1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SSAUpdater class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "ssaupdater" 15 #include "llvm/Constants.h" 16 #include "llvm/Instructions.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/TinyPtrVector.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Support/AlignOf.h" 22 #include "llvm/Support/Allocator.h" 23 #include "llvm/Support/CFG.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 #include "llvm/Transforms/Utils/SSAUpdater.h" 29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 30 31 using namespace llvm; 32 33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy; 34 static AvailableValsTy &getAvailableVals(void *AV) { 35 return *static_cast<AvailableValsTy*>(AV); 36 } 37 38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) 39 : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {} 40 41 SSAUpdater::~SSAUpdater() { 42 delete &getAvailableVals(AV); 43 } 44 45 /// Initialize - Reset this object to get ready for a new set of SSA 46 /// updates with type 'Ty'. PHI nodes get a name based on 'Name'. 47 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 48 if (AV == 0) 49 AV = new AvailableValsTy(); 50 else 51 getAvailableVals(AV).clear(); 52 ProtoType = Ty; 53 ProtoName = Name; 54 } 55 56 /// HasValueForBlock - Return true if the SSAUpdater already has a value for 57 /// the specified block. 58 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 59 return getAvailableVals(AV).count(BB); 60 } 61 62 /// AddAvailableValue - Indicate that a rewritten value is available in the 63 /// specified block with the specified value. 64 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 65 assert(ProtoType != 0 && "Need to initialize SSAUpdater"); 66 assert(ProtoType == V->getType() && 67 "All rewritten values must have the same type"); 68 getAvailableVals(AV)[BB] = V; 69 } 70 71 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified 72 /// in ValueMapping for each predecessor block. 73 static bool IsEquivalentPHI(PHINode *PHI, 74 DenseMap<BasicBlock*, Value*> &ValueMapping) { 75 unsigned PHINumValues = PHI->getNumIncomingValues(); 76 if (PHINumValues != ValueMapping.size()) 77 return false; 78 79 // Scan the phi to see if it matches. 80 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 81 if (ValueMapping[PHI->getIncomingBlock(i)] != 82 PHI->getIncomingValue(i)) { 83 return false; 84 } 85 86 return true; 87 } 88 89 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is 90 /// live at the end of the specified block. 91 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 92 Value *Res = GetValueAtEndOfBlockInternal(BB); 93 return Res; 94 } 95 96 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that 97 /// is live in the middle of the specified block. 98 /// 99 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one 100 /// important case: if there is a definition of the rewritten value after the 101 /// 'use' in BB. Consider code like this: 102 /// 103 /// X1 = ... 104 /// SomeBB: 105 /// use(X) 106 /// X2 = ... 107 /// br Cond, SomeBB, OutBB 108 /// 109 /// In this case, there are two values (X1 and X2) added to the AvailableVals 110 /// set by the client of the rewriter, and those values are both live out of 111 /// their respective blocks. However, the use of X happens in the *middle* of 112 /// a block. Because of this, we need to insert a new PHI node in SomeBB to 113 /// merge the appropriate values, and this value isn't live out of the block. 114 /// 115 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 116 // If there is no definition of the renamed variable in this block, just use 117 // GetValueAtEndOfBlock to do our work. 118 if (!HasValueForBlock(BB)) 119 return GetValueAtEndOfBlock(BB); 120 121 // Otherwise, we have the hard case. Get the live-in values for each 122 // predecessor. 123 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; 124 Value *SingularValue = 0; 125 126 // We can get our predecessor info by walking the pred_iterator list, but it 127 // is relatively slow. If we already have PHI nodes in this block, walk one 128 // of them to get the predecessor list instead. 129 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 130 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 131 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 132 Value *PredVal = GetValueAtEndOfBlock(PredBB); 133 PredValues.push_back(std::make_pair(PredBB, PredVal)); 134 135 // Compute SingularValue. 136 if (i == 0) 137 SingularValue = PredVal; 138 else if (PredVal != SingularValue) 139 SingularValue = 0; 140 } 141 } else { 142 bool isFirstPred = true; 143 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 144 BasicBlock *PredBB = *PI; 145 Value *PredVal = GetValueAtEndOfBlock(PredBB); 146 PredValues.push_back(std::make_pair(PredBB, PredVal)); 147 148 // Compute SingularValue. 149 if (isFirstPred) { 150 SingularValue = PredVal; 151 isFirstPred = false; 152 } else if (PredVal != SingularValue) 153 SingularValue = 0; 154 } 155 } 156 157 // If there are no predecessors, just return undef. 158 if (PredValues.empty()) 159 return UndefValue::get(ProtoType); 160 161 // Otherwise, if all the merged values are the same, just use it. 162 if (SingularValue != 0) 163 return SingularValue; 164 165 // Otherwise, we do need a PHI: check to see if we already have one available 166 // in this block that produces the right value. 167 if (isa<PHINode>(BB->begin())) { 168 DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(), 169 PredValues.end()); 170 PHINode *SomePHI; 171 for (BasicBlock::iterator It = BB->begin(); 172 (SomePHI = dyn_cast<PHINode>(It)); ++It) { 173 if (IsEquivalentPHI(SomePHI, ValueMapping)) 174 return SomePHI; 175 } 176 } 177 178 // Ok, we have no way out, insert a new one now. 179 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 180 ProtoName, &BB->front()); 181 182 // Fill in all the predecessors of the PHI. 183 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) 184 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); 185 186 // See if the PHI node can be merged to a single value. This can happen in 187 // loop cases when we get a PHI of itself and one other value. 188 if (Value *V = SimplifyInstruction(InsertedPHI)) { 189 InsertedPHI->eraseFromParent(); 190 return V; 191 } 192 193 // Set DebugLoc. 194 InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB)); 195 196 // If the client wants to know about all new instructions, tell it. 197 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 198 199 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 200 return InsertedPHI; 201 } 202 203 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, 204 /// which use their value in the corresponding predecessor. 205 void SSAUpdater::RewriteUse(Use &U) { 206 Instruction *User = cast<Instruction>(U.getUser()); 207 208 Value *V; 209 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 210 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 211 else 212 V = GetValueInMiddleOfBlock(User->getParent()); 213 214 U.set(V); 215 } 216 217 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However, 218 /// this version of the method can rewrite uses in the same block as a 219 /// definition, because it assumes that all uses of a value are below any 220 /// inserted values. 221 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 222 Instruction *User = cast<Instruction>(U.getUser()); 223 224 Value *V; 225 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 226 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 227 else 228 V = GetValueAtEndOfBlock(User->getParent()); 229 230 U.set(V); 231 } 232 233 /// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator 234 /// in the SSAUpdaterImpl template. 235 namespace { 236 class PHIiter { 237 private: 238 PHINode *PHI; 239 unsigned idx; 240 241 public: 242 explicit PHIiter(PHINode *P) // begin iterator 243 : PHI(P), idx(0) {} 244 PHIiter(PHINode *P, bool) // end iterator 245 : PHI(P), idx(PHI->getNumIncomingValues()) {} 246 247 PHIiter &operator++() { ++idx; return *this; } 248 bool operator==(const PHIiter& x) const { return idx == x.idx; } 249 bool operator!=(const PHIiter& x) const { return !operator==(x); } 250 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 251 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 252 }; 253 } 254 255 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template, 256 /// specialized for SSAUpdater. 257 namespace llvm { 258 template<> 259 class SSAUpdaterTraits<SSAUpdater> { 260 public: 261 typedef BasicBlock BlkT; 262 typedef Value *ValT; 263 typedef PHINode PhiT; 264 265 typedef succ_iterator BlkSucc_iterator; 266 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 267 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 268 269 typedef PHIiter PHI_iterator; 270 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 271 static inline PHI_iterator PHI_end(PhiT *PHI) { 272 return PHI_iterator(PHI, true); 273 } 274 275 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 276 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 277 static void FindPredecessorBlocks(BasicBlock *BB, 278 SmallVectorImpl<BasicBlock*> *Preds) { 279 // We can get our predecessor info by walking the pred_iterator list, 280 // but it is relatively slow. If we already have PHI nodes in this 281 // block, walk one of them to get the predecessor list instead. 282 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 283 for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) 284 Preds->push_back(SomePhi->getIncomingBlock(PI)); 285 } else { 286 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 287 Preds->push_back(*PI); 288 } 289 } 290 291 /// GetUndefVal - Get an undefined value of the same type as the value 292 /// being handled. 293 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 294 return UndefValue::get(Updater->ProtoType); 295 } 296 297 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 298 /// Reserve space for the operands but do not fill them in yet. 299 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 300 SSAUpdater *Updater) { 301 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 302 Updater->ProtoName, &BB->front()); 303 return PHI; 304 } 305 306 /// AddPHIOperand - Add the specified value as an operand of the PHI for 307 /// the specified predecessor block. 308 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 309 PHI->addIncoming(Val, Pred); 310 } 311 312 /// InstrIsPHI - Check if an instruction is a PHI. 313 /// 314 static PHINode *InstrIsPHI(Instruction *I) { 315 return dyn_cast<PHINode>(I); 316 } 317 318 /// ValueIsPHI - Check if a value is a PHI. 319 /// 320 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 321 return dyn_cast<PHINode>(Val); 322 } 323 324 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 325 /// operands, i.e., it was just added. 326 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 327 PHINode *PHI = ValueIsPHI(Val, Updater); 328 if (PHI && PHI->getNumIncomingValues() == 0) 329 return PHI; 330 return 0; 331 } 332 333 /// GetPHIValue - For the specified PHI instruction, return the value 334 /// that it defines. 335 static Value *GetPHIValue(PHINode *PHI) { 336 return PHI; 337 } 338 }; 339 340 } // End llvm namespace 341 342 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry 343 /// for the specified BB and if so, return it. If not, construct SSA form by 344 /// first calculating the required placement of PHIs and then inserting new 345 /// PHIs where needed. 346 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 347 AvailableValsTy &AvailableVals = getAvailableVals(AV); 348 if (Value *V = AvailableVals[BB]) 349 return V; 350 351 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 352 return Impl.GetValue(BB); 353 } 354 355 //===----------------------------------------------------------------------===// 356 // LoadAndStorePromoter Implementation 357 //===----------------------------------------------------------------------===// 358 359 LoadAndStorePromoter:: 360 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts, 361 SSAUpdater &S, StringRef BaseName) : SSA(S) { 362 if (Insts.empty()) return; 363 364 Value *SomeVal; 365 if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 366 SomeVal = LI; 367 else 368 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 369 370 if (BaseName.empty()) 371 BaseName = SomeVal->getName(); 372 SSA.Initialize(SomeVal->getType(), BaseName); 373 } 374 375 376 void LoadAndStorePromoter:: 377 run(const SmallVectorImpl<Instruction*> &Insts) const { 378 379 // First step: bucket up uses of the alloca by the block they occur in. 380 // This is important because we have to handle multiple defs/uses in a block 381 // ourselves: SSAUpdater is purely for cross-block references. 382 DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock; 383 384 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 385 Instruction *User = Insts[i]; 386 UsesByBlock[User->getParent()].push_back(User); 387 } 388 389 // Okay, now we can iterate over all the blocks in the function with uses, 390 // processing them. Keep track of which loads are loading a live-in value. 391 // Walk the uses in the use-list order to be determinstic. 392 SmallVector<LoadInst*, 32> LiveInLoads; 393 DenseMap<Value*, Value*> ReplacedLoads; 394 395 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 396 Instruction *User = Insts[i]; 397 BasicBlock *BB = User->getParent(); 398 TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB]; 399 400 // If this block has already been processed, ignore this repeat use. 401 if (BlockUses.empty()) continue; 402 403 // Okay, this is the first use in the block. If this block just has a 404 // single user in it, we can rewrite it trivially. 405 if (BlockUses.size() == 1) { 406 // If it is a store, it is a trivial def of the value in the block. 407 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 408 updateDebugInfo(SI); 409 SSA.AddAvailableValue(BB, SI->getOperand(0)); 410 } else 411 // Otherwise it is a load, queue it to rewrite as a live-in load. 412 LiveInLoads.push_back(cast<LoadInst>(User)); 413 BlockUses.clear(); 414 continue; 415 } 416 417 // Otherwise, check to see if this block is all loads. 418 bool HasStore = false; 419 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { 420 if (isa<StoreInst>(BlockUses[i])) { 421 HasStore = true; 422 break; 423 } 424 } 425 426 // If so, we can queue them all as live in loads. We don't have an 427 // efficient way to tell which on is first in the block and don't want to 428 // scan large blocks, so just add all loads as live ins. 429 if (!HasStore) { 430 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) 431 LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); 432 BlockUses.clear(); 433 continue; 434 } 435 436 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 437 // Since SSAUpdater is purely for cross-block values, we need to determine 438 // the order of these instructions in the block. If the first use in the 439 // block is a load, then it uses the live in value. The last store defines 440 // the live out value. We handle this by doing a linear scan of the block. 441 Value *StoredValue = 0; 442 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 443 if (LoadInst *L = dyn_cast<LoadInst>(II)) { 444 // If this is a load from an unrelated pointer, ignore it. 445 if (!isInstInList(L, Insts)) continue; 446 447 // If we haven't seen a store yet, this is a live in use, otherwise 448 // use the stored value. 449 if (StoredValue) { 450 replaceLoadWithValue(L, StoredValue); 451 L->replaceAllUsesWith(StoredValue); 452 ReplacedLoads[L] = StoredValue; 453 } else { 454 LiveInLoads.push_back(L); 455 } 456 continue; 457 } 458 459 if (StoreInst *SI = dyn_cast<StoreInst>(II)) { 460 // If this is a store to an unrelated pointer, ignore it. 461 if (!isInstInList(SI, Insts)) continue; 462 updateDebugInfo(SI); 463 464 // Remember that this is the active value in the block. 465 StoredValue = SI->getOperand(0); 466 } 467 } 468 469 // The last stored value that happened is the live-out for the block. 470 assert(StoredValue && "Already checked that there is a store in block"); 471 SSA.AddAvailableValue(BB, StoredValue); 472 BlockUses.clear(); 473 } 474 475 // Okay, now we rewrite all loads that use live-in values in the loop, 476 // inserting PHI nodes as necessary. 477 for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { 478 LoadInst *ALoad = LiveInLoads[i]; 479 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 480 replaceLoadWithValue(ALoad, NewVal); 481 482 // Avoid assertions in unreachable code. 483 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 484 ALoad->replaceAllUsesWith(NewVal); 485 ReplacedLoads[ALoad] = NewVal; 486 } 487 488 // Allow the client to do stuff before we start nuking things. 489 doExtraRewritesBeforeFinalDeletion(); 490 491 // Now that everything is rewritten, delete the old instructions from the 492 // function. They should all be dead now. 493 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 494 Instruction *User = Insts[i]; 495 496 // If this is a load that still has uses, then the load must have been added 497 // as a live value in the SSAUpdate data structure for a block (e.g. because 498 // the loaded value was stored later). In this case, we need to recursively 499 // propagate the updates until we get to the real value. 500 if (!User->use_empty()) { 501 Value *NewVal = ReplacedLoads[User]; 502 assert(NewVal && "not a replaced load?"); 503 504 // Propagate down to the ultimate replacee. The intermediately loads 505 // could theoretically already have been deleted, so we don't want to 506 // dereference the Value*'s. 507 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 508 while (RLI != ReplacedLoads.end()) { 509 NewVal = RLI->second; 510 RLI = ReplacedLoads.find(NewVal); 511 } 512 513 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 514 User->replaceAllUsesWith(NewVal); 515 } 516 517 instructionDeleted(User); 518 User->eraseFromParent(); 519 } 520 } 521 522 bool 523 LoadAndStorePromoter::isInstInList(Instruction *I, 524 const SmallVectorImpl<Instruction*> &Insts) 525 const { 526 return std::find(Insts.begin(), Insts.end(), I) != Insts.end(); 527 } 528