1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides Objective-C code generation targeting the GNU runtime. The 11 // class in this file generates structures used by the GNU Objective-C runtime 12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in 13 // the GNU runtime distribution. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "CodeGenFunction.h" 20 #include "CGCleanup.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/FileManager.h" 28 29 #include "llvm/Intrinsics.h" 30 #include "llvm/Module.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringMap.h" 34 #include "llvm/Support/CallSite.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Target/TargetData.h" 37 38 #include <cstdarg> 39 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 namespace { 46 /// Class that lazily initialises the runtime function. Avoids inserting the 47 /// types and the function declaration into a module if they're not used, and 48 /// avoids constructing the type more than once if it's used more than once. 49 class LazyRuntimeFunction { 50 CodeGenModule *CGM; 51 std::vector<llvm::Type*> ArgTys; 52 const char *FunctionName; 53 llvm::Constant *Function; 54 public: 55 /// Constructor leaves this class uninitialized, because it is intended to 56 /// be used as a field in another class and not all of the types that are 57 /// used as arguments will necessarily be available at construction time. 58 LazyRuntimeFunction() : CGM(0), FunctionName(0), Function(0) {} 59 60 /// Initialises the lazy function with the name, return type, and the types 61 /// of the arguments. 62 END_WITH_NULL 63 void init(CodeGenModule *Mod, const char *name, 64 llvm::Type *RetTy, ...) { 65 CGM =Mod; 66 FunctionName = name; 67 Function = 0; 68 ArgTys.clear(); 69 va_list Args; 70 va_start(Args, RetTy); 71 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*)) 72 ArgTys.push_back(ArgTy); 73 va_end(Args); 74 // Push the return type on at the end so we can pop it off easily 75 ArgTys.push_back(RetTy); 76 } 77 /// Overloaded cast operator, allows the class to be implicitly cast to an 78 /// LLVM constant. 79 operator llvm::Constant*() { 80 if (!Function) { 81 if (0 == FunctionName) return 0; 82 // We put the return type on the end of the vector, so pop it back off 83 llvm::Type *RetTy = ArgTys.back(); 84 ArgTys.pop_back(); 85 llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false); 86 Function = 87 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName)); 88 // We won't need to use the types again, so we may as well clean up the 89 // vector now 90 ArgTys.resize(0); 91 } 92 return Function; 93 } 94 operator llvm::Function*() { 95 return cast<llvm::Function>((llvm::Constant*)*this); 96 } 97 98 }; 99 100 101 /// GNU Objective-C runtime code generation. This class implements the parts of 102 /// Objective-C support that are specific to the GNU family of runtimes (GCC and 103 /// GNUstep). 104 class CGObjCGNU : public CGObjCRuntime { 105 protected: 106 /// The LLVM module into which output is inserted 107 llvm::Module &TheModule; 108 /// strut objc_super. Used for sending messages to super. This structure 109 /// contains the receiver (object) and the expected class. 110 llvm::StructType *ObjCSuperTy; 111 /// struct objc_super*. The type of the argument to the superclass message 112 /// lookup functions. 113 llvm::PointerType *PtrToObjCSuperTy; 114 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring 115 /// SEL is included in a header somewhere, in which case it will be whatever 116 /// type is declared in that header, most likely {i8*, i8*}. 117 llvm::PointerType *SelectorTy; 118 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the 119 /// places where it's used 120 llvm::IntegerType *Int8Ty; 121 /// Pointer to i8 - LLVM type of char*, for all of the places where the 122 /// runtime needs to deal with C strings. 123 llvm::PointerType *PtrToInt8Ty; 124 /// Instance Method Pointer type. This is a pointer to a function that takes, 125 /// at a minimum, an object and a selector, and is the generic type for 126 /// Objective-C methods. Due to differences between variadic / non-variadic 127 /// calling conventions, it must always be cast to the correct type before 128 /// actually being used. 129 llvm::PointerType *IMPTy; 130 /// Type of an untyped Objective-C object. Clang treats id as a built-in type 131 /// when compiling Objective-C code, so this may be an opaque pointer (i8*), 132 /// but if the runtime header declaring it is included then it may be a 133 /// pointer to a structure. 134 llvm::PointerType *IdTy; 135 /// Pointer to a pointer to an Objective-C object. Used in the new ABI 136 /// message lookup function and some GC-related functions. 137 llvm::PointerType *PtrToIdTy; 138 /// The clang type of id. Used when using the clang CGCall infrastructure to 139 /// call Objective-C methods. 140 CanQualType ASTIdTy; 141 /// LLVM type for C int type. 142 llvm::IntegerType *IntTy; 143 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is 144 /// used in the code to document the difference between i8* meaning a pointer 145 /// to a C string and i8* meaning a pointer to some opaque type. 146 llvm::PointerType *PtrTy; 147 /// LLVM type for C long type. The runtime uses this in a lot of places where 148 /// it should be using intptr_t, but we can't fix this without breaking 149 /// compatibility with GCC... 150 llvm::IntegerType *LongTy; 151 /// LLVM type for C size_t. Used in various runtime data structures. 152 llvm::IntegerType *SizeTy; 153 /// LLVM type for C intptr_t. 154 llvm::IntegerType *IntPtrTy; 155 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions. 156 llvm::IntegerType *PtrDiffTy; 157 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance 158 /// variables. 159 llvm::PointerType *PtrToIntTy; 160 /// LLVM type for Objective-C BOOL type. 161 llvm::Type *BoolTy; 162 /// 32-bit integer type, to save us needing to look it up every time it's used. 163 llvm::IntegerType *Int32Ty; 164 /// 64-bit integer type, to save us needing to look it up every time it's used. 165 llvm::IntegerType *Int64Ty; 166 /// Metadata kind used to tie method lookups to message sends. The GNUstep 167 /// runtime provides some LLVM passes that can use this to do things like 168 /// automatic IMP caching and speculative inlining. 169 unsigned msgSendMDKind; 170 /// Helper function that generates a constant string and returns a pointer to 171 /// the start of the string. The result of this function can be used anywhere 172 /// where the C code specifies const char*. 173 llvm::Constant *MakeConstantString(const std::string &Str, 174 const std::string &Name="") { 175 llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); 176 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros); 177 } 178 /// Emits a linkonce_odr string, whose name is the prefix followed by the 179 /// string value. This allows the linker to combine the strings between 180 /// different modules. Used for EH typeinfo names, selector strings, and a 181 /// few other things. 182 llvm::Constant *ExportUniqueString(const std::string &Str, 183 const std::string prefix) { 184 std::string name = prefix + Str; 185 llvm::Constant *ConstStr = TheModule.getGlobalVariable(name); 186 if (!ConstStr) { 187 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str); 188 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true, 189 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str); 190 } 191 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros); 192 } 193 /// Generates a global structure, initialized by the elements in the vector. 194 /// The element types must match the types of the structure elements in the 195 /// first argument. 196 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty, 197 llvm::ArrayRef<llvm::Constant*> V, 198 StringRef Name="", 199 llvm::GlobalValue::LinkageTypes linkage 200 =llvm::GlobalValue::InternalLinkage) { 201 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V); 202 return new llvm::GlobalVariable(TheModule, Ty, false, 203 linkage, C, Name); 204 } 205 /// Generates a global array. The vector must contain the same number of 206 /// elements that the array type declares, of the type specified as the array 207 /// element type. 208 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty, 209 llvm::ArrayRef<llvm::Constant*> V, 210 StringRef Name="", 211 llvm::GlobalValue::LinkageTypes linkage 212 =llvm::GlobalValue::InternalLinkage) { 213 llvm::Constant *C = llvm::ConstantArray::get(Ty, V); 214 return new llvm::GlobalVariable(TheModule, Ty, false, 215 linkage, C, Name); 216 } 217 /// Generates a global array, inferring the array type from the specified 218 /// element type and the size of the initialiser. 219 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty, 220 llvm::ArrayRef<llvm::Constant*> V, 221 StringRef Name="", 222 llvm::GlobalValue::LinkageTypes linkage 223 =llvm::GlobalValue::InternalLinkage) { 224 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size()); 225 return MakeGlobal(ArrayTy, V, Name, linkage); 226 } 227 /// Ensures that the value has the required type, by inserting a bitcast if 228 /// required. This function lets us avoid inserting bitcasts that are 229 /// redundant. 230 llvm::Value* EnforceType(CGBuilderTy B, llvm::Value *V, llvm::Type *Ty){ 231 if (V->getType() == Ty) return V; 232 return B.CreateBitCast(V, Ty); 233 } 234 // Some zeros used for GEPs in lots of places. 235 llvm::Constant *Zeros[2]; 236 /// Null pointer value. Mainly used as a terminator in various arrays. 237 llvm::Constant *NULLPtr; 238 /// LLVM context. 239 llvm::LLVMContext &VMContext; 240 private: 241 /// Placeholder for the class. Lots of things refer to the class before we've 242 /// actually emitted it. We use this alias as a placeholder, and then replace 243 /// it with a pointer to the class structure before finally emitting the 244 /// module. 245 llvm::GlobalAlias *ClassPtrAlias; 246 /// Placeholder for the metaclass. Lots of things refer to the class before 247 /// we've / actually emitted it. We use this alias as a placeholder, and then 248 /// replace / it with a pointer to the metaclass structure before finally 249 /// emitting the / module. 250 llvm::GlobalAlias *MetaClassPtrAlias; 251 /// All of the classes that have been generated for this compilation units. 252 std::vector<llvm::Constant*> Classes; 253 /// All of the categories that have been generated for this compilation units. 254 std::vector<llvm::Constant*> Categories; 255 /// All of the Objective-C constant strings that have been generated for this 256 /// compilation units. 257 std::vector<llvm::Constant*> ConstantStrings; 258 /// Map from string values to Objective-C constant strings in the output. 259 /// Used to prevent emitting Objective-C strings more than once. This should 260 /// not be required at all - CodeGenModule should manage this list. 261 llvm::StringMap<llvm::Constant*> ObjCStrings; 262 /// All of the protocols that have been declared. 263 llvm::StringMap<llvm::Constant*> ExistingProtocols; 264 /// For each variant of a selector, we store the type encoding and a 265 /// placeholder value. For an untyped selector, the type will be the empty 266 /// string. Selector references are all done via the module's selector table, 267 /// so we create an alias as a placeholder and then replace it with the real 268 /// value later. 269 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector; 270 /// Type of the selector map. This is roughly equivalent to the structure 271 /// used in the GNUstep runtime, which maintains a list of all of the valid 272 /// types for a selector in a table. 273 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> > 274 SelectorMap; 275 /// A map from selectors to selector types. This allows us to emit all 276 /// selectors of the same name and type together. 277 SelectorMap SelectorTable; 278 279 /// Selectors related to memory management. When compiling in GC mode, we 280 /// omit these. 281 Selector RetainSel, ReleaseSel, AutoreleaseSel; 282 /// Runtime functions used for memory management in GC mode. Note that clang 283 /// supports code generation for calling these functions, but neither GNU 284 /// runtime actually supports this API properly yet. 285 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 286 WeakAssignFn, GlobalAssignFn; 287 288 typedef std::pair<std::string, std::string> ClassAliasPair; 289 /// All classes that have aliases set for them. 290 std::vector<ClassAliasPair> ClassAliases; 291 292 protected: 293 /// Function used for throwing Objective-C exceptions. 294 LazyRuntimeFunction ExceptionThrowFn; 295 /// Function used for rethrowing exceptions, used at the end of @finally or 296 /// @synchronize blocks. 297 LazyRuntimeFunction ExceptionReThrowFn; 298 /// Function called when entering a catch function. This is required for 299 /// differentiating Objective-C exceptions and foreign exceptions. 300 LazyRuntimeFunction EnterCatchFn; 301 /// Function called when exiting from a catch block. Used to do exception 302 /// cleanup. 303 LazyRuntimeFunction ExitCatchFn; 304 /// Function called when entering an @synchronize block. Acquires the lock. 305 LazyRuntimeFunction SyncEnterFn; 306 /// Function called when exiting an @synchronize block. Releases the lock. 307 LazyRuntimeFunction SyncExitFn; 308 309 private: 310 311 /// Function called if fast enumeration detects that the collection is 312 /// modified during the update. 313 LazyRuntimeFunction EnumerationMutationFn; 314 /// Function for implementing synthesized property getters that return an 315 /// object. 316 LazyRuntimeFunction GetPropertyFn; 317 /// Function for implementing synthesized property setters that return an 318 /// object. 319 LazyRuntimeFunction SetPropertyFn; 320 /// Function used for non-object declared property getters. 321 LazyRuntimeFunction GetStructPropertyFn; 322 /// Function used for non-object declared property setters. 323 LazyRuntimeFunction SetStructPropertyFn; 324 325 /// The version of the runtime that this class targets. Must match the 326 /// version in the runtime. 327 int RuntimeVersion; 328 /// The version of the protocol class. Used to differentiate between ObjC1 329 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional 330 /// components and can not contain declared properties. We always emit 331 /// Objective-C 2 property structures, but we have to pretend that they're 332 /// Objective-C 1 property structures when targeting the GCC runtime or it 333 /// will abort. 334 const int ProtocolVersion; 335 private: 336 /// Generates an instance variable list structure. This is a structure 337 /// containing a size and an array of structures containing instance variable 338 /// metadata. This is used purely for introspection in the fragile ABI. In 339 /// the non-fragile ABI, it's used for instance variable fixup. 340 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 341 ArrayRef<llvm::Constant *> IvarTypes, 342 ArrayRef<llvm::Constant *> IvarOffsets); 343 /// Generates a method list structure. This is a structure containing a size 344 /// and an array of structures containing method metadata. 345 /// 346 /// This structure is used by both classes and categories, and contains a next 347 /// pointer allowing them to be chained together in a linked list. 348 llvm::Constant *GenerateMethodList(const StringRef &ClassName, 349 const StringRef &CategoryName, 350 ArrayRef<Selector> MethodSels, 351 ArrayRef<llvm::Constant *> MethodTypes, 352 bool isClassMethodList); 353 /// Emits an empty protocol. This is used for @protocol() where no protocol 354 /// is found. The runtime will (hopefully) fix up the pointer to refer to the 355 /// real protocol. 356 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName); 357 /// Generates a list of property metadata structures. This follows the same 358 /// pattern as method and instance variable metadata lists. 359 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID, 360 SmallVectorImpl<Selector> &InstanceMethodSels, 361 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes); 362 /// Generates a list of referenced protocols. Classes, categories, and 363 /// protocols all use this structure. 364 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols); 365 /// To ensure that all protocols are seen by the runtime, we add a category on 366 /// a class defined in the runtime, declaring no methods, but adopting the 367 /// protocols. This is a horribly ugly hack, but it allows us to collect all 368 /// of the protocols without changing the ABI. 369 void GenerateProtocolHolderCategory(void); 370 /// Generates a class structure. 371 llvm::Constant *GenerateClassStructure( 372 llvm::Constant *MetaClass, 373 llvm::Constant *SuperClass, 374 unsigned info, 375 const char *Name, 376 llvm::Constant *Version, 377 llvm::Constant *InstanceSize, 378 llvm::Constant *IVars, 379 llvm::Constant *Methods, 380 llvm::Constant *Protocols, 381 llvm::Constant *IvarOffsets, 382 llvm::Constant *Properties, 383 llvm::Constant *StrongIvarBitmap, 384 llvm::Constant *WeakIvarBitmap, 385 bool isMeta=false); 386 /// Generates a method list. This is used by protocols to define the required 387 /// and optional methods. 388 llvm::Constant *GenerateProtocolMethodList( 389 ArrayRef<llvm::Constant *> MethodNames, 390 ArrayRef<llvm::Constant *> MethodTypes); 391 /// Returns a selector with the specified type encoding. An empty string is 392 /// used to return an untyped selector (with the types field set to NULL). 393 llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel, 394 const std::string &TypeEncoding, bool lval); 395 /// Returns the variable used to store the offset of an instance variable. 396 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 397 const ObjCIvarDecl *Ivar); 398 /// Emits a reference to a class. This allows the linker to object if there 399 /// is no class of the matching name. 400 void EmitClassRef(const std::string &className); 401 /// Emits a pointer to the named class 402 llvm::Value *GetClassNamed(CGBuilderTy &Builder, const std::string &Name, 403 bool isWeak); 404 protected: 405 /// Looks up the method for sending a message to the specified object. This 406 /// mechanism differs between the GCC and GNU runtimes, so this method must be 407 /// overridden in subclasses. 408 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 409 llvm::Value *&Receiver, 410 llvm::Value *cmd, 411 llvm::MDNode *node) = 0; 412 /// Looks up the method for sending a message to a superclass. This 413 /// mechanism differs between the GCC and GNU runtimes, so this method must 414 /// be overridden in subclasses. 415 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 416 llvm::Value *ObjCSuper, 417 llvm::Value *cmd) = 0; 418 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 419 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 420 /// bits set to their values, LSB first, while larger ones are stored in a 421 /// structure of this / form: 422 /// 423 /// struct { int32_t length; int32_t values[length]; }; 424 /// 425 /// The values in the array are stored in host-endian format, with the least 426 /// significant bit being assumed to come first in the bitfield. Therefore, 427 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, 428 /// while a bitfield / with the 63rd bit set will be 1<<64. 429 llvm::Constant *MakeBitField(ArrayRef<bool> bits); 430 public: 431 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 432 unsigned protocolClassVersion); 433 434 virtual llvm::Constant *GenerateConstantString(const StringLiteral *); 435 436 virtual RValue 437 GenerateMessageSend(CodeGenFunction &CGF, 438 ReturnValueSlot Return, 439 QualType ResultType, 440 Selector Sel, 441 llvm::Value *Receiver, 442 const CallArgList &CallArgs, 443 const ObjCInterfaceDecl *Class, 444 const ObjCMethodDecl *Method); 445 virtual RValue 446 GenerateMessageSendSuper(CodeGenFunction &CGF, 447 ReturnValueSlot Return, 448 QualType ResultType, 449 Selector Sel, 450 const ObjCInterfaceDecl *Class, 451 bool isCategoryImpl, 452 llvm::Value *Receiver, 453 bool IsClassMessage, 454 const CallArgList &CallArgs, 455 const ObjCMethodDecl *Method); 456 virtual llvm::Value *GetClass(CGBuilderTy &Builder, 457 const ObjCInterfaceDecl *OID); 458 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel, 459 bool lval = false); 460 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl 461 *Method); 462 virtual llvm::Constant *GetEHType(QualType T); 463 464 virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 465 const ObjCContainerDecl *CD); 466 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 467 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 468 virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD); 469 virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder, 470 const ObjCProtocolDecl *PD); 471 virtual void GenerateProtocol(const ObjCProtocolDecl *PD); 472 virtual llvm::Function *ModuleInitFunction(); 473 virtual llvm::Constant *GetPropertyGetFunction(); 474 virtual llvm::Constant *GetPropertySetFunction(); 475 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 476 bool copy); 477 virtual llvm::Constant *GetSetStructFunction(); 478 virtual llvm::Constant *GetCppAtomicObjectFunction(); 479 virtual llvm::Constant *GetGetStructFunction(); 480 virtual llvm::Constant *EnumerationMutationFunction(); 481 482 virtual void EmitTryStmt(CodeGenFunction &CGF, 483 const ObjCAtTryStmt &S); 484 virtual void EmitSynchronizedStmt(CodeGenFunction &CGF, 485 const ObjCAtSynchronizedStmt &S); 486 virtual void EmitThrowStmt(CodeGenFunction &CGF, 487 const ObjCAtThrowStmt &S); 488 virtual llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF, 489 llvm::Value *AddrWeakObj); 490 virtual void EmitObjCWeakAssign(CodeGenFunction &CGF, 491 llvm::Value *src, llvm::Value *dst); 492 virtual void EmitObjCGlobalAssign(CodeGenFunction &CGF, 493 llvm::Value *src, llvm::Value *dest, 494 bool threadlocal=false); 495 virtual void EmitObjCIvarAssign(CodeGenFunction &CGF, 496 llvm::Value *src, llvm::Value *dest, 497 llvm::Value *ivarOffset); 498 virtual void EmitObjCStrongCastAssign(CodeGenFunction &CGF, 499 llvm::Value *src, llvm::Value *dest); 500 virtual void EmitGCMemmoveCollectable(CodeGenFunction &CGF, 501 llvm::Value *DestPtr, 502 llvm::Value *SrcPtr, 503 llvm::Value *Size); 504 virtual LValue EmitObjCValueForIvar(CodeGenFunction &CGF, 505 QualType ObjectTy, 506 llvm::Value *BaseValue, 507 const ObjCIvarDecl *Ivar, 508 unsigned CVRQualifiers); 509 virtual llvm::Value *EmitIvarOffset(CodeGenFunction &CGF, 510 const ObjCInterfaceDecl *Interface, 511 const ObjCIvarDecl *Ivar); 512 virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder); 513 virtual llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM, 514 const CGBlockInfo &blockInfo) { 515 return NULLPtr; 516 } 517 518 virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) { 519 return 0; 520 } 521 }; 522 /// Class representing the legacy GCC Objective-C ABI. This is the default when 523 /// -fobjc-nonfragile-abi is not specified. 524 /// 525 /// The GCC ABI target actually generates code that is approximately compatible 526 /// with the new GNUstep runtime ABI, but refrains from using any features that 527 /// would not work with the GCC runtime. For example, clang always generates 528 /// the extended form of the class structure, and the extra fields are simply 529 /// ignored by GCC libobjc. 530 class CGObjCGCC : public CGObjCGNU { 531 /// The GCC ABI message lookup function. Returns an IMP pointing to the 532 /// method implementation for this message. 533 LazyRuntimeFunction MsgLookupFn; 534 /// The GCC ABI superclass message lookup function. Takes a pointer to a 535 /// structure describing the receiver and the class, and a selector as 536 /// arguments. Returns the IMP for the corresponding method. 537 LazyRuntimeFunction MsgLookupSuperFn; 538 protected: 539 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 540 llvm::Value *&Receiver, 541 llvm::Value *cmd, 542 llvm::MDNode *node) { 543 CGBuilderTy &Builder = CGF.Builder; 544 llvm::Value *args[] = { 545 EnforceType(Builder, Receiver, IdTy), 546 EnforceType(Builder, cmd, SelectorTy) }; 547 llvm::CallSite imp = CGF.EmitCallOrInvoke(MsgLookupFn, args); 548 imp->setMetadata(msgSendMDKind, node); 549 return imp.getInstruction(); 550 } 551 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 552 llvm::Value *ObjCSuper, 553 llvm::Value *cmd) { 554 CGBuilderTy &Builder = CGF.Builder; 555 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper, 556 PtrToObjCSuperTy), cmd}; 557 return Builder.CreateCall(MsgLookupSuperFn, lookupArgs); 558 } 559 public: 560 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) { 561 // IMP objc_msg_lookup(id, SEL); 562 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL); 563 // IMP objc_msg_lookup_super(struct objc_super*, SEL); 564 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy, 565 PtrToObjCSuperTy, SelectorTy, NULL); 566 } 567 }; 568 /// Class used when targeting the new GNUstep runtime ABI. 569 class CGObjCGNUstep : public CGObjCGNU { 570 /// The slot lookup function. Returns a pointer to a cacheable structure 571 /// that contains (among other things) the IMP. 572 LazyRuntimeFunction SlotLookupFn; 573 /// The GNUstep ABI superclass message lookup function. Takes a pointer to 574 /// a structure describing the receiver and the class, and a selector as 575 /// arguments. Returns the slot for the corresponding method. Superclass 576 /// message lookup rarely changes, so this is a good caching opportunity. 577 LazyRuntimeFunction SlotLookupSuperFn; 578 /// Type of an slot structure pointer. This is returned by the various 579 /// lookup functions. 580 llvm::Type *SlotTy; 581 protected: 582 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF, 583 llvm::Value *&Receiver, 584 llvm::Value *cmd, 585 llvm::MDNode *node) { 586 CGBuilderTy &Builder = CGF.Builder; 587 llvm::Function *LookupFn = SlotLookupFn; 588 589 // Store the receiver on the stack so that we can reload it later 590 llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType()); 591 Builder.CreateStore(Receiver, ReceiverPtr); 592 593 llvm::Value *self; 594 595 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) { 596 self = CGF.LoadObjCSelf(); 597 } else { 598 self = llvm::ConstantPointerNull::get(IdTy); 599 } 600 601 // The lookup function is guaranteed not to capture the receiver pointer. 602 LookupFn->setDoesNotCapture(1); 603 604 llvm::Value *args[] = { 605 EnforceType(Builder, ReceiverPtr, PtrToIdTy), 606 EnforceType(Builder, cmd, SelectorTy), 607 EnforceType(Builder, self, IdTy) }; 608 llvm::CallSite slot = CGF.EmitCallOrInvoke(LookupFn, args); 609 slot.setOnlyReadsMemory(); 610 slot->setMetadata(msgSendMDKind, node); 611 612 // Load the imp from the slot 613 llvm::Value *imp = 614 Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4)); 615 616 // The lookup function may have changed the receiver, so make sure we use 617 // the new one. 618 Receiver = Builder.CreateLoad(ReceiverPtr, true); 619 return imp; 620 } 621 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, 622 llvm::Value *ObjCSuper, 623 llvm::Value *cmd) { 624 CGBuilderTy &Builder = CGF.Builder; 625 llvm::Value *lookupArgs[] = {ObjCSuper, cmd}; 626 627 llvm::CallInst *slot = Builder.CreateCall(SlotLookupSuperFn, lookupArgs); 628 slot->setOnlyReadsMemory(); 629 630 return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4)); 631 } 632 public: 633 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) { 634 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy, 635 PtrTy, PtrTy, IntTy, IMPTy, NULL); 636 SlotTy = llvm::PointerType::getUnqual(SlotStructTy); 637 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender); 638 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy, 639 SelectorTy, IdTy, NULL); 640 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL); 641 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy, 642 PtrToObjCSuperTy, SelectorTy, NULL); 643 // If we're in ObjC++ mode, then we want to make 644 if (CGM.getLangOpts().CPlusPlus) { 645 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 646 // void *__cxa_begin_catch(void *e) 647 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, NULL); 648 // void __cxa_end_catch(void) 649 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, NULL); 650 // void _Unwind_Resume_or_Rethrow(void*) 651 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, PtrTy, NULL); 652 } 653 } 654 }; 655 656 } // end anonymous namespace 657 658 659 /// Emits a reference to a dummy variable which is emitted with each class. 660 /// This ensures that a linker error will be generated when trying to link 661 /// together modules where a referenced class is not defined. 662 void CGObjCGNU::EmitClassRef(const std::string &className) { 663 std::string symbolRef = "__objc_class_ref_" + className; 664 // Don't emit two copies of the same symbol 665 if (TheModule.getGlobalVariable(symbolRef)) 666 return; 667 std::string symbolName = "__objc_class_name_" + className; 668 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName); 669 if (!ClassSymbol) { 670 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false, 671 llvm::GlobalValue::ExternalLinkage, 0, symbolName); 672 } 673 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true, 674 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef); 675 } 676 677 static std::string SymbolNameForMethod(const StringRef &ClassName, 678 const StringRef &CategoryName, const Selector MethodName, 679 bool isClassMethod) { 680 std::string MethodNameColonStripped = MethodName.getAsString(); 681 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(), 682 ':', '_'); 683 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" + 684 CategoryName + "_" + MethodNameColonStripped).str(); 685 } 686 687 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion, 688 unsigned protocolClassVersion) 689 : CGObjCRuntime(cgm), TheModule(CGM.getModule()), 690 VMContext(cgm.getLLVMContext()), ClassPtrAlias(0), MetaClassPtrAlias(0), 691 RuntimeVersion(runtimeABIVersion), ProtocolVersion(protocolClassVersion) { 692 693 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend"); 694 695 CodeGenTypes &Types = CGM.getTypes(); 696 IntTy = cast<llvm::IntegerType>( 697 Types.ConvertType(CGM.getContext().IntTy)); 698 LongTy = cast<llvm::IntegerType>( 699 Types.ConvertType(CGM.getContext().LongTy)); 700 SizeTy = cast<llvm::IntegerType>( 701 Types.ConvertType(CGM.getContext().getSizeType())); 702 PtrDiffTy = cast<llvm::IntegerType>( 703 Types.ConvertType(CGM.getContext().getPointerDiffType())); 704 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); 705 706 Int8Ty = llvm::Type::getInt8Ty(VMContext); 707 // C string type. Used in lots of places. 708 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty); 709 710 Zeros[0] = llvm::ConstantInt::get(LongTy, 0); 711 Zeros[1] = Zeros[0]; 712 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty); 713 // Get the selector Type. 714 QualType selTy = CGM.getContext().getObjCSelType(); 715 if (QualType() == selTy) { 716 SelectorTy = PtrToInt8Ty; 717 } else { 718 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy)); 719 } 720 721 PtrToIntTy = llvm::PointerType::getUnqual(IntTy); 722 PtrTy = PtrToInt8Ty; 723 724 Int32Ty = llvm::Type::getInt32Ty(VMContext); 725 Int64Ty = llvm::Type::getInt64Ty(VMContext); 726 727 IntPtrTy = 728 TheModule.getPointerSize() == llvm::Module::Pointer32 ? Int32Ty : Int64Ty; 729 730 // Object type 731 QualType UnqualIdTy = CGM.getContext().getObjCIdType(); 732 ASTIdTy = CanQualType(); 733 if (UnqualIdTy != QualType()) { 734 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy); 735 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 736 } else { 737 IdTy = PtrToInt8Ty; 738 } 739 PtrToIdTy = llvm::PointerType::getUnqual(IdTy); 740 741 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, NULL); 742 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy); 743 744 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext); 745 746 // void objc_exception_throw(id); 747 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL); 748 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL); 749 // int objc_sync_enter(id); 750 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, NULL); 751 // int objc_sync_exit(id); 752 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, NULL); 753 754 // void objc_enumerationMutation (id) 755 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, 756 IdTy, NULL); 757 758 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL) 759 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy, 760 PtrDiffTy, BoolTy, NULL); 761 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL) 762 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy, 763 PtrDiffTy, IdTy, BoolTy, BoolTy, NULL); 764 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 765 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 766 PtrDiffTy, BoolTy, BoolTy, NULL); 767 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL) 768 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 769 PtrDiffTy, BoolTy, BoolTy, NULL); 770 771 // IMP type 772 llvm::Type *IMPArgs[] = { IdTy, SelectorTy }; 773 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs, 774 true)); 775 776 const LangOptions &Opts = CGM.getLangOpts(); 777 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount) 778 RuntimeVersion = 10; 779 780 // Don't bother initialising the GC stuff unless we're compiling in GC mode 781 if (Opts.getGC() != LangOptions::NonGC) { 782 // This is a bit of an hack. We should sort this out by having a proper 783 // CGObjCGNUstep subclass for GC, but we may want to really support the old 784 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now 785 // Get selectors needed in GC mode 786 RetainSel = GetNullarySelector("retain", CGM.getContext()); 787 ReleaseSel = GetNullarySelector("release", CGM.getContext()); 788 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext()); 789 790 // Get functions needed in GC mode 791 792 // id objc_assign_ivar(id, id, ptrdiff_t); 793 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy, 794 NULL); 795 // id objc_assign_strongCast (id, id*) 796 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy, 797 PtrToIdTy, NULL); 798 // id objc_assign_global(id, id*); 799 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy, 800 NULL); 801 // id objc_assign_weak(id, id*); 802 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, NULL); 803 // id objc_read_weak(id*); 804 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, NULL); 805 // void *objc_memmove_collectable(void*, void *, size_t); 806 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy, 807 SizeTy, NULL); 808 } 809 } 810 811 llvm::Value *CGObjCGNU::GetClassNamed(CGBuilderTy &Builder, 812 const std::string &Name, 813 bool isWeak) { 814 llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name); 815 // With the incompatible ABI, this will need to be replaced with a direct 816 // reference to the class symbol. For the compatible nonfragile ABI we are 817 // still performing this lookup at run time but emitting the symbol for the 818 // class externally so that we can make the switch later. 819 // 820 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class 821 // with memoized versions or with static references if it's safe to do so. 822 if (!isWeak) 823 EmitClassRef(Name); 824 ClassName = Builder.CreateStructGEP(ClassName, 0); 825 826 llvm::Constant *ClassLookupFn = 827 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), 828 "objc_lookup_class"); 829 return Builder.CreateCall(ClassLookupFn, ClassName); 830 } 831 832 // This has to perform the lookup every time, since posing and related 833 // techniques can modify the name -> class mapping. 834 llvm::Value *CGObjCGNU::GetClass(CGBuilderTy &Builder, 835 const ObjCInterfaceDecl *OID) { 836 return GetClassNamed(Builder, OID->getNameAsString(), OID->isWeakImported()); 837 } 838 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder) { 839 return GetClassNamed(Builder, "NSAutoreleasePool", false); 840 } 841 842 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel, 843 const std::string &TypeEncoding, bool lval) { 844 845 SmallVector<TypedSelector, 2> &Types = SelectorTable[Sel]; 846 llvm::GlobalAlias *SelValue = 0; 847 848 849 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 850 e = Types.end() ; i!=e ; i++) { 851 if (i->first == TypeEncoding) { 852 SelValue = i->second; 853 break; 854 } 855 } 856 if (0 == SelValue) { 857 SelValue = new llvm::GlobalAlias(SelectorTy, 858 llvm::GlobalValue::PrivateLinkage, 859 ".objc_selector_"+Sel.getAsString(), NULL, 860 &TheModule); 861 Types.push_back(TypedSelector(TypeEncoding, SelValue)); 862 } 863 864 if (lval) { 865 llvm::Value *tmp = Builder.CreateAlloca(SelValue->getType()); 866 Builder.CreateStore(SelValue, tmp); 867 return tmp; 868 } 869 return SelValue; 870 } 871 872 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel, 873 bool lval) { 874 return GetSelector(Builder, Sel, std::string(), lval); 875 } 876 877 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl 878 *Method) { 879 std::string SelTypes; 880 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes); 881 return GetSelector(Builder, Method->getSelector(), SelTypes, false); 882 } 883 884 llvm::Constant *CGObjCGNU::GetEHType(QualType T) { 885 if (!CGM.getLangOpts().CPlusPlus) { 886 if (T->isObjCIdType() 887 || T->isObjCQualifiedIdType()) { 888 // With the old ABI, there was only one kind of catchall, which broke 889 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as 890 // a pointer indicating object catchalls, and NULL to indicate real 891 // catchalls 892 if (CGM.getLangOpts().ObjCNonFragileABI) { 893 return MakeConstantString("@id"); 894 } else { 895 return 0; 896 } 897 } 898 899 // All other types should be Objective-C interface pointer types. 900 const ObjCObjectPointerType *OPT = 901 T->getAs<ObjCObjectPointerType>(); 902 assert(OPT && "Invalid @catch type."); 903 const ObjCInterfaceDecl *IDecl = 904 OPT->getObjectType()->getInterface(); 905 assert(IDecl && "Invalid @catch type."); 906 return MakeConstantString(IDecl->getIdentifier()->getName()); 907 } 908 // For Objective-C++, we want to provide the ability to catch both C++ and 909 // Objective-C objects in the same function. 910 911 // There's a particular fixed type info for 'id'. 912 if (T->isObjCIdType() || 913 T->isObjCQualifiedIdType()) { 914 llvm::Constant *IDEHType = 915 CGM.getModule().getGlobalVariable("__objc_id_type_info"); 916 if (!IDEHType) 917 IDEHType = 918 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty, 919 false, 920 llvm::GlobalValue::ExternalLinkage, 921 0, "__objc_id_type_info"); 922 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty); 923 } 924 925 const ObjCObjectPointerType *PT = 926 T->getAs<ObjCObjectPointerType>(); 927 assert(PT && "Invalid @catch type."); 928 const ObjCInterfaceType *IT = PT->getInterfaceType(); 929 assert(IT && "Invalid @catch type."); 930 std::string className = IT->getDecl()->getIdentifier()->getName(); 931 932 std::string typeinfoName = "__objc_eh_typeinfo_" + className; 933 934 // Return the existing typeinfo if it exists 935 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName); 936 if (typeinfo) 937 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty); 938 939 // Otherwise create it. 940 941 // vtable for gnustep::libobjc::__objc_class_type_info 942 // It's quite ugly hard-coding this. Ideally we'd generate it using the host 943 // platform's name mangling. 944 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE"; 945 llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName); 946 if (!Vtable) { 947 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true, 948 llvm::GlobalValue::ExternalLinkage, 0, vtableName); 949 } 950 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2); 951 Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two); 952 Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty); 953 954 llvm::Constant *typeName = 955 ExportUniqueString(className, "__objc_eh_typename_"); 956 957 std::vector<llvm::Constant*> fields; 958 fields.push_back(Vtable); 959 fields.push_back(typeName); 960 llvm::Constant *TI = 961 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 962 NULL), fields, "__objc_eh_typeinfo_" + className, 963 llvm::GlobalValue::LinkOnceODRLinkage); 964 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty); 965 } 966 967 /// Generate an NSConstantString object. 968 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) { 969 970 std::string Str = SL->getString().str(); 971 972 // Look for an existing one 973 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str); 974 if (old != ObjCStrings.end()) 975 return old->getValue(); 976 977 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 978 979 if (StringClass.empty()) StringClass = "NXConstantString"; 980 981 std::string Sym = "_OBJC_CLASS_"; 982 Sym += StringClass; 983 984 llvm::Constant *isa = TheModule.getNamedGlobal(Sym); 985 986 if (!isa) 987 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false, 988 llvm::GlobalValue::ExternalWeakLinkage, 0, Sym); 989 else if (isa->getType() != PtrToIdTy) 990 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy); 991 992 std::vector<llvm::Constant*> Ivars; 993 Ivars.push_back(isa); 994 Ivars.push_back(MakeConstantString(Str)); 995 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size())); 996 llvm::Constant *ObjCStr = MakeGlobal( 997 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, NULL), 998 Ivars, ".objc_str"); 999 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty); 1000 ObjCStrings[Str] = ObjCStr; 1001 ConstantStrings.push_back(ObjCStr); 1002 return ObjCStr; 1003 } 1004 1005 ///Generates a message send where the super is the receiver. This is a message 1006 ///send to self with special delivery semantics indicating which class's method 1007 ///should be called. 1008 RValue 1009 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF, 1010 ReturnValueSlot Return, 1011 QualType ResultType, 1012 Selector Sel, 1013 const ObjCInterfaceDecl *Class, 1014 bool isCategoryImpl, 1015 llvm::Value *Receiver, 1016 bool IsClassMessage, 1017 const CallArgList &CallArgs, 1018 const ObjCMethodDecl *Method) { 1019 CGBuilderTy &Builder = CGF.Builder; 1020 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 1021 if (Sel == RetainSel || Sel == AutoreleaseSel) { 1022 return RValue::get(EnforceType(Builder, Receiver, 1023 CGM.getTypes().ConvertType(ResultType))); 1024 } 1025 if (Sel == ReleaseSel) { 1026 return RValue::get(0); 1027 } 1028 } 1029 1030 llvm::Value *cmd = GetSelector(Builder, Sel); 1031 1032 1033 CallArgList ActualArgs; 1034 1035 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy); 1036 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 1037 ActualArgs.addFrom(CallArgs); 1038 1039 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1040 1041 llvm::Value *ReceiverClass = 0; 1042 if (isCategoryImpl) { 1043 llvm::Constant *classLookupFunction = 0; 1044 if (IsClassMessage) { 1045 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 1046 IdTy, PtrTy, true), "objc_get_meta_class"); 1047 } else { 1048 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get( 1049 IdTy, PtrTy, true), "objc_get_class"); 1050 } 1051 ReceiverClass = Builder.CreateCall(classLookupFunction, 1052 MakeConstantString(Class->getNameAsString())); 1053 } else { 1054 // Set up global aliases for the metaclass or class pointer if they do not 1055 // already exist. These will are forward-references which will be set to 1056 // pointers to the class and metaclass structure created for the runtime 1057 // load function. To send a message to super, we look up the value of the 1058 // super_class pointer from either the class or metaclass structure. 1059 if (IsClassMessage) { 1060 if (!MetaClassPtrAlias) { 1061 MetaClassPtrAlias = new llvm::GlobalAlias(IdTy, 1062 llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" + 1063 Class->getNameAsString(), NULL, &TheModule); 1064 } 1065 ReceiverClass = MetaClassPtrAlias; 1066 } else { 1067 if (!ClassPtrAlias) { 1068 ClassPtrAlias = new llvm::GlobalAlias(IdTy, 1069 llvm::GlobalValue::InternalLinkage, ".objc_class_ref" + 1070 Class->getNameAsString(), NULL, &TheModule); 1071 } 1072 ReceiverClass = ClassPtrAlias; 1073 } 1074 } 1075 // Cast the pointer to a simplified version of the class structure 1076 ReceiverClass = Builder.CreateBitCast(ReceiverClass, 1077 llvm::PointerType::getUnqual( 1078 llvm::StructType::get(IdTy, IdTy, NULL))); 1079 // Get the superclass pointer 1080 ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1); 1081 // Load the superclass pointer 1082 ReceiverClass = Builder.CreateLoad(ReceiverClass); 1083 // Construct the structure used to look up the IMP 1084 llvm::StructType *ObjCSuperTy = llvm::StructType::get( 1085 Receiver->getType(), IdTy, NULL); 1086 llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy); 1087 1088 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0)); 1089 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1)); 1090 1091 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy); 1092 1093 // Get the IMP 1094 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd); 1095 imp = EnforceType(Builder, imp, MSI.MessengerType); 1096 1097 llvm::Value *impMD[] = { 1098 llvm::MDString::get(VMContext, Sel.getAsString()), 1099 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()), 1100 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage) 1101 }; 1102 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 1103 1104 llvm::Instruction *call; 1105 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 0, &call); 1106 call->setMetadata(msgSendMDKind, node); 1107 return msgRet; 1108 } 1109 1110 /// Generate code for a message send expression. 1111 RValue 1112 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF, 1113 ReturnValueSlot Return, 1114 QualType ResultType, 1115 Selector Sel, 1116 llvm::Value *Receiver, 1117 const CallArgList &CallArgs, 1118 const ObjCInterfaceDecl *Class, 1119 const ObjCMethodDecl *Method) { 1120 CGBuilderTy &Builder = CGF.Builder; 1121 1122 // Strip out message sends to retain / release in GC mode 1123 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 1124 if (Sel == RetainSel || Sel == AutoreleaseSel) { 1125 return RValue::get(EnforceType(Builder, Receiver, 1126 CGM.getTypes().ConvertType(ResultType))); 1127 } 1128 if (Sel == ReleaseSel) { 1129 return RValue::get(0); 1130 } 1131 } 1132 1133 // If the return type is something that goes in an integer register, the 1134 // runtime will handle 0 returns. For other cases, we fill in the 0 value 1135 // ourselves. 1136 // 1137 // The language spec says the result of this kind of message send is 1138 // undefined, but lots of people seem to have forgotten to read that 1139 // paragraph and insist on sending messages to nil that have structure 1140 // returns. With GCC, this generates a random return value (whatever happens 1141 // to be on the stack / in those registers at the time) on most platforms, 1142 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts 1143 // the stack. 1144 bool isPointerSizedReturn = (ResultType->isAnyPointerType() || 1145 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType()); 1146 1147 llvm::BasicBlock *startBB = 0; 1148 llvm::BasicBlock *messageBB = 0; 1149 llvm::BasicBlock *continueBB = 0; 1150 1151 if (!isPointerSizedReturn) { 1152 startBB = Builder.GetInsertBlock(); 1153 messageBB = CGF.createBasicBlock("msgSend"); 1154 continueBB = CGF.createBasicBlock("continue"); 1155 1156 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 1157 llvm::Constant::getNullValue(Receiver->getType())); 1158 Builder.CreateCondBr(isNil, continueBB, messageBB); 1159 CGF.EmitBlock(messageBB); 1160 } 1161 1162 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy)); 1163 llvm::Value *cmd; 1164 if (Method) 1165 cmd = GetSelector(Builder, Method); 1166 else 1167 cmd = GetSelector(Builder, Sel); 1168 cmd = EnforceType(Builder, cmd, SelectorTy); 1169 Receiver = EnforceType(Builder, Receiver, IdTy); 1170 1171 llvm::Value *impMD[] = { 1172 llvm::MDString::get(VMContext, Sel.getAsString()), 1173 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""), 1174 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), Class!=0) 1175 }; 1176 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD); 1177 1178 CallArgList ActualArgs; 1179 ActualArgs.add(RValue::get(Receiver), ASTIdTy); 1180 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType()); 1181 ActualArgs.addFrom(CallArgs); 1182 1183 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1184 1185 // Get the IMP to call 1186 llvm::Value *imp; 1187 1188 // If we have non-legacy dispatch specified, we try using the objc_msgSend() 1189 // functions. These are not supported on all platforms (or all runtimes on a 1190 // given platform), so we 1191 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 1192 case CodeGenOptions::Legacy: 1193 imp = LookupIMP(CGF, Receiver, cmd, node); 1194 break; 1195 case CodeGenOptions::Mixed: 1196 case CodeGenOptions::NonLegacy: 1197 if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1198 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1199 "objc_msgSend_fpret"); 1200 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 1201 // The actual types here don't matter - we're going to bitcast the 1202 // function anyway 1203 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1204 "objc_msgSend_stret"); 1205 } else { 1206 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true), 1207 "objc_msgSend"); 1208 } 1209 } 1210 1211 // Reset the receiver in case the lookup modified it 1212 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false); 1213 1214 imp = EnforceType(Builder, imp, MSI.MessengerType); 1215 1216 llvm::Instruction *call; 1217 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 1218 0, &call); 1219 call->setMetadata(msgSendMDKind, node); 1220 1221 1222 if (!isPointerSizedReturn) { 1223 messageBB = CGF.Builder.GetInsertBlock(); 1224 CGF.Builder.CreateBr(continueBB); 1225 CGF.EmitBlock(continueBB); 1226 if (msgRet.isScalar()) { 1227 llvm::Value *v = msgRet.getScalarVal(); 1228 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 1229 phi->addIncoming(v, messageBB); 1230 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB); 1231 msgRet = RValue::get(phi); 1232 } else if (msgRet.isAggregate()) { 1233 llvm::Value *v = msgRet.getAggregateAddr(); 1234 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2); 1235 llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType()); 1236 llvm::AllocaInst *NullVal = 1237 CGF.CreateTempAlloca(RetTy->getElementType(), "null"); 1238 CGF.InitTempAlloca(NullVal, 1239 llvm::Constant::getNullValue(RetTy->getElementType())); 1240 phi->addIncoming(v, messageBB); 1241 phi->addIncoming(NullVal, startBB); 1242 msgRet = RValue::getAggregate(phi); 1243 } else /* isComplex() */ { 1244 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal(); 1245 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2); 1246 phi->addIncoming(v.first, messageBB); 1247 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()), 1248 startBB); 1249 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2); 1250 phi2->addIncoming(v.second, messageBB); 1251 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()), 1252 startBB); 1253 msgRet = RValue::getComplex(phi, phi2); 1254 } 1255 } 1256 return msgRet; 1257 } 1258 1259 /// Generates a MethodList. Used in construction of a objc_class and 1260 /// objc_category structures. 1261 llvm::Constant *CGObjCGNU:: 1262 GenerateMethodList(const StringRef &ClassName, 1263 const StringRef &CategoryName, 1264 ArrayRef<Selector> MethodSels, 1265 ArrayRef<llvm::Constant *> MethodTypes, 1266 bool isClassMethodList) { 1267 if (MethodSels.empty()) 1268 return NULLPtr; 1269 // Get the method structure type. 1270 llvm::StructType *ObjCMethodTy = llvm::StructType::get( 1271 PtrToInt8Ty, // Really a selector, but the runtime creates it us. 1272 PtrToInt8Ty, // Method types 1273 IMPTy, //Method pointer 1274 NULL); 1275 std::vector<llvm::Constant*> Methods; 1276 std::vector<llvm::Constant*> Elements; 1277 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) { 1278 Elements.clear(); 1279 llvm::Constant *Method = 1280 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName, 1281 MethodSels[i], 1282 isClassMethodList)); 1283 assert(Method && "Can't generate metadata for method that doesn't exist"); 1284 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString()); 1285 Elements.push_back(C); 1286 Elements.push_back(MethodTypes[i]); 1287 Method = llvm::ConstantExpr::getBitCast(Method, 1288 IMPTy); 1289 Elements.push_back(Method); 1290 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements)); 1291 } 1292 1293 // Array of method structures 1294 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy, 1295 Methods.size()); 1296 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy, 1297 Methods); 1298 1299 // Structure containing list pointer, array and array count 1300 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext); 1301 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy); 1302 ObjCMethodListTy->setBody( 1303 NextPtrTy, 1304 IntTy, 1305 ObjCMethodArrayTy, 1306 NULL); 1307 1308 Methods.clear(); 1309 Methods.push_back(llvm::ConstantPointerNull::get( 1310 llvm::PointerType::getUnqual(ObjCMethodListTy))); 1311 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size())); 1312 Methods.push_back(MethodArray); 1313 1314 // Create an instance of the structure 1315 return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list"); 1316 } 1317 1318 /// Generates an IvarList. Used in construction of a objc_class. 1319 llvm::Constant *CGObjCGNU:: 1320 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames, 1321 ArrayRef<llvm::Constant *> IvarTypes, 1322 ArrayRef<llvm::Constant *> IvarOffsets) { 1323 if (IvarNames.size() == 0) 1324 return NULLPtr; 1325 // Get the method structure type. 1326 llvm::StructType *ObjCIvarTy = llvm::StructType::get( 1327 PtrToInt8Ty, 1328 PtrToInt8Ty, 1329 IntTy, 1330 NULL); 1331 std::vector<llvm::Constant*> Ivars; 1332 std::vector<llvm::Constant*> Elements; 1333 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) { 1334 Elements.clear(); 1335 Elements.push_back(IvarNames[i]); 1336 Elements.push_back(IvarTypes[i]); 1337 Elements.push_back(IvarOffsets[i]); 1338 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements)); 1339 } 1340 1341 // Array of method structures 1342 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy, 1343 IvarNames.size()); 1344 1345 1346 Elements.clear(); 1347 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size())); 1348 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars)); 1349 // Structure containing array and array count 1350 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy, 1351 ObjCIvarArrayTy, 1352 NULL); 1353 1354 // Create an instance of the structure 1355 return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list"); 1356 } 1357 1358 /// Generate a class structure 1359 llvm::Constant *CGObjCGNU::GenerateClassStructure( 1360 llvm::Constant *MetaClass, 1361 llvm::Constant *SuperClass, 1362 unsigned info, 1363 const char *Name, 1364 llvm::Constant *Version, 1365 llvm::Constant *InstanceSize, 1366 llvm::Constant *IVars, 1367 llvm::Constant *Methods, 1368 llvm::Constant *Protocols, 1369 llvm::Constant *IvarOffsets, 1370 llvm::Constant *Properties, 1371 llvm::Constant *StrongIvarBitmap, 1372 llvm::Constant *WeakIvarBitmap, 1373 bool isMeta) { 1374 // Set up the class structure 1375 // Note: Several of these are char*s when they should be ids. This is 1376 // because the runtime performs this translation on load. 1377 // 1378 // Fields marked New ABI are part of the GNUstep runtime. We emit them 1379 // anyway; the classes will still work with the GNU runtime, they will just 1380 // be ignored. 1381 llvm::StructType *ClassTy = llvm::StructType::get( 1382 PtrToInt8Ty, // isa 1383 PtrToInt8Ty, // super_class 1384 PtrToInt8Ty, // name 1385 LongTy, // version 1386 LongTy, // info 1387 LongTy, // instance_size 1388 IVars->getType(), // ivars 1389 Methods->getType(), // methods 1390 // These are all filled in by the runtime, so we pretend 1391 PtrTy, // dtable 1392 PtrTy, // subclass_list 1393 PtrTy, // sibling_class 1394 PtrTy, // protocols 1395 PtrTy, // gc_object_type 1396 // New ABI: 1397 LongTy, // abi_version 1398 IvarOffsets->getType(), // ivar_offsets 1399 Properties->getType(), // properties 1400 IntPtrTy, // strong_pointers 1401 IntPtrTy, // weak_pointers 1402 NULL); 1403 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0); 1404 // Fill in the structure 1405 std::vector<llvm::Constant*> Elements; 1406 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty)); 1407 Elements.push_back(SuperClass); 1408 Elements.push_back(MakeConstantString(Name, ".class_name")); 1409 Elements.push_back(Zero); 1410 Elements.push_back(llvm::ConstantInt::get(LongTy, info)); 1411 if (isMeta) { 1412 llvm::TargetData td(&TheModule); 1413 Elements.push_back( 1414 llvm::ConstantInt::get(LongTy, 1415 td.getTypeSizeInBits(ClassTy) / 1416 CGM.getContext().getCharWidth())); 1417 } else 1418 Elements.push_back(InstanceSize); 1419 Elements.push_back(IVars); 1420 Elements.push_back(Methods); 1421 Elements.push_back(NULLPtr); 1422 Elements.push_back(NULLPtr); 1423 Elements.push_back(NULLPtr); 1424 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy)); 1425 Elements.push_back(NULLPtr); 1426 Elements.push_back(llvm::ConstantInt::get(LongTy, 1)); 1427 Elements.push_back(IvarOffsets); 1428 Elements.push_back(Properties); 1429 Elements.push_back(StrongIvarBitmap); 1430 Elements.push_back(WeakIvarBitmap); 1431 // Create an instance of the structure 1432 // This is now an externally visible symbol, so that we can speed up class 1433 // messages in the next ABI. We may already have some weak references to 1434 // this, so check and fix them properly. 1435 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") + 1436 std::string(Name)); 1437 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym); 1438 llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym, 1439 llvm::GlobalValue::ExternalLinkage); 1440 if (ClassRef) { 1441 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class, 1442 ClassRef->getType())); 1443 ClassRef->removeFromParent(); 1444 Class->setName(ClassSym); 1445 } 1446 return Class; 1447 } 1448 1449 llvm::Constant *CGObjCGNU:: 1450 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames, 1451 ArrayRef<llvm::Constant *> MethodTypes) { 1452 // Get the method structure type. 1453 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get( 1454 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us. 1455 PtrToInt8Ty, 1456 NULL); 1457 std::vector<llvm::Constant*> Methods; 1458 std::vector<llvm::Constant*> Elements; 1459 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) { 1460 Elements.clear(); 1461 Elements.push_back(MethodNames[i]); 1462 Elements.push_back(MethodTypes[i]); 1463 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements)); 1464 } 1465 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy, 1466 MethodNames.size()); 1467 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy, 1468 Methods); 1469 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get( 1470 IntTy, ObjCMethodArrayTy, NULL); 1471 Methods.clear(); 1472 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size())); 1473 Methods.push_back(Array); 1474 return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list"); 1475 } 1476 1477 // Create the protocol list structure used in classes, categories and so on 1478 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){ 1479 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty, 1480 Protocols.size()); 1481 llvm::StructType *ProtocolListTy = llvm::StructType::get( 1482 PtrTy, //Should be a recurisve pointer, but it's always NULL here. 1483 SizeTy, 1484 ProtocolArrayTy, 1485 NULL); 1486 std::vector<llvm::Constant*> Elements; 1487 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end(); 1488 iter != endIter ; iter++) { 1489 llvm::Constant *protocol = 0; 1490 llvm::StringMap<llvm::Constant*>::iterator value = 1491 ExistingProtocols.find(*iter); 1492 if (value == ExistingProtocols.end()) { 1493 protocol = GenerateEmptyProtocol(*iter); 1494 } else { 1495 protocol = value->getValue(); 1496 } 1497 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol, 1498 PtrToInt8Ty); 1499 Elements.push_back(Ptr); 1500 } 1501 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1502 Elements); 1503 Elements.clear(); 1504 Elements.push_back(NULLPtr); 1505 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size())); 1506 Elements.push_back(ProtocolArray); 1507 return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list"); 1508 } 1509 1510 llvm::Value *CGObjCGNU::GenerateProtocolRef(CGBuilderTy &Builder, 1511 const ObjCProtocolDecl *PD) { 1512 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()]; 1513 llvm::Type *T = 1514 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType()); 1515 return Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T)); 1516 } 1517 1518 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol( 1519 const std::string &ProtocolName) { 1520 SmallVector<std::string, 0> EmptyStringVector; 1521 SmallVector<llvm::Constant*, 0> EmptyConstantVector; 1522 1523 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector); 1524 llvm::Constant *MethodList = 1525 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector); 1526 // Protocols are objects containing lists of the methods implemented and 1527 // protocols adopted. 1528 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy, 1529 PtrToInt8Ty, 1530 ProtocolList->getType(), 1531 MethodList->getType(), 1532 MethodList->getType(), 1533 MethodList->getType(), 1534 MethodList->getType(), 1535 NULL); 1536 std::vector<llvm::Constant*> Elements; 1537 // The isa pointer must be set to a magic number so the runtime knows it's 1538 // the correct layout. 1539 Elements.push_back(llvm::ConstantExpr::getIntToPtr( 1540 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1541 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name")); 1542 Elements.push_back(ProtocolList); 1543 Elements.push_back(MethodList); 1544 Elements.push_back(MethodList); 1545 Elements.push_back(MethodList); 1546 Elements.push_back(MethodList); 1547 return MakeGlobal(ProtocolTy, Elements, ".objc_protocol"); 1548 } 1549 1550 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) { 1551 ASTContext &Context = CGM.getContext(); 1552 std::string ProtocolName = PD->getNameAsString(); 1553 1554 // Use the protocol definition, if there is one. 1555 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 1556 PD = Def; 1557 1558 SmallVector<std::string, 16> Protocols; 1559 for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(), 1560 E = PD->protocol_end(); PI != E; ++PI) 1561 Protocols.push_back((*PI)->getNameAsString()); 1562 SmallVector<llvm::Constant*, 16> InstanceMethodNames; 1563 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 1564 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames; 1565 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes; 1566 for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(), 1567 E = PD->instmeth_end(); iter != E; iter++) { 1568 std::string TypeStr; 1569 Context.getObjCEncodingForMethodDecl(*iter, TypeStr); 1570 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) { 1571 InstanceMethodNames.push_back( 1572 MakeConstantString((*iter)->getSelector().getAsString())); 1573 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 1574 } else { 1575 OptionalInstanceMethodNames.push_back( 1576 MakeConstantString((*iter)->getSelector().getAsString())); 1577 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 1578 } 1579 } 1580 // Collect information about class methods: 1581 SmallVector<llvm::Constant*, 16> ClassMethodNames; 1582 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 1583 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames; 1584 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes; 1585 for (ObjCProtocolDecl::classmeth_iterator 1586 iter = PD->classmeth_begin(), endIter = PD->classmeth_end(); 1587 iter != endIter ; iter++) { 1588 std::string TypeStr; 1589 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 1590 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) { 1591 ClassMethodNames.push_back( 1592 MakeConstantString((*iter)->getSelector().getAsString())); 1593 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 1594 } else { 1595 OptionalClassMethodNames.push_back( 1596 MakeConstantString((*iter)->getSelector().getAsString())); 1597 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr)); 1598 } 1599 } 1600 1601 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols); 1602 llvm::Constant *InstanceMethodList = 1603 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes); 1604 llvm::Constant *ClassMethodList = 1605 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes); 1606 llvm::Constant *OptionalInstanceMethodList = 1607 GenerateProtocolMethodList(OptionalInstanceMethodNames, 1608 OptionalInstanceMethodTypes); 1609 llvm::Constant *OptionalClassMethodList = 1610 GenerateProtocolMethodList(OptionalClassMethodNames, 1611 OptionalClassMethodTypes); 1612 1613 // Property metadata: name, attributes, isSynthesized, setter name, setter 1614 // types, getter name, getter types. 1615 // The isSynthesized value is always set to 0 in a protocol. It exists to 1616 // simplify the runtime library by allowing it to use the same data 1617 // structures for protocol metadata everywhere. 1618 llvm::StructType *PropertyMetadataTy = llvm::StructType::get( 1619 PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, 1620 PtrToInt8Ty, NULL); 1621 std::vector<llvm::Constant*> Properties; 1622 std::vector<llvm::Constant*> OptionalProperties; 1623 1624 // Add all of the property methods need adding to the method list and to the 1625 // property metadata list. 1626 for (ObjCContainerDecl::prop_iterator 1627 iter = PD->prop_begin(), endIter = PD->prop_end(); 1628 iter != endIter ; iter++) { 1629 std::vector<llvm::Constant*> Fields; 1630 ObjCPropertyDecl *property = (*iter); 1631 1632 Fields.push_back(MakeConstantString(property->getNameAsString())); 1633 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 1634 property->getPropertyAttributes())); 1635 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0)); 1636 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) { 1637 std::string TypeStr; 1638 Context.getObjCEncodingForMethodDecl(getter,TypeStr); 1639 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1640 InstanceMethodTypes.push_back(TypeEncoding); 1641 Fields.push_back(MakeConstantString(getter->getSelector().getAsString())); 1642 Fields.push_back(TypeEncoding); 1643 } else { 1644 Fields.push_back(NULLPtr); 1645 Fields.push_back(NULLPtr); 1646 } 1647 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) { 1648 std::string TypeStr; 1649 Context.getObjCEncodingForMethodDecl(setter,TypeStr); 1650 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1651 InstanceMethodTypes.push_back(TypeEncoding); 1652 Fields.push_back(MakeConstantString(setter->getSelector().getAsString())); 1653 Fields.push_back(TypeEncoding); 1654 } else { 1655 Fields.push_back(NULLPtr); 1656 Fields.push_back(NULLPtr); 1657 } 1658 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) { 1659 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 1660 } else { 1661 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 1662 } 1663 } 1664 llvm::Constant *PropertyArray = llvm::ConstantArray::get( 1665 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties); 1666 llvm::Constant* PropertyListInitFields[] = 1667 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray}; 1668 1669 llvm::Constant *PropertyListInit = 1670 llvm::ConstantStruct::getAnon(PropertyListInitFields); 1671 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule, 1672 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage, 1673 PropertyListInit, ".objc_property_list"); 1674 1675 llvm::Constant *OptionalPropertyArray = 1676 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy, 1677 OptionalProperties.size()) , OptionalProperties); 1678 llvm::Constant* OptionalPropertyListInitFields[] = { 1679 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr, 1680 OptionalPropertyArray }; 1681 1682 llvm::Constant *OptionalPropertyListInit = 1683 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields); 1684 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule, 1685 OptionalPropertyListInit->getType(), false, 1686 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit, 1687 ".objc_property_list"); 1688 1689 // Protocols are objects containing lists of the methods implemented and 1690 // protocols adopted. 1691 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy, 1692 PtrToInt8Ty, 1693 ProtocolList->getType(), 1694 InstanceMethodList->getType(), 1695 ClassMethodList->getType(), 1696 OptionalInstanceMethodList->getType(), 1697 OptionalClassMethodList->getType(), 1698 PropertyList->getType(), 1699 OptionalPropertyList->getType(), 1700 NULL); 1701 std::vector<llvm::Constant*> Elements; 1702 // The isa pointer must be set to a magic number so the runtime knows it's 1703 // the correct layout. 1704 Elements.push_back(llvm::ConstantExpr::getIntToPtr( 1705 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy)); 1706 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name")); 1707 Elements.push_back(ProtocolList); 1708 Elements.push_back(InstanceMethodList); 1709 Elements.push_back(ClassMethodList); 1710 Elements.push_back(OptionalInstanceMethodList); 1711 Elements.push_back(OptionalClassMethodList); 1712 Elements.push_back(PropertyList); 1713 Elements.push_back(OptionalPropertyList); 1714 ExistingProtocols[ProtocolName] = 1715 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements, 1716 ".objc_protocol"), IdTy); 1717 } 1718 void CGObjCGNU::GenerateProtocolHolderCategory(void) { 1719 // Collect information about instance methods 1720 SmallVector<Selector, 1> MethodSels; 1721 SmallVector<llvm::Constant*, 1> MethodTypes; 1722 1723 std::vector<llvm::Constant*> Elements; 1724 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack"; 1725 const std::string CategoryName = "AnotherHack"; 1726 Elements.push_back(MakeConstantString(CategoryName)); 1727 Elements.push_back(MakeConstantString(ClassName)); 1728 // Instance method list 1729 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1730 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy)); 1731 // Class method list 1732 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1733 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy)); 1734 // Protocol list 1735 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy, 1736 ExistingProtocols.size()); 1737 llvm::StructType *ProtocolListTy = llvm::StructType::get( 1738 PtrTy, //Should be a recurisve pointer, but it's always NULL here. 1739 SizeTy, 1740 ProtocolArrayTy, 1741 NULL); 1742 std::vector<llvm::Constant*> ProtocolElements; 1743 for (llvm::StringMapIterator<llvm::Constant*> iter = 1744 ExistingProtocols.begin(), endIter = ExistingProtocols.end(); 1745 iter != endIter ; iter++) { 1746 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(), 1747 PtrTy); 1748 ProtocolElements.push_back(Ptr); 1749 } 1750 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy, 1751 ProtocolElements); 1752 ProtocolElements.clear(); 1753 ProtocolElements.push_back(NULLPtr); 1754 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy, 1755 ExistingProtocols.size())); 1756 ProtocolElements.push_back(ProtocolArray); 1757 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy, 1758 ProtocolElements, ".objc_protocol_list"), PtrTy)); 1759 Categories.push_back(llvm::ConstantExpr::getBitCast( 1760 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 1761 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy)); 1762 } 1763 1764 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are 1765 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63 1766 /// bits set to their values, LSB first, while larger ones are stored in a 1767 /// structure of this / form: 1768 /// 1769 /// struct { int32_t length; int32_t values[length]; }; 1770 /// 1771 /// The values in the array are stored in host-endian format, with the least 1772 /// significant bit being assumed to come first in the bitfield. Therefore, a 1773 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a 1774 /// bitfield / with the 63rd bit set will be 1<<64. 1775 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) { 1776 int bitCount = bits.size(); 1777 int ptrBits = 1778 (TheModule.getPointerSize() == llvm::Module::Pointer32) ? 32 : 64; 1779 if (bitCount < ptrBits) { 1780 uint64_t val = 1; 1781 for (int i=0 ; i<bitCount ; ++i) { 1782 if (bits[i]) val |= 1ULL<<(i+1); 1783 } 1784 return llvm::ConstantInt::get(IntPtrTy, val); 1785 } 1786 llvm::SmallVector<llvm::Constant*, 8> values; 1787 int v=0; 1788 while (v < bitCount) { 1789 int32_t word = 0; 1790 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) { 1791 if (bits[v]) word |= 1<<i; 1792 v++; 1793 } 1794 values.push_back(llvm::ConstantInt::get(Int32Ty, word)); 1795 } 1796 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size()); 1797 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values); 1798 llvm::Constant *fields[2] = { 1799 llvm::ConstantInt::get(Int32Ty, values.size()), 1800 array }; 1801 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy, 1802 NULL), fields); 1803 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy); 1804 return ptr; 1805 } 1806 1807 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 1808 std::string ClassName = OCD->getClassInterface()->getNameAsString(); 1809 std::string CategoryName = OCD->getNameAsString(); 1810 // Collect information about instance methods 1811 SmallVector<Selector, 16> InstanceMethodSels; 1812 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 1813 for (ObjCCategoryImplDecl::instmeth_iterator 1814 iter = OCD->instmeth_begin(), endIter = OCD->instmeth_end(); 1815 iter != endIter ; iter++) { 1816 InstanceMethodSels.push_back((*iter)->getSelector()); 1817 std::string TypeStr; 1818 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr); 1819 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 1820 } 1821 1822 // Collect information about class methods 1823 SmallVector<Selector, 16> ClassMethodSels; 1824 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 1825 for (ObjCCategoryImplDecl::classmeth_iterator 1826 iter = OCD->classmeth_begin(), endIter = OCD->classmeth_end(); 1827 iter != endIter ; iter++) { 1828 ClassMethodSels.push_back((*iter)->getSelector()); 1829 std::string TypeStr; 1830 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr); 1831 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 1832 } 1833 1834 // Collect the names of referenced protocols 1835 SmallVector<std::string, 16> Protocols; 1836 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl(); 1837 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols(); 1838 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(), 1839 E = Protos.end(); I != E; ++I) 1840 Protocols.push_back((*I)->getNameAsString()); 1841 1842 std::vector<llvm::Constant*> Elements; 1843 Elements.push_back(MakeConstantString(CategoryName)); 1844 Elements.push_back(MakeConstantString(ClassName)); 1845 // Instance method list 1846 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1847 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes, 1848 false), PtrTy)); 1849 // Class method list 1850 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList( 1851 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true), 1852 PtrTy)); 1853 // Protocol list 1854 Elements.push_back(llvm::ConstantExpr::getBitCast( 1855 GenerateProtocolList(Protocols), PtrTy)); 1856 Categories.push_back(llvm::ConstantExpr::getBitCast( 1857 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, 1858 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy)); 1859 } 1860 1861 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID, 1862 SmallVectorImpl<Selector> &InstanceMethodSels, 1863 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) { 1864 ASTContext &Context = CGM.getContext(); 1865 // 1866 // Property metadata: name, attributes, isSynthesized, setter name, setter 1867 // types, getter name, getter types. 1868 llvm::StructType *PropertyMetadataTy = llvm::StructType::get( 1869 PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, 1870 PtrToInt8Ty, NULL); 1871 std::vector<llvm::Constant*> Properties; 1872 1873 1874 // Add all of the property methods need adding to the method list and to the 1875 // property metadata list. 1876 for (ObjCImplDecl::propimpl_iterator 1877 iter = OID->propimpl_begin(), endIter = OID->propimpl_end(); 1878 iter != endIter ; iter++) { 1879 std::vector<llvm::Constant*> Fields; 1880 ObjCPropertyDecl *property = (*iter)->getPropertyDecl(); 1881 ObjCPropertyImplDecl *propertyImpl = *iter; 1882 bool isSynthesized = (propertyImpl->getPropertyImplementation() == 1883 ObjCPropertyImplDecl::Synthesize); 1884 1885 Fields.push_back(MakeConstantString(property->getNameAsString())); 1886 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 1887 property->getPropertyAttributes())); 1888 Fields.push_back(llvm::ConstantInt::get(Int8Ty, isSynthesized)); 1889 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) { 1890 std::string TypeStr; 1891 Context.getObjCEncodingForMethodDecl(getter,TypeStr); 1892 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1893 if (isSynthesized) { 1894 InstanceMethodTypes.push_back(TypeEncoding); 1895 InstanceMethodSels.push_back(getter->getSelector()); 1896 } 1897 Fields.push_back(MakeConstantString(getter->getSelector().getAsString())); 1898 Fields.push_back(TypeEncoding); 1899 } else { 1900 Fields.push_back(NULLPtr); 1901 Fields.push_back(NULLPtr); 1902 } 1903 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) { 1904 std::string TypeStr; 1905 Context.getObjCEncodingForMethodDecl(setter,TypeStr); 1906 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr); 1907 if (isSynthesized) { 1908 InstanceMethodTypes.push_back(TypeEncoding); 1909 InstanceMethodSels.push_back(setter->getSelector()); 1910 } 1911 Fields.push_back(MakeConstantString(setter->getSelector().getAsString())); 1912 Fields.push_back(TypeEncoding); 1913 } else { 1914 Fields.push_back(NULLPtr); 1915 Fields.push_back(NULLPtr); 1916 } 1917 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields)); 1918 } 1919 llvm::ArrayType *PropertyArrayTy = 1920 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()); 1921 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy, 1922 Properties); 1923 llvm::Constant* PropertyListInitFields[] = 1924 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray}; 1925 1926 llvm::Constant *PropertyListInit = 1927 llvm::ConstantStruct::getAnon(PropertyListInitFields); 1928 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false, 1929 llvm::GlobalValue::InternalLinkage, PropertyListInit, 1930 ".objc_property_list"); 1931 } 1932 1933 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) { 1934 // Get the class declaration for which the alias is specified. 1935 ObjCInterfaceDecl *ClassDecl = 1936 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface()); 1937 std::string ClassName = ClassDecl->getNameAsString(); 1938 std::string AliasName = OAD->getNameAsString(); 1939 ClassAliases.push_back(ClassAliasPair(ClassName,AliasName)); 1940 } 1941 1942 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) { 1943 ASTContext &Context = CGM.getContext(); 1944 1945 // Get the superclass name. 1946 const ObjCInterfaceDecl * SuperClassDecl = 1947 OID->getClassInterface()->getSuperClass(); 1948 std::string SuperClassName; 1949 if (SuperClassDecl) { 1950 SuperClassName = SuperClassDecl->getNameAsString(); 1951 EmitClassRef(SuperClassName); 1952 } 1953 1954 // Get the class name 1955 ObjCInterfaceDecl *ClassDecl = 1956 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface()); 1957 std::string ClassName = ClassDecl->getNameAsString(); 1958 // Emit the symbol that is used to generate linker errors if this class is 1959 // referenced in other modules but not declared. 1960 std::string classSymbolName = "__objc_class_name_" + ClassName; 1961 if (llvm::GlobalVariable *symbol = 1962 TheModule.getGlobalVariable(classSymbolName)) { 1963 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0)); 1964 } else { 1965 new llvm::GlobalVariable(TheModule, LongTy, false, 1966 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0), 1967 classSymbolName); 1968 } 1969 1970 // Get the size of instances. 1971 int instanceSize = 1972 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity(); 1973 1974 // Collect information about instance variables. 1975 SmallVector<llvm::Constant*, 16> IvarNames; 1976 SmallVector<llvm::Constant*, 16> IvarTypes; 1977 SmallVector<llvm::Constant*, 16> IvarOffsets; 1978 1979 std::vector<llvm::Constant*> IvarOffsetValues; 1980 SmallVector<bool, 16> WeakIvars; 1981 SmallVector<bool, 16> StrongIvars; 1982 1983 int superInstanceSize = !SuperClassDecl ? 0 : 1984 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity(); 1985 // For non-fragile ivars, set the instance size to 0 - {the size of just this 1986 // class}. The runtime will then set this to the correct value on load. 1987 if (CGM.getContext().getLangOpts().ObjCNonFragileABI) { 1988 instanceSize = 0 - (instanceSize - superInstanceSize); 1989 } 1990 1991 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 1992 IVD = IVD->getNextIvar()) { 1993 // Store the name 1994 IvarNames.push_back(MakeConstantString(IVD->getNameAsString())); 1995 // Get the type encoding for this ivar 1996 std::string TypeStr; 1997 Context.getObjCEncodingForType(IVD->getType(), TypeStr); 1998 IvarTypes.push_back(MakeConstantString(TypeStr)); 1999 // Get the offset 2000 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD); 2001 uint64_t Offset = BaseOffset; 2002 if (CGM.getContext().getLangOpts().ObjCNonFragileABI) { 2003 Offset = BaseOffset - superInstanceSize; 2004 } 2005 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset); 2006 // Create the direct offset value 2007 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." + 2008 IVD->getNameAsString(); 2009 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName); 2010 if (OffsetVar) { 2011 OffsetVar->setInitializer(OffsetValue); 2012 // If this is the real definition, change its linkage type so that 2013 // different modules will use this one, rather than their private 2014 // copy. 2015 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage); 2016 } else 2017 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy, 2018 false, llvm::GlobalValue::ExternalLinkage, 2019 OffsetValue, 2020 "__objc_ivar_offset_value_" + ClassName +"." + 2021 IVD->getNameAsString()); 2022 IvarOffsets.push_back(OffsetValue); 2023 IvarOffsetValues.push_back(OffsetVar); 2024 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime(); 2025 switch (lt) { 2026 case Qualifiers::OCL_Strong: 2027 StrongIvars.push_back(true); 2028 WeakIvars.push_back(false); 2029 break; 2030 case Qualifiers::OCL_Weak: 2031 StrongIvars.push_back(false); 2032 WeakIvars.push_back(true); 2033 break; 2034 default: 2035 StrongIvars.push_back(false); 2036 WeakIvars.push_back(false); 2037 } 2038 } 2039 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars); 2040 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars); 2041 llvm::GlobalVariable *IvarOffsetArray = 2042 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets"); 2043 2044 2045 // Collect information about instance methods 2046 SmallVector<Selector, 16> InstanceMethodSels; 2047 SmallVector<llvm::Constant*, 16> InstanceMethodTypes; 2048 for (ObjCImplementationDecl::instmeth_iterator 2049 iter = OID->instmeth_begin(), endIter = OID->instmeth_end(); 2050 iter != endIter ; iter++) { 2051 InstanceMethodSels.push_back((*iter)->getSelector()); 2052 std::string TypeStr; 2053 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 2054 InstanceMethodTypes.push_back(MakeConstantString(TypeStr)); 2055 } 2056 2057 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels, 2058 InstanceMethodTypes); 2059 2060 2061 // Collect information about class methods 2062 SmallVector<Selector, 16> ClassMethodSels; 2063 SmallVector<llvm::Constant*, 16> ClassMethodTypes; 2064 for (ObjCImplementationDecl::classmeth_iterator 2065 iter = OID->classmeth_begin(), endIter = OID->classmeth_end(); 2066 iter != endIter ; iter++) { 2067 ClassMethodSels.push_back((*iter)->getSelector()); 2068 std::string TypeStr; 2069 Context.getObjCEncodingForMethodDecl((*iter),TypeStr); 2070 ClassMethodTypes.push_back(MakeConstantString(TypeStr)); 2071 } 2072 // Collect the names of referenced protocols 2073 SmallVector<std::string, 16> Protocols; 2074 for (ObjCInterfaceDecl::protocol_iterator 2075 I = ClassDecl->protocol_begin(), 2076 E = ClassDecl->protocol_end(); I != E; ++I) 2077 Protocols.push_back((*I)->getNameAsString()); 2078 2079 2080 2081 // Get the superclass pointer. 2082 llvm::Constant *SuperClass; 2083 if (!SuperClassName.empty()) { 2084 SuperClass = MakeConstantString(SuperClassName, ".super_class_name"); 2085 } else { 2086 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty); 2087 } 2088 // Empty vector used to construct empty method lists 2089 SmallVector<llvm::Constant*, 1> empty; 2090 // Generate the method and instance variable lists 2091 llvm::Constant *MethodList = GenerateMethodList(ClassName, "", 2092 InstanceMethodSels, InstanceMethodTypes, false); 2093 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "", 2094 ClassMethodSels, ClassMethodTypes, true); 2095 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes, 2096 IvarOffsets); 2097 // Irrespective of whether we are compiling for a fragile or non-fragile ABI, 2098 // we emit a symbol containing the offset for each ivar in the class. This 2099 // allows code compiled for the non-Fragile ABI to inherit from code compiled 2100 // for the legacy ABI, without causing problems. The converse is also 2101 // possible, but causes all ivar accesses to be fragile. 2102 2103 // Offset pointer for getting at the correct field in the ivar list when 2104 // setting up the alias. These are: The base address for the global, the 2105 // ivar array (second field), the ivar in this list (set for each ivar), and 2106 // the offset (third field in ivar structure) 2107 llvm::Type *IndexTy = Int32Ty; 2108 llvm::Constant *offsetPointerIndexes[] = {Zeros[0], 2109 llvm::ConstantInt::get(IndexTy, 1), 0, 2110 llvm::ConstantInt::get(IndexTy, 2) }; 2111 2112 unsigned ivarIndex = 0; 2113 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD; 2114 IVD = IVD->getNextIvar()) { 2115 const std::string Name = "__objc_ivar_offset_" + ClassName + '.' 2116 + IVD->getNameAsString(); 2117 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex); 2118 // Get the correct ivar field 2119 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr( 2120 IvarList, offsetPointerIndexes); 2121 // Get the existing variable, if one exists. 2122 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name); 2123 if (offset) { 2124 offset->setInitializer(offsetValue); 2125 // If this is the real definition, change its linkage type so that 2126 // different modules will use this one, rather than their private 2127 // copy. 2128 offset->setLinkage(llvm::GlobalValue::ExternalLinkage); 2129 } else { 2130 // Add a new alias if there isn't one already. 2131 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(), 2132 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name); 2133 (void) offset; // Silence dead store warning. 2134 } 2135 ++ivarIndex; 2136 } 2137 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0); 2138 //Generate metaclass for class methods 2139 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr, 2140 NULLPtr, 0x12L, ClassName.c_str(), 0, Zeros[0], GenerateIvarList( 2141 empty, empty, empty), ClassMethodList, NULLPtr, 2142 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true); 2143 2144 // Generate the class structure 2145 llvm::Constant *ClassStruct = 2146 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L, 2147 ClassName.c_str(), 0, 2148 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, 2149 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray, 2150 Properties, StrongIvarBitmap, WeakIvarBitmap); 2151 2152 // Resolve the class aliases, if they exist. 2153 if (ClassPtrAlias) { 2154 ClassPtrAlias->replaceAllUsesWith( 2155 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy)); 2156 ClassPtrAlias->eraseFromParent(); 2157 ClassPtrAlias = 0; 2158 } 2159 if (MetaClassPtrAlias) { 2160 MetaClassPtrAlias->replaceAllUsesWith( 2161 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy)); 2162 MetaClassPtrAlias->eraseFromParent(); 2163 MetaClassPtrAlias = 0; 2164 } 2165 2166 // Add class structure to list to be added to the symtab later 2167 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty); 2168 Classes.push_back(ClassStruct); 2169 } 2170 2171 2172 llvm::Function *CGObjCGNU::ModuleInitFunction() { 2173 // Only emit an ObjC load function if no Objective-C stuff has been called 2174 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() && 2175 ExistingProtocols.empty() && SelectorTable.empty()) 2176 return NULL; 2177 2178 // Add all referenced protocols to a category. 2179 GenerateProtocolHolderCategory(); 2180 2181 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>( 2182 SelectorTy->getElementType()); 2183 llvm::Type *SelStructPtrTy = SelectorTy; 2184 if (SelStructTy == 0) { 2185 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, NULL); 2186 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy); 2187 } 2188 2189 std::vector<llvm::Constant*> Elements; 2190 llvm::Constant *Statics = NULLPtr; 2191 // Generate statics list: 2192 if (ConstantStrings.size()) { 2193 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty, 2194 ConstantStrings.size() + 1); 2195 ConstantStrings.push_back(NULLPtr); 2196 2197 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass; 2198 2199 if (StringClass.empty()) StringClass = "NXConstantString"; 2200 2201 Elements.push_back(MakeConstantString(StringClass, 2202 ".objc_static_class_name")); 2203 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy, 2204 ConstantStrings)); 2205 llvm::StructType *StaticsListTy = 2206 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, NULL); 2207 llvm::Type *StaticsListPtrTy = 2208 llvm::PointerType::getUnqual(StaticsListTy); 2209 Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics"); 2210 llvm::ArrayType *StaticsListArrayTy = 2211 llvm::ArrayType::get(StaticsListPtrTy, 2); 2212 Elements.clear(); 2213 Elements.push_back(Statics); 2214 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy)); 2215 Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr"); 2216 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy); 2217 } 2218 // Array of classes, categories, and constant objects 2219 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty, 2220 Classes.size() + Categories.size() + 2); 2221 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy, 2222 llvm::Type::getInt16Ty(VMContext), 2223 llvm::Type::getInt16Ty(VMContext), 2224 ClassListTy, NULL); 2225 2226 Elements.clear(); 2227 // Pointer to an array of selectors used in this module. 2228 std::vector<llvm::Constant*> Selectors; 2229 std::vector<llvm::GlobalAlias*> SelectorAliases; 2230 for (SelectorMap::iterator iter = SelectorTable.begin(), 2231 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) { 2232 2233 std::string SelNameStr = iter->first.getAsString(); 2234 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name"); 2235 2236 SmallVectorImpl<TypedSelector> &Types = iter->second; 2237 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(), 2238 e = Types.end() ; i!=e ; i++) { 2239 2240 llvm::Constant *SelectorTypeEncoding = NULLPtr; 2241 if (!i->first.empty()) 2242 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types"); 2243 2244 Elements.push_back(SelName); 2245 Elements.push_back(SelectorTypeEncoding); 2246 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements)); 2247 Elements.clear(); 2248 2249 // Store the selector alias for later replacement 2250 SelectorAliases.push_back(i->second); 2251 } 2252 } 2253 unsigned SelectorCount = Selectors.size(); 2254 // NULL-terminate the selector list. This should not actually be required, 2255 // because the selector list has a length field. Unfortunately, the GCC 2256 // runtime decides to ignore the length field and expects a NULL terminator, 2257 // and GCC cooperates with this by always setting the length to 0. 2258 Elements.push_back(NULLPtr); 2259 Elements.push_back(NULLPtr); 2260 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements)); 2261 Elements.clear(); 2262 2263 // Number of static selectors 2264 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount)); 2265 llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors, 2266 ".objc_selector_list"); 2267 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList, 2268 SelStructPtrTy)); 2269 2270 // Now that all of the static selectors exist, create pointers to them. 2271 for (unsigned int i=0 ; i<SelectorCount ; i++) { 2272 2273 llvm::Constant *Idxs[] = {Zeros[0], 2274 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]}; 2275 // FIXME: We're generating redundant loads and stores here! 2276 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList, 2277 makeArrayRef(Idxs, 2)); 2278 // If selectors are defined as an opaque type, cast the pointer to this 2279 // type. 2280 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy); 2281 SelectorAliases[i]->replaceAllUsesWith(SelPtr); 2282 SelectorAliases[i]->eraseFromParent(); 2283 } 2284 2285 // Number of classes defined. 2286 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext), 2287 Classes.size())); 2288 // Number of categories defined 2289 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext), 2290 Categories.size())); 2291 // Create an array of classes, then categories, then static object instances 2292 Classes.insert(Classes.end(), Categories.begin(), Categories.end()); 2293 // NULL-terminated list of static object instances (mainly constant strings) 2294 Classes.push_back(Statics); 2295 Classes.push_back(NULLPtr); 2296 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes); 2297 Elements.push_back(ClassList); 2298 // Construct the symbol table 2299 llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements); 2300 2301 // The symbol table is contained in a module which has some version-checking 2302 // constants 2303 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy, 2304 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy), 2305 (RuntimeVersion >= 10) ? IntTy : NULL, NULL); 2306 Elements.clear(); 2307 // Runtime version, used for ABI compatibility checking. 2308 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion)); 2309 // sizeof(ModuleTy) 2310 llvm::TargetData td(&TheModule); 2311 Elements.push_back( 2312 llvm::ConstantInt::get(LongTy, 2313 td.getTypeSizeInBits(ModuleTy) / 2314 CGM.getContext().getCharWidth())); 2315 2316 // The path to the source file where this module was declared 2317 SourceManager &SM = CGM.getContext().getSourceManager(); 2318 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID()); 2319 std::string path = 2320 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName(); 2321 Elements.push_back(MakeConstantString(path, ".objc_source_file_name")); 2322 Elements.push_back(SymTab); 2323 2324 if (RuntimeVersion >= 10) 2325 switch (CGM.getLangOpts().getGC()) { 2326 case LangOptions::GCOnly: 2327 Elements.push_back(llvm::ConstantInt::get(IntTy, 2)); 2328 break; 2329 case LangOptions::NonGC: 2330 if (CGM.getLangOpts().ObjCAutoRefCount) 2331 Elements.push_back(llvm::ConstantInt::get(IntTy, 1)); 2332 else 2333 Elements.push_back(llvm::ConstantInt::get(IntTy, 0)); 2334 break; 2335 case LangOptions::HybridGC: 2336 Elements.push_back(llvm::ConstantInt::get(IntTy, 1)); 2337 break; 2338 } 2339 2340 llvm::Value *Module = MakeGlobal(ModuleTy, Elements); 2341 2342 // Create the load function calling the runtime entry point with the module 2343 // structure 2344 llvm::Function * LoadFunction = llvm::Function::Create( 2345 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false), 2346 llvm::GlobalValue::InternalLinkage, ".objc_load_function", 2347 &TheModule); 2348 llvm::BasicBlock *EntryBB = 2349 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction); 2350 CGBuilderTy Builder(VMContext); 2351 Builder.SetInsertPoint(EntryBB); 2352 2353 llvm::FunctionType *FT = 2354 llvm::FunctionType::get(Builder.getVoidTy(), 2355 llvm::PointerType::getUnqual(ModuleTy), true); 2356 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class"); 2357 Builder.CreateCall(Register, Module); 2358 2359 if (!ClassAliases.empty()) { 2360 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty}; 2361 llvm::FunctionType *RegisterAliasTy = 2362 llvm::FunctionType::get(Builder.getVoidTy(), 2363 ArgTypes, false); 2364 llvm::Function *RegisterAlias = llvm::Function::Create( 2365 RegisterAliasTy, 2366 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np", 2367 &TheModule); 2368 llvm::BasicBlock *AliasBB = 2369 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction); 2370 llvm::BasicBlock *NoAliasBB = 2371 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction); 2372 2373 // Branch based on whether the runtime provided class_registerAlias_np() 2374 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias, 2375 llvm::Constant::getNullValue(RegisterAlias->getType())); 2376 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB); 2377 2378 // The true branch (has alias registration fucntion): 2379 Builder.SetInsertPoint(AliasBB); 2380 // Emit alias registration calls: 2381 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin(); 2382 iter != ClassAliases.end(); ++iter) { 2383 llvm::Constant *TheClass = 2384 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(), 2385 true); 2386 if (0 != TheClass) { 2387 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy); 2388 Builder.CreateCall2(RegisterAlias, TheClass, 2389 MakeConstantString(iter->second)); 2390 } 2391 } 2392 // Jump to end: 2393 Builder.CreateBr(NoAliasBB); 2394 2395 // Missing alias registration function, just return from the function: 2396 Builder.SetInsertPoint(NoAliasBB); 2397 } 2398 Builder.CreateRetVoid(); 2399 2400 return LoadFunction; 2401 } 2402 2403 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD, 2404 const ObjCContainerDecl *CD) { 2405 const ObjCCategoryImplDecl *OCD = 2406 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext()); 2407 StringRef CategoryName = OCD ? OCD->getName() : ""; 2408 StringRef ClassName = CD->getName(); 2409 Selector MethodName = OMD->getSelector(); 2410 bool isClassMethod = !OMD->isInstanceMethod(); 2411 2412 CodeGenTypes &Types = CGM.getTypes(); 2413 llvm::FunctionType *MethodTy = 2414 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 2415 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName, 2416 MethodName, isClassMethod); 2417 2418 llvm::Function *Method 2419 = llvm::Function::Create(MethodTy, 2420 llvm::GlobalValue::InternalLinkage, 2421 FunctionName, 2422 &TheModule); 2423 return Method; 2424 } 2425 2426 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() { 2427 return GetPropertyFn; 2428 } 2429 2430 llvm::Constant *CGObjCGNU::GetPropertySetFunction() { 2431 return SetPropertyFn; 2432 } 2433 2434 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic, 2435 bool copy) { 2436 return 0; 2437 } 2438 2439 llvm::Constant *CGObjCGNU::GetGetStructFunction() { 2440 return GetStructPropertyFn; 2441 } 2442 llvm::Constant *CGObjCGNU::GetSetStructFunction() { 2443 return SetStructPropertyFn; 2444 } 2445 llvm::Constant *CGObjCGNU::GetCppAtomicObjectFunction() { 2446 return 0; 2447 } 2448 2449 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() { 2450 return EnumerationMutationFn; 2451 } 2452 2453 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF, 2454 const ObjCAtSynchronizedStmt &S) { 2455 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn); 2456 } 2457 2458 2459 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF, 2460 const ObjCAtTryStmt &S) { 2461 // Unlike the Apple non-fragile runtimes, which also uses 2462 // unwind-based zero cost exceptions, the GNU Objective C runtime's 2463 // EH support isn't a veneer over C++ EH. Instead, exception 2464 // objects are created by __objc_exception_throw and destroyed by 2465 // the personality function; this avoids the need for bracketing 2466 // catch handlers with calls to __blah_begin_catch/__blah_end_catch 2467 // (or even _Unwind_DeleteException), but probably doesn't 2468 // interoperate very well with foreign exceptions. 2469 // 2470 // In Objective-C++ mode, we actually emit something equivalent to the C++ 2471 // exception handler. 2472 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn); 2473 return ; 2474 } 2475 2476 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF, 2477 const ObjCAtThrowStmt &S) { 2478 llvm::Value *ExceptionAsObject; 2479 2480 if (const Expr *ThrowExpr = S.getThrowExpr()) { 2481 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 2482 ExceptionAsObject = Exception; 2483 } else { 2484 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 2485 "Unexpected rethrow outside @catch block."); 2486 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 2487 } 2488 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy); 2489 2490 // Note: This may have to be an invoke, if we want to support constructs like: 2491 // @try { 2492 // @throw(obj); 2493 // } 2494 // @catch(id) ... 2495 // 2496 // This is effectively turning @throw into an incredibly-expensive goto, but 2497 // it may happen as a result of inlining followed by missed optimizations, or 2498 // as a result of stupidity. 2499 llvm::BasicBlock *UnwindBB = CGF.getInvokeDest(); 2500 if (!UnwindBB) { 2501 CGF.Builder.CreateCall(ExceptionThrowFn, ExceptionAsObject); 2502 CGF.Builder.CreateUnreachable(); 2503 } else { 2504 CGF.Builder.CreateInvoke(ExceptionThrowFn, UnwindBB, UnwindBB, 2505 ExceptionAsObject); 2506 } 2507 // Clear the insertion point to indicate we are in unreachable code. 2508 CGF.Builder.ClearInsertionPoint(); 2509 } 2510 2511 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF, 2512 llvm::Value *AddrWeakObj) { 2513 CGBuilderTy B = CGF.Builder; 2514 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy); 2515 return B.CreateCall(WeakReadFn, AddrWeakObj); 2516 } 2517 2518 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF, 2519 llvm::Value *src, llvm::Value *dst) { 2520 CGBuilderTy B = CGF.Builder; 2521 src = EnforceType(B, src, IdTy); 2522 dst = EnforceType(B, dst, PtrToIdTy); 2523 B.CreateCall2(WeakAssignFn, src, dst); 2524 } 2525 2526 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF, 2527 llvm::Value *src, llvm::Value *dst, 2528 bool threadlocal) { 2529 CGBuilderTy B = CGF.Builder; 2530 src = EnforceType(B, src, IdTy); 2531 dst = EnforceType(B, dst, PtrToIdTy); 2532 if (!threadlocal) 2533 B.CreateCall2(GlobalAssignFn, src, dst); 2534 else 2535 // FIXME. Add threadloca assign API 2536 llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI"); 2537 } 2538 2539 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF, 2540 llvm::Value *src, llvm::Value *dst, 2541 llvm::Value *ivarOffset) { 2542 CGBuilderTy B = CGF.Builder; 2543 src = EnforceType(B, src, IdTy); 2544 dst = EnforceType(B, dst, IdTy); 2545 B.CreateCall3(IvarAssignFn, src, dst, ivarOffset); 2546 } 2547 2548 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF, 2549 llvm::Value *src, llvm::Value *dst) { 2550 CGBuilderTy B = CGF.Builder; 2551 src = EnforceType(B, src, IdTy); 2552 dst = EnforceType(B, dst, PtrToIdTy); 2553 B.CreateCall2(StrongCastAssignFn, src, dst); 2554 } 2555 2556 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF, 2557 llvm::Value *DestPtr, 2558 llvm::Value *SrcPtr, 2559 llvm::Value *Size) { 2560 CGBuilderTy B = CGF.Builder; 2561 DestPtr = EnforceType(B, DestPtr, PtrTy); 2562 SrcPtr = EnforceType(B, SrcPtr, PtrTy); 2563 2564 B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size); 2565 } 2566 2567 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable( 2568 const ObjCInterfaceDecl *ID, 2569 const ObjCIvarDecl *Ivar) { 2570 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString() 2571 + '.' + Ivar->getNameAsString(); 2572 // Emit the variable and initialize it with what we think the correct value 2573 // is. This allows code compiled with non-fragile ivars to work correctly 2574 // when linked against code which isn't (most of the time). 2575 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name); 2576 if (!IvarOffsetPointer) { 2577 // This will cause a run-time crash if we accidentally use it. A value of 2578 // 0 would seem more sensible, but will silently overwrite the isa pointer 2579 // causing a great deal of confusion. 2580 uint64_t Offset = -1; 2581 // We can't call ComputeIvarBaseOffset() here if we have the 2582 // implementation, because it will create an invalid ASTRecordLayout object 2583 // that we are then stuck with forever, so we only initialize the ivar 2584 // offset variable with a guess if we only have the interface. The 2585 // initializer will be reset later anyway, when we are generating the class 2586 // description. 2587 if (!CGM.getContext().getObjCImplementation( 2588 const_cast<ObjCInterfaceDecl *>(ID))) 2589 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar); 2590 2591 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset, 2592 /*isSigned*/true); 2593 // Don't emit the guess in non-PIC code because the linker will not be able 2594 // to replace it with the real version for a library. In non-PIC code you 2595 // must compile with the fragile ABI if you want to use ivars from a 2596 // GCC-compiled class. 2597 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) { 2598 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule, 2599 Int32Ty, false, 2600 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess"); 2601 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 2602 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage, 2603 IvarOffsetGV, Name); 2604 } else { 2605 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, 2606 llvm::Type::getInt32PtrTy(VMContext), false, 2607 llvm::GlobalValue::ExternalLinkage, 0, Name); 2608 } 2609 } 2610 return IvarOffsetPointer; 2611 } 2612 2613 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF, 2614 QualType ObjectTy, 2615 llvm::Value *BaseValue, 2616 const ObjCIvarDecl *Ivar, 2617 unsigned CVRQualifiers) { 2618 const ObjCInterfaceDecl *ID = 2619 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 2620 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 2621 EmitIvarOffset(CGF, ID, Ivar)); 2622 } 2623 2624 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context, 2625 const ObjCInterfaceDecl *OID, 2626 const ObjCIvarDecl *OIVD) { 2627 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next; 2628 next = next->getNextIvar()) { 2629 if (OIVD == next) 2630 return OID; 2631 } 2632 2633 // Otherwise check in the super class. 2634 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 2635 return FindIvarInterface(Context, Super, OIVD); 2636 2637 return 0; 2638 } 2639 2640 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF, 2641 const ObjCInterfaceDecl *Interface, 2642 const ObjCIvarDecl *Ivar) { 2643 if (CGM.getLangOpts().ObjCNonFragileABI) { 2644 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar); 2645 if (RuntimeVersion < 10) 2646 return CGF.Builder.CreateZExtOrBitCast( 2647 CGF.Builder.CreateLoad(CGF.Builder.CreateLoad( 2648 ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")), 2649 PtrDiffTy); 2650 std::string name = "__objc_ivar_offset_value_" + 2651 Interface->getNameAsString() +"." + Ivar->getNameAsString(); 2652 llvm::Value *Offset = TheModule.getGlobalVariable(name); 2653 if (!Offset) 2654 Offset = new llvm::GlobalVariable(TheModule, IntTy, 2655 false, llvm::GlobalValue::LinkOnceAnyLinkage, 2656 llvm::Constant::getNullValue(IntTy), name); 2657 Offset = CGF.Builder.CreateLoad(Offset); 2658 if (Offset->getType() != PtrDiffTy) 2659 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy); 2660 return Offset; 2661 } 2662 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar); 2663 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true); 2664 } 2665 2666 CGObjCRuntime * 2667 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) { 2668 if (CGM.getLangOpts().ObjCNonFragileABI) 2669 return new CGObjCGNUstep(CGM); 2670 return new CGObjCGCC(CGM); 2671 } 2672