1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides C++ code generation targeting the Itanium C++ ABI. The class 11 // in this file generates structures that follow the Itanium C++ ABI, which is 12 // documented at: 13 // http://www.codesourcery.com/public/cxx-abi/abi.html 14 // http://www.codesourcery.com/public/cxx-abi/abi-eh.html 15 // 16 // It also supports the closely-related ARM ABI, documented at: 17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "CGCXXABI.h" 22 #include "CGRecordLayout.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenModule.h" 25 #include <clang/AST/Mangle.h> 26 #include <clang/AST/Type.h> 27 #include <llvm/Intrinsics.h> 28 #include <llvm/Target/TargetData.h> 29 #include <llvm/Value.h> 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 namespace { 35 class ItaniumCXXABI : public CodeGen::CGCXXABI { 36 private: 37 llvm::IntegerType *PtrDiffTy; 38 protected: 39 bool IsARM; 40 41 // It's a little silly for us to cache this. 42 llvm::IntegerType *getPtrDiffTy() { 43 if (!PtrDiffTy) { 44 QualType T = getContext().getPointerDiffType(); 45 llvm::Type *Ty = CGM.getTypes().ConvertType(T); 46 PtrDiffTy = cast<llvm::IntegerType>(Ty); 47 } 48 return PtrDiffTy; 49 } 50 51 bool NeedsArrayCookie(const CXXNewExpr *expr); 52 bool NeedsArrayCookie(const CXXDeleteExpr *expr, 53 QualType elementType); 54 55 public: 56 ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) : 57 CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { } 58 59 bool isZeroInitializable(const MemberPointerType *MPT); 60 61 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT); 62 63 llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 64 llvm::Value *&This, 65 llvm::Value *MemFnPtr, 66 const MemberPointerType *MPT); 67 68 llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, 69 llvm::Value *Base, 70 llvm::Value *MemPtr, 71 const MemberPointerType *MPT); 72 73 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 74 const CastExpr *E, 75 llvm::Value *Src); 76 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 77 llvm::Constant *Src); 78 79 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT); 80 81 llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD); 82 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 83 CharUnits offset); 84 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT); 85 llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, 86 CharUnits ThisAdjustment); 87 88 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 89 llvm::Value *L, 90 llvm::Value *R, 91 const MemberPointerType *MPT, 92 bool Inequality); 93 94 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 95 llvm::Value *Addr, 96 const MemberPointerType *MPT); 97 98 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 99 CXXCtorType T, 100 CanQualType &ResTy, 101 SmallVectorImpl<CanQualType> &ArgTys); 102 103 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 104 CXXDtorType T, 105 CanQualType &ResTy, 106 SmallVectorImpl<CanQualType> &ArgTys); 107 108 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 109 QualType &ResTy, 110 FunctionArgList &Params); 111 112 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 113 114 CharUnits GetArrayCookieSize(const CXXNewExpr *expr); 115 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 116 llvm::Value *NewPtr, 117 llvm::Value *NumElements, 118 const CXXNewExpr *expr, 119 QualType ElementType); 120 void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr, 121 const CXXDeleteExpr *expr, 122 QualType ElementType, llvm::Value *&NumElements, 123 llvm::Value *&AllocPtr, CharUnits &CookieSize); 124 125 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 126 llvm::GlobalVariable *DeclPtr, bool PerformInit); 127 }; 128 129 class ARMCXXABI : public ItaniumCXXABI { 130 public: 131 ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {} 132 133 void BuildConstructorSignature(const CXXConstructorDecl *Ctor, 134 CXXCtorType T, 135 CanQualType &ResTy, 136 SmallVectorImpl<CanQualType> &ArgTys); 137 138 void BuildDestructorSignature(const CXXDestructorDecl *Dtor, 139 CXXDtorType T, 140 CanQualType &ResTy, 141 SmallVectorImpl<CanQualType> &ArgTys); 142 143 void BuildInstanceFunctionParams(CodeGenFunction &CGF, 144 QualType &ResTy, 145 FunctionArgList &Params); 146 147 void EmitInstanceFunctionProlog(CodeGenFunction &CGF); 148 149 void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy); 150 151 CharUnits GetArrayCookieSize(const CXXNewExpr *expr); 152 llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF, 153 llvm::Value *NewPtr, 154 llvm::Value *NumElements, 155 const CXXNewExpr *expr, 156 QualType ElementType); 157 void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr, 158 const CXXDeleteExpr *expr, 159 QualType ElementType, llvm::Value *&NumElements, 160 llvm::Value *&AllocPtr, CharUnits &CookieSize); 161 162 private: 163 /// \brief Returns true if the given instance method is one of the 164 /// kinds that the ARM ABI says returns 'this'. 165 static bool HasThisReturn(GlobalDecl GD) { 166 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 167 return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) || 168 (isa<CXXConstructorDecl>(MD))); 169 } 170 }; 171 } 172 173 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { 174 return new ItaniumCXXABI(CGM); 175 } 176 177 CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) { 178 return new ARMCXXABI(CGM); 179 } 180 181 llvm::Type * 182 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 183 if (MPT->isMemberDataPointer()) 184 return getPtrDiffTy(); 185 return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL); 186 } 187 188 /// In the Itanium and ARM ABIs, method pointers have the form: 189 /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; 190 /// 191 /// In the Itanium ABI: 192 /// - method pointers are virtual if (memptr.ptr & 1) is nonzero 193 /// - the this-adjustment is (memptr.adj) 194 /// - the virtual offset is (memptr.ptr - 1) 195 /// 196 /// In the ARM ABI: 197 /// - method pointers are virtual if (memptr.adj & 1) is nonzero 198 /// - the this-adjustment is (memptr.adj >> 1) 199 /// - the virtual offset is (memptr.ptr) 200 /// ARM uses 'adj' for the virtual flag because Thumb functions 201 /// may be only single-byte aligned. 202 /// 203 /// If the member is virtual, the adjusted 'this' pointer points 204 /// to a vtable pointer from which the virtual offset is applied. 205 /// 206 /// If the member is non-virtual, memptr.ptr is the address of 207 /// the function to call. 208 llvm::Value * 209 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, 210 llvm::Value *&This, 211 llvm::Value *MemFnPtr, 212 const MemberPointerType *MPT) { 213 CGBuilderTy &Builder = CGF.Builder; 214 215 const FunctionProtoType *FPT = 216 MPT->getPointeeType()->getAs<FunctionProtoType>(); 217 const CXXRecordDecl *RD = 218 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 219 220 llvm::FunctionType *FTy = 221 CGM.getTypes().GetFunctionType( 222 CGM.getTypes().arrangeCXXMethodType(RD, FPT)); 223 224 llvm::IntegerType *ptrdiff = getPtrDiffTy(); 225 llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1); 226 227 llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); 228 llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); 229 llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); 230 231 // Extract memptr.adj, which is in the second field. 232 llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); 233 234 // Compute the true adjustment. 235 llvm::Value *Adj = RawAdj; 236 if (IsARM) 237 Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); 238 239 // Apply the adjustment and cast back to the original struct type 240 // for consistency. 241 llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); 242 Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); 243 This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); 244 245 // Load the function pointer. 246 llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); 247 248 // If the LSB in the function pointer is 1, the function pointer points to 249 // a virtual function. 250 llvm::Value *IsVirtual; 251 if (IsARM) 252 IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); 253 else 254 IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); 255 IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); 256 Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); 257 258 // In the virtual path, the adjustment left 'This' pointing to the 259 // vtable of the correct base subobject. The "function pointer" is an 260 // offset within the vtable (+1 for the virtual flag on non-ARM). 261 CGF.EmitBlock(FnVirtual); 262 263 // Cast the adjusted this to a pointer to vtable pointer and load. 264 llvm::Type *VTableTy = Builder.getInt8PtrTy(); 265 llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo()); 266 VTable = Builder.CreateLoad(VTable, "memptr.vtable"); 267 268 // Apply the offset. 269 llvm::Value *VTableOffset = FnAsInt; 270 if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); 271 VTable = Builder.CreateGEP(VTable, VTableOffset); 272 273 // Load the virtual function to call. 274 VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo()); 275 llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn"); 276 CGF.EmitBranch(FnEnd); 277 278 // In the non-virtual path, the function pointer is actually a 279 // function pointer. 280 CGF.EmitBlock(FnNonVirtual); 281 llvm::Value *NonVirtualFn = 282 Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); 283 284 // We're done. 285 CGF.EmitBlock(FnEnd); 286 llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2); 287 Callee->addIncoming(VirtualFn, FnVirtual); 288 Callee->addIncoming(NonVirtualFn, FnNonVirtual); 289 return Callee; 290 } 291 292 /// Compute an l-value by applying the given pointer-to-member to a 293 /// base object. 294 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF, 295 llvm::Value *Base, 296 llvm::Value *MemPtr, 297 const MemberPointerType *MPT) { 298 assert(MemPtr->getType() == getPtrDiffTy()); 299 300 CGBuilderTy &Builder = CGF.Builder; 301 302 unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace(); 303 304 // Cast to char*. 305 Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS)); 306 307 // Apply the offset, which we assume is non-null. 308 llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset"); 309 310 // Cast the address to the appropriate pointer type, adopting the 311 // address space of the base pointer. 312 llvm::Type *PType 313 = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 314 return Builder.CreateBitCast(Addr, PType); 315 } 316 317 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer 318 /// conversion. 319 /// 320 /// Bitcast conversions are always a no-op under Itanium. 321 /// 322 /// Obligatory offset/adjustment diagram: 323 /// <-- offset --> <-- adjustment --> 324 /// |--------------------------|----------------------|--------------------| 325 /// ^Derived address point ^Base address point ^Member address point 326 /// 327 /// So when converting a base member pointer to a derived member pointer, 328 /// we add the offset to the adjustment because the address point has 329 /// decreased; and conversely, when converting a derived MP to a base MP 330 /// we subtract the offset from the adjustment because the address point 331 /// has increased. 332 /// 333 /// The standard forbids (at compile time) conversion to and from 334 /// virtual bases, which is why we don't have to consider them here. 335 /// 336 /// The standard forbids (at run time) casting a derived MP to a base 337 /// MP when the derived MP does not point to a member of the base. 338 /// This is why -1 is a reasonable choice for null data member 339 /// pointers. 340 llvm::Value * 341 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 342 const CastExpr *E, 343 llvm::Value *src) { 344 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 345 E->getCastKind() == CK_BaseToDerivedMemberPointer || 346 E->getCastKind() == CK_ReinterpretMemberPointer); 347 348 // Under Itanium, reinterprets don't require any additional processing. 349 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 350 351 // Use constant emission if we can. 352 if (isa<llvm::Constant>(src)) 353 return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); 354 355 llvm::Constant *adj = getMemberPointerAdjustment(E); 356 if (!adj) return src; 357 358 CGBuilderTy &Builder = CGF.Builder; 359 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 360 361 const MemberPointerType *destTy = 362 E->getType()->castAs<MemberPointerType>(); 363 364 // For member data pointers, this is just a matter of adding the 365 // offset if the source is non-null. 366 if (destTy->isMemberDataPointer()) { 367 llvm::Value *dst; 368 if (isDerivedToBase) 369 dst = Builder.CreateNSWSub(src, adj, "adj"); 370 else 371 dst = Builder.CreateNSWAdd(src, adj, "adj"); 372 373 // Null check. 374 llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); 375 llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); 376 return Builder.CreateSelect(isNull, src, dst); 377 } 378 379 // The this-adjustment is left-shifted by 1 on ARM. 380 if (IsARM) { 381 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 382 offset <<= 1; 383 adj = llvm::ConstantInt::get(adj->getType(), offset); 384 } 385 386 llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); 387 llvm::Value *dstAdj; 388 if (isDerivedToBase) 389 dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); 390 else 391 dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); 392 393 return Builder.CreateInsertValue(src, dstAdj, 1); 394 } 395 396 llvm::Constant * 397 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, 398 llvm::Constant *src) { 399 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 400 E->getCastKind() == CK_BaseToDerivedMemberPointer || 401 E->getCastKind() == CK_ReinterpretMemberPointer); 402 403 // Under Itanium, reinterprets don't require any additional processing. 404 if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; 405 406 // If the adjustment is trivial, we don't need to do anything. 407 llvm::Constant *adj = getMemberPointerAdjustment(E); 408 if (!adj) return src; 409 410 bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); 411 412 const MemberPointerType *destTy = 413 E->getType()->castAs<MemberPointerType>(); 414 415 // For member data pointers, this is just a matter of adding the 416 // offset if the source is non-null. 417 if (destTy->isMemberDataPointer()) { 418 // null maps to null. 419 if (src->isAllOnesValue()) return src; 420 421 if (isDerivedToBase) 422 return llvm::ConstantExpr::getNSWSub(src, adj); 423 else 424 return llvm::ConstantExpr::getNSWAdd(src, adj); 425 } 426 427 // The this-adjustment is left-shifted by 1 on ARM. 428 if (IsARM) { 429 uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); 430 offset <<= 1; 431 adj = llvm::ConstantInt::get(adj->getType(), offset); 432 } 433 434 llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); 435 llvm::Constant *dstAdj; 436 if (isDerivedToBase) 437 dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); 438 else 439 dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); 440 441 return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); 442 } 443 444 llvm::Constant * 445 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 446 llvm::Type *ptrdiff_t = getPtrDiffTy(); 447 448 // Itanium C++ ABI 2.3: 449 // A NULL pointer is represented as -1. 450 if (MPT->isMemberDataPointer()) 451 return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true); 452 453 llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0); 454 llvm::Constant *Values[2] = { Zero, Zero }; 455 return llvm::ConstantStruct::getAnon(Values); 456 } 457 458 llvm::Constant * 459 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 460 CharUnits offset) { 461 // Itanium C++ ABI 2.3: 462 // A pointer to data member is an offset from the base address of 463 // the class object containing it, represented as a ptrdiff_t 464 return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity()); 465 } 466 467 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) { 468 return BuildMemberPointer(MD, CharUnits::Zero()); 469 } 470 471 llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, 472 CharUnits ThisAdjustment) { 473 assert(MD->isInstance() && "Member function must not be static!"); 474 MD = MD->getCanonicalDecl(); 475 476 CodeGenTypes &Types = CGM.getTypes(); 477 llvm::Type *ptrdiff_t = getPtrDiffTy(); 478 479 // Get the function pointer (or index if this is a virtual function). 480 llvm::Constant *MemPtr[2]; 481 if (MD->isVirtual()) { 482 uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD); 483 484 const ASTContext &Context = getContext(); 485 CharUnits PointerWidth = 486 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 487 uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); 488 489 if (IsARM) { 490 // ARM C++ ABI 3.2.1: 491 // This ABI specifies that adj contains twice the this 492 // adjustment, plus 1 if the member function is virtual. The 493 // least significant bit of adj then makes exactly the same 494 // discrimination as the least significant bit of ptr does for 495 // Itanium. 496 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset); 497 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 498 2 * ThisAdjustment.getQuantity() + 1); 499 } else { 500 // Itanium C++ ABI 2.3: 501 // For a virtual function, [the pointer field] is 1 plus the 502 // virtual table offset (in bytes) of the function, 503 // represented as a ptrdiff_t. 504 MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1); 505 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 506 ThisAdjustment.getQuantity()); 507 } 508 } else { 509 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 510 llvm::Type *Ty; 511 // Check whether the function has a computable LLVM signature. 512 if (Types.isFuncTypeConvertible(FPT)) { 513 // The function has a computable LLVM signature; use the correct type. 514 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 515 } else { 516 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 517 // function type is incomplete. 518 Ty = ptrdiff_t; 519 } 520 llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); 521 522 MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t); 523 MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) * 524 ThisAdjustment.getQuantity()); 525 } 526 527 return llvm::ConstantStruct::getAnon(MemPtr); 528 } 529 530 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, 531 QualType MPType) { 532 const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); 533 const ValueDecl *MPD = MP.getMemberPointerDecl(); 534 if (!MPD) 535 return EmitNullMemberPointer(MPT); 536 537 // Compute the this-adjustment. 538 CharUnits ThisAdjustment = CharUnits::Zero(); 539 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); 540 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 541 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); 542 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 543 const CXXRecordDecl *Base = RD; 544 const CXXRecordDecl *Derived = Path[I]; 545 if (DerivedMember) 546 std::swap(Base, Derived); 547 ThisAdjustment += 548 getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base); 549 RD = Path[I]; 550 } 551 if (DerivedMember) 552 ThisAdjustment = -ThisAdjustment; 553 554 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) 555 return BuildMemberPointer(MD, ThisAdjustment); 556 557 CharUnits FieldOffset = 558 getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); 559 return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); 560 } 561 562 /// The comparison algorithm is pretty easy: the member pointers are 563 /// the same if they're either bitwise identical *or* both null. 564 /// 565 /// ARM is different here only because null-ness is more complicated. 566 llvm::Value * 567 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 568 llvm::Value *L, 569 llvm::Value *R, 570 const MemberPointerType *MPT, 571 bool Inequality) { 572 CGBuilderTy &Builder = CGF.Builder; 573 574 llvm::ICmpInst::Predicate Eq; 575 llvm::Instruction::BinaryOps And, Or; 576 if (Inequality) { 577 Eq = llvm::ICmpInst::ICMP_NE; 578 And = llvm::Instruction::Or; 579 Or = llvm::Instruction::And; 580 } else { 581 Eq = llvm::ICmpInst::ICMP_EQ; 582 And = llvm::Instruction::And; 583 Or = llvm::Instruction::Or; 584 } 585 586 // Member data pointers are easy because there's a unique null 587 // value, so it just comes down to bitwise equality. 588 if (MPT->isMemberDataPointer()) 589 return Builder.CreateICmp(Eq, L, R); 590 591 // For member function pointers, the tautologies are more complex. 592 // The Itanium tautology is: 593 // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) 594 // The ARM tautology is: 595 // (L == R) <==> (L.ptr == R.ptr && 596 // (L.adj == R.adj || 597 // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) 598 // The inequality tautologies have exactly the same structure, except 599 // applying De Morgan's laws. 600 601 llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); 602 llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); 603 604 // This condition tests whether L.ptr == R.ptr. This must always be 605 // true for equality to hold. 606 llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); 607 608 // This condition, together with the assumption that L.ptr == R.ptr, 609 // tests whether the pointers are both null. ARM imposes an extra 610 // condition. 611 llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); 612 llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); 613 614 // This condition tests whether L.adj == R.adj. If this isn't 615 // true, the pointers are unequal unless they're both null. 616 llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); 617 llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); 618 llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); 619 620 // Null member function pointers on ARM clear the low bit of Adj, 621 // so the zero condition has to check that neither low bit is set. 622 if (IsARM) { 623 llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); 624 625 // Compute (l.adj | r.adj) & 1 and test it against zero. 626 llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); 627 llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); 628 llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, 629 "cmp.or.adj"); 630 EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); 631 } 632 633 // Tie together all our conditions. 634 llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); 635 Result = Builder.CreateBinOp(And, PtrEq, Result, 636 Inequality ? "memptr.ne" : "memptr.eq"); 637 return Result; 638 } 639 640 llvm::Value * 641 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 642 llvm::Value *MemPtr, 643 const MemberPointerType *MPT) { 644 CGBuilderTy &Builder = CGF.Builder; 645 646 /// For member data pointers, this is just a check against -1. 647 if (MPT->isMemberDataPointer()) { 648 assert(MemPtr->getType() == getPtrDiffTy()); 649 llvm::Value *NegativeOne = 650 llvm::Constant::getAllOnesValue(MemPtr->getType()); 651 return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); 652 } 653 654 // In Itanium, a member function pointer is not null if 'ptr' is not null. 655 llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); 656 657 llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); 658 llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); 659 660 // On ARM, a member function pointer is also non-null if the low bit of 'adj' 661 // (the virtual bit) is set. 662 if (IsARM) { 663 llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); 664 llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); 665 llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); 666 llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, 667 "memptr.isvirtual"); 668 Result = Builder.CreateOr(Result, IsVirtual); 669 } 670 671 return Result; 672 } 673 674 /// The Itanium ABI requires non-zero initialization only for data 675 /// member pointers, for which '0' is a valid offset. 676 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 677 return MPT->getPointeeType()->isFunctionType(); 678 } 679 680 /// The generic ABI passes 'this', plus a VTT if it's initializing a 681 /// base subobject. 682 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 683 CXXCtorType Type, 684 CanQualType &ResTy, 685 SmallVectorImpl<CanQualType> &ArgTys) { 686 ASTContext &Context = getContext(); 687 688 // 'this' is already there. 689 690 // Check if we need to add a VTT parameter (which has type void **). 691 if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0) 692 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 693 } 694 695 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'. 696 void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor, 697 CXXCtorType Type, 698 CanQualType &ResTy, 699 SmallVectorImpl<CanQualType> &ArgTys) { 700 ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys); 701 ResTy = ArgTys[0]; 702 } 703 704 /// The generic ABI passes 'this', plus a VTT if it's destroying a 705 /// base subobject. 706 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 707 CXXDtorType Type, 708 CanQualType &ResTy, 709 SmallVectorImpl<CanQualType> &ArgTys) { 710 ASTContext &Context = getContext(); 711 712 // 'this' is already there. 713 714 // Check if we need to add a VTT parameter (which has type void **). 715 if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0) 716 ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy)); 717 } 718 719 /// The ARM ABI does the same as the Itanium ABI, but returns 'this' 720 /// for non-deleting destructors. 721 void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor, 722 CXXDtorType Type, 723 CanQualType &ResTy, 724 SmallVectorImpl<CanQualType> &ArgTys) { 725 ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys); 726 727 if (Type != Dtor_Deleting) 728 ResTy = ArgTys[0]; 729 } 730 731 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 732 QualType &ResTy, 733 FunctionArgList &Params) { 734 /// Create the 'this' variable. 735 BuildThisParam(CGF, Params); 736 737 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 738 assert(MD->isInstance()); 739 740 // Check if we need a VTT parameter as well. 741 if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) { 742 ASTContext &Context = getContext(); 743 744 // FIXME: avoid the fake decl 745 QualType T = Context.getPointerType(Context.VoidPtrTy); 746 ImplicitParamDecl *VTTDecl 747 = ImplicitParamDecl::Create(Context, 0, MD->getLocation(), 748 &Context.Idents.get("vtt"), T); 749 Params.push_back(VTTDecl); 750 getVTTDecl(CGF) = VTTDecl; 751 } 752 } 753 754 void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF, 755 QualType &ResTy, 756 FunctionArgList &Params) { 757 ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params); 758 759 // Return 'this' from certain constructors and destructors. 760 if (HasThisReturn(CGF.CurGD)) 761 ResTy = Params[0]->getType(); 762 } 763 764 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 765 /// Initialize the 'this' slot. 766 EmitThisParam(CGF); 767 768 /// Initialize the 'vtt' slot if needed. 769 if (getVTTDecl(CGF)) { 770 getVTTValue(CGF) 771 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)), 772 "vtt"); 773 } 774 } 775 776 void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 777 ItaniumCXXABI::EmitInstanceFunctionProlog(CGF); 778 779 /// Initialize the return slot to 'this' at the start of the 780 /// function. 781 if (HasThisReturn(CGF.CurGD)) 782 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 783 } 784 785 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, 786 RValue RV, QualType ResultType) { 787 if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) 788 return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); 789 790 // Destructor thunks in the ARM ABI have indeterminate results. 791 llvm::Type *T = 792 cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType(); 793 RValue Undef = RValue::get(llvm::UndefValue::get(T)); 794 return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); 795 } 796 797 /************************** Array allocation cookies **************************/ 798 799 bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) { 800 // If the class's usual deallocation function takes two arguments, 801 // it needs a cookie. 802 if (expr->doesUsualArrayDeleteWantSize()) 803 return true; 804 805 // Automatic Reference Counting: 806 // We need an array cookie for pointers with strong or weak lifetime. 807 QualType AllocatedType = expr->getAllocatedType(); 808 if (getContext().getLangOpts().ObjCAutoRefCount && 809 AllocatedType->isObjCLifetimeType()) { 810 switch (AllocatedType.getObjCLifetime()) { 811 case Qualifiers::OCL_None: 812 case Qualifiers::OCL_ExplicitNone: 813 case Qualifiers::OCL_Autoreleasing: 814 return false; 815 816 case Qualifiers::OCL_Strong: 817 case Qualifiers::OCL_Weak: 818 return true; 819 } 820 } 821 822 // Otherwise, if the class has a non-trivial destructor, it always 823 // needs a cookie. 824 const CXXRecordDecl *record = 825 AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 826 return (record && !record->hasTrivialDestructor()); 827 } 828 829 bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr, 830 QualType elementType) { 831 // If the class's usual deallocation function takes two arguments, 832 // it needs a cookie. 833 if (expr->doesUsualArrayDeleteWantSize()) 834 return true; 835 836 return elementType.isDestructedType(); 837 } 838 839 CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) { 840 if (!NeedsArrayCookie(expr)) 841 return CharUnits::Zero(); 842 843 // Padding is the maximum of sizeof(size_t) and alignof(elementType) 844 ASTContext &Ctx = getContext(); 845 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 846 Ctx.getTypeAlignInChars(expr->getAllocatedType())); 847 } 848 849 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 850 llvm::Value *NewPtr, 851 llvm::Value *NumElements, 852 const CXXNewExpr *expr, 853 QualType ElementType) { 854 assert(NeedsArrayCookie(expr)); 855 856 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 857 858 ASTContext &Ctx = getContext(); 859 QualType SizeTy = Ctx.getSizeType(); 860 CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy); 861 862 // The size of the cookie. 863 CharUnits CookieSize = 864 std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); 865 866 // Compute an offset to the cookie. 867 llvm::Value *CookiePtr = NewPtr; 868 CharUnits CookieOffset = CookieSize - SizeSize; 869 if (!CookieOffset.isZero()) 870 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr, 871 CookieOffset.getQuantity()); 872 873 // Write the number of elements into the appropriate slot. 874 llvm::Value *NumElementsPtr 875 = CGF.Builder.CreateBitCast(CookiePtr, 876 CGF.ConvertType(SizeTy)->getPointerTo(AS)); 877 CGF.Builder.CreateStore(NumElements, NumElementsPtr); 878 879 // Finally, compute a pointer to the actual data buffer by skipping 880 // over the cookie completely. 881 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 882 CookieSize.getQuantity()); 883 } 884 885 void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF, 886 llvm::Value *Ptr, 887 const CXXDeleteExpr *expr, 888 QualType ElementType, 889 llvm::Value *&NumElements, 890 llvm::Value *&AllocPtr, 891 CharUnits &CookieSize) { 892 // Derive a char* in the same address space as the pointer. 893 unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 894 llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS); 895 896 // If we don't need an array cookie, bail out early. 897 if (!NeedsArrayCookie(expr, ElementType)) { 898 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 899 NumElements = 0; 900 CookieSize = CharUnits::Zero(); 901 return; 902 } 903 904 QualType SizeTy = getContext().getSizeType(); 905 CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy); 906 llvm::Type *SizeLTy = CGF.ConvertType(SizeTy); 907 908 CookieSize 909 = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType)); 910 911 CharUnits NumElementsOffset = CookieSize - SizeSize; 912 913 // Compute the allocated pointer. 914 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 915 AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 916 -CookieSize.getQuantity()); 917 918 llvm::Value *NumElementsPtr = AllocPtr; 919 if (!NumElementsOffset.isZero()) 920 NumElementsPtr = 921 CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr, 922 NumElementsOffset.getQuantity()); 923 NumElementsPtr = 924 CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS)); 925 NumElements = CGF.Builder.CreateLoad(NumElementsPtr); 926 } 927 928 CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) { 929 if (!NeedsArrayCookie(expr)) 930 return CharUnits::Zero(); 931 932 // On ARM, the cookie is always: 933 // struct array_cookie { 934 // std::size_t element_size; // element_size != 0 935 // std::size_t element_count; 936 // }; 937 // TODO: what should we do if the allocated type actually wants 938 // greater alignment? 939 return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2; 940 } 941 942 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 943 llvm::Value *NewPtr, 944 llvm::Value *NumElements, 945 const CXXNewExpr *expr, 946 QualType ElementType) { 947 assert(NeedsArrayCookie(expr)); 948 949 // NewPtr is a char*. 950 951 unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace(); 952 953 ASTContext &Ctx = getContext(); 954 CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType()); 955 llvm::IntegerType *SizeTy = 956 cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType())); 957 958 // The cookie is always at the start of the buffer. 959 llvm::Value *CookiePtr = NewPtr; 960 961 // The first element is the element size. 962 CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS)); 963 llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy, 964 Ctx.getTypeSizeInChars(ElementType).getQuantity()); 965 CGF.Builder.CreateStore(ElementSize, CookiePtr); 966 967 // The second element is the element count. 968 CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1); 969 CGF.Builder.CreateStore(NumElements, CookiePtr); 970 971 // Finally, compute a pointer to the actual data buffer by skipping 972 // over the cookie completely. 973 CharUnits CookieSize = 2 * SizeSize; 974 return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr, 975 CookieSize.getQuantity()); 976 } 977 978 void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF, 979 llvm::Value *Ptr, 980 const CXXDeleteExpr *expr, 981 QualType ElementType, 982 llvm::Value *&NumElements, 983 llvm::Value *&AllocPtr, 984 CharUnits &CookieSize) { 985 // Derive a char* in the same address space as the pointer. 986 unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 987 llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS); 988 989 // If we don't need an array cookie, bail out early. 990 if (!NeedsArrayCookie(expr, ElementType)) { 991 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 992 NumElements = 0; 993 CookieSize = CharUnits::Zero(); 994 return; 995 } 996 997 QualType SizeTy = getContext().getSizeType(); 998 CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy); 999 llvm::Type *SizeLTy = CGF.ConvertType(SizeTy); 1000 1001 // The cookie size is always 2 * sizeof(size_t). 1002 CookieSize = 2 * SizeSize; 1003 1004 // The allocated pointer is the input ptr, minus that amount. 1005 AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy); 1006 AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 1007 -CookieSize.getQuantity()); 1008 1009 // The number of elements is at offset sizeof(size_t) relative to that. 1010 llvm::Value *NumElementsPtr 1011 = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr, 1012 SizeSize.getQuantity()); 1013 NumElementsPtr = 1014 CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS)); 1015 NumElements = CGF.Builder.CreateLoad(NumElementsPtr); 1016 } 1017 1018 /*********************** Static local initialization **************************/ 1019 1020 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM, 1021 llvm::PointerType *GuardPtrTy) { 1022 // int __cxa_guard_acquire(__guard *guard_object); 1023 llvm::FunctionType *FTy = 1024 llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), 1025 GuardPtrTy, /*isVarArg=*/false); 1026 1027 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire", 1028 llvm::Attribute::NoUnwind); 1029 } 1030 1031 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM, 1032 llvm::PointerType *GuardPtrTy) { 1033 // void __cxa_guard_release(__guard *guard_object); 1034 llvm::FunctionType *FTy = 1035 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 1036 1037 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release", 1038 llvm::Attribute::NoUnwind); 1039 } 1040 1041 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM, 1042 llvm::PointerType *GuardPtrTy) { 1043 // void __cxa_guard_abort(__guard *guard_object); 1044 llvm::FunctionType *FTy = 1045 llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); 1046 1047 return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort", 1048 llvm::Attribute::NoUnwind); 1049 } 1050 1051 namespace { 1052 struct CallGuardAbort : EHScopeStack::Cleanup { 1053 llvm::GlobalVariable *Guard; 1054 CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} 1055 1056 void Emit(CodeGenFunction &CGF, Flags flags) { 1057 CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard) 1058 ->setDoesNotThrow(); 1059 } 1060 }; 1061 } 1062 1063 /// The ARM code here follows the Itanium code closely enough that we 1064 /// just special-case it at particular places. 1065 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, 1066 const VarDecl &D, 1067 llvm::GlobalVariable *var, 1068 bool shouldPerformInit) { 1069 CGBuilderTy &Builder = CGF.Builder; 1070 1071 // We only need to use thread-safe statics for local variables; 1072 // global initialization is always single-threaded. 1073 bool threadsafe = 1074 (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl()); 1075 1076 // If we have a global variable with internal linkage and thread-safe statics 1077 // are disabled, we can just let the guard variable be of type i8. 1078 bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); 1079 1080 llvm::IntegerType *guardTy; 1081 if (useInt8GuardVariable) { 1082 guardTy = CGF.Int8Ty; 1083 } else { 1084 // Guard variables are 64 bits in the generic ABI and 32 bits on ARM. 1085 guardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty); 1086 } 1087 llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); 1088 1089 // Create the guard variable if we don't already have it (as we 1090 // might if we're double-emitting this function body). 1091 llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); 1092 if (!guard) { 1093 // Mangle the name for the guard. 1094 SmallString<256> guardName; 1095 { 1096 llvm::raw_svector_ostream out(guardName); 1097 getMangleContext().mangleItaniumGuardVariable(&D, out); 1098 out.flush(); 1099 } 1100 1101 // Create the guard variable with a zero-initializer. 1102 // Just absorb linkage and visibility from the guarded variable. 1103 guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, 1104 false, var->getLinkage(), 1105 llvm::ConstantInt::get(guardTy, 0), 1106 guardName.str()); 1107 guard->setVisibility(var->getVisibility()); 1108 1109 CGM.setStaticLocalDeclGuardAddress(&D, guard); 1110 } 1111 1112 // Test whether the variable has completed initialization. 1113 llvm::Value *isInitialized; 1114 1115 // ARM C++ ABI 3.2.3.1: 1116 // To support the potential use of initialization guard variables 1117 // as semaphores that are the target of ARM SWP and LDREX/STREX 1118 // synchronizing instructions we define a static initialization 1119 // guard variable to be a 4-byte aligned, 4- byte word with the 1120 // following inline access protocol. 1121 // #define INITIALIZED 1 1122 // if ((obj_guard & INITIALIZED) != INITIALIZED) { 1123 // if (__cxa_guard_acquire(&obj_guard)) 1124 // ... 1125 // } 1126 if (IsARM && !useInt8GuardVariable) { 1127 llvm::Value *V = Builder.CreateLoad(guard); 1128 V = Builder.CreateAnd(V, Builder.getInt32(1)); 1129 isInitialized = Builder.CreateIsNull(V, "guard.uninitialized"); 1130 1131 // Itanium C++ ABI 3.3.2: 1132 // The following is pseudo-code showing how these functions can be used: 1133 // if (obj_guard.first_byte == 0) { 1134 // if ( __cxa_guard_acquire (&obj_guard) ) { 1135 // try { 1136 // ... initialize the object ...; 1137 // } catch (...) { 1138 // __cxa_guard_abort (&obj_guard); 1139 // throw; 1140 // } 1141 // ... queue object destructor with __cxa_atexit() ...; 1142 // __cxa_guard_release (&obj_guard); 1143 // } 1144 // } 1145 } else { 1146 // Load the first byte of the guard variable. 1147 llvm::LoadInst *LI = 1148 Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy)); 1149 LI->setAlignment(1); 1150 1151 // Itanium ABI: 1152 // An implementation supporting thread-safety on multiprocessor 1153 // systems must also guarantee that references to the initialized 1154 // object do not occur before the load of the initialization flag. 1155 // 1156 // In LLVM, we do this by marking the load Acquire. 1157 if (threadsafe) 1158 LI->setAtomic(llvm::Acquire); 1159 1160 isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized"); 1161 } 1162 1163 llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); 1164 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 1165 1166 // Check if the first byte of the guard variable is zero. 1167 Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock); 1168 1169 CGF.EmitBlock(InitCheckBlock); 1170 1171 // Variables used when coping with thread-safe statics and exceptions. 1172 if (threadsafe) { 1173 // Call __cxa_guard_acquire. 1174 llvm::Value *V 1175 = Builder.CreateCall(getGuardAcquireFn(CGM, guardPtrTy), guard); 1176 1177 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 1178 1179 Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), 1180 InitBlock, EndBlock); 1181 1182 // Call __cxa_guard_abort along the exceptional edge. 1183 CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); 1184 1185 CGF.EmitBlock(InitBlock); 1186 } 1187 1188 // Emit the initializer and add a global destructor if appropriate. 1189 CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); 1190 1191 if (threadsafe) { 1192 // Pop the guard-abort cleanup if we pushed one. 1193 CGF.PopCleanupBlock(); 1194 1195 // Call __cxa_guard_release. This cannot throw. 1196 Builder.CreateCall(getGuardReleaseFn(CGM, guardPtrTy), guard); 1197 } else { 1198 Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard); 1199 } 1200 1201 CGF.EmitBlock(EndBlock); 1202 } 1203