1 //===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Heuristic PBQP solver. This solver is able to perform optimal reductions for 11 // nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is 12 // used to select a node for reduction. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H 17 #define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H 18 19 #include "Graph.h" 20 #include "Solution.h" 21 #include <vector> 22 #include <limits> 23 24 namespace PBQP { 25 26 /// \brief Heuristic PBQP solver implementation. 27 /// 28 /// This class should usually be created (and destroyed) indirectly via a call 29 /// to HeuristicSolver<HImpl>::solve(Graph&). 30 /// See the comments for HeuristicSolver. 31 /// 32 /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules, 33 /// backpropagation phase, and maintains the internal copy of the graph on 34 /// which the reduction is carried out (the original being kept to facilitate 35 /// backpropagation). 36 template <typename HImpl> 37 class HeuristicSolverImpl { 38 private: 39 40 typedef typename HImpl::NodeData HeuristicNodeData; 41 typedef typename HImpl::EdgeData HeuristicEdgeData; 42 43 typedef std::list<Graph::EdgeItr> SolverEdges; 44 45 public: 46 47 /// \brief Iterator type for edges in the solver graph. 48 typedef SolverEdges::iterator SolverEdgeItr; 49 50 private: 51 52 class NodeData { 53 public: 54 NodeData() : solverDegree(0) {} 55 56 HeuristicNodeData& getHeuristicData() { return hData; } 57 58 SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) { 59 ++solverDegree; 60 return solverEdges.insert(solverEdges.end(), eItr); 61 } 62 63 void removeSolverEdge(SolverEdgeItr seItr) { 64 --solverDegree; 65 solverEdges.erase(seItr); 66 } 67 68 SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); } 69 SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); } 70 unsigned getSolverDegree() const { return solverDegree; } 71 void clearSolverEdges() { 72 solverDegree = 0; 73 solverEdges.clear(); 74 } 75 76 private: 77 HeuristicNodeData hData; 78 unsigned solverDegree; 79 SolverEdges solverEdges; 80 }; 81 82 class EdgeData { 83 public: 84 HeuristicEdgeData& getHeuristicData() { return hData; } 85 86 void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) { 87 this->n1SolverEdgeItr = n1SolverEdgeItr; 88 } 89 90 SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; } 91 92 void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){ 93 this->n2SolverEdgeItr = n2SolverEdgeItr; 94 } 95 96 SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; } 97 98 private: 99 100 HeuristicEdgeData hData; 101 SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr; 102 }; 103 104 Graph &g; 105 HImpl h; 106 Solution s; 107 std::vector<Graph::NodeItr> stack; 108 109 typedef std::list<NodeData> NodeDataList; 110 NodeDataList nodeDataList; 111 112 typedef std::list<EdgeData> EdgeDataList; 113 EdgeDataList edgeDataList; 114 115 public: 116 117 /// \brief Construct a heuristic solver implementation to solve the given 118 /// graph. 119 /// @param g The graph representing the problem instance to be solved. 120 HeuristicSolverImpl(Graph &g) : g(g), h(*this) {} 121 122 /// \brief Get the graph being solved by this solver. 123 /// @return The graph representing the problem instance being solved by this 124 /// solver. 125 Graph& getGraph() { return g; } 126 127 /// \brief Get the heuristic data attached to the given node. 128 /// @param nItr Node iterator. 129 /// @return The heuristic data attached to the given node. 130 HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) { 131 return getSolverNodeData(nItr).getHeuristicData(); 132 } 133 134 /// \brief Get the heuristic data attached to the given edge. 135 /// @param eItr Edge iterator. 136 /// @return The heuristic data attached to the given node. 137 HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { 138 return getSolverEdgeData(eItr).getHeuristicData(); 139 } 140 141 /// \brief Begin iterator for the set of edges adjacent to the given node in 142 /// the solver graph. 143 /// @param nItr Node iterator. 144 /// @return Begin iterator for the set of edges adjacent to the given node 145 /// in the solver graph. 146 SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) { 147 return getSolverNodeData(nItr).solverEdgesBegin(); 148 } 149 150 /// \brief End iterator for the set of edges adjacent to the given node in 151 /// the solver graph. 152 /// @param nItr Node iterator. 153 /// @return End iterator for the set of edges adjacent to the given node in 154 /// the solver graph. 155 SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) { 156 return getSolverNodeData(nItr).solverEdgesEnd(); 157 } 158 159 /// \brief Remove a node from the solver graph. 160 /// @param eItr Edge iterator for edge to be removed. 161 /// 162 /// Does <i>not</i> notify the heuristic of the removal. That should be 163 /// done manually if necessary. 164 void removeSolverEdge(Graph::EdgeItr eItr) { 165 EdgeData &eData = getSolverEdgeData(eItr); 166 NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), 167 &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); 168 169 n1Data.removeSolverEdge(eData.getN1SolverEdgeItr()); 170 n2Data.removeSolverEdge(eData.getN2SolverEdgeItr()); 171 } 172 173 /// \brief Compute a solution to the PBQP problem instance with which this 174 /// heuristic solver was constructed. 175 /// @return A solution to the PBQP problem. 176 /// 177 /// Performs the full PBQP heuristic solver algorithm, including setup, 178 /// calls to the heuristic (which will call back to the reduction rules in 179 /// this class), and cleanup. 180 Solution computeSolution() { 181 setup(); 182 h.setup(); 183 h.reduce(); 184 backpropagate(); 185 h.cleanup(); 186 cleanup(); 187 return s; 188 } 189 190 /// \brief Add to the end of the stack. 191 /// @param nItr Node iterator to add to the reduction stack. 192 void pushToStack(Graph::NodeItr nItr) { 193 getSolverNodeData(nItr).clearSolverEdges(); 194 stack.push_back(nItr); 195 } 196 197 /// \brief Returns the solver degree of the given node. 198 /// @param nItr Node iterator for which degree is requested. 199 /// @return Node degree in the <i>solver</i> graph (not the original graph). 200 unsigned getSolverDegree(Graph::NodeItr nItr) { 201 return getSolverNodeData(nItr).getSolverDegree(); 202 } 203 204 /// \brief Set the solution of the given node. 205 /// @param nItr Node iterator to set solution for. 206 /// @param selection Selection for node. 207 void setSolution(const Graph::NodeItr &nItr, unsigned selection) { 208 s.setSelection(nItr, selection); 209 210 for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), 211 aeEnd = g.adjEdgesEnd(nItr); 212 aeItr != aeEnd; ++aeItr) { 213 Graph::EdgeItr eItr(*aeItr); 214 Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr)); 215 getSolverNodeData(anItr).addSolverEdge(eItr); 216 } 217 } 218 219 /// \brief Apply rule R0. 220 /// @param nItr Node iterator for node to apply R0 to. 221 /// 222 /// Node will be automatically pushed to the solver stack. 223 void applyR0(Graph::NodeItr nItr) { 224 assert(getSolverNodeData(nItr).getSolverDegree() == 0 && 225 "R0 applied to node with degree != 0."); 226 227 // Nothing to do. Just push the node onto the reduction stack. 228 pushToStack(nItr); 229 230 s.recordR0(); 231 } 232 233 /// \brief Apply rule R1. 234 /// @param xnItr Node iterator for node to apply R1 to. 235 /// 236 /// Node will be automatically pushed to the solver stack. 237 void applyR1(Graph::NodeItr xnItr) { 238 NodeData &nd = getSolverNodeData(xnItr); 239 assert(nd.getSolverDegree() == 1 && 240 "R1 applied to node with degree != 1."); 241 242 Graph::EdgeItr eItr = *nd.solverEdgesBegin(); 243 244 const Matrix &eCosts = g.getEdgeCosts(eItr); 245 const Vector &xCosts = g.getNodeCosts(xnItr); 246 247 // Duplicate a little to avoid transposing matrices. 248 if (xnItr == g.getEdgeNode1(eItr)) { 249 Graph::NodeItr ynItr = g.getEdgeNode2(eItr); 250 Vector &yCosts = g.getNodeCosts(ynItr); 251 for (unsigned j = 0; j < yCosts.getLength(); ++j) { 252 PBQPNum min = eCosts[0][j] + xCosts[0]; 253 for (unsigned i = 1; i < xCosts.getLength(); ++i) { 254 PBQPNum c = eCosts[i][j] + xCosts[i]; 255 if (c < min) 256 min = c; 257 } 258 yCosts[j] += min; 259 } 260 h.handleRemoveEdge(eItr, ynItr); 261 } else { 262 Graph::NodeItr ynItr = g.getEdgeNode1(eItr); 263 Vector &yCosts = g.getNodeCosts(ynItr); 264 for (unsigned i = 0; i < yCosts.getLength(); ++i) { 265 PBQPNum min = eCosts[i][0] + xCosts[0]; 266 for (unsigned j = 1; j < xCosts.getLength(); ++j) { 267 PBQPNum c = eCosts[i][j] + xCosts[j]; 268 if (c < min) 269 min = c; 270 } 271 yCosts[i] += min; 272 } 273 h.handleRemoveEdge(eItr, ynItr); 274 } 275 removeSolverEdge(eItr); 276 assert(nd.getSolverDegree() == 0 && 277 "Degree 1 with edge removed should be 0."); 278 pushToStack(xnItr); 279 s.recordR1(); 280 } 281 282 /// \brief Apply rule R2. 283 /// @param xnItr Node iterator for node to apply R2 to. 284 /// 285 /// Node will be automatically pushed to the solver stack. 286 void applyR2(Graph::NodeItr xnItr) { 287 assert(getSolverNodeData(xnItr).getSolverDegree() == 2 && 288 "R2 applied to node with degree != 2."); 289 290 NodeData &nd = getSolverNodeData(xnItr); 291 const Vector &xCosts = g.getNodeCosts(xnItr); 292 293 SolverEdgeItr aeItr = nd.solverEdgesBegin(); 294 Graph::EdgeItr yxeItr = *aeItr, 295 zxeItr = *(++aeItr); 296 297 Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr), 298 znItr = g.getEdgeOtherNode(zxeItr, xnItr); 299 300 bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr), 301 flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr); 302 303 const Matrix *yxeCosts = flipEdge1 ? 304 new Matrix(g.getEdgeCosts(yxeItr).transpose()) : 305 &g.getEdgeCosts(yxeItr); 306 307 const Matrix *zxeCosts = flipEdge2 ? 308 new Matrix(g.getEdgeCosts(zxeItr).transpose()) : 309 &g.getEdgeCosts(zxeItr); 310 311 unsigned xLen = xCosts.getLength(), 312 yLen = yxeCosts->getRows(), 313 zLen = zxeCosts->getRows(); 314 315 Matrix delta(yLen, zLen); 316 317 for (unsigned i = 0; i < yLen; ++i) { 318 for (unsigned j = 0; j < zLen; ++j) { 319 PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0]; 320 for (unsigned k = 1; k < xLen; ++k) { 321 PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k]; 322 if (c < min) { 323 min = c; 324 } 325 } 326 delta[i][j] = min; 327 } 328 } 329 330 if (flipEdge1) 331 delete yxeCosts; 332 333 if (flipEdge2) 334 delete zxeCosts; 335 336 Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr); 337 bool addedEdge = false; 338 339 if (yzeItr == g.edgesEnd()) { 340 yzeItr = g.addEdge(ynItr, znItr, delta); 341 addedEdge = true; 342 } else { 343 Matrix &yzeCosts = g.getEdgeCosts(yzeItr); 344 h.preUpdateEdgeCosts(yzeItr); 345 if (ynItr == g.getEdgeNode1(yzeItr)) { 346 yzeCosts += delta; 347 } else { 348 yzeCosts += delta.transpose(); 349 } 350 } 351 352 bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr); 353 354 if (!addedEdge) { 355 // If we modified the edge costs let the heuristic know. 356 h.postUpdateEdgeCosts(yzeItr); 357 } 358 359 if (nullCostEdge) { 360 // If this edge ended up null remove it. 361 if (!addedEdge) { 362 // We didn't just add it, so we need to notify the heuristic 363 // and remove it from the solver. 364 h.handleRemoveEdge(yzeItr, ynItr); 365 h.handleRemoveEdge(yzeItr, znItr); 366 removeSolverEdge(yzeItr); 367 } 368 g.removeEdge(yzeItr); 369 } else if (addedEdge) { 370 // If the edge was added, and non-null, finish setting it up, add it to 371 // the solver & notify heuristic. 372 edgeDataList.push_back(EdgeData()); 373 g.setEdgeData(yzeItr, &edgeDataList.back()); 374 addSolverEdge(yzeItr); 375 h.handleAddEdge(yzeItr); 376 } 377 378 h.handleRemoveEdge(yxeItr, ynItr); 379 removeSolverEdge(yxeItr); 380 h.handleRemoveEdge(zxeItr, znItr); 381 removeSolverEdge(zxeItr); 382 383 pushToStack(xnItr); 384 s.recordR2(); 385 } 386 387 /// \brief Record an application of the RN rule. 388 /// 389 /// For use by the HeuristicBase. 390 void recordRN() { s.recordRN(); } 391 392 private: 393 394 NodeData& getSolverNodeData(Graph::NodeItr nItr) { 395 return *static_cast<NodeData*>(g.getNodeData(nItr)); 396 } 397 398 EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) { 399 return *static_cast<EdgeData*>(g.getEdgeData(eItr)); 400 } 401 402 void addSolverEdge(Graph::EdgeItr eItr) { 403 EdgeData &eData = getSolverEdgeData(eItr); 404 NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), 405 &n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); 406 407 eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr)); 408 eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr)); 409 } 410 411 void setup() { 412 if (h.solverRunSimplify()) { 413 simplify(); 414 } 415 416 // Create node data objects. 417 for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); 418 nItr != nEnd; ++nItr) { 419 nodeDataList.push_back(NodeData()); 420 g.setNodeData(nItr, &nodeDataList.back()); 421 } 422 423 // Create edge data objects. 424 for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); 425 eItr != eEnd; ++eItr) { 426 edgeDataList.push_back(EdgeData()); 427 g.setEdgeData(eItr, &edgeDataList.back()); 428 addSolverEdge(eItr); 429 } 430 } 431 432 void simplify() { 433 disconnectTrivialNodes(); 434 eliminateIndependentEdges(); 435 } 436 437 // Eliminate trivial nodes. 438 void disconnectTrivialNodes() { 439 unsigned numDisconnected = 0; 440 441 for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); 442 nItr != nEnd; ++nItr) { 443 444 if (g.getNodeCosts(nItr).getLength() == 1) { 445 446 std::vector<Graph::EdgeItr> edgesToRemove; 447 448 for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), 449 aeEnd = g.adjEdgesEnd(nItr); 450 aeItr != aeEnd; ++aeItr) { 451 452 Graph::EdgeItr eItr = *aeItr; 453 454 if (g.getEdgeNode1(eItr) == nItr) { 455 Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr); 456 g.getNodeCosts(otherNodeItr) += 457 g.getEdgeCosts(eItr).getRowAsVector(0); 458 } 459 else { 460 Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr); 461 g.getNodeCosts(otherNodeItr) += 462 g.getEdgeCosts(eItr).getColAsVector(0); 463 } 464 465 edgesToRemove.push_back(eItr); 466 } 467 468 if (!edgesToRemove.empty()) 469 ++numDisconnected; 470 471 while (!edgesToRemove.empty()) { 472 g.removeEdge(edgesToRemove.back()); 473 edgesToRemove.pop_back(); 474 } 475 } 476 } 477 } 478 479 void eliminateIndependentEdges() { 480 std::vector<Graph::EdgeItr> edgesToProcess; 481 unsigned numEliminated = 0; 482 483 for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); 484 eItr != eEnd; ++eItr) { 485 edgesToProcess.push_back(eItr); 486 } 487 488 while (!edgesToProcess.empty()) { 489 if (tryToEliminateEdge(edgesToProcess.back())) 490 ++numEliminated; 491 edgesToProcess.pop_back(); 492 } 493 } 494 495 bool tryToEliminateEdge(Graph::EdgeItr eItr) { 496 if (tryNormaliseEdgeMatrix(eItr)) { 497 g.removeEdge(eItr); 498 return true; 499 } 500 return false; 501 } 502 503 bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) { 504 505 const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity(); 506 507 Matrix &edgeCosts = g.getEdgeCosts(eItr); 508 Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)), 509 &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr)); 510 511 for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { 512 PBQPNum rowMin = infinity; 513 514 for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { 515 if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin) 516 rowMin = edgeCosts[r][c]; 517 } 518 519 uCosts[r] += rowMin; 520 521 if (rowMin != infinity) { 522 edgeCosts.subFromRow(r, rowMin); 523 } 524 else { 525 edgeCosts.setRow(r, 0); 526 } 527 } 528 529 for (unsigned c = 0; c < edgeCosts.getCols(); ++c) { 530 PBQPNum colMin = infinity; 531 532 for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { 533 if (uCosts[r] != infinity && edgeCosts[r][c] < colMin) 534 colMin = edgeCosts[r][c]; 535 } 536 537 vCosts[c] += colMin; 538 539 if (colMin != infinity) { 540 edgeCosts.subFromCol(c, colMin); 541 } 542 else { 543 edgeCosts.setCol(c, 0); 544 } 545 } 546 547 return edgeCosts.isZero(); 548 } 549 550 void backpropagate() { 551 while (!stack.empty()) { 552 computeSolution(stack.back()); 553 stack.pop_back(); 554 } 555 } 556 557 void computeSolution(Graph::NodeItr nItr) { 558 559 NodeData &nodeData = getSolverNodeData(nItr); 560 561 Vector v(g.getNodeCosts(nItr)); 562 563 // Solve based on existing solved edges. 564 for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(), 565 solvedEdgeEnd = nodeData.solverEdgesEnd(); 566 solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) { 567 568 Graph::EdgeItr eItr(*solvedEdgeItr); 569 Matrix &edgeCosts = g.getEdgeCosts(eItr); 570 571 if (nItr == g.getEdgeNode1(eItr)) { 572 Graph::NodeItr adjNode(g.getEdgeNode2(eItr)); 573 unsigned adjSolution = s.getSelection(adjNode); 574 v += edgeCosts.getColAsVector(adjSolution); 575 } 576 else { 577 Graph::NodeItr adjNode(g.getEdgeNode1(eItr)); 578 unsigned adjSolution = s.getSelection(adjNode); 579 v += edgeCosts.getRowAsVector(adjSolution); 580 } 581 582 } 583 584 setSolution(nItr, v.minIndex()); 585 } 586 587 void cleanup() { 588 h.cleanup(); 589 nodeDataList.clear(); 590 edgeDataList.clear(); 591 } 592 }; 593 594 /// \brief PBQP heuristic solver class. 595 /// 596 /// Given a PBQP Graph g representing a PBQP problem, you can find a solution 597 /// by calling 598 /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt> 599 /// 600 /// The choice of heuristic for the H parameter will affect both the solver 601 /// speed and solution quality. The heuristic should be chosen based on the 602 /// nature of the problem being solved. 603 /// Currently the only solver included with LLVM is the Briggs heuristic for 604 /// register allocation. 605 template <typename HImpl> 606 class HeuristicSolver { 607 public: 608 static Solution solve(Graph &g) { 609 HeuristicSolverImpl<HImpl> hs(g); 610 return hs.computeSolution(); 611 } 612 }; 613 614 } 615 616 #endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H 617