Home | History | Annotate | Download | only in CodeGen
      1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ code generation targeting the Itanium C++ ABI.  The class
     11 // in this file generates structures that follow the Itanium C++ ABI, which is
     12 // documented at:
     13 //  http://www.codesourcery.com/public/cxx-abi/abi.html
     14 //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
     15 //
     16 // It also supports the closely-related ARM ABI, documented at:
     17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "CGCXXABI.h"
     22 #include "CGRecordLayout.h"
     23 #include "CodeGenFunction.h"
     24 #include "CodeGenModule.h"
     25 #include <clang/AST/Mangle.h>
     26 #include <clang/AST/Type.h>
     27 #include <llvm/Intrinsics.h>
     28 #include <llvm/Target/TargetData.h>
     29 #include <llvm/Value.h>
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 namespace {
     35 class ItaniumCXXABI : public CodeGen::CGCXXABI {
     36 private:
     37   llvm::IntegerType *PtrDiffTy;
     38 protected:
     39   bool IsARM;
     40 
     41   // It's a little silly for us to cache this.
     42   llvm::IntegerType *getPtrDiffTy() {
     43     if (!PtrDiffTy) {
     44       QualType T = getContext().getPointerDiffType();
     45       llvm::Type *Ty = CGM.getTypes().ConvertType(T);
     46       PtrDiffTy = cast<llvm::IntegerType>(Ty);
     47     }
     48     return PtrDiffTy;
     49   }
     50 
     51   bool NeedsArrayCookie(const CXXNewExpr *expr);
     52   bool NeedsArrayCookie(const CXXDeleteExpr *expr,
     53                         QualType elementType);
     54 
     55 public:
     56   ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
     57     CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
     58 
     59   bool isZeroInitializable(const MemberPointerType *MPT);
     60 
     61   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
     62 
     63   llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
     64                                                llvm::Value *&This,
     65                                                llvm::Value *MemFnPtr,
     66                                                const MemberPointerType *MPT);
     67 
     68   llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
     69                                             llvm::Value *Base,
     70                                             llvm::Value *MemPtr,
     71                                             const MemberPointerType *MPT);
     72 
     73   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
     74                                            const CastExpr *E,
     75                                            llvm::Value *Src);
     76   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
     77                                               llvm::Constant *Src);
     78 
     79   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
     80 
     81   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
     82   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
     83                                         CharUnits offset);
     84   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
     85   llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
     86                                      CharUnits ThisAdjustment);
     87 
     88   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
     89                                            llvm::Value *L,
     90                                            llvm::Value *R,
     91                                            const MemberPointerType *MPT,
     92                                            bool Inequality);
     93 
     94   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
     95                                           llvm::Value *Addr,
     96                                           const MemberPointerType *MPT);
     97 
     98   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
     99                                  CXXCtorType T,
    100                                  CanQualType &ResTy,
    101                                  SmallVectorImpl<CanQualType> &ArgTys);
    102 
    103   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    104                                 CXXDtorType T,
    105                                 CanQualType &ResTy,
    106                                 SmallVectorImpl<CanQualType> &ArgTys);
    107 
    108   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
    109                                    QualType &ResTy,
    110                                    FunctionArgList &Params);
    111 
    112   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
    113 
    114   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
    115   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    116                                      llvm::Value *NewPtr,
    117                                      llvm::Value *NumElements,
    118                                      const CXXNewExpr *expr,
    119                                      QualType ElementType);
    120   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
    121                        const CXXDeleteExpr *expr,
    122                        QualType ElementType, llvm::Value *&NumElements,
    123                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
    124 
    125   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
    126                        llvm::GlobalVariable *DeclPtr, bool PerformInit);
    127 };
    128 
    129 class ARMCXXABI : public ItaniumCXXABI {
    130 public:
    131   ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
    132 
    133   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    134                                  CXXCtorType T,
    135                                  CanQualType &ResTy,
    136                                  SmallVectorImpl<CanQualType> &ArgTys);
    137 
    138   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    139                                 CXXDtorType T,
    140                                 CanQualType &ResTy,
    141                                 SmallVectorImpl<CanQualType> &ArgTys);
    142 
    143   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
    144                                    QualType &ResTy,
    145                                    FunctionArgList &Params);
    146 
    147   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
    148 
    149   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
    150 
    151   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
    152   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    153                                      llvm::Value *NewPtr,
    154                                      llvm::Value *NumElements,
    155                                      const CXXNewExpr *expr,
    156                                      QualType ElementType);
    157   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
    158                        const CXXDeleteExpr *expr,
    159                        QualType ElementType, llvm::Value *&NumElements,
    160                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
    161 
    162 private:
    163   /// \brief Returns true if the given instance method is one of the
    164   /// kinds that the ARM ABI says returns 'this'.
    165   static bool HasThisReturn(GlobalDecl GD) {
    166     const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    167     return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
    168             (isa<CXXConstructorDecl>(MD)));
    169   }
    170 };
    171 }
    172 
    173 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
    174   return new ItaniumCXXABI(CGM);
    175 }
    176 
    177 CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
    178   return new ARMCXXABI(CGM);
    179 }
    180 
    181 llvm::Type *
    182 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
    183   if (MPT->isMemberDataPointer())
    184     return getPtrDiffTy();
    185   return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
    186 }
    187 
    188 /// In the Itanium and ARM ABIs, method pointers have the form:
    189 ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
    190 ///
    191 /// In the Itanium ABI:
    192 ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
    193 ///  - the this-adjustment is (memptr.adj)
    194 ///  - the virtual offset is (memptr.ptr - 1)
    195 ///
    196 /// In the ARM ABI:
    197 ///  - method pointers are virtual if (memptr.adj & 1) is nonzero
    198 ///  - the this-adjustment is (memptr.adj >> 1)
    199 ///  - the virtual offset is (memptr.ptr)
    200 /// ARM uses 'adj' for the virtual flag because Thumb functions
    201 /// may be only single-byte aligned.
    202 ///
    203 /// If the member is virtual, the adjusted 'this' pointer points
    204 /// to a vtable pointer from which the virtual offset is applied.
    205 ///
    206 /// If the member is non-virtual, memptr.ptr is the address of
    207 /// the function to call.
    208 llvm::Value *
    209 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
    210                                                llvm::Value *&This,
    211                                                llvm::Value *MemFnPtr,
    212                                                const MemberPointerType *MPT) {
    213   CGBuilderTy &Builder = CGF.Builder;
    214 
    215   const FunctionProtoType *FPT =
    216     MPT->getPointeeType()->getAs<FunctionProtoType>();
    217   const CXXRecordDecl *RD =
    218     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    219 
    220   llvm::FunctionType *FTy =
    221     CGM.getTypes().GetFunctionType(
    222       CGM.getTypes().arrangeCXXMethodType(RD, FPT));
    223 
    224   llvm::IntegerType *ptrdiff = getPtrDiffTy();
    225   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
    226 
    227   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
    228   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
    229   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
    230 
    231   // Extract memptr.adj, which is in the second field.
    232   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
    233 
    234   // Compute the true adjustment.
    235   llvm::Value *Adj = RawAdj;
    236   if (IsARM)
    237     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
    238 
    239   // Apply the adjustment and cast back to the original struct type
    240   // for consistency.
    241   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
    242   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
    243   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
    244 
    245   // Load the function pointer.
    246   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
    247 
    248   // If the LSB in the function pointer is 1, the function pointer points to
    249   // a virtual function.
    250   llvm::Value *IsVirtual;
    251   if (IsARM)
    252     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
    253   else
    254     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
    255   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
    256   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
    257 
    258   // In the virtual path, the adjustment left 'This' pointing to the
    259   // vtable of the correct base subobject.  The "function pointer" is an
    260   // offset within the vtable (+1 for the virtual flag on non-ARM).
    261   CGF.EmitBlock(FnVirtual);
    262 
    263   // Cast the adjusted this to a pointer to vtable pointer and load.
    264   llvm::Type *VTableTy = Builder.getInt8PtrTy();
    265   llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
    266   VTable = Builder.CreateLoad(VTable, "memptr.vtable");
    267 
    268   // Apply the offset.
    269   llvm::Value *VTableOffset = FnAsInt;
    270   if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
    271   VTable = Builder.CreateGEP(VTable, VTableOffset);
    272 
    273   // Load the virtual function to call.
    274   VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
    275   llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
    276   CGF.EmitBranch(FnEnd);
    277 
    278   // In the non-virtual path, the function pointer is actually a
    279   // function pointer.
    280   CGF.EmitBlock(FnNonVirtual);
    281   llvm::Value *NonVirtualFn =
    282     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
    283 
    284   // We're done.
    285   CGF.EmitBlock(FnEnd);
    286   llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
    287   Callee->addIncoming(VirtualFn, FnVirtual);
    288   Callee->addIncoming(NonVirtualFn, FnNonVirtual);
    289   return Callee;
    290 }
    291 
    292 /// Compute an l-value by applying the given pointer-to-member to a
    293 /// base object.
    294 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
    295                                                          llvm::Value *Base,
    296                                                          llvm::Value *MemPtr,
    297                                            const MemberPointerType *MPT) {
    298   assert(MemPtr->getType() == getPtrDiffTy());
    299 
    300   CGBuilderTy &Builder = CGF.Builder;
    301 
    302   unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
    303 
    304   // Cast to char*.
    305   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
    306 
    307   // Apply the offset, which we assume is non-null.
    308   llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
    309 
    310   // Cast the address to the appropriate pointer type, adopting the
    311   // address space of the base pointer.
    312   llvm::Type *PType
    313     = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
    314   return Builder.CreateBitCast(Addr, PType);
    315 }
    316 
    317 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
    318 /// conversion.
    319 ///
    320 /// Bitcast conversions are always a no-op under Itanium.
    321 ///
    322 /// Obligatory offset/adjustment diagram:
    323 ///         <-- offset -->          <-- adjustment -->
    324 ///   |--------------------------|----------------------|--------------------|
    325 ///   ^Derived address point     ^Base address point    ^Member address point
    326 ///
    327 /// So when converting a base member pointer to a derived member pointer,
    328 /// we add the offset to the adjustment because the address point has
    329 /// decreased;  and conversely, when converting a derived MP to a base MP
    330 /// we subtract the offset from the adjustment because the address point
    331 /// has increased.
    332 ///
    333 /// The standard forbids (at compile time) conversion to and from
    334 /// virtual bases, which is why we don't have to consider them here.
    335 ///
    336 /// The standard forbids (at run time) casting a derived MP to a base
    337 /// MP when the derived MP does not point to a member of the base.
    338 /// This is why -1 is a reasonable choice for null data member
    339 /// pointers.
    340 llvm::Value *
    341 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
    342                                            const CastExpr *E,
    343                                            llvm::Value *src) {
    344   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
    345          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
    346          E->getCastKind() == CK_ReinterpretMemberPointer);
    347 
    348   // Under Itanium, reinterprets don't require any additional processing.
    349   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
    350 
    351   // Use constant emission if we can.
    352   if (isa<llvm::Constant>(src))
    353     return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
    354 
    355   llvm::Constant *adj = getMemberPointerAdjustment(E);
    356   if (!adj) return src;
    357 
    358   CGBuilderTy &Builder = CGF.Builder;
    359   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
    360 
    361   const MemberPointerType *destTy =
    362     E->getType()->castAs<MemberPointerType>();
    363 
    364   // For member data pointers, this is just a matter of adding the
    365   // offset if the source is non-null.
    366   if (destTy->isMemberDataPointer()) {
    367     llvm::Value *dst;
    368     if (isDerivedToBase)
    369       dst = Builder.CreateNSWSub(src, adj, "adj");
    370     else
    371       dst = Builder.CreateNSWAdd(src, adj, "adj");
    372 
    373     // Null check.
    374     llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
    375     llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
    376     return Builder.CreateSelect(isNull, src, dst);
    377   }
    378 
    379   // The this-adjustment is left-shifted by 1 on ARM.
    380   if (IsARM) {
    381     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
    382     offset <<= 1;
    383     adj = llvm::ConstantInt::get(adj->getType(), offset);
    384   }
    385 
    386   llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
    387   llvm::Value *dstAdj;
    388   if (isDerivedToBase)
    389     dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
    390   else
    391     dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
    392 
    393   return Builder.CreateInsertValue(src, dstAdj, 1);
    394 }
    395 
    396 llvm::Constant *
    397 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
    398                                            llvm::Constant *src) {
    399   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
    400          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
    401          E->getCastKind() == CK_ReinterpretMemberPointer);
    402 
    403   // Under Itanium, reinterprets don't require any additional processing.
    404   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
    405 
    406   // If the adjustment is trivial, we don't need to do anything.
    407   llvm::Constant *adj = getMemberPointerAdjustment(E);
    408   if (!adj) return src;
    409 
    410   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
    411 
    412   const MemberPointerType *destTy =
    413     E->getType()->castAs<MemberPointerType>();
    414 
    415   // For member data pointers, this is just a matter of adding the
    416   // offset if the source is non-null.
    417   if (destTy->isMemberDataPointer()) {
    418     // null maps to null.
    419     if (src->isAllOnesValue()) return src;
    420 
    421     if (isDerivedToBase)
    422       return llvm::ConstantExpr::getNSWSub(src, adj);
    423     else
    424       return llvm::ConstantExpr::getNSWAdd(src, adj);
    425   }
    426 
    427   // The this-adjustment is left-shifted by 1 on ARM.
    428   if (IsARM) {
    429     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
    430     offset <<= 1;
    431     adj = llvm::ConstantInt::get(adj->getType(), offset);
    432   }
    433 
    434   llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
    435   llvm::Constant *dstAdj;
    436   if (isDerivedToBase)
    437     dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
    438   else
    439     dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
    440 
    441   return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
    442 }
    443 
    444 llvm::Constant *
    445 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
    446   llvm::Type *ptrdiff_t = getPtrDiffTy();
    447 
    448   // Itanium C++ ABI 2.3:
    449   //   A NULL pointer is represented as -1.
    450   if (MPT->isMemberDataPointer())
    451     return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
    452 
    453   llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
    454   llvm::Constant *Values[2] = { Zero, Zero };
    455   return llvm::ConstantStruct::getAnon(Values);
    456 }
    457 
    458 llvm::Constant *
    459 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
    460                                      CharUnits offset) {
    461   // Itanium C++ ABI 2.3:
    462   //   A pointer to data member is an offset from the base address of
    463   //   the class object containing it, represented as a ptrdiff_t
    464   return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
    465 }
    466 
    467 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
    468   return BuildMemberPointer(MD, CharUnits::Zero());
    469 }
    470 
    471 llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
    472                                                   CharUnits ThisAdjustment) {
    473   assert(MD->isInstance() && "Member function must not be static!");
    474   MD = MD->getCanonicalDecl();
    475 
    476   CodeGenTypes &Types = CGM.getTypes();
    477   llvm::Type *ptrdiff_t = getPtrDiffTy();
    478 
    479   // Get the function pointer (or index if this is a virtual function).
    480   llvm::Constant *MemPtr[2];
    481   if (MD->isVirtual()) {
    482     uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
    483 
    484     const ASTContext &Context = getContext();
    485     CharUnits PointerWidth =
    486       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    487     uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
    488 
    489     if (IsARM) {
    490       // ARM C++ ABI 3.2.1:
    491       //   This ABI specifies that adj contains twice the this
    492       //   adjustment, plus 1 if the member function is virtual. The
    493       //   least significant bit of adj then makes exactly the same
    494       //   discrimination as the least significant bit of ptr does for
    495       //   Itanium.
    496       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
    497       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
    498                                          2 * ThisAdjustment.getQuantity() + 1);
    499     } else {
    500       // Itanium C++ ABI 2.3:
    501       //   For a virtual function, [the pointer field] is 1 plus the
    502       //   virtual table offset (in bytes) of the function,
    503       //   represented as a ptrdiff_t.
    504       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
    505       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
    506                                          ThisAdjustment.getQuantity());
    507     }
    508   } else {
    509     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
    510     llvm::Type *Ty;
    511     // Check whether the function has a computable LLVM signature.
    512     if (Types.isFuncTypeConvertible(FPT)) {
    513       // The function has a computable LLVM signature; use the correct type.
    514       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
    515     } else {
    516       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
    517       // function type is incomplete.
    518       Ty = ptrdiff_t;
    519     }
    520     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
    521 
    522     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
    523     MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) *
    524                                        ThisAdjustment.getQuantity());
    525   }
    526 
    527   return llvm::ConstantStruct::getAnon(MemPtr);
    528 }
    529 
    530 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
    531                                                  QualType MPType) {
    532   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
    533   const ValueDecl *MPD = MP.getMemberPointerDecl();
    534   if (!MPD)
    535     return EmitNullMemberPointer(MPT);
    536 
    537   // Compute the this-adjustment.
    538   CharUnits ThisAdjustment = CharUnits::Zero();
    539   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
    540   bool DerivedMember = MP.isMemberPointerToDerivedMember();
    541   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
    542   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
    543     const CXXRecordDecl *Base = RD;
    544     const CXXRecordDecl *Derived = Path[I];
    545     if (DerivedMember)
    546       std::swap(Base, Derived);
    547     ThisAdjustment +=
    548       getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
    549     RD = Path[I];
    550   }
    551   if (DerivedMember)
    552     ThisAdjustment = -ThisAdjustment;
    553 
    554   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
    555     return BuildMemberPointer(MD, ThisAdjustment);
    556 
    557   CharUnits FieldOffset =
    558     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
    559   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
    560 }
    561 
    562 /// The comparison algorithm is pretty easy: the member pointers are
    563 /// the same if they're either bitwise identical *or* both null.
    564 ///
    565 /// ARM is different here only because null-ness is more complicated.
    566 llvm::Value *
    567 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
    568                                            llvm::Value *L,
    569                                            llvm::Value *R,
    570                                            const MemberPointerType *MPT,
    571                                            bool Inequality) {
    572   CGBuilderTy &Builder = CGF.Builder;
    573 
    574   llvm::ICmpInst::Predicate Eq;
    575   llvm::Instruction::BinaryOps And, Or;
    576   if (Inequality) {
    577     Eq = llvm::ICmpInst::ICMP_NE;
    578     And = llvm::Instruction::Or;
    579     Or = llvm::Instruction::And;
    580   } else {
    581     Eq = llvm::ICmpInst::ICMP_EQ;
    582     And = llvm::Instruction::And;
    583     Or = llvm::Instruction::Or;
    584   }
    585 
    586   // Member data pointers are easy because there's a unique null
    587   // value, so it just comes down to bitwise equality.
    588   if (MPT->isMemberDataPointer())
    589     return Builder.CreateICmp(Eq, L, R);
    590 
    591   // For member function pointers, the tautologies are more complex.
    592   // The Itanium tautology is:
    593   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
    594   // The ARM tautology is:
    595   //   (L == R) <==> (L.ptr == R.ptr &&
    596   //                  (L.adj == R.adj ||
    597   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
    598   // The inequality tautologies have exactly the same structure, except
    599   // applying De Morgan's laws.
    600 
    601   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
    602   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
    603 
    604   // This condition tests whether L.ptr == R.ptr.  This must always be
    605   // true for equality to hold.
    606   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
    607 
    608   // This condition, together with the assumption that L.ptr == R.ptr,
    609   // tests whether the pointers are both null.  ARM imposes an extra
    610   // condition.
    611   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
    612   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
    613 
    614   // This condition tests whether L.adj == R.adj.  If this isn't
    615   // true, the pointers are unequal unless they're both null.
    616   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
    617   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
    618   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
    619 
    620   // Null member function pointers on ARM clear the low bit of Adj,
    621   // so the zero condition has to check that neither low bit is set.
    622   if (IsARM) {
    623     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
    624 
    625     // Compute (l.adj | r.adj) & 1 and test it against zero.
    626     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
    627     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
    628     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
    629                                                       "cmp.or.adj");
    630     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
    631   }
    632 
    633   // Tie together all our conditions.
    634   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
    635   Result = Builder.CreateBinOp(And, PtrEq, Result,
    636                                Inequality ? "memptr.ne" : "memptr.eq");
    637   return Result;
    638 }
    639 
    640 llvm::Value *
    641 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
    642                                           llvm::Value *MemPtr,
    643                                           const MemberPointerType *MPT) {
    644   CGBuilderTy &Builder = CGF.Builder;
    645 
    646   /// For member data pointers, this is just a check against -1.
    647   if (MPT->isMemberDataPointer()) {
    648     assert(MemPtr->getType() == getPtrDiffTy());
    649     llvm::Value *NegativeOne =
    650       llvm::Constant::getAllOnesValue(MemPtr->getType());
    651     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
    652   }
    653 
    654   // In Itanium, a member function pointer is not null if 'ptr' is not null.
    655   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
    656 
    657   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
    658   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
    659 
    660   // On ARM, a member function pointer is also non-null if the low bit of 'adj'
    661   // (the virtual bit) is set.
    662   if (IsARM) {
    663     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
    664     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
    665     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
    666     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
    667                                                   "memptr.isvirtual");
    668     Result = Builder.CreateOr(Result, IsVirtual);
    669   }
    670 
    671   return Result;
    672 }
    673 
    674 /// The Itanium ABI requires non-zero initialization only for data
    675 /// member pointers, for which '0' is a valid offset.
    676 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
    677   return MPT->getPointeeType()->isFunctionType();
    678 }
    679 
    680 /// The generic ABI passes 'this', plus a VTT if it's initializing a
    681 /// base subobject.
    682 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    683                                               CXXCtorType Type,
    684                                               CanQualType &ResTy,
    685                                 SmallVectorImpl<CanQualType> &ArgTys) {
    686   ASTContext &Context = getContext();
    687 
    688   // 'this' is already there.
    689 
    690   // Check if we need to add a VTT parameter (which has type void **).
    691   if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
    692     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    693 }
    694 
    695 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
    696 void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    697                                           CXXCtorType Type,
    698                                           CanQualType &ResTy,
    699                                 SmallVectorImpl<CanQualType> &ArgTys) {
    700   ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
    701   ResTy = ArgTys[0];
    702 }
    703 
    704 /// The generic ABI passes 'this', plus a VTT if it's destroying a
    705 /// base subobject.
    706 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    707                                              CXXDtorType Type,
    708                                              CanQualType &ResTy,
    709                                 SmallVectorImpl<CanQualType> &ArgTys) {
    710   ASTContext &Context = getContext();
    711 
    712   // 'this' is already there.
    713 
    714   // Check if we need to add a VTT parameter (which has type void **).
    715   if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
    716     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    717 }
    718 
    719 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'
    720 /// for non-deleting destructors.
    721 void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    722                                          CXXDtorType Type,
    723                                          CanQualType &ResTy,
    724                                 SmallVectorImpl<CanQualType> &ArgTys) {
    725   ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
    726 
    727   if (Type != Dtor_Deleting)
    728     ResTy = ArgTys[0];
    729 }
    730 
    731 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
    732                                                 QualType &ResTy,
    733                                                 FunctionArgList &Params) {
    734   /// Create the 'this' variable.
    735   BuildThisParam(CGF, Params);
    736 
    737   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
    738   assert(MD->isInstance());
    739 
    740   // Check if we need a VTT parameter as well.
    741   if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
    742     ASTContext &Context = getContext();
    743 
    744     // FIXME: avoid the fake decl
    745     QualType T = Context.getPointerType(Context.VoidPtrTy);
    746     ImplicitParamDecl *VTTDecl
    747       = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
    748                                   &Context.Idents.get("vtt"), T);
    749     Params.push_back(VTTDecl);
    750     getVTTDecl(CGF) = VTTDecl;
    751   }
    752 }
    753 
    754 void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
    755                                             QualType &ResTy,
    756                                             FunctionArgList &Params) {
    757   ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
    758 
    759   // Return 'this' from certain constructors and destructors.
    760   if (HasThisReturn(CGF.CurGD))
    761     ResTy = Params[0]->getType();
    762 }
    763 
    764 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
    765   /// Initialize the 'this' slot.
    766   EmitThisParam(CGF);
    767 
    768   /// Initialize the 'vtt' slot if needed.
    769   if (getVTTDecl(CGF)) {
    770     getVTTValue(CGF)
    771       = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
    772                                "vtt");
    773   }
    774 }
    775 
    776 void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
    777   ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
    778 
    779   /// Initialize the return slot to 'this' at the start of the
    780   /// function.
    781   if (HasThisReturn(CGF.CurGD))
    782     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
    783 }
    784 
    785 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
    786                                     RValue RV, QualType ResultType) {
    787   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
    788     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
    789 
    790   // Destructor thunks in the ARM ABI have indeterminate results.
    791   llvm::Type *T =
    792     cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
    793   RValue Undef = RValue::get(llvm::UndefValue::get(T));
    794   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
    795 }
    796 
    797 /************************** Array allocation cookies **************************/
    798 
    799 bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
    800   // If the class's usual deallocation function takes two arguments,
    801   // it needs a cookie.
    802   if (expr->doesUsualArrayDeleteWantSize())
    803     return true;
    804 
    805   // Automatic Reference Counting:
    806   //   We need an array cookie for pointers with strong or weak lifetime.
    807   QualType AllocatedType = expr->getAllocatedType();
    808   if (getContext().getLangOpts().ObjCAutoRefCount &&
    809       AllocatedType->isObjCLifetimeType()) {
    810     switch (AllocatedType.getObjCLifetime()) {
    811     case Qualifiers::OCL_None:
    812     case Qualifiers::OCL_ExplicitNone:
    813     case Qualifiers::OCL_Autoreleasing:
    814       return false;
    815 
    816     case Qualifiers::OCL_Strong:
    817     case Qualifiers::OCL_Weak:
    818       return true;
    819     }
    820   }
    821 
    822   // Otherwise, if the class has a non-trivial destructor, it always
    823   // needs a cookie.
    824   const CXXRecordDecl *record =
    825     AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
    826   return (record && !record->hasTrivialDestructor());
    827 }
    828 
    829 bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
    830                                      QualType elementType) {
    831   // If the class's usual deallocation function takes two arguments,
    832   // it needs a cookie.
    833   if (expr->doesUsualArrayDeleteWantSize())
    834     return true;
    835 
    836   return elementType.isDestructedType();
    837 }
    838 
    839 CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
    840   if (!NeedsArrayCookie(expr))
    841     return CharUnits::Zero();
    842 
    843   // Padding is the maximum of sizeof(size_t) and alignof(elementType)
    844   ASTContext &Ctx = getContext();
    845   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
    846                   Ctx.getTypeAlignInChars(expr->getAllocatedType()));
    847 }
    848 
    849 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
    850                                                   llvm::Value *NewPtr,
    851                                                   llvm::Value *NumElements,
    852                                                   const CXXNewExpr *expr,
    853                                                   QualType ElementType) {
    854   assert(NeedsArrayCookie(expr));
    855 
    856   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
    857 
    858   ASTContext &Ctx = getContext();
    859   QualType SizeTy = Ctx.getSizeType();
    860   CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
    861 
    862   // The size of the cookie.
    863   CharUnits CookieSize =
    864     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
    865 
    866   // Compute an offset to the cookie.
    867   llvm::Value *CookiePtr = NewPtr;
    868   CharUnits CookieOffset = CookieSize - SizeSize;
    869   if (!CookieOffset.isZero())
    870     CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
    871                                                  CookieOffset.getQuantity());
    872 
    873   // Write the number of elements into the appropriate slot.
    874   llvm::Value *NumElementsPtr
    875     = CGF.Builder.CreateBitCast(CookiePtr,
    876                                 CGF.ConvertType(SizeTy)->getPointerTo(AS));
    877   CGF.Builder.CreateStore(NumElements, NumElementsPtr);
    878 
    879   // Finally, compute a pointer to the actual data buffer by skipping
    880   // over the cookie completely.
    881   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
    882                                                 CookieSize.getQuantity());
    883 }
    884 
    885 void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
    886                                     llvm::Value *Ptr,
    887                                     const CXXDeleteExpr *expr,
    888                                     QualType ElementType,
    889                                     llvm::Value *&NumElements,
    890                                     llvm::Value *&AllocPtr,
    891                                     CharUnits &CookieSize) {
    892   // Derive a char* in the same address space as the pointer.
    893   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
    894   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
    895 
    896   // If we don't need an array cookie, bail out early.
    897   if (!NeedsArrayCookie(expr, ElementType)) {
    898     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    899     NumElements = 0;
    900     CookieSize = CharUnits::Zero();
    901     return;
    902   }
    903 
    904   QualType SizeTy = getContext().getSizeType();
    905   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
    906   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
    907 
    908   CookieSize
    909     = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
    910 
    911   CharUnits NumElementsOffset = CookieSize - SizeSize;
    912 
    913   // Compute the allocated pointer.
    914   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    915   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
    916                                                     -CookieSize.getQuantity());
    917 
    918   llvm::Value *NumElementsPtr = AllocPtr;
    919   if (!NumElementsOffset.isZero())
    920     NumElementsPtr =
    921       CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
    922                                              NumElementsOffset.getQuantity());
    923   NumElementsPtr =
    924     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
    925   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
    926 }
    927 
    928 CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
    929   if (!NeedsArrayCookie(expr))
    930     return CharUnits::Zero();
    931 
    932   // On ARM, the cookie is always:
    933   //   struct array_cookie {
    934   //     std::size_t element_size; // element_size != 0
    935   //     std::size_t element_count;
    936   //   };
    937   // TODO: what should we do if the allocated type actually wants
    938   // greater alignment?
    939   return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
    940 }
    941 
    942 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
    943                                               llvm::Value *NewPtr,
    944                                               llvm::Value *NumElements,
    945                                               const CXXNewExpr *expr,
    946                                               QualType ElementType) {
    947   assert(NeedsArrayCookie(expr));
    948 
    949   // NewPtr is a char*.
    950 
    951   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
    952 
    953   ASTContext &Ctx = getContext();
    954   CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
    955   llvm::IntegerType *SizeTy =
    956     cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
    957 
    958   // The cookie is always at the start of the buffer.
    959   llvm::Value *CookiePtr = NewPtr;
    960 
    961   // The first element is the element size.
    962   CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
    963   llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
    964                           Ctx.getTypeSizeInChars(ElementType).getQuantity());
    965   CGF.Builder.CreateStore(ElementSize, CookiePtr);
    966 
    967   // The second element is the element count.
    968   CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
    969   CGF.Builder.CreateStore(NumElements, CookiePtr);
    970 
    971   // Finally, compute a pointer to the actual data buffer by skipping
    972   // over the cookie completely.
    973   CharUnits CookieSize = 2 * SizeSize;
    974   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
    975                                                 CookieSize.getQuantity());
    976 }
    977 
    978 void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
    979                                 llvm::Value *Ptr,
    980                                 const CXXDeleteExpr *expr,
    981                                 QualType ElementType,
    982                                 llvm::Value *&NumElements,
    983                                 llvm::Value *&AllocPtr,
    984                                 CharUnits &CookieSize) {
    985   // Derive a char* in the same address space as the pointer.
    986   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
    987   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
    988 
    989   // If we don't need an array cookie, bail out early.
    990   if (!NeedsArrayCookie(expr, ElementType)) {
    991     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    992     NumElements = 0;
    993     CookieSize = CharUnits::Zero();
    994     return;
    995   }
    996 
    997   QualType SizeTy = getContext().getSizeType();
    998   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
    999   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
   1000 
   1001   // The cookie size is always 2 * sizeof(size_t).
   1002   CookieSize = 2 * SizeSize;
   1003 
   1004   // The allocated pointer is the input ptr, minus that amount.
   1005   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
   1006   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
   1007                                                -CookieSize.getQuantity());
   1008 
   1009   // The number of elements is at offset sizeof(size_t) relative to that.
   1010   llvm::Value *NumElementsPtr
   1011     = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
   1012                                              SizeSize.getQuantity());
   1013   NumElementsPtr =
   1014     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
   1015   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
   1016 }
   1017 
   1018 /*********************** Static local initialization **************************/
   1019 
   1020 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
   1021                                          llvm::PointerType *GuardPtrTy) {
   1022   // int __cxa_guard_acquire(__guard *guard_object);
   1023   llvm::FunctionType *FTy =
   1024     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
   1025                             GuardPtrTy, /*isVarArg=*/false);
   1026 
   1027   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
   1028                                    llvm::Attribute::NoUnwind);
   1029 }
   1030 
   1031 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
   1032                                          llvm::PointerType *GuardPtrTy) {
   1033   // void __cxa_guard_release(__guard *guard_object);
   1034   llvm::FunctionType *FTy =
   1035     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
   1036 
   1037   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
   1038                                    llvm::Attribute::NoUnwind);
   1039 }
   1040 
   1041 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
   1042                                        llvm::PointerType *GuardPtrTy) {
   1043   // void __cxa_guard_abort(__guard *guard_object);
   1044   llvm::FunctionType *FTy =
   1045     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
   1046 
   1047   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
   1048                                    llvm::Attribute::NoUnwind);
   1049 }
   1050 
   1051 namespace {
   1052   struct CallGuardAbort : EHScopeStack::Cleanup {
   1053     llvm::GlobalVariable *Guard;
   1054     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
   1055 
   1056     void Emit(CodeGenFunction &CGF, Flags flags) {
   1057       CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
   1058         ->setDoesNotThrow();
   1059     }
   1060   };
   1061 }
   1062 
   1063 /// The ARM code here follows the Itanium code closely enough that we
   1064 /// just special-case it at particular places.
   1065 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
   1066                                     const VarDecl &D,
   1067                                     llvm::GlobalVariable *var,
   1068                                     bool shouldPerformInit) {
   1069   CGBuilderTy &Builder = CGF.Builder;
   1070 
   1071   // We only need to use thread-safe statics for local variables;
   1072   // global initialization is always single-threaded.
   1073   bool threadsafe =
   1074     (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl());
   1075 
   1076   // If we have a global variable with internal linkage and thread-safe statics
   1077   // are disabled, we can just let the guard variable be of type i8.
   1078   bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
   1079 
   1080   llvm::IntegerType *guardTy;
   1081   if (useInt8GuardVariable) {
   1082     guardTy = CGF.Int8Ty;
   1083   } else {
   1084     // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
   1085     guardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
   1086   }
   1087   llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
   1088 
   1089   // Create the guard variable if we don't already have it (as we
   1090   // might if we're double-emitting this function body).
   1091   llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
   1092   if (!guard) {
   1093     // Mangle the name for the guard.
   1094     SmallString<256> guardName;
   1095     {
   1096       llvm::raw_svector_ostream out(guardName);
   1097       getMangleContext().mangleItaniumGuardVariable(&D, out);
   1098       out.flush();
   1099     }
   1100 
   1101     // Create the guard variable with a zero-initializer.
   1102     // Just absorb linkage and visibility from the guarded variable.
   1103     guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
   1104                                      false, var->getLinkage(),
   1105                                      llvm::ConstantInt::get(guardTy, 0),
   1106                                      guardName.str());
   1107     guard->setVisibility(var->getVisibility());
   1108 
   1109     CGM.setStaticLocalDeclGuardAddress(&D, guard);
   1110   }
   1111 
   1112   // Test whether the variable has completed initialization.
   1113   llvm::Value *isInitialized;
   1114 
   1115   // ARM C++ ABI 3.2.3.1:
   1116   //   To support the potential use of initialization guard variables
   1117   //   as semaphores that are the target of ARM SWP and LDREX/STREX
   1118   //   synchronizing instructions we define a static initialization
   1119   //   guard variable to be a 4-byte aligned, 4- byte word with the
   1120   //   following inline access protocol.
   1121   //     #define INITIALIZED 1
   1122   //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
   1123   //       if (__cxa_guard_acquire(&obj_guard))
   1124   //         ...
   1125   //     }
   1126   if (IsARM && !useInt8GuardVariable) {
   1127     llvm::Value *V = Builder.CreateLoad(guard);
   1128     V = Builder.CreateAnd(V, Builder.getInt32(1));
   1129     isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
   1130 
   1131   // Itanium C++ ABI 3.3.2:
   1132   //   The following is pseudo-code showing how these functions can be used:
   1133   //     if (obj_guard.first_byte == 0) {
   1134   //       if ( __cxa_guard_acquire (&obj_guard) ) {
   1135   //         try {
   1136   //           ... initialize the object ...;
   1137   //         } catch (...) {
   1138   //            __cxa_guard_abort (&obj_guard);
   1139   //            throw;
   1140   //         }
   1141   //         ... queue object destructor with __cxa_atexit() ...;
   1142   //         __cxa_guard_release (&obj_guard);
   1143   //       }
   1144   //     }
   1145   } else {
   1146     // Load the first byte of the guard variable.
   1147     llvm::LoadInst *LI =
   1148       Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
   1149     LI->setAlignment(1);
   1150 
   1151     // Itanium ABI:
   1152     //   An implementation supporting thread-safety on multiprocessor
   1153     //   systems must also guarantee that references to the initialized
   1154     //   object do not occur before the load of the initialization flag.
   1155     //
   1156     // In LLVM, we do this by marking the load Acquire.
   1157     if (threadsafe)
   1158       LI->setAtomic(llvm::Acquire);
   1159 
   1160     isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
   1161   }
   1162 
   1163   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
   1164   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   1165 
   1166   // Check if the first byte of the guard variable is zero.
   1167   Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
   1168 
   1169   CGF.EmitBlock(InitCheckBlock);
   1170 
   1171   // Variables used when coping with thread-safe statics and exceptions.
   1172   if (threadsafe) {
   1173     // Call __cxa_guard_acquire.
   1174     llvm::Value *V
   1175       = Builder.CreateCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
   1176 
   1177     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   1178 
   1179     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
   1180                          InitBlock, EndBlock);
   1181 
   1182     // Call __cxa_guard_abort along the exceptional edge.
   1183     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
   1184 
   1185     CGF.EmitBlock(InitBlock);
   1186   }
   1187 
   1188   // Emit the initializer and add a global destructor if appropriate.
   1189   CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
   1190 
   1191   if (threadsafe) {
   1192     // Pop the guard-abort cleanup if we pushed one.
   1193     CGF.PopCleanupBlock();
   1194 
   1195     // Call __cxa_guard_release.  This cannot throw.
   1196     Builder.CreateCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
   1197   } else {
   1198     Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
   1199   }
   1200 
   1201   CGF.EmitBlock(EndBlock);
   1202 }
   1203