
   5147           if (!C) return V;
   5148           if (C->getType() != Op->getType())
   5149             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   5150                                                               Op->getType(),
   5151                                                               false),
   5152                                       C, Op->getType());
   5153           Operands.push_back(C);
   5154         }
   5155 
   5156         // Check to see if getSCEVAtScope actually made an improvement.
   5157         if (MadeImprovement) {
   5158           Constant *C = 0;
   5159           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   5160             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
   5161                                                 Operands[0], Operands[1], TD,
   5162                                                 TLI);
   5163           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5164             if (!LI->isVolatile())
   5165               C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
   5166           } else
   5167             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
   5168                                          Operands, TD, TLI);
   5169           if (!C) return V;
   5170           return getSCEV(C);
   5171         }
   5172       }
   5173     }
   5174 
   5175     // This is some other type of SCEVUnknown, just return it.
   5176     return V;
   5177   }
   5178 
   5179   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   5180     // Avoid performing the look-up in the common case where the specified
   5181     // expression has no loop-variant portions.
   5182     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   5183       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5184       if (OpAtScope != Comm->getOperand(i)) {
   5185         // Okay, at least one of these operands is loop variant but might be
   5186         // foldable.  Build a new instance of the folded commutative expression.
   5187         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   5188                                             Comm->op_begin()+i);
   5189         NewOps.push_back(OpAtScope);
   5190 
   5191         for (++i; i != e; ++i) {
   5192           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5193           NewOps.push_back(OpAtScope);
   5194         }
   5195         if (isa<SCEVAddExpr>(Comm))
   5196           return getAddExpr(NewOps);
   5197         if (isa<SCEVMulExpr>(Comm))
   5198           return getMulExpr(NewOps);
   5199         if (isa<SCEVSMaxExpr>(Comm))
   5200           return getSMaxExpr(NewOps);
   5201         if (isa<SCEVUMaxExpr>(Comm))
   5202           return getUMaxExpr(NewOps);
   5203         llvm_unreachable("Unknown commutative SCEV type!");
   5204       }
   5205     }
   5206     // If we got here, all operands are loop invariant.
   5207     return Comm;
   5208   }
   5209 
   5210   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   5211     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   5212     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   5213     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   5214       return Div;   // must be loop invariant
   5215     return getUDivExpr(LHS, RHS);
   5216   }
   5217 
   5218   // If this is a loop recurrence for a loop that does not contain L, then we
   5219   // are dealing with the final value computed by the loop.
   5220   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   5221     // First, attempt to evaluate each operand.
   5222     // Avoid performing the look-up in the common case where the specified
   5223     // expression has no loop-variant portions.
   5224     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   5225       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   5226       if (OpAtScope == AddRec->getOperand(i))
   5227         continue;
   5228 
   5229       // Okay, at least one of these operands is loop variant but might be
   5230       // foldable.  Build a new instance of the folded commutative expression.
   5231       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   5232                                           AddRec->op_begin()+i);
   5233       NewOps.push_back(OpAtScope);
   5234       for (++i; i != e; ++i)
   5235         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   5236 
   5237       const SCEV *FoldedRec =
   5238         getAddRecExpr(NewOps, AddRec->getLoop(),
   5239                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   5240       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   5241       // The addrec may be folded to a nonrecurrence, for example, if the
   5242       // induction variable is multiplied by zero after constant folding. Go
   5243       // ahead and return the folded value.
   5244       if (!AddRec)
   5245         return FoldedRec;
   5246       break;
   5247     }
   5248 
   5249     // If the scope is outside the addrec's loop, evaluate it by using the
   5250     // loop exit value of the addrec.
   5251     if (!AddRec->getLoop()->contains(L)) {
   5252       // To evaluate this recurrence, we need to know how many times the AddRec
   5253       // loop iterates.  Compute this now.
   5254       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   5255       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   5256 
   5257       // Then, evaluate the AddRec.
   5258       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   5259     }
   5260 
   5261     return AddRec;
   5262   }
   5263 
   5264   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   5265     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5266     if (Op == Cast->getOperand())
   5267       return Cast;  // must be loop invariant
   5268     return getZeroExtendExpr(Op, Cast->getType());
   5269   }
   5270 
   5271   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   5272     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5273     if (Op == Cast->getOperand())
   5274       return Cast;  // must be loop invariant
   5275     return getSignExtendExpr(Op, Cast->getType());
   5276   }
   5277 
   5278   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   5279     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5280     if (Op == Cast->getOperand())
   5281       return Cast;  // must be loop invariant
   5282     return getTruncateExpr(Op, Cast->getType());
   5283   }
   5284 
   5285   llvm_unreachable("Unknown SCEV type!");
   5286 }
   5287 
   5288 /// getSCEVAtScope - This is a convenience function which does
   5289 /// getSCEVAtScope(getSCEV(V), L).
   5290 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   5291   return getSCEVAtScope(getSCEV(V), L);
   5292 }
   5293 
   5294 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   5295 /// following equation:
   5296 ///
   5297 ///     A * X = B (mod N)
   5298 ///
   5299 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   5300 /// A and B isn't important.
   5301 ///
   5302 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   5303 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   5304                                                ScalarEvolution &SE) {
   5305   uint32_t BW = A.getBitWidth();
   5306   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   5307   assert(A != 0 && "A must be non-zero.");
   5308 
   5309   // 1. D = gcd(A, N)
   5310   //
   5311   // The gcd of A and N may have only one prime factor: 2. The number of
   5312   // trailing zeros in A is its multiplicity
   5313   uint32_t Mult2 = A.countTrailingZeros();
   5314   // D = 2^Mult2
   5315 
   5316   // 2. Check if B is divisible by D.
   5317   //
   5318   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   5319   // is not less than multiplicity of this prime factor for D.
   5320   if (B.countTrailingZeros() < Mult2)
   5321     return SE.getCouldNotCompute();
   5322 
   5323   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   5324   // modulo (N / D).
   5325   //
   5326   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   5327   // bit width during computations.
   5328   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   5329   APInt Mod(BW + 1, 0);
   5330   Mod.setBit(BW - Mult2);  // Mod = N / D
   5331   APInt I = AD.multiplicativeInverse(Mod);
   5332 
   5333   // 4. Compute the minimum unsigned root of the equation:
   5334   // I * (B / D) mod (N / D)
   5335   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   5336 
   5337   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   5338   // bits.
   5339   return SE.getConstant(Result.trunc(BW));
   5340 }
   5341 
   5342 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   5343 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   5344 /// might be the same) or two SCEVCouldNotCompute objects.
   5345 ///
   5346 static std::pair<const SCEV *,const SCEV *>
   5347 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   5348   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   5349   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   5350   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   5351   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   5352 
   5353   // We currently can only solve this if the coefficients are constants.
   5354   if (!LC || !MC || !NC) {
   5355     const SCEV *CNC = SE.getCouldNotCompute();
   5356     return std::make_pair(CNC, CNC);
   5357   }
   5358 
   5359   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
   5360   const APInt &L = LC->getValue()->getValue();
   5361   const APInt &M = MC->getValue()->getValue();
   5362   const APInt &N = NC->getValue()->getValue();
   5363   APInt Two(BitWidth, 2);
   5364   APInt Four(BitWidth, 4);
   5365 
   5366   {
   5367     using namespace APIntOps;
   5368     const APInt& C = L;
   5369     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   5370     // The B coefficient is M-N/2
   5371     APInt B(M);
   5372     B -= sdiv(N,Two);
   5373 
   5374     // The A coefficient is N/2
   5375     APInt A(N.sdiv(Two));
   5376 
   5377     // Compute the B^2-4ac term.
   5378     APInt SqrtTerm(B);
   5379     SqrtTerm *= B;
   5380     SqrtTerm -= Four * (A * C);
   5381 
   5382     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   5383     // integer value or else APInt::sqrt() will assert.
   5384     APInt SqrtVal(SqrtTerm.sqrt());
   5385 
   5386     // Compute the two solutions for the quadratic formula.
   5387     // The divisions must be performed as signed divisions.
   5388     APInt NegB(-B);
   5389     APInt TwoA(A << 1);
   5390     if (TwoA.isMinValue()) {
   5391       const SCEV *CNC = SE.getCouldNotCompute();
   5392       return std::make_pair(CNC, CNC);
   5393     }
   5394 
   5395     LLVMContext &Context = SE.getContext();
   5396 
   5397     ConstantInt *Solution1 =
   5398       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   5399     ConstantInt *Solution2 =
   5400       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   5401 
   5402     return std::make_pair(SE.getConstant(Solution1),
   5403                           SE.getConstant(Solution2));
   5404   } // end APIntOps namespace
   5405 }
   5406 
   5407 /// HowFarToZero - Return the number of times a backedge comparing the specified
   5408 /// value to zero will execute.  If not computable, return CouldNotCompute.
   5409 ///
   5410 /// This is only used for loops with a "x != y" exit test. The exit condition is
   5411 /// now expressed as a single expression, V = x-y. So the exit test is
   5412 /// effectively V != 0.  We know and take advantage of the fact that this
   5413 /// expression only being used in a comparison by zero context.
   5414 ScalarEvolution::ExitLimit
   5415 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
   5416   // If the value is a constant
   5417   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5418     // If the value is already zero, the branch will execute zero times.
   5419     if (C->getValue()->isZero()) return C;
   5420     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5421   }
   5422 
   5423   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   5424   if (!AddRec || AddRec->getLoop() != L)
   5425     return getCouldNotCompute();
   5426 
   5427   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   5428   // the quadratic equation to solve it.
   5429   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   5430     std::pair<const SCEV *,const SCEV *> Roots =
   5431       SolveQuadraticEquation(AddRec, *this);
   5432     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   5433     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   5434     if (R1 && R2) {
   5435 #if 0
   5436       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
   5437              << "  sol#2: " << *R2 << "\n";
   5438 #endif
   5439       // Pick the smallest positive root value.
   5440       if (ConstantInt *CB =
   5441           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   5442                                                       R1->getValue(),
   5443                                                       R2->getValue()))) {
   5444         if (CB->getZExtValue() == false)
   5445           std::swap(R1, R2);   // R1 is the minimum root now.
   5446 
   5447         // We can only use this value if the chrec ends up with an exact zero
   5448         // value at this index.  When solving for "X*X != 5", for example, we
   5449         // should not accept a root of 2.
   5450         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   5451         if (Val->isZero())
   5452           return R1;  // We found a quadratic root!
   5453       }
   5454     }
   5455     return getCouldNotCompute();
   5456   }
   5457 
   5458   // Otherwise we can only handle this if it is affine.
   5459   if (!AddRec->isAffine())
   5460     return getCouldNotCompute();
   5461 
   5462   // If this is an affine expression, the execution count of this branch is
   5463   // the minimum unsigned root of the following equation:
   5464   //
   5465   //     Start + Step*N = 0 (mod 2^BW)
   5466   //
   5467   // equivalent to:
   5468   //
   5469   //             Step*N = -Start (mod 2^BW)
   5470   //
   5471   // where BW is the common bit width of Start and Step.
   5472 
   5473   // Get the initial value for the loop.
   5474   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   5475   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   5476 
   5477   // For now we handle only constant steps.
   5478   //
   5479   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   5480   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   5481   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   5482   // We have not yet seen any such cases.
   5483   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   5484   if (StepC == 0)
   5485     return getCouldNotCompute();
   5486 
   5487   // For positive steps (counting up until unsigned overflow):
   5488   //   N = -Start/Step (as unsigned)
   5489   // For negative steps (counting down to zero):
   5490   //   N = Start/-Step
   5491   // First compute the unsigned distance from zero in the direction of Step.
   5492   bool CountDown = StepC->getValue()->getValue().isNegative();
   5493   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   5494 
   5495   // Handle unitary steps, which cannot wraparound.
   5496   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   5497   //   N = Distance (as unsigned)
   5498   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   5499     ConstantRange CR = getUnsignedRange(Start);
   5500     const SCEV *MaxBECount;
   5501     if (!CountDown && CR.getUnsignedMin().isMinValue())
   5502       // When counting up, the worst starting value is 1, not 0.
   5503       MaxBECount = CR.getUnsignedMax().isMinValue()
   5504         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   5505         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   5506     else
   5507       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   5508                                          : -CR.getUnsignedMin());
   5509     return ExitLimit(Distance, MaxBECount);
   5510   }
   5511 
   5512   // If the recurrence is known not to wraparound, unsigned divide computes the
   5513   // back edge count. We know that the value will either become zero (and thus
   5514   // the loop terminates), that the loop will terminate through some other exit
   5515   // condition first, or that the loop has undefined behavior.  This means
   5516   // we can't "miss" the exit value, even with nonunit stride.
   5517   //
   5518   // FIXME: Prove that loops always exhibits *acceptable* undefined
   5519   // behavior. Loops must exhibit defined behavior until a wrapped value is
   5520   // actually used. So the trip count computed by udiv could be smaller than the
   5521   // number of well-defined iterations.
   5522   if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
   5523     // FIXME: We really want an "isexact" bit for udiv.
   5524     return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   5525   }
   5526   // Then, try to solve the above equation provided that Start is constant.
   5527   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   5528     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
   5529                                         -StartC->getValue()->getValue(),
   5530                                         *this);
   5531   return getCouldNotCompute();
   5532 }
   5533 
   5534 /// HowFarToNonZero - Return the number of times a backedge checking the
   5535 /// specified value for nonzero will execute.  If not computable, return
   5536 /// CouldNotCompute
   5537 ScalarEvolution::ExitLimit
   5538 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   5539   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   5540   // handle them yet except for the trivial case.  This could be expanded in the
   5541   // future as needed.
   5542 
   5543   // If the value is a constant, check to see if it is known to be non-zero
   5544   // already.  If so, the backedge will execute zero times.
   5545   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5546     if (!C->getValue()->isNullValue())
   5547       return getConstant(C->getType(), 0);
   5548     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5549   }
   5550 
   5551   // We could implement others, but I really doubt anyone writes loops like
   5552   // this, and if they did, they would already be constant folded.
   5553   return getCouldNotCompute();
   5554 }
   5555 
   5556 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   5557 /// (which may not be an immediate predecessor) which has exactly one
   5558 /// successor from which BB is reachable, or null if no such block is
   5559 /// found.
   5560 ///
   5561 std::pair<BasicBlock *, BasicBlock *>
   5562 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   5563   // If the block has a unique predecessor, then there is no path from the
   5564   // predecessor to the block that does not go through the direct edge
   5565   // from the predecessor to the block.
   5566   if (BasicBlock *Pred = BB->getSinglePredecessor())
   5567     return std::make_pair(Pred, BB);
   5568 
   5569   // A loop's header is defined to be a block that dominates the loop.
   5570   // If the header has a unique predecessor outside the loop, it must be
   5571   // a block that has exactly one successor that can reach the loop.
   5572   if (Loop *L = LI->getLoopFor(BB))
   5573     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   5574 
   5575   return std::pair<BasicBlock *, BasicBlock *>();
   5576 }
   5577 
   5578 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   5579 /// testing whether two expressions are equal, however for the purposes of
   5580 /// looking for a condition guarding a loop, it can be useful to be a little
   5581 /// more general, since a front-end may have replicated the controlling
   5582 /// expression.
   5583 ///
   5584 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   5585   // Quick check to see if they are the same SCEV.
   5586   if (A == B) return true;
   5587 
   5588   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   5589   // two different instructions with the same value. Check for this case.
   5590   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   5591     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   5592       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   5593         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   5594           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
   5595             return true;
   5596 
   5597   // Otherwise assume they may have a different value.
   5598   return false;
   5599 }
   5600 
   5601 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   5602 /// predicate Pred. Return true iff any changes were made.
   5603 ///
   5604 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   5605                                            const SCEV *&LHS, const SCEV *&RHS) {
   5606   bool Changed = false;
   5607 
   5608   // Canonicalize a constant to the right side.
   5609   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   5610     // Check for both operands constant.
   5611     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   5612       if (ConstantExpr::getICmp(Pred,
   5613                                 LHSC->getValue(),
   5614                                 RHSC->getValue())->isNullValue())
   5615         goto trivially_false;
   5616       else
   5617         goto trivially_true;
   5618     }
   5619     // Otherwise swap the operands to put the constant on the right.
   5620     std::swap(LHS, RHS);
   5621     Pred = ICmpInst::getSwappedPredicate(Pred);
   5622     Changed = true;
   5623   }
   5624 
   5625   // If we're comparing an addrec with a value which is loop-invariant in the
   5626   // addrec's loop, put the addrec on the left. Also make a dominance check,
   5627   // as both operands could be addrecs loop-invariant in each other's loop.
   5628   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   5629     const Loop *L = AR->getLoop();
   5630     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   5631       std::swap(LHS, RHS);
   5632       Pred = ICmpInst::getSwappedPredicate(Pred);
   5633       Changed = true;
   5634     }
   5635   }
   5636 
   5637   // If there's a constant operand, canonicalize comparisons with boundary
   5638   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   5639   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   5640     const APInt &RA = RC->getValue()->getValue();
   5641     switch (Pred) {
   5642     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5643     case ICmpInst::ICMP_EQ:
   5644     case ICmpInst::ICMP_NE:
   5645       break;
   5646     case ICmpInst::ICMP_UGE:
   5647       if ((RA - 1).isMinValue()) {
   5648         Pred = ICmpInst::ICMP_NE;
   5649         RHS = getConstant(RA - 1);
   5650         Changed = true;
   5651         break;
   5652       }
   5653       if (RA.isMaxValue()) {
   5654         Pred = ICmpInst::ICMP_EQ;
   5655         Changed = true;
   5656         break;
   5657       }
   5658       if (RA.isMinValue()) goto trivially_true;
   5659 
   5660       Pred = ICmpInst::ICMP_UGT;
   5661       RHS = getConstant(RA - 1);
   5662       Changed = true;
   5663       break;
   5664     case ICmpInst::ICMP_ULE:
   5665       if ((RA + 1).isMaxValue()) {
   5666         Pred = ICmpInst::ICMP_NE;
   5667         RHS = getConstant(RA + 1);
   5668         Changed = true;
   5669         break;
   5670       }
   5671       if (RA.isMinValue()) {
   5672         Pred = ICmpInst::ICMP_EQ;
   5673         Changed = true;
   5674         break;
   5675       }
   5676       if (RA.isMaxValue()) goto trivially_true;
   5677 
   5678       Pred = ICmpInst::ICMP_ULT;
   5679       RHS = getConstant(RA + 1);
   5680       Changed = true;
   5681       break;
   5682     case ICmpInst::ICMP_SGE:
   5683       if ((RA - 1).isMinSignedValue()) {
   5684         Pred = ICmpInst::ICMP_NE;
   5685         RHS = getConstant(RA - 1);
   5686         Changed = true;
   5687         break;
   5688       }
   5689       if (RA.isMaxSignedValue()) {
   5690         Pred = ICmpInst::ICMP_EQ;
   5691         Changed = true;
   5692         break;
   5693       }
   5694       if (RA.isMinSignedValue()) goto trivially_true;
   5695 
   5696       Pred = ICmpInst::ICMP_SGT;
   5697       RHS = getConstant(RA - 1);
   5698       Changed = true;
   5699       break;
   5700     case ICmpInst::ICMP_SLE:
   5701       if ((RA + 1).isMaxSignedValue()) {
   5702         Pred = ICmpInst::ICMP_NE;
   5703         RHS = getConstant(RA + 1);
   5704         Changed = true;
   5705         break;
   5706       }
   5707       if (RA.isMinSignedValue()) {
   5708         Pred = ICmpInst::ICMP_EQ;
   5709         Changed = true;
   5710         break;
   5711       }
   5712       if (RA.isMaxSignedValue()) goto trivially_true;
   5713 
   5714       Pred = ICmpInst::ICMP_SLT;
   5715       RHS = getConstant(RA + 1);
   5716       Changed = true;
   5717       break;
   5718     case ICmpInst::ICMP_UGT:
   5719       if (RA.isMinValue()) {
   5720         Pred = ICmpInst::ICMP_NE;
   5721         Changed = true;
   5722         break;
   5723       }
   5724       if ((RA + 1).isMaxValue()) {
   5725         Pred = ICmpInst::ICMP_EQ;
   5726         RHS = getConstant(RA + 1);
   5727         Changed = true;
   5728         break;
   5729       }
   5730       if (RA.isMaxValue()) goto trivially_false;
   5731       break;
   5732     case ICmpInst::ICMP_ULT:
   5733       if (RA.isMaxValue()) {
   5734         Pred = ICmpInst::ICMP_NE;
   5735         Changed = true;
   5736         break;
   5737       }
   5738       if ((RA - 1).isMinValue()) {
   5739         Pred = ICmpInst::ICMP_EQ;
   5740         RHS = getConstant(RA - 1);
   5741         Changed = true;
   5742         break;
   5743       }
   5744       if (RA.isMinValue()) goto trivially_false;
   5745       break;
   5746     case ICmpInst::ICMP_SGT:
   5747       if (RA.isMinSignedValue()) {
   5748         Pred = ICmpInst::ICMP_NE;
   5749         Changed = true;
   5750         break;
   5751       }
   5752       if ((RA + 1).isMaxSignedValue()) {
   5753         Pred = ICmpInst::ICMP_EQ;
   5754         RHS = getConstant(RA + 1);
   5755         Changed = true;
   5756         break;
   5757       }
   5758       if (RA.isMaxSignedValue()) goto trivially_false;
   5759       break;
   5760     case ICmpInst::ICMP_SLT:
   5761       if (RA.isMaxSignedValue()) {
   5762         Pred = ICmpInst::ICMP_NE;
   5763         Changed = true;
   5764         break;
   5765       }
   5766       if ((RA - 1).isMinSignedValue()) {
   5767        Pred = ICmpInst::ICMP_EQ;
   5768        RHS = getConstant(RA - 1);
   5769         Changed = true;
   5770        break;
   5771       }
   5772       if (RA.isMinSignedValue()) goto trivially_false;
   5773       break;
   5774     }
   5775   }
   5776 
   5777   // Check for obvious equality.
   5778   if (HasSameValue(LHS, RHS)) {
   5779     if (ICmpInst::isTrueWhenEqual(Pred))
   5780       goto trivially_true;
   5781     if (ICmpInst::isFalseWhenEqual(Pred))
   5782       goto trivially_false;
   5783   }
   5784 
   5785   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   5786   // adding or subtracting 1 from one of the operands.
   5787   switch (Pred) {
   5788   case ICmpInst::ICMP_SLE:
   5789     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   5790       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5791                        SCEV::FlagNSW);
   5792       Pred = ICmpInst::ICMP_SLT;
   5793       Changed = true;
   5794     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   5795       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5796                        SCEV::FlagNSW);
   5797       Pred = ICmpInst::ICMP_SLT;
   5798       Changed = true;
   5799     }
   5800     break;
   5801   case ICmpInst::ICMP_SGE:
   5802     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   5803       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5804                        SCEV::FlagNSW);
   5805       Pred = ICmpInst::ICMP_SGT;
   5806       Changed = true;
   5807     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   5808       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5809                        SCEV::FlagNSW);
   5810       Pred = ICmpInst::ICMP_SGT;
   5811       Changed = true;
   5812     }
   5813     break;
   5814   case ICmpInst::ICMP_ULE:
   5815     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   5816       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5817                        SCEV::FlagNUW);
   5818       Pred = ICmpInst::ICMP_ULT;
   5819       Changed = true;
   5820     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   5821       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5822                        SCEV::FlagNUW);
   5823       Pred = ICmpInst::ICMP_ULT;
   5824       Changed = true;
   5825     }
   5826     break;
   5827   case ICmpInst::ICMP_UGE:
   5828     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   5829       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5830                        SCEV::FlagNUW);
   5831       Pred = ICmpInst::ICMP_UGT;
   5832       Changed = true;
   5833     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   5834       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5835                        SCEV::FlagNUW);
   5836       Pred = ICmpInst::ICMP_UGT;
   5837       Changed = true;
   5838     }
   5839     break;
   5840   default:
   5841     break;
   5842   }
   5843 
   5844   // TODO: More simplifications are possible here.
   5845 
   5846   return Changed;
   5847 
   5848 trivially_true:
   5849   // Return 0 == 0.
   5850   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5851   Pred = ICmpInst::ICMP_EQ;
   5852   return true;
   5853 
   5854 trivially_false:
   5855   // Return 0 != 0.
   5856   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5857   Pred = ICmpInst::ICMP_NE;
   5858   return true;
   5859 }
   5860 
   5861 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   5862   return getSignedRange(S).getSignedMax().isNegative();
   5863 }
   5864 
   5865 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   5866   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   5867 }
   5868 
   5869 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   5870   return !getSignedRange(S).getSignedMin().isNegative();
   5871 }
   5872 
   5873 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   5874   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   5875 }
   5876 
   5877 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   5878   return isKnownNegative(S) || isKnownPositive(S);
   5879 }
   5880 
   5881 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   5882                                        const SCEV *LHS, const SCEV *RHS) {
   5883   // Canonicalize the inputs first.
   5884   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   5885 
   5886   // If LHS or RHS is an addrec, check to see if the condition is true in
   5887   // every iteration of the loop.
   5888   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   5889     if (isLoopEntryGuardedByCond(
   5890           AR->getLoop(), Pred, AR->getStart(), RHS) &&
   5891         isLoopBackedgeGuardedByCond(
   5892           AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
   5893       return true;
   5894   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
   5895     if (isLoopEntryGuardedByCond(
   5896           AR->getLoop(), Pred, LHS, AR->getStart()) &&
   5897         isLoopBackedgeGuardedByCond(
   5898           AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
   5899       return true;
   5900 
   5901   // Otherwise see what can be done with known constant ranges.
   5902   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   5903 }
   5904 
   5905 bool
   5906 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   5907                                             const SCEV *LHS, const SCEV *RHS) {
   5908   if (HasSameValue(LHS, RHS))
   5909     return ICmpInst::isTrueWhenEqual(Pred);
   5910 
   5911   // This code is split out from isKnownPredicate because it is called from
   5912   // within isLoopEntryGuardedByCond.
   5913   switch (Pred) {
   5914   default:
   5915     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5916   case ICmpInst::ICMP_SGT:
   5917     Pred = ICmpInst::ICMP_SLT;
   5918     std::swap(LHS, RHS);
   5919   case ICmpInst::ICMP_SLT: {
   5920     ConstantRange LHSRange = getSignedRange(LHS);
   5921     ConstantRange RHSRange = getSignedRange(RHS);
   5922     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   5923       return true;
   5924     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   5925       return false;
   5926     break;
   5927   }
   5928   case ICmpInst::ICMP_SGE:
   5929     Pred = ICmpInst::ICMP_SLE;
   5930     std::swap(LHS, RHS);
   5931   case ICmpInst::ICMP_SLE: {
   5932     ConstantRange LHSRange = getSignedRange(LHS);
   5933     ConstantRange RHSRange = getSignedRange(RHS);
   5934     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   5935       return true;
   5936     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   5937       return false;
   5938     break;
   5939   }
   5940   case ICmpInst::ICMP_UGT:
   5941     Pred = ICmpInst::ICMP_ULT;
   5942     std::swap(LHS, RHS);
   5943   case ICmpInst::ICMP_ULT: {
   5944     ConstantRange LHSRange = getUnsignedRange(LHS);
   5945     ConstantRange RHSRange = getUnsignedRange(RHS);
   5946     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   5947       return true;
   5948     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   5949       return false;
   5950     break;
   5951   }
   5952   case ICmpInst::ICMP_UGE:
   5953     Pred = ICmpInst::ICMP_ULE;
   5954     std::swap(LHS, RHS);
   5955   case ICmpInst::ICMP_ULE: {
   5956     ConstantRange LHSRange = getUnsignedRange(LHS);
   5957     ConstantRange RHSRange = getUnsignedRange(RHS);
   5958     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   5959       return true;
   5960     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   5961       return false;
   5962     break;
   5963   }
   5964   case ICmpInst::ICMP_NE: {
   5965     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   5966       return true;
   5967     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   5968       return true;
   5969 
   5970     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   5971     if (isKnownNonZero(Diff))
   5972       return true;
   5973     break;
   5974   }
   5975   case ICmpInst::ICMP_EQ:
   5976     // The check at the top of the function catches the case where
   5977     // the values are known to be equal.
   5978     break;
   5979   }
   5980   return false;
   5981 }
   5982 
   5983 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   5984 /// protected by a conditional between LHS and RHS.  This is used to
   5985 /// to eliminate casts.
   5986 bool
   5987 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   5988                                              ICmpInst::Predicate Pred,
   5989                                              const SCEV *LHS, const SCEV *RHS) {
   5990   // Interpret a null as meaning no loop, where there is obviously no guard
   5991   // (interprocedural conditions notwithstanding).
   5992   if (!L) return true;
   5993 
   5994   BasicBlock *Latch = L->getLoopLatch();
   5995   if (!Latch)
   5996     return false;
   5997 
   5998   BranchInst *LoopContinuePredicate =
   5999     dyn_cast<BranchInst>(Latch->getTerminator());
   6000   if (!LoopContinuePredicate ||
   6001       LoopContinuePredicate->isUnconditional())
   6002     return false;
   6003 
   6004   return isImpliedCond(Pred, LHS, RHS,
   6005                        LoopContinuePredicate->getCondition(),
   6006                        LoopContinuePredicate->getSuccessor(0) != L->getHeader());
   6007 }
   6008 
   6009 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   6010 /// by a conditional between LHS and RHS.  This is used to help avoid max
   6011 /// expressions in loop trip counts, and to eliminate casts.
   6012 bool
   6013 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   6014                                           ICmpInst::Predicate Pred,
   6015                                           const SCEV *LHS, const SCEV *RHS) {
   6016   // Interpret a null as meaning no loop, where there is obviously no guard
   6017   // (interprocedural conditions notwithstanding).
   6018   if (!L) return false;
   6019 
   6020   // Starting at the loop predecessor, climb up the predecessor chain, as long
   6021   // as there are predecessors that can be found that have unique successors
   6022   // leading to the original header.
   6023   for (std::pair<BasicBlock *, BasicBlock *>
   6024          Pair(L->getLoopPredecessor(), L->getHeader());
   6025        Pair.first;
   6026        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   6027 
   6028     BranchInst *LoopEntryPredicate =
   6029       dyn_cast<BranchInst>(Pair.first->getTerminator());
   6030     if (!LoopEntryPredicate ||
   6031         LoopEntryPredicate->isUnconditional())
   6032       continue;
   6033 
   6034     if (isImpliedCond(Pred, LHS, RHS,
   6035                       LoopEntryPredicate->getCondition(),
   6036                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   6037       return true;
   6038   }
   6039 
   6040   return false;
   6041 }
   6042 
   6043 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   6044 /// and RHS is true whenever the given Cond value evaluates to true.
   6045 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   6046                                     const SCEV *LHS, const SCEV *RHS,
   6047                                     Value *FoundCondValue,
   6048                                     bool Inverse) {
   6049   // Recursively handle And and Or conditions.
   6050   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   6051     if (BO->getOpcode() == Instruction::And) {
   6052       if (!Inverse)
   6053         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6054                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6055     } else if (BO->getOpcode() == Instruction::Or) {
   6056       if (Inverse)
   6057         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6058                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6059     }
   6060   }
   6061 
   6062   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   6063   if (!ICI) return false;
   6064 
   6065   // Bail if the ICmp's operands' types are wider than the needed type
   6066   // before attempting to call getSCEV on them. This avoids infinite
   6067   // recursion, since the analysis of widening casts can require loop
   6068   // exit condition information for overflow checking, which would
   6069   // lead back here.
   6070   if (getTypeSizeInBits(LHS->getType()) <
   6071       getTypeSizeInBits(ICI->getOperand(0)->getType()))
   6072     return false;
   6073 
   6074   // Now that we found a conditional branch that dominates the loop, check to
   6075   // see if it is the comparison we are looking for.
   6076   ICmpInst::Predicate FoundPred;
   6077   if (Inverse)
   6078     FoundPred = ICI->getInversePredicate();
   6079   else
   6080     FoundPred = ICI->getPredicate();
   6081 
   6082   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   6083   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   6084 
   6085   // Balance the types. The case where FoundLHS' type is wider than
   6086   // LHS' type is checked for above.
   6087   if (getTypeSizeInBits(LHS->getType()) >
   6088       getTypeSizeInBits(FoundLHS->getType())) {
   6089     if (CmpInst::isSigned(Pred)) {
   6090       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   6091       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   6092     } else {
   6093       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   6094       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   6095     }
   6096   }
   6097 
   6098   // Canonicalize the query to match the way instcombine will have
   6099   // canonicalized the comparison.
   6100   if (SimplifyICmpOperands(Pred, LHS, RHS))
   6101     if (LHS == RHS)
   6102       return CmpInst::isTrueWhenEqual(Pred);
   6103   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   6104     if (FoundLHS == FoundRHS)
   6105       return CmpInst::isFalseWhenEqual(Pred);
   6106 
   6107   // Check to see if we can make the LHS or RHS match.
   6108   if (LHS == FoundRHS || RHS == FoundLHS) {
   6109     if (isa<SCEVConstant>(RHS)) {
   6110       std::swap(FoundLHS, FoundRHS);
   6111       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   6112     } else {
   6113       std::swap(LHS, RHS);
   6114       Pred = ICmpInst::getSwappedPredicate(Pred);
   6115     }
   6116   }
   6117 
   6118   // Check whether the found predicate is the same as the desired predicate.
   6119   if (FoundPred == Pred)
   6120     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   6121 
   6122   // Check whether swapping the found predicate makes it the same as the
   6123   // desired predicate.
   6124   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   6125     if (isa<SCEVConstant>(RHS))
   6126       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   6127     else
   6128       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   6129                                    RHS, LHS, FoundLHS, FoundRHS);
   6130   }
   6131 
   6132   // Check whether the actual condition is beyond sufficient.
   6133   if (FoundPred == ICmpInst::ICMP_EQ)
   6134     if (ICmpInst::isTrueWhenEqual(Pred))
   6135       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   6136         return true;
   6137   if (Pred == ICmpInst::ICMP_NE)
   6138     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   6139       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   6140         return true;
   6141 
   6142   // Otherwise assume the worst.
   6143   return false;
   6144 }
   6145 
   6146 /// isImpliedCondOperands - Test whether the condition described by Pred,
   6147 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   6148 /// and FoundRHS is true.
   6149 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   6150                                             const SCEV *LHS, const SCEV *RHS,
   6151                                             const SCEV *FoundLHS,
   6152                                             const SCEV *FoundRHS) {
   6153   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6154                                      FoundLHS, FoundRHS) ||
   6155          // ~x < ~y --> x > y
   6156          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6157                                      getNotSCEV(FoundRHS),
   6158                                      getNotSCEV(FoundLHS));
   6159 }
   6160 
   6161 /// isImpliedCondOperandsHelper - Test whether the condition described by
   6162 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   6163 /// FoundLHS, and FoundRHS is true.
   6164 bool
   6165 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   6166                                              const SCEV *LHS, const SCEV *RHS,
   6167                                              const SCEV *FoundLHS,
   6168                                              const SCEV *FoundRHS) {
   6169   switch (Pred) {
   6170   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6171   case ICmpInst::ICMP_EQ:
   6172   case ICmpInst::ICMP_NE:
   6173     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   6174       return true;
   6175     break;
   6176   case ICmpInst::ICMP_SLT:
   6177   case ICmpInst::ICMP_SLE:
   6178     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   6179         isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   6180       return true;
   6181     break;
   6182   case ICmpInst::ICMP_SGT:
   6183   case ICmpInst::ICMP_SGE:
   6184     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   6185         isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   6186       return true;
   6187     break;
   6188   case ICmpInst::ICMP_ULT:
   6189   case ICmpInst::ICMP_ULE:
   6190     if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   6191         isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   6192       return true;
   6193     break;
   6194   case ICmpInst::ICMP_UGT:
   6195   case ICmpInst::ICMP_UGE:
   6196     if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   6197         isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   6198       return true;
   6199     break;
   6200   }
   6201 
   6202   return false;
   6203 }
   6204 
   6205 /// getBECount - Subtract the end and start values and divide by the step,
   6206 /// rounding up, to get the number of times the backedge is executed. Return
   6207 /// CouldNotCompute if an intermediate computation overflows.
   6208 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
   6209                                         const SCEV *End,
   6210                                         const SCEV *Step,
   6211                                         bool NoWrap) {
   6212   assert(!isKnownNegative(Step) &&
   6213          "This code doesn't handle negative strides yet!");
   6214 
   6215   Type *Ty = Start->getType();
   6216 
   6217   // When Start == End, we have an exact BECount == 0. Short-circuit this case
   6218   // here because SCEV may not be able to determine that the unsigned division
   6219   // after rounding is zero.
   6220   if (Start == End)
   6221     return getConstant(Ty, 0);
   6222 
   6223   const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
   6224   const SCEV *Diff = getMinusSCEV(End, Start);
   6225   const SCEV *RoundUp = getAddExpr(Step, NegOne);
   6226 
   6227   // Add an adjustment to the difference between End and Start so that
   6228   // the division will effectively round up.
   6229   const SCEV *Add = getAddExpr(Diff, RoundUp);
   6230 
   6231   if (!NoWrap) {
   6232     // Check Add for unsigned overflow.
   6233     // TODO: More sophisticated things could be done here.
   6234     Type *WideTy = IntegerType::get(getContext(),
   6235                                           getTypeSizeInBits(Ty) + 1);
   6236     const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
   6237     const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
   6238     const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
   6239     if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
   6240       return getCouldNotCompute();
   6241   }
   6242 
   6243   return getUDivExpr(Add, Step);
   6244 }
   6245 
   6246 /// HowManyLessThans - Return the number of times a backedge containing the
   6247 /// specified less-than comparison will execute.  If not computable, return
   6248 /// CouldNotCompute.
   6249 ScalarEvolution::ExitLimit
   6250 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   6251                                   const Loop *L, bool isSigned) {
   6252   // Only handle:  "ADDREC < LoopInvariant".
   6253   if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
   6254 
   6255   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
   6256   if (!AddRec || AddRec->getLoop() != L)
   6257     return getCouldNotCompute();
   6258 
   6259   // Check to see if we have a flag which makes analysis easy.
   6260   bool NoWrap = isSigned ?
   6261     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
   6262     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
   6263 
   6264   if (AddRec->isAffine()) {
   6265     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
   6266     const SCEV *Step = AddRec->getStepRecurrence(*this);
   6267 
   6268     if (Step->isZero())
   6269       return getCouldNotCompute();
   6270     if (Step->isOne()) {
   6271       // With unit stride, the iteration never steps past the limit value.
   6272     } else if (isKnownPositive(Step)) {
   6273       // Test whether a positive iteration can step past the limit
   6274       // value and past the maximum value for its type in a single step.
   6275       // Note that it's not sufficient to check NoWrap here, because even
   6276       // though the value after a wrap is undefined, it's not undefined
   6277       // behavior, so if wrap does occur, the loop could either terminate or
   6278       // loop infinitely, but in either case, the loop is guaranteed to
   6279       // iterate at least until the iteration where the wrapping occurs.
   6280       const SCEV *One = getConstant(Step->getType(), 1);
   6281       if (isSigned) {
   6282         APInt Max = APInt::getSignedMaxValue(BitWidth);
   6283         if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
   6284               .slt(getSignedRange(RHS).getSignedMax()))
   6285           return getCouldNotCompute();
   6286       } else {
   6287         APInt Max = APInt::getMaxValue(BitWidth);
   6288         if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
   6289               .ult(getUnsignedRange(RHS).getUnsignedMax()))
   6290           return getCouldNotCompute();
   6291       }
   6292     } else
   6293       // TODO: Handle negative strides here and below.
   6294       return getCouldNotCompute();
   6295 
   6296     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
   6297     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
   6298     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
   6299     // treat m-n as signed nor unsigned due to overflow possibility.
   6300 
   6301     // First, we get the value of the LHS in the first iteration: n
   6302     const SCEV *Start = AddRec->getOperand(0);
   6303 
   6304     // Determine the minimum constant start value.
   6305     const SCEV *MinStart = getConstant(isSigned ?
   6306       getSignedRange(Start).getSignedMin() :
   6307       getUnsignedRange(Start).getUnsignedMin());
   6308 
   6309     // If we know that the condition is true in order to enter the loop,
   6310     // then we know that it will run exactly (m-n)/s times. Otherwise, we
   6311     // only know that it will execute (max(m,n)-n)/s times. In both cases,
   6312     // the division must round up.
   6313     const SCEV *End = RHS;
   6314     if (!isLoopEntryGuardedByCond(L,
   6315                                   isSigned ? ICmpInst::ICMP_SLT :
   6316                                              ICmpInst::ICMP_ULT,
   6317                                   getMinusSCEV(Start, Step), RHS))
   6318       End = isSigned ? getSMaxExpr(RHS, Start)
   6319                      : getUMaxExpr(RHS, Start);
   6320 
   6321     // Determine the maximum constant end value.
   6322     const SCEV *MaxEnd = getConstant(isSigned ?
   6323       getSignedRange(End).getSignedMax() :
   6324       getUnsignedRange(End).getUnsignedMax());
   6325 
   6326     // If MaxEnd is within a step of the maximum integer value in its type,
   6327     // adjust it down to the minimum value which would produce the same effect.
   6328     // This allows the subsequent ceiling division of (N+(step-1))/step to
   6329     // compute the correct value.
   6330     const SCEV *StepMinusOne = getMinusSCEV(Step,
   6331                                             getConstant(Step->getType(), 1));
   6332     MaxEnd = isSigned ?
   6333       getSMinExpr(MaxEnd,
   6334                   getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
   6335                                StepMinusOne)) :
   6336       getUMinExpr(MaxEnd,
   6337                   getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
   6338                                StepMinusOne));
   6339 
   6340     // Finally, we subtract these two values and divide, rounding up, to get
   6341     // the number of times the backedge is executed.
   6342     const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
   6343 
   6344     // The maximum backedge count is similar, except using the minimum start
   6345     // value and the maximum end value.
   6346     // If we already have an exact constant BECount, use it instead.
   6347     const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
   6348       : getBECount(MinStart, MaxEnd, Step, NoWrap);
   6349 
   6350     // If the stride is nonconstant, and NoWrap == true, then
   6351     // getBECount(MinStart, MaxEnd) may not compute. This would result in an
   6352     // exact BECount and invalid MaxBECount, which should be avoided to catch
   6353     // more optimization opportunities.
   6354     if (isa<SCEVCouldNotCompute>(MaxBECount))
   6355       MaxBECount = BECount;
   6356 
   6357     return ExitLimit(BECount, MaxBECount);
   6358   }
   6359 
   6360   return getCouldNotCompute();
   6361 }
   6362 
   6363 /// getNumIterationsInRange - Return the number of iterations of this loop that
   6364 /// produce values in the specified constant range.  Another way of looking at
   6365 /// this is that it returns the first iteration number where the value is not in
   6366 /// the condition, thus computing the exit count. If the iteration count can't
   6367 /// be computed, an instance of SCEVCouldNotCompute is returned.
   6368 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   6369                                                     ScalarEvolution &SE) const {
   6370   if (Range.isFullSet())  // Infinite loop.
   6371     return SE.getCouldNotCompute();
   6372 
   6373   // If the start is a non-zero constant, shift the range to simplify things.
   6374   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   6375     if (!SC->getValue()->isZero()) {
   6376       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   6377       Operands[0] = SE.getConstant(SC->getType(), 0);
   6378       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   6379                                              getNoWrapFlags(FlagNW));
   6380       if (const SCEVAddRecExpr *ShiftedAddRec =
   6381             dyn_cast<SCEVAddRecExpr>(Shifted))
   6382         return ShiftedAddRec->getNumIterationsInRange(
   6383                            Range.subtract(SC->getValue()->getValue()), SE);
   6384       // This is strange and shouldn't happen.
   6385       return SE.getCouldNotCompute();
   6386     }
   6387 
   6388   // The only time we can solve this is when we have all constant indices.
   6389   // Otherwise, we cannot determine the overflow conditions.
   6390   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   6391     if (!isa<SCEVConstant>(getOperand(i)))
   6392       return SE.getCouldNotCompute();
   6393 
   6394 
   6395   // Okay at this point we know that all elements of the chrec are constants and
   6396   // that the start element is zero.
   6397 
   6398   // First check to see if the range contains zero.  If not, the first
   6399   // iteration exits.
   6400   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   6401   if (!Range.contains(APInt(BitWidth, 0)))
   6402     return SE.getConstant(getType(), 0);
   6403 
   6404   if (isAffine()) {
   6405     // If this is an affine expression then we have this situation:
   6406     //   Solve {0,+,A} in Range  ===  Ax in Range
   6407 
   6408     // We know that zero is in the range.  If A is positive then we know that
   6409     // the upper value of the range must be the first possible exit value.
   6410     // If A is negative then the lower of the range is the last possible loop
   6411     // value.  Also note that we already checked for a full range.
   6412     APInt One(BitWidth,1);
   6413     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
   6414     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   6415 
   6416     // The exit value should be (End+A)/A.
   6417     APInt ExitVal = (End + A).udiv(A);
   6418     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   6419 
   6420     // Evaluate at the exit value.  If we really did fall out of the valid
   6421     // range, then we computed our trip count, otherwise wrap around or other
   6422     // things must have happened.
   6423     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   6424     if (Range.contains(Val->getValue()))
   6425       return SE.getCouldNotCompute();  // Something strange happened
   6426 
   6427     // Ensure that the previous value is in the range.  This is a sanity check.
   6428     assert(Range.contains(
   6429            EvaluateConstantChrecAtConstant(this,
   6430            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   6431            "Linear scev computation is off in a bad way!");
   6432     return SE.getConstant(ExitValue);
   6433   } else if (isQuadratic()) {
   6434     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   6435     // quadratic equation to solve it.  To do this, we must frame our problem in
   6436     // terms of figuring out when zero is crossed, instead of when
   6437     // Range.getUpper() is crossed.
   6438     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   6439     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   6440     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   6441                                              // getNoWrapFlags(FlagNW)
   6442                                              FlagAnyWrap);
   6443 
   6444     // Next, solve the constructed addrec
   6445     std::pair<const SCEV *,const SCEV *> Roots =
   6446       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   6447     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6448     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6449     if (R1) {
   6450       // Pick the smallest positive root value.
   6451       if (ConstantInt *CB =
   6452           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
   6453                          R1->getValue(), R2->getValue()))) {
   6454         if (CB->getZExtValue() == false)
   6455           std::swap(R1, R2);   // R1 is the minimum root now.
   6456 
   6457         // Make sure the root is not off by one.  The returned iteration should
   6458         // not be in the range, but the previous one should be.  When solving
   6459         // for "X*X < 5", for example, we should not return a root of 2.
   6460         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   6461                                                              R1->getValue(),
   6462                                                              SE);
   6463         if (Range.contains(R1Val->getValue())) {
   6464           // The next iteration must be out of the range...
   6465           ConstantInt *NextVal =
   6466                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
   6467 
   6468           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6469           if (!Range.contains(R1Val->getValue()))
   6470             return SE.getConstant(NextVal);
   6471           return SE.getCouldNotCompute();  // Something strange happened
   6472         }
   6473 
   6474         // If R1 was not in the range, then it is a good return value.  Make
   6475         // sure that R1-1 WAS in the range though, just in case.
   6476         ConstantInt *NextVal =
   6477                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
   6478         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6479         if (Range.contains(R1Val->getValue()))
   6480           return R1;
   6481         return SE.getCouldNotCompute();  // Something strange happened
   6482       }
   6483     }
   6484   }
   6485 
   6486   return SE.getCouldNotCompute();
   6487 }
   6488 
   6489 
   6490 
   6491 //===----------------------------------------------------------------------===//
   6492 //                   SCEVCallbackVH Class Implementation
   6493 //===----------------------------------------------------------------------===//
   6494 
   6495 void ScalarEvolution::SCEVCallbackVH::deleted() {
   6496   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6497   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   6498     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6499   SE->ValueExprMap.erase(getValPtr());
   6500   // this now dangles!
   6501 }
   6502 
   6503 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   6504   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6505 
   6506   // Forget all the expressions associated with users of the old value,
   6507   // so that future queries will recompute the expressions using the new
   6508   // value.
   6509   Value *Old = getValPtr();
   6510   SmallVector<User *, 16> Worklist;
   6511   SmallPtrSet<User *, 8> Visited;
   6512   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
   6513        UI != UE; ++UI)
   6514     Worklist.push_back(*UI);
   6515   while (!Worklist.empty()) {
   6516     User *U = Worklist.pop_back_val();
   6517     // Deleting the Old value will cause this to dangle. Postpone
   6518     // that until everything else is done.
   6519     if (U == Old)
   6520       continue;
   6521     if (!Visited.insert(U))
   6522       continue;
   6523     if (PHINode *PN = dyn_cast<PHINode>(U))
   6524       SE->ConstantEvolutionLoopExitValue.erase(PN);
   6525     SE->ValueExprMap.erase(U);
   6526     for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
   6527          UI != UE; ++UI)
   6528       Worklist.push_back(*UI);
   6529   }
   6530   // Delete the Old value.
   6531   if (PHINode *PN = dyn_cast<PHINode>(Old))
   6532     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6533   SE->ValueExprMap.erase(Old);
   6534   // this now dangles!
   6535 }
   6536 
   6537 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   6538   : CallbackVH(V), SE(se) {}
   6539 
   6540 //===----------------------------------------------------------------------===//
   6541 //                   ScalarEvolution Class Implementation
   6542 //===----------------------------------------------------------------------===//
   6543 
   6544 ScalarEvolution::ScalarEvolution()
   6545   : FunctionPass(ID), FirstUnknown(0) {
   6546   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
   6547 }
   6548 
   6549 bool ScalarEvolution::runOnFunction(Function &F) {
   6550   this->F = &F;
   6551   LI = &getAnalysis<LoopInfo>();
   6552   TD = getAnalysisIfAvailable<TargetData>();
   6553   TLI = &getAnalysis<TargetLibraryInfo>();
   6554   DT = &getAnalysis<DominatorTree>();
   6555   return false;
   6556 }
   6557 
   6558 void ScalarEvolution::releaseMemory() {
   6559   // Iterate through all the SCEVUnknown instances and call their
   6560   // destructors, so that they release their references to their values.
   6561   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
   6562     U->~SCEVUnknown();
   6563   FirstUnknown = 0;
   6564 
   6565   ValueExprMap.clear();
   6566 
   6567   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   6568   // that a loop had multiple computable exits.
   6569   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   6570          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
   6571        I != E; ++I) {
   6572     I->second.clear();
   6573   }
   6574 
   6575   BackedgeTakenCounts.clear();
   6576   ConstantEvolutionLoopExitValue.clear();
   6577   ValuesAtScopes.clear();
   6578   LoopDispositions.clear();
   6579   BlockDispositions.clear();
   6580   UnsignedRanges.clear();
   6581   SignedRanges.clear();
   6582   UniqueSCEVs.clear();
   6583   SCEVAllocator.Reset();
   6584 }
   6585 
   6586 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
   6587   AU.setPreservesAll();
   6588   AU.addRequiredTransitive<LoopInfo>();
   6589   AU.addRequiredTransitive<DominatorTree>();
   6590   AU.addRequired<TargetLibraryInfo>();
   6591 }
   6592 
   6593 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   6594   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   6595 }
   6596 
   6597 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   6598                           const Loop *L) {
   6599   // Print all inner loops first
   6600   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   6601     PrintLoopInfo(OS, SE, *I);
   6602 
   6603   OS << "Loop ";
   6604   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6605   OS << ": ";
   6606 
   6607   SmallVector<BasicBlock *, 8> ExitBlocks;
   6608   L->getExitBlocks(ExitBlocks);
   6609   if (ExitBlocks.size() != 1)
   6610     OS << "<multiple exits> ";
   6611 
   6612   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   6613     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   6614   } else {
   6615     OS << "Unpredictable backedge-taken count. ";
   6616   }
   6617 
   6618   OS << "\n"
   6619         "Loop ";
   6620   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6621   OS << ": ";
   6622 
   6623   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   6624     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   6625   } else {
   6626     OS << "Unpredictable max backedge-taken count. ";
   6627   }
   6628 
   6629   OS << "\n";
   6630 }
   6631 
   6632 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
   6633   // ScalarEvolution's implementation of the print method is to print
   6634   // out SCEV values of all instructions that are interesting. Doing
   6635   // this potentially causes it to create new SCEV objects though,
   6636   // which technically conflicts with the const qualifier. This isn't
   6637   // observable from outside the class though, so casting away the
   6638   // const isn't dangerous.
   6639   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   6640 
   6641   OS << "Classifying expressions for: ";
   6642   WriteAsOperand(OS, F, /*PrintType=*/false);
   6643   OS << "\n";
   6644   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   6645     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
   6646       OS << *I << '\n';
   6647       OS << "  -->  ";
   6648       const SCEV *SV = SE.getSCEV(&*I);
   6649       SV->print(OS);
   6650 
   6651       const Loop *L = LI->getLoopFor((*I).getParent());
   6652 
   6653       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   6654       if (AtUse != SV) {
   6655         OS << "  -->  ";
   6656         AtUse->print(OS);
   6657       }
   6658 
   6659       if (L) {
   6660         OS << "\t\t" "Exits: ";
   6661         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   6662         if (!SE.isLoopInvariant(ExitValue, L)) {
   6663           OS << "<<Unknown>>";
   6664         } else {
   6665           OS << *ExitValue;
   6666         }
   6667       }
   6668 
   6669       OS << "\n";
   6670     }
   6671 
   6672   OS << "Determining loop execution counts for: ";
   6673   WriteAsOperand(OS, F, /*PrintType=*/false);
   6674   OS << "\n";
   6675   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
   6676     PrintLoopInfo(OS, &SE, *I);
   6677 }
   6678 
   6679 ScalarEvolution::LoopDisposition
   6680 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   6681   std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
   6682   std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
   6683     Values.insert(std::make_pair(L, LoopVariant));
   6684   if (!Pair.second)
   6685     return Pair.first->second;
   6686 
   6687   LoopDisposition D = computeLoopDisposition(S, L);
   6688   return LoopDispositions[S][L] = D;
   6689 }
   6690 
   6691 ScalarEvolution::LoopDisposition
   6692 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   6693   switch (S->getSCEVType()) {
   6694   case scConstant:
   6695     return LoopInvariant;
   6696   case scTruncate:
   6697   case scZeroExtend:
   6698   case scSignExtend:
   6699     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   6700   case scAddRecExpr: {
   6701     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6702 
   6703     // If L is the addrec's loop, it's computable.
   6704     if (AR->getLoop() == L)
   6705       return LoopComputable;
   6706 
   6707     // Add recurrences are never invariant in the function-body (null loop).
   6708     if (!L)
   6709       return LoopVariant;
   6710 
   6711     // This recurrence is variant w.r.t. L if L contains AR's loop.
   6712     if (L->contains(AR->getLoop()))
   6713       return LoopVariant;
   6714 
   6715     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   6716     if (AR->getLoop()->contains(L))
   6717       return LoopInvariant;
   6718 
   6719     // This recurrence is variant w.r.t. L if any of its operands
   6720     // are variant.
   6721     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   6722          I != E; ++I)
   6723       if (!isLoopInvariant(*I, L))
   6724         return LoopVariant;
   6725 
   6726     // Otherwise it's loop-invariant.
   6727     return LoopInvariant;
   6728   }
   6729   case scAddExpr:
   6730   case scMulExpr:
   6731   case scUMaxExpr:
   6732   case scSMaxExpr: {
   6733     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6734     bool HasVarying = false;
   6735     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6736          I != E; ++I) {
   6737       LoopDisposition D = getLoopDisposition(*I, L);
   6738       if (D == LoopVariant)
   6739         return LoopVariant;
   6740       if (D == LoopComputable)
   6741         HasVarying = true;
   6742     }
   6743     return HasVarying ? LoopComputable : LoopInvariant;
   6744   }
   6745   case scUDivExpr: {
   6746     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6747     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   6748     if (LD == LoopVariant)
   6749       return LoopVariant;
   6750     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   6751     if (RD == LoopVariant)
   6752       return LoopVariant;
   6753     return (LD == LoopInvariant && RD == LoopInvariant) ?
   6754            LoopInvariant : LoopComputable;
   6755   }
   6756   case scUnknown:
   6757     // All non-instruction values are loop invariant.  All instructions are loop
   6758     // invariant if they are not contained in the specified loop.
   6759     // Instructions are never considered invariant in the function body
   6760     // (null loop) because they are defined within the "loop".
   6761     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   6762       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   6763     return LoopInvariant;
   6764   case scCouldNotCompute:
   6765     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6766   default: llvm_unreachable("Unknown SCEV kind!");
   6767   }
   6768 }
   6769 
   6770 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   6771   return getLoopDisposition(S, L) == LoopInvariant;
   6772 }
   6773 
   6774 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   6775   return getLoopDisposition(S, L) == LoopComputable;
   6776 }
   6777 
   6778 ScalarEvolution::BlockDisposition
   6779 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6780   std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
   6781   std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
   6782     Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
   6783   if (!Pair.second)
   6784     return Pair.first->second;
   6785 
   6786   BlockDisposition D = computeBlockDisposition(S, BB);
   6787   return BlockDispositions[S][BB] = D;
   6788 }
   6789 
   6790 ScalarEvolution::BlockDisposition
   6791 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6792   switch (S->getSCEVType()) {
   6793   case scConstant:
   6794     return ProperlyDominatesBlock;
   6795   case scTruncate:
   6796   case scZeroExtend:
   6797   case scSignExtend:
   6798     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   6799   case scAddRecExpr: {
   6800     // This uses a "dominates" query instead of "properly dominates" query
   6801     // to test for proper dominance too, because the instruction which
   6802     // produces the addrec's value is a PHI, and a PHI effectively properly
   6803     // dominates its entire containing block.
   6804     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6805     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
   6806       return DoesNotDominateBlock;
   6807   }
   6808   // FALL THROUGH into SCEVNAryExpr handling.
   6809   case scAddExpr:
   6810   case scMulExpr:
   6811   case scUMaxExpr:
   6812   case scSMaxExpr: {
   6813     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6814     bool Proper = true;
   6815     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6816          I != E; ++I) {
   6817       BlockDisposition D = getBlockDisposition(*I, BB);
   6818       if (D == DoesNotDominateBlock)
   6819         return DoesNotDominateBlock;
   6820       if (D == DominatesBlock)
   6821         Proper = false;
   6822     }
   6823     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   6824   }
   6825   case scUDivExpr: {
   6826     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6827     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6828     BlockDisposition LD = getBlockDisposition(LHS, BB);
   6829     if (LD == DoesNotDominateBlock)
   6830       return DoesNotDominateBlock;
   6831     BlockDisposition RD = getBlockDisposition(RHS, BB);
   6832     if (RD == DoesNotDominateBlock)
   6833       return DoesNotDominateBlock;
   6834     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   6835       ProperlyDominatesBlock : DominatesBlock;
   6836   }
   6837   case scUnknown:
   6838     if (Instruction *I =
   6839           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   6840       if (I->getParent() == BB)
   6841         return DominatesBlock;
   6842       if (DT->properlyDominates(I->getParent(), BB))
   6843         return ProperlyDominatesBlock;
   6844       return DoesNotDominateBlock;
   6845     }
   6846     return ProperlyDominatesBlock;
   6847   case scCouldNotCompute:
   6848     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6849   default:
   6850     llvm_unreachable("Unknown SCEV kind!");
   6851   }
   6852 }
   6853 
   6854 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   6855   return getBlockDisposition(S, BB) >= DominatesBlock;
   6856 }
   6857 
   6858 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   6859   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   6860 }
   6861 
   6862 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   6863   switch (S->getSCEVType()) {
   6864   case scConstant:
   6865     return false;
   6866   case scTruncate:
   6867   case scZeroExtend:
   6868   case scSignExtend: {
   6869     const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
   6870     const SCEV *CastOp = Cast->getOperand();
   6871     return Op == CastOp || hasOperand(CastOp, Op);
   6872   }
   6873   case scAddRecExpr:
   6874   case scAddExpr:
   6875   case scMulExpr:
   6876   case scUMaxExpr:
   6877   case scSMaxExpr: {
   6878     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6879     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6880          I != E; ++I) {
   6881       const SCEV *NAryOp = *I;
   6882       if (NAryOp == Op || hasOperand(NAryOp, Op))
   6883         return true;
   6884     }
   6885     return false;
   6886   }
   6887   case scUDivExpr: {
   6888     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6889     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6890     return LHS == Op || hasOperand(LHS, Op) ||
   6891            RHS == Op || hasOperand(RHS, Op);
   6892   }
   6893   case scUnknown:
   6894     return false;
   6895   case scCouldNotCompute:
   6896     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6897   default:
   6898     llvm_unreachable("Unknown SCEV kind!");
   6899   }
   6900 }
   6901 
   6902 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   6903   ValuesAtScopes.erase(S);
   6904   LoopDispositions.erase(S);
   6905   BlockDispositions.erase(S);
   6906   UnsignedRanges.erase(S);
   6907   SignedRanges.erase(S);
   6908 }
   6909