Home | History | Annotate | Download | only in PBQP
      1 //===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Heuristic PBQP solver. This solver is able to perform optimal reductions for
     11 // nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
     12 // used to select a node for reduction.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
     17 #define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
     18 
     19 #include "Graph.h"
     20 #include "Solution.h"
     21 #include <vector>
     22 #include <limits>
     23 
     24 namespace PBQP {
     25 
     26   /// \brief Heuristic PBQP solver implementation.
     27   ///
     28   /// This class should usually be created (and destroyed) indirectly via a call
     29   /// to HeuristicSolver<HImpl>::solve(Graph&).
     30   /// See the comments for HeuristicSolver.
     31   ///
     32   /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
     33   /// backpropagation phase, and maintains the internal copy of the graph on
     34   /// which the reduction is carried out (the original being kept to facilitate
     35   /// backpropagation).
     36   template <typename HImpl>
     37   class HeuristicSolverImpl {
     38   private:
     39 
     40     typedef typename HImpl::NodeData HeuristicNodeData;
     41     typedef typename HImpl::EdgeData HeuristicEdgeData;
     42 
     43     typedef std::list<Graph::EdgeItr> SolverEdges;
     44 
     45   public:
     46 
     47     /// \brief Iterator type for edges in the solver graph.
     48     typedef SolverEdges::iterator SolverEdgeItr;
     49 
     50   private:
     51 
     52     class NodeData {
     53     public:
     54       NodeData() : solverDegree(0) {}
     55 
     56       HeuristicNodeData& getHeuristicData() { return hData; }
     57 
     58       SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) {
     59         ++solverDegree;
     60         return solverEdges.insert(solverEdges.end(), eItr);
     61       }
     62 
     63       void removeSolverEdge(SolverEdgeItr seItr) {
     64         --solverDegree;
     65         solverEdges.erase(seItr);
     66       }
     67 
     68       SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
     69       SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
     70       unsigned getSolverDegree() const { return solverDegree; }
     71       void clearSolverEdges() {
     72         solverDegree = 0;
     73         solverEdges.clear();
     74       }
     75 
     76     private:
     77       HeuristicNodeData hData;
     78       unsigned solverDegree;
     79       SolverEdges solverEdges;
     80     };
     81 
     82     class EdgeData {
     83     public:
     84       HeuristicEdgeData& getHeuristicData() { return hData; }
     85 
     86       void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
     87         this->n1SolverEdgeItr = n1SolverEdgeItr;
     88       }
     89 
     90       SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
     91 
     92       void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
     93         this->n2SolverEdgeItr = n2SolverEdgeItr;
     94       }
     95 
     96       SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
     97 
     98     private:
     99 
    100       HeuristicEdgeData hData;
    101       SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
    102     };
    103 
    104     Graph &g;
    105     HImpl h;
    106     Solution s;
    107     std::vector<Graph::NodeItr> stack;
    108 
    109     typedef std::list<NodeData> NodeDataList;
    110     NodeDataList nodeDataList;
    111 
    112     typedef std::list<EdgeData> EdgeDataList;
    113     EdgeDataList edgeDataList;
    114 
    115   public:
    116 
    117     /// \brief Construct a heuristic solver implementation to solve the given
    118     ///        graph.
    119     /// @param g The graph representing the problem instance to be solved.
    120     HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
    121 
    122     /// \brief Get the graph being solved by this solver.
    123     /// @return The graph representing the problem instance being solved by this
    124     ///         solver.
    125     Graph& getGraph() { return g; }
    126 
    127     /// \brief Get the heuristic data attached to the given node.
    128     /// @param nItr Node iterator.
    129     /// @return The heuristic data attached to the given node.
    130     HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
    131       return getSolverNodeData(nItr).getHeuristicData();
    132     }
    133 
    134     /// \brief Get the heuristic data attached to the given edge.
    135     /// @param eItr Edge iterator.
    136     /// @return The heuristic data attached to the given node.
    137     HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
    138       return getSolverEdgeData(eItr).getHeuristicData();
    139     }
    140 
    141     /// \brief Begin iterator for the set of edges adjacent to the given node in
    142     ///        the solver graph.
    143     /// @param nItr Node iterator.
    144     /// @return Begin iterator for the set of edges adjacent to the given node
    145     ///         in the solver graph.
    146     SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) {
    147       return getSolverNodeData(nItr).solverEdgesBegin();
    148     }
    149 
    150     /// \brief End iterator for the set of edges adjacent to the given node in
    151     ///        the solver graph.
    152     /// @param nItr Node iterator.
    153     /// @return End iterator for the set of edges adjacent to the given node in
    154     ///         the solver graph.
    155     SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) {
    156       return getSolverNodeData(nItr).solverEdgesEnd();
    157     }
    158 
    159     /// \brief Remove a node from the solver graph.
    160     /// @param eItr Edge iterator for edge to be removed.
    161     ///
    162     /// Does <i>not</i> notify the heuristic of the removal. That should be
    163     /// done manually if necessary.
    164     void removeSolverEdge(Graph::EdgeItr eItr) {
    165       EdgeData &eData = getSolverEdgeData(eItr);
    166       NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
    167                &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
    168 
    169       n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
    170       n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
    171     }
    172 
    173     /// \brief Compute a solution to the PBQP problem instance with which this
    174     ///        heuristic solver was constructed.
    175     /// @return A solution to the PBQP problem.
    176     ///
    177     /// Performs the full PBQP heuristic solver algorithm, including setup,
    178     /// calls to the heuristic (which will call back to the reduction rules in
    179     /// this class), and cleanup.
    180     Solution computeSolution() {
    181       setup();
    182       h.setup();
    183       h.reduce();
    184       backpropagate();
    185       h.cleanup();
    186       cleanup();
    187       return s;
    188     }
    189 
    190     /// \brief Add to the end of the stack.
    191     /// @param nItr Node iterator to add to the reduction stack.
    192     void pushToStack(Graph::NodeItr nItr) {
    193       getSolverNodeData(nItr).clearSolverEdges();
    194       stack.push_back(nItr);
    195     }
    196 
    197     /// \brief Returns the solver degree of the given node.
    198     /// @param nItr Node iterator for which degree is requested.
    199     /// @return Node degree in the <i>solver</i> graph (not the original graph).
    200     unsigned getSolverDegree(Graph::NodeItr nItr) {
    201       return  getSolverNodeData(nItr).getSolverDegree();
    202     }
    203 
    204     /// \brief Set the solution of the given node.
    205     /// @param nItr Node iterator to set solution for.
    206     /// @param selection Selection for node.
    207     void setSolution(const Graph::NodeItr &nItr, unsigned selection) {
    208       s.setSelection(nItr, selection);
    209 
    210       for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
    211                              aeEnd = g.adjEdgesEnd(nItr);
    212            aeItr != aeEnd; ++aeItr) {
    213         Graph::EdgeItr eItr(*aeItr);
    214         Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr));
    215         getSolverNodeData(anItr).addSolverEdge(eItr);
    216       }
    217     }
    218 
    219     /// \brief Apply rule R0.
    220     /// @param nItr Node iterator for node to apply R0 to.
    221     ///
    222     /// Node will be automatically pushed to the solver stack.
    223     void applyR0(Graph::NodeItr nItr) {
    224       assert(getSolverNodeData(nItr).getSolverDegree() == 0 &&
    225              "R0 applied to node with degree != 0.");
    226 
    227       // Nothing to do. Just push the node onto the reduction stack.
    228       pushToStack(nItr);
    229 
    230       s.recordR0();
    231     }
    232 
    233     /// \brief Apply rule R1.
    234     /// @param xnItr Node iterator for node to apply R1 to.
    235     ///
    236     /// Node will be automatically pushed to the solver stack.
    237     void applyR1(Graph::NodeItr xnItr) {
    238       NodeData &nd = getSolverNodeData(xnItr);
    239       assert(nd.getSolverDegree() == 1 &&
    240              "R1 applied to node with degree != 1.");
    241 
    242       Graph::EdgeItr eItr = *nd.solverEdgesBegin();
    243 
    244       const Matrix &eCosts = g.getEdgeCosts(eItr);
    245       const Vector &xCosts = g.getNodeCosts(xnItr);
    246 
    247       // Duplicate a little to avoid transposing matrices.
    248       if (xnItr == g.getEdgeNode1(eItr)) {
    249         Graph::NodeItr ynItr = g.getEdgeNode2(eItr);
    250         Vector &yCosts = g.getNodeCosts(ynItr);
    251         for (unsigned j = 0; j < yCosts.getLength(); ++j) {
    252           PBQPNum min = eCosts[0][j] + xCosts[0];
    253           for (unsigned i = 1; i < xCosts.getLength(); ++i) {
    254             PBQPNum c = eCosts[i][j] + xCosts[i];
    255             if (c < min)
    256               min = c;
    257           }
    258           yCosts[j] += min;
    259         }
    260         h.handleRemoveEdge(eItr, ynItr);
    261      } else {
    262         Graph::NodeItr ynItr = g.getEdgeNode1(eItr);
    263         Vector &yCosts = g.getNodeCosts(ynItr);
    264         for (unsigned i = 0; i < yCosts.getLength(); ++i) {
    265           PBQPNum min = eCosts[i][0] + xCosts[0];
    266           for (unsigned j = 1; j < xCosts.getLength(); ++j) {
    267             PBQPNum c = eCosts[i][j] + xCosts[j];
    268             if (c < min)
    269               min = c;
    270           }
    271           yCosts[i] += min;
    272         }
    273         h.handleRemoveEdge(eItr, ynItr);
    274       }
    275       removeSolverEdge(eItr);
    276       assert(nd.getSolverDegree() == 0 &&
    277              "Degree 1 with edge removed should be 0.");
    278       pushToStack(xnItr);
    279       s.recordR1();
    280     }
    281 
    282     /// \brief Apply rule R2.
    283     /// @param xnItr Node iterator for node to apply R2 to.
    284     ///
    285     /// Node will be automatically pushed to the solver stack.
    286     void applyR2(Graph::NodeItr xnItr) {
    287       assert(getSolverNodeData(xnItr).getSolverDegree() == 2 &&
    288              "R2 applied to node with degree != 2.");
    289 
    290       NodeData &nd = getSolverNodeData(xnItr);
    291       const Vector &xCosts = g.getNodeCosts(xnItr);
    292 
    293       SolverEdgeItr aeItr = nd.solverEdgesBegin();
    294       Graph::EdgeItr yxeItr = *aeItr,
    295                      zxeItr = *(++aeItr);
    296 
    297       Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr),
    298                      znItr = g.getEdgeOtherNode(zxeItr, xnItr);
    299 
    300       bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr),
    301            flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr);
    302 
    303       const Matrix *yxeCosts = flipEdge1 ?
    304         new Matrix(g.getEdgeCosts(yxeItr).transpose()) :
    305         &g.getEdgeCosts(yxeItr);
    306 
    307       const Matrix *zxeCosts = flipEdge2 ?
    308         new Matrix(g.getEdgeCosts(zxeItr).transpose()) :
    309         &g.getEdgeCosts(zxeItr);
    310 
    311       unsigned xLen = xCosts.getLength(),
    312                yLen = yxeCosts->getRows(),
    313                zLen = zxeCosts->getRows();
    314 
    315       Matrix delta(yLen, zLen);
    316 
    317       for (unsigned i = 0; i < yLen; ++i) {
    318         for (unsigned j = 0; j < zLen; ++j) {
    319           PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
    320           for (unsigned k = 1; k < xLen; ++k) {
    321             PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
    322             if (c < min) {
    323               min = c;
    324             }
    325           }
    326           delta[i][j] = min;
    327         }
    328       }
    329 
    330       if (flipEdge1)
    331         delete yxeCosts;
    332 
    333       if (flipEdge2)
    334         delete zxeCosts;
    335 
    336       Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr);
    337       bool addedEdge = false;
    338 
    339       if (yzeItr == g.edgesEnd()) {
    340         yzeItr = g.addEdge(ynItr, znItr, delta);
    341         addedEdge = true;
    342       } else {
    343         Matrix &yzeCosts = g.getEdgeCosts(yzeItr);
    344         h.preUpdateEdgeCosts(yzeItr);
    345         if (ynItr == g.getEdgeNode1(yzeItr)) {
    346           yzeCosts += delta;
    347         } else {
    348           yzeCosts += delta.transpose();
    349         }
    350       }
    351 
    352       bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr);
    353 
    354       if (!addedEdge) {
    355         // If we modified the edge costs let the heuristic know.
    356         h.postUpdateEdgeCosts(yzeItr);
    357       }
    358 
    359       if (nullCostEdge) {
    360         // If this edge ended up null remove it.
    361         if (!addedEdge) {
    362           // We didn't just add it, so we need to notify the heuristic
    363           // and remove it from the solver.
    364           h.handleRemoveEdge(yzeItr, ynItr);
    365           h.handleRemoveEdge(yzeItr, znItr);
    366           removeSolverEdge(yzeItr);
    367         }
    368         g.removeEdge(yzeItr);
    369       } else if (addedEdge) {
    370         // If the edge was added, and non-null, finish setting it up, add it to
    371         // the solver & notify heuristic.
    372         edgeDataList.push_back(EdgeData());
    373         g.setEdgeData(yzeItr, &edgeDataList.back());
    374         addSolverEdge(yzeItr);
    375         h.handleAddEdge(yzeItr);
    376       }
    377 
    378       h.handleRemoveEdge(yxeItr, ynItr);
    379       removeSolverEdge(yxeItr);
    380       h.handleRemoveEdge(zxeItr, znItr);
    381       removeSolverEdge(zxeItr);
    382 
    383       pushToStack(xnItr);
    384       s.recordR2();
    385     }
    386 
    387     /// \brief Record an application of the RN rule.
    388     ///
    389     /// For use by the HeuristicBase.
    390     void recordRN() { s.recordRN(); }
    391 
    392   private:
    393 
    394     NodeData& getSolverNodeData(Graph::NodeItr nItr) {
    395       return *static_cast<NodeData*>(g.getNodeData(nItr));
    396     }
    397 
    398     EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) {
    399       return *static_cast<EdgeData*>(g.getEdgeData(eItr));
    400     }
    401 
    402     void addSolverEdge(Graph::EdgeItr eItr) {
    403       EdgeData &eData = getSolverEdgeData(eItr);
    404       NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
    405                &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
    406 
    407       eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr));
    408       eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr));
    409     }
    410 
    411     void setup() {
    412       if (h.solverRunSimplify()) {
    413         simplify();
    414       }
    415 
    416       // Create node data objects.
    417       for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
    418            nItr != nEnd; ++nItr) {
    419         nodeDataList.push_back(NodeData());
    420         g.setNodeData(nItr, &nodeDataList.back());
    421       }
    422 
    423       // Create edge data objects.
    424       for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
    425            eItr != eEnd; ++eItr) {
    426         edgeDataList.push_back(EdgeData());
    427         g.setEdgeData(eItr, &edgeDataList.back());
    428         addSolverEdge(eItr);
    429       }
    430     }
    431 
    432     void simplify() {
    433       disconnectTrivialNodes();
    434       eliminateIndependentEdges();
    435     }
    436 
    437     // Eliminate trivial nodes.
    438     void disconnectTrivialNodes() {
    439       unsigned numDisconnected = 0;
    440 
    441       for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
    442            nItr != nEnd; ++nItr) {
    443 
    444         if (g.getNodeCosts(nItr).getLength() == 1) {
    445 
    446           std::vector<Graph::EdgeItr> edgesToRemove;
    447 
    448           for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
    449                                  aeEnd = g.adjEdgesEnd(nItr);
    450                aeItr != aeEnd; ++aeItr) {
    451 
    452             Graph::EdgeItr eItr = *aeItr;
    453 
    454             if (g.getEdgeNode1(eItr) == nItr) {
    455               Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr);
    456               g.getNodeCosts(otherNodeItr) +=
    457                 g.getEdgeCosts(eItr).getRowAsVector(0);
    458             }
    459             else {
    460               Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr);
    461               g.getNodeCosts(otherNodeItr) +=
    462                 g.getEdgeCosts(eItr).getColAsVector(0);
    463             }
    464 
    465             edgesToRemove.push_back(eItr);
    466           }
    467 
    468           if (!edgesToRemove.empty())
    469             ++numDisconnected;
    470 
    471           while (!edgesToRemove.empty()) {
    472             g.removeEdge(edgesToRemove.back());
    473             edgesToRemove.pop_back();
    474           }
    475         }
    476       }
    477     }
    478 
    479     void eliminateIndependentEdges() {
    480       std::vector<Graph::EdgeItr> edgesToProcess;
    481       unsigned numEliminated = 0;
    482 
    483       for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
    484            eItr != eEnd; ++eItr) {
    485         edgesToProcess.push_back(eItr);
    486       }
    487 
    488       while (!edgesToProcess.empty()) {
    489         if (tryToEliminateEdge(edgesToProcess.back()))
    490           ++numEliminated;
    491         edgesToProcess.pop_back();
    492       }
    493     }
    494 
    495     bool tryToEliminateEdge(Graph::EdgeItr eItr) {
    496       if (tryNormaliseEdgeMatrix(eItr)) {
    497         g.removeEdge(eItr);
    498         return true;
    499       }
    500       return false;
    501     }
    502 
    503     bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) {
    504 
    505       const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
    506 
    507       Matrix &edgeCosts = g.getEdgeCosts(eItr);
    508       Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)),
    509              &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr));
    510 
    511       for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
    512         PBQPNum rowMin = infinity;
    513 
    514         for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
    515           if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
    516             rowMin = edgeCosts[r][c];
    517         }
    518 
    519         uCosts[r] += rowMin;
    520 
    521         if (rowMin != infinity) {
    522           edgeCosts.subFromRow(r, rowMin);
    523         }
    524         else {
    525           edgeCosts.setRow(r, 0);
    526         }
    527       }
    528 
    529       for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
    530         PBQPNum colMin = infinity;
    531 
    532         for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
    533           if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
    534             colMin = edgeCosts[r][c];
    535         }
    536 
    537         vCosts[c] += colMin;
    538 
    539         if (colMin != infinity) {
    540           edgeCosts.subFromCol(c, colMin);
    541         }
    542         else {
    543           edgeCosts.setCol(c, 0);
    544         }
    545       }
    546 
    547       return edgeCosts.isZero();
    548     }
    549 
    550     void backpropagate() {
    551       while (!stack.empty()) {
    552         computeSolution(stack.back());
    553         stack.pop_back();
    554       }
    555     }
    556 
    557     void computeSolution(Graph::NodeItr nItr) {
    558 
    559       NodeData &nodeData = getSolverNodeData(nItr);
    560 
    561       Vector v(g.getNodeCosts(nItr));
    562 
    563       // Solve based on existing solved edges.
    564       for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
    565                          solvedEdgeEnd = nodeData.solverEdgesEnd();
    566            solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
    567 
    568         Graph::EdgeItr eItr(*solvedEdgeItr);
    569         Matrix &edgeCosts = g.getEdgeCosts(eItr);
    570 
    571         if (nItr == g.getEdgeNode1(eItr)) {
    572           Graph::NodeItr adjNode(g.getEdgeNode2(eItr));
    573           unsigned adjSolution = s.getSelection(adjNode);
    574           v += edgeCosts.getColAsVector(adjSolution);
    575         }
    576         else {
    577           Graph::NodeItr adjNode(g.getEdgeNode1(eItr));
    578           unsigned adjSolution = s.getSelection(adjNode);
    579           v += edgeCosts.getRowAsVector(adjSolution);
    580         }
    581 
    582       }
    583 
    584       setSolution(nItr, v.minIndex());
    585     }
    586 
    587     void cleanup() {
    588       h.cleanup();
    589       nodeDataList.clear();
    590       edgeDataList.clear();
    591     }
    592   };
    593 
    594   /// \brief PBQP heuristic solver class.
    595   ///
    596   /// Given a PBQP Graph g representing a PBQP problem, you can find a solution
    597   /// by calling
    598   /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
    599   ///
    600   /// The choice of heuristic for the H parameter will affect both the solver
    601   /// speed and solution quality. The heuristic should be chosen based on the
    602   /// nature of the problem being solved.
    603   /// Currently the only solver included with LLVM is the Briggs heuristic for
    604   /// register allocation.
    605   template <typename HImpl>
    606   class HeuristicSolver {
    607   public:
    608     static Solution solve(Graph &g) {
    609       HeuristicSolverImpl<HImpl> hs(g);
    610       return hs.computeSolution();
    611     }
    612   };
    613 
    614 }
    615 
    616 #endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
    617