Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "../include/v8stdint.h"
     29 #include "checks.h"
     30 #include "utils.h"
     31 
     32 #include "fast-dtoa.h"
     33 
     34 #include "cached-powers.h"
     35 #include "diy-fp.h"
     36 #include "double.h"
     37 
     38 namespace v8 {
     39 namespace internal {
     40 
     41 // The minimal and maximal target exponent define the range of w's binary
     42 // exponent, where 'w' is the result of multiplying the input by a cached power
     43 // of ten.
     44 //
     45 // A different range might be chosen on a different platform, to optimize digit
     46 // generation, but a smaller range requires more powers of ten to be cached.
     47 static const int kMinimalTargetExponent = -60;
     48 static const int kMaximalTargetExponent = -32;
     49 
     50 
     51 // Adjusts the last digit of the generated number, and screens out generated
     52 // solutions that may be inaccurate. A solution may be inaccurate if it is
     53 // outside the safe interval, or if we ctannot prove that it is closer to the
     54 // input than a neighboring representation of the same length.
     55 //
     56 // Input: * buffer containing the digits of too_high / 10^kappa
     57 //        * the buffer's length
     58 //        * distance_too_high_w == (too_high - w).f() * unit
     59 //        * unsafe_interval == (too_high - too_low).f() * unit
     60 //        * rest = (too_high - buffer * 10^kappa).f() * unit
     61 //        * ten_kappa = 10^kappa * unit
     62 //        * unit = the common multiplier
     63 // Output: returns true if the buffer is guaranteed to contain the closest
     64 //    representable number to the input.
     65 //  Modifies the generated digits in the buffer to approach (round towards) w.
     66 static bool RoundWeed(Vector<char> buffer,
     67                       int length,
     68                       uint64_t distance_too_high_w,
     69                       uint64_t unsafe_interval,
     70                       uint64_t rest,
     71                       uint64_t ten_kappa,
     72                       uint64_t unit) {
     73   uint64_t small_distance = distance_too_high_w - unit;
     74   uint64_t big_distance = distance_too_high_w + unit;
     75   // Let w_low  = too_high - big_distance, and
     76   //     w_high = too_high - small_distance.
     77   // Note: w_low < w < w_high
     78   //
     79   // The real w (* unit) must lie somewhere inside the interval
     80   // ]w_low; w_high[ (often written as "(w_low; w_high)")
     81 
     82   // Basically the buffer currently contains a number in the unsafe interval
     83   // ]too_low; too_high[ with too_low < w < too_high
     84   //
     85   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     86   //                     ^v 1 unit            ^      ^                 ^      ^
     87   //  boundary_high ---------------------     .      .                 .      .
     88   //                     ^v 1 unit            .      .                 .      .
     89   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
     90   //                                          .      .         ^       .      .
     91   //                                          .  big_distance  .       .      .
     92   //                                          .      .         .       .    rest
     93   //                              small_distance     .         .       .      .
     94   //                                          v      .         .       .      .
     95   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
     96   //                     ^v 1 unit                   .         .       .      .
     97   //  w ----------------------------------------     .         .       .      .
     98   //                     ^v 1 unit                   v         .       .      .
     99   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
    100   //                                                           .       .      v
    101   //  buffer --------------------------------------------------+-------+--------
    102   //                                                           .       .
    103   //                                                  safe_interval    .
    104   //                                                           v       .
    105   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
    106   //                     ^v 1 unit                                     .
    107   //  boundary_low -------------------------                     unsafe_interval
    108   //                     ^v 1 unit                                     v
    109   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    110   //
    111   //
    112   // Note that the value of buffer could lie anywhere inside the range too_low
    113   // to too_high.
    114   //
    115   // boundary_low, boundary_high and w are approximations of the real boundaries
    116   // and v (the input number). They are guaranteed to be precise up to one unit.
    117   // In fact the error is guaranteed to be strictly less than one unit.
    118   //
    119   // Anything that lies outside the unsafe interval is guaranteed not to round
    120   // to v when read again.
    121   // Anything that lies inside the safe interval is guaranteed to round to v
    122   // when read again.
    123   // If the number inside the buffer lies inside the unsafe interval but not
    124   // inside the safe interval then we simply do not know and bail out (returning
    125   // false).
    126   //
    127   // Similarly we have to take into account the imprecision of 'w' when finding
    128   // the closest representation of 'w'. If we have two potential
    129   // representations, and one is closer to both w_low and w_high, then we know
    130   // it is closer to the actual value v.
    131   //
    132   // By generating the digits of too_high we got the largest (closest to
    133   // too_high) buffer that is still in the unsafe interval. In the case where
    134   // w_high < buffer < too_high we try to decrement the buffer.
    135   // This way the buffer approaches (rounds towards) w.
    136   // There are 3 conditions that stop the decrementation process:
    137   //   1) the buffer is already below w_high
    138   //   2) decrementing the buffer would make it leave the unsafe interval
    139   //   3) decrementing the buffer would yield a number below w_high and farther
    140   //      away than the current number. In other words:
    141   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
    142   // Instead of using the buffer directly we use its distance to too_high.
    143   // Conceptually rest ~= too_high - buffer
    144   // We need to do the following tests in this order to avoid over- and
    145   // underflows.
    146   ASSERT(rest <= unsafe_interval);
    147   while (rest < small_distance &&  // Negated condition 1
    148          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
    149          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
    150           small_distance - rest >= rest + ten_kappa - small_distance)) {
    151     buffer[length - 1]--;
    152     rest += ten_kappa;
    153   }
    154 
    155   // We have approached w+ as much as possible. We now test if approaching w-
    156   // would require changing the buffer. If yes, then we have two possible
    157   // representations close to w, but we cannot decide which one is closer.
    158   if (rest < big_distance &&
    159       unsafe_interval - rest >= ten_kappa &&
    160       (rest + ten_kappa < big_distance ||
    161        big_distance - rest > rest + ten_kappa - big_distance)) {
    162     return false;
    163   }
    164 
    165   // Weeding test.
    166   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
    167   //   Since too_low = too_high - unsafe_interval this is equivalent to
    168   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
    169   //   Conceptually we have: rest ~= too_high - buffer
    170   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
    171 }
    172 
    173 
    174 // Rounds the buffer upwards if the result is closer to v by possibly adding
    175 // 1 to the buffer. If the precision of the calculation is not sufficient to
    176 // round correctly, return false.
    177 // The rounding might shift the whole buffer in which case the kappa is
    178 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
    179 //
    180 // If 2*rest > ten_kappa then the buffer needs to be round up.
    181 // rest can have an error of +/- 1 unit. This function accounts for the
    182 // imprecision and returns false, if the rounding direction cannot be
    183 // unambiguously determined.
    184 //
    185 // Precondition: rest < ten_kappa.
    186 static bool RoundWeedCounted(Vector<char> buffer,
    187                              int length,
    188                              uint64_t rest,
    189                              uint64_t ten_kappa,
    190                              uint64_t unit,
    191                              int* kappa) {
    192   ASSERT(rest < ten_kappa);
    193   // The following tests are done in a specific order to avoid overflows. They
    194   // will work correctly with any uint64 values of rest < ten_kappa and unit.
    195   //
    196   // If the unit is too big, then we don't know which way to round. For example
    197   // a unit of 50 means that the real number lies within rest +/- 50. If
    198   // 10^kappa == 40 then there is no way to tell which way to round.
    199   if (unit >= ten_kappa) return false;
    200   // Even if unit is just half the size of 10^kappa we are already completely
    201   // lost. (And after the previous test we know that the expression will not
    202   // over/underflow.)
    203   if (ten_kappa - unit <= unit) return false;
    204   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
    205   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
    206     return true;
    207   }
    208   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
    209   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
    210     // Increment the last digit recursively until we find a non '9' digit.
    211     buffer[length - 1]++;
    212     for (int i = length - 1; i > 0; --i) {
    213       if (buffer[i] != '0' + 10) break;
    214       buffer[i] = '0';
    215       buffer[i - 1]++;
    216     }
    217     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
    218     // exception of the first digit all digits are now '0'. Simply switch the
    219     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
    220     // the power (the kappa) is increased.
    221     if (buffer[0] == '0' + 10) {
    222       buffer[0] = '1';
    223       (*kappa) += 1;
    224     }
    225     return true;
    226   }
    227   return false;
    228 }
    229 
    230 
    231 static const uint32_t kTen4 = 10000;
    232 static const uint32_t kTen5 = 100000;
    233 static const uint32_t kTen6 = 1000000;
    234 static const uint32_t kTen7 = 10000000;
    235 static const uint32_t kTen8 = 100000000;
    236 static const uint32_t kTen9 = 1000000000;
    237 
    238 // Returns the biggest power of ten that is less than or equal than the given
    239 // number. We furthermore receive the maximum number of bits 'number' has.
    240 // If number_bits == 0 then 0^-1 is returned
    241 // The number of bits must be <= 32.
    242 // Precondition: number < (1 << (number_bits + 1)).
    243 static void BiggestPowerTen(uint32_t number,
    244                             int number_bits,
    245                             uint32_t* power,
    246                             int* exponent) {
    247   switch (number_bits) {
    248     case 32:
    249     case 31:
    250     case 30:
    251       if (kTen9 <= number) {
    252         *power = kTen9;
    253         *exponent = 9;
    254         break;
    255       }  // else fallthrough
    256     case 29:
    257     case 28:
    258     case 27:
    259       if (kTen8 <= number) {
    260         *power = kTen8;
    261         *exponent = 8;
    262         break;
    263       }  // else fallthrough
    264     case 26:
    265     case 25:
    266     case 24:
    267       if (kTen7 <= number) {
    268         *power = kTen7;
    269         *exponent = 7;
    270         break;
    271       }  // else fallthrough
    272     case 23:
    273     case 22:
    274     case 21:
    275     case 20:
    276       if (kTen6 <= number) {
    277         *power = kTen6;
    278         *exponent = 6;
    279         break;
    280       }  // else fallthrough
    281     case 19:
    282     case 18:
    283     case 17:
    284       if (kTen5 <= number) {
    285         *power = kTen5;
    286         *exponent = 5;
    287         break;
    288       }  // else fallthrough
    289     case 16:
    290     case 15:
    291     case 14:
    292       if (kTen4 <= number) {
    293         *power = kTen4;
    294         *exponent = 4;
    295         break;
    296       }  // else fallthrough
    297     case 13:
    298     case 12:
    299     case 11:
    300     case 10:
    301       if (1000 <= number) {
    302         *power = 1000;
    303         *exponent = 3;
    304         break;
    305       }  // else fallthrough
    306     case 9:
    307     case 8:
    308     case 7:
    309       if (100 <= number) {
    310         *power = 100;
    311         *exponent = 2;
    312         break;
    313       }  // else fallthrough
    314     case 6:
    315     case 5:
    316     case 4:
    317       if (10 <= number) {
    318         *power = 10;
    319         *exponent = 1;
    320         break;
    321       }  // else fallthrough
    322     case 3:
    323     case 2:
    324     case 1:
    325       if (1 <= number) {
    326         *power = 1;
    327         *exponent = 0;
    328         break;
    329       }  // else fallthrough
    330     case 0:
    331       *power = 0;
    332       *exponent = -1;
    333       break;
    334     default:
    335       // Following assignments are here to silence compiler warnings.
    336       *power = 0;
    337       *exponent = 0;
    338       UNREACHABLE();
    339   }
    340 }
    341 
    342 
    343 // Generates the digits of input number w.
    344 // w is a floating-point number (DiyFp), consisting of a significand and an
    345 // exponent. Its exponent is bounded by kMinimalTargetExponent and
    346 // kMaximalTargetExponent.
    347 //       Hence -60 <= w.e() <= -32.
    348 //
    349 // Returns false if it fails, in which case the generated digits in the buffer
    350 // should not be used.
    351 // Preconditions:
    352 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
    353 //    is, their error must be less than a unit of their last digits.
    354 //  * low.e() == w.e() == high.e()
    355 //  * low < w < high, and taking into account their error: low~ <= high~
    356 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
    357 // Postconditions: returns false if procedure fails.
    358 //   otherwise:
    359 //     * buffer is not null-terminated, but len contains the number of digits.
    360 //     * buffer contains the shortest possible decimal digit-sequence
    361 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
    362 //       correct values of low and high (without their error).
    363 //     * if more than one decimal representation gives the minimal number of
    364 //       decimal digits then the one closest to W (where W is the correct value
    365 //       of w) is chosen.
    366 // Remark: this procedure takes into account the imprecision of its input
    367 //   numbers. If the precision is not enough to guarantee all the postconditions
    368 //   then false is returned. This usually happens rarely (~0.5%).
    369 //
    370 // Say, for the sake of example, that
    371 //   w.e() == -48, and w.f() == 0x1234567890abcdef
    372 // w's value can be computed by w.f() * 2^w.e()
    373 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
    374 //  -> w's integral part is 0x1234
    375 //  w's fractional part is therefore 0x567890abcdef.
    376 // Printing w's integral part is easy (simply print 0x1234 in decimal).
    377 // In order to print its fraction we repeatedly multiply the fraction by 10 and
    378 // get each digit. Example the first digit after the point would be computed by
    379 //   (0x567890abcdef * 10) >> 48. -> 3
    380 // The whole thing becomes slightly more complicated because we want to stop
    381 // once we have enough digits. That is, once the digits inside the buffer
    382 // represent 'w' we can stop. Everything inside the interval low - high
    383 // represents w. However we have to pay attention to low, high and w's
    384 // imprecision.
    385 static bool DigitGen(DiyFp low,
    386                      DiyFp w,
    387                      DiyFp high,
    388                      Vector<char> buffer,
    389                      int* length,
    390                      int* kappa) {
    391   ASSERT(low.e() == w.e() && w.e() == high.e());
    392   ASSERT(low.f() + 1 <= high.f() - 1);
    393   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
    394   // low, w and high are imprecise, but by less than one ulp (unit in the last
    395   // place).
    396   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
    397   // the new numbers are outside of the interval we want the final
    398   // representation to lie in.
    399   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
    400   // numbers that are certain to lie in the interval. We will use this fact
    401   // later on.
    402   // We will now start by generating the digits within the uncertain
    403   // interval. Later we will weed out representations that lie outside the safe
    404   // interval and thus _might_ lie outside the correct interval.
    405   uint64_t unit = 1;
    406   DiyFp too_low = DiyFp(low.f() - unit, low.e());
    407   DiyFp too_high = DiyFp(high.f() + unit, high.e());
    408   // too_low and too_high are guaranteed to lie outside the interval we want the
    409   // generated number in.
    410   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
    411   // We now cut the input number into two parts: the integral digits and the
    412   // fractionals. We will not write any decimal separator though, but adapt
    413   // kappa instead.
    414   // Reminder: we are currently computing the digits (stored inside the buffer)
    415   // such that:   too_low < buffer * 10^kappa < too_high
    416   // We use too_high for the digit_generation and stop as soon as possible.
    417   // If we stop early we effectively round down.
    418   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
    419   // Division by one is a shift.
    420   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
    421   // Modulo by one is an and.
    422   uint64_t fractionals = too_high.f() & (one.f() - 1);
    423   uint32_t divisor;
    424   int divisor_exponent;
    425   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
    426                   &divisor, &divisor_exponent);
    427   *kappa = divisor_exponent + 1;
    428   *length = 0;
    429   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
    430   // The invariant holds for the first iteration: kappa has been initialized
    431   // with the divisor exponent + 1. And the divisor is the biggest power of ten
    432   // that is smaller than integrals.
    433   while (*kappa > 0) {
    434     int digit = integrals / divisor;
    435     buffer[*length] = '0' + digit;
    436     (*length)++;
    437     integrals %= divisor;
    438     (*kappa)--;
    439     // Note that kappa now equals the exponent of the divisor and that the
    440     // invariant thus holds again.
    441     uint64_t rest =
    442         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
    443     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
    444     // Reminder: unsafe_interval.e() == one.e()
    445     if (rest < unsafe_interval.f()) {
    446       // Rounding down (by not emitting the remaining digits) yields a number
    447       // that lies within the unsafe interval.
    448       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
    449                        unsafe_interval.f(), rest,
    450                        static_cast<uint64_t>(divisor) << -one.e(), unit);
    451     }
    452     divisor /= 10;
    453   }
    454 
    455   // The integrals have been generated. We are at the point of the decimal
    456   // separator. In the following loop we simply multiply the remaining digits by
    457   // 10 and divide by one. We just need to pay attention to multiply associated
    458   // data (like the interval or 'unit'), too.
    459   // Note that the multiplication by 10 does not overflow, because w.e >= -60
    460   // and thus one.e >= -60.
    461   ASSERT(one.e() >= -60);
    462   ASSERT(fractionals < one.f());
    463   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
    464   while (true) {
    465     fractionals *= 10;
    466     unit *= 10;
    467     unsafe_interval.set_f(unsafe_interval.f() * 10);
    468     // Integer division by one.
    469     int digit = static_cast<int>(fractionals >> -one.e());
    470     buffer[*length] = '0' + digit;
    471     (*length)++;
    472     fractionals &= one.f() - 1;  // Modulo by one.
    473     (*kappa)--;
    474     if (fractionals < unsafe_interval.f()) {
    475       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
    476                        unsafe_interval.f(), fractionals, one.f(), unit);
    477     }
    478   }
    479 }
    480 
    481 
    482 
    483 // Generates (at most) requested_digits of input number w.
    484 // w is a floating-point number (DiyFp), consisting of a significand and an
    485 // exponent. Its exponent is bounded by kMinimalTargetExponent and
    486 // kMaximalTargetExponent.
    487 //       Hence -60 <= w.e() <= -32.
    488 //
    489 // Returns false if it fails, in which case the generated digits in the buffer
    490 // should not be used.
    491 // Preconditions:
    492 //  * w is correct up to 1 ulp (unit in the last place). That
    493 //    is, its error must be strictly less than a unit of its last digit.
    494 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
    495 //
    496 // Postconditions: returns false if procedure fails.
    497 //   otherwise:
    498 //     * buffer is not null-terminated, but length contains the number of
    499 //       digits.
    500 //     * the representation in buffer is the most precise representation of
    501 //       requested_digits digits.
    502 //     * buffer contains at most requested_digits digits of w. If there are less
    503 //       than requested_digits digits then some trailing '0's have been removed.
    504 //     * kappa is such that
    505 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
    506 //
    507 // Remark: This procedure takes into account the imprecision of its input
    508 //   numbers. If the precision is not enough to guarantee all the postconditions
    509 //   then false is returned. This usually happens rarely, but the failure-rate
    510 //   increases with higher requested_digits.
    511 static bool DigitGenCounted(DiyFp w,
    512                             int requested_digits,
    513                             Vector<char> buffer,
    514                             int* length,
    515                             int* kappa) {
    516   ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
    517   ASSERT(kMinimalTargetExponent >= -60);
    518   ASSERT(kMaximalTargetExponent <= -32);
    519   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
    520   // also scale its error.
    521   uint64_t w_error = 1;
    522   // We cut the input number into two parts: the integral digits and the
    523   // fractional digits. We don't emit any decimal separator, but adapt kappa
    524   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
    525   // increase kappa by 1.
    526   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
    527   // Division by one is a shift.
    528   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
    529   // Modulo by one is an and.
    530   uint64_t fractionals = w.f() & (one.f() - 1);
    531   uint32_t divisor;
    532   int divisor_exponent;
    533   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
    534                   &divisor, &divisor_exponent);
    535   *kappa = divisor_exponent + 1;
    536   *length = 0;
    537 
    538   // Loop invariant: buffer = w / 10^kappa  (integer division)
    539   // The invariant holds for the first iteration: kappa has been initialized
    540   // with the divisor exponent + 1. And the divisor is the biggest power of ten
    541   // that is smaller than 'integrals'.
    542   while (*kappa > 0) {
    543     int digit = integrals / divisor;
    544     buffer[*length] = '0' + digit;
    545     (*length)++;
    546     requested_digits--;
    547     integrals %= divisor;
    548     (*kappa)--;
    549     // Note that kappa now equals the exponent of the divisor and that the
    550     // invariant thus holds again.
    551     if (requested_digits == 0) break;
    552     divisor /= 10;
    553   }
    554 
    555   if (requested_digits == 0) {
    556     uint64_t rest =
    557         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
    558     return RoundWeedCounted(buffer, *length, rest,
    559                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
    560                             kappa);
    561   }
    562 
    563   // The integrals have been generated. We are at the point of the decimal
    564   // separator. In the following loop we simply multiply the remaining digits by
    565   // 10 and divide by one. We just need to pay attention to multiply associated
    566   // data (the 'unit'), too.
    567   // Note that the multiplication by 10 does not overflow, because w.e >= -60
    568   // and thus one.e >= -60.
    569   ASSERT(one.e() >= -60);
    570   ASSERT(fractionals < one.f());
    571   ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
    572   while (requested_digits > 0 && fractionals > w_error) {
    573     fractionals *= 10;
    574     w_error *= 10;
    575     // Integer division by one.
    576     int digit = static_cast<int>(fractionals >> -one.e());
    577     buffer[*length] = '0' + digit;
    578     (*length)++;
    579     requested_digits--;
    580     fractionals &= one.f() - 1;  // Modulo by one.
    581     (*kappa)--;
    582   }
    583   if (requested_digits != 0) return false;
    584   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
    585                           kappa);
    586 }
    587 
    588 
    589 // Provides a decimal representation of v.
    590 // Returns true if it succeeds, otherwise the result cannot be trusted.
    591 // There will be *length digits inside the buffer (not null-terminated).
    592 // If the function returns true then
    593 //        v == (double) (buffer * 10^decimal_exponent).
    594 // The digits in the buffer are the shortest representation possible: no
    595 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
    596 // chosen even if the longer one would be closer to v.
    597 // The last digit will be closest to the actual v. That is, even if several
    598 // digits might correctly yield 'v' when read again, the closest will be
    599 // computed.
    600 static bool Grisu3(double v,
    601                    Vector<char> buffer,
    602                    int* length,
    603                    int* decimal_exponent) {
    604   DiyFp w = Double(v).AsNormalizedDiyFp();
    605   // boundary_minus and boundary_plus are the boundaries between v and its
    606   // closest floating-point neighbors. Any number strictly between
    607   // boundary_minus and boundary_plus will round to v when convert to a double.
    608   // Grisu3 will never output representations that lie exactly on a boundary.
    609   DiyFp boundary_minus, boundary_plus;
    610   Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
    611   ASSERT(boundary_plus.e() == w.e());
    612   DiyFp ten_mk;  // Cached power of ten: 10^-k
    613   int mk;        // -k
    614   int ten_mk_minimal_binary_exponent =
    615      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
    616   int ten_mk_maximal_binary_exponent =
    617      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
    618   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
    619       ten_mk_minimal_binary_exponent,
    620       ten_mk_maximal_binary_exponent,
    621       &ten_mk, &mk);
    622   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
    623           DiyFp::kSignificandSize) &&
    624          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
    625           DiyFp::kSignificandSize));
    626   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
    627   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
    628 
    629   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
    630   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
    631   // off by a small amount.
    632   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
    633   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
    634   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
    635   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
    636   ASSERT(scaled_w.e() ==
    637          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
    638   // In theory it would be possible to avoid some recomputations by computing
    639   // the difference between w and boundary_minus/plus (a power of 2) and to
    640   // compute scaled_boundary_minus/plus by subtracting/adding from
    641   // scaled_w. However the code becomes much less readable and the speed
    642   // enhancements are not terriffic.
    643   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
    644   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
    645 
    646   // DigitGen will generate the digits of scaled_w. Therefore we have
    647   // v == (double) (scaled_w * 10^-mk).
    648   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
    649   // integer than it will be updated. For instance if scaled_w == 1.23 then
    650   // the buffer will be filled with "123" und the decimal_exponent will be
    651   // decreased by 2.
    652   int kappa;
    653   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
    654                          buffer, length, &kappa);
    655   *decimal_exponent = -mk + kappa;
    656   return result;
    657 }
    658 
    659 
    660 // The "counted" version of grisu3 (see above) only generates requested_digits
    661 // number of digits. This version does not generate the shortest representation,
    662 // and with enough requested digits 0.1 will at some point print as 0.9999999...
    663 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
    664 // therefore the rounding strategy for halfway cases is irrelevant.
    665 static bool Grisu3Counted(double v,
    666                           int requested_digits,
    667                           Vector<char> buffer,
    668                           int* length,
    669                           int* decimal_exponent) {
    670   DiyFp w = Double(v).AsNormalizedDiyFp();
    671   DiyFp ten_mk;  // Cached power of ten: 10^-k
    672   int mk;        // -k
    673   int ten_mk_minimal_binary_exponent =
    674      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
    675   int ten_mk_maximal_binary_exponent =
    676      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
    677   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
    678       ten_mk_minimal_binary_exponent,
    679       ten_mk_maximal_binary_exponent,
    680       &ten_mk, &mk);
    681   ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
    682           DiyFp::kSignificandSize) &&
    683          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
    684           DiyFp::kSignificandSize));
    685   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
    686   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
    687 
    688   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
    689   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
    690   // off by a small amount.
    691   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
    692   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
    693   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
    694   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
    695 
    696   // We now have (double) (scaled_w * 10^-mk).
    697   // DigitGen will generate the first requested_digits digits of scaled_w and
    698   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
    699   // will not always be exactly the same since DigitGenCounted only produces a
    700   // limited number of digits.)
    701   int kappa;
    702   bool result = DigitGenCounted(scaled_w, requested_digits,
    703                                 buffer, length, &kappa);
    704   *decimal_exponent = -mk + kappa;
    705   return result;
    706 }
    707 
    708 
    709 bool FastDtoa(double v,
    710               FastDtoaMode mode,
    711               int requested_digits,
    712               Vector<char> buffer,
    713               int* length,
    714               int* decimal_point) {
    715   ASSERT(v > 0);
    716   ASSERT(!Double(v).IsSpecial());
    717 
    718   bool result = false;
    719   int decimal_exponent = 0;
    720   switch (mode) {
    721     case FAST_DTOA_SHORTEST:
    722       result = Grisu3(v, buffer, length, &decimal_exponent);
    723       break;
    724     case FAST_DTOA_PRECISION:
    725       result = Grisu3Counted(v, requested_digits,
    726                              buffer, length, &decimal_exponent);
    727       break;
    728     default:
    729       UNREACHABLE();
    730   }
    731   if (result) {
    732     *decimal_point = *length + decimal_exponent;
    733     buffer[*length] = '\0';
    734   }
    735   return result;
    736 }
    737 
    738 } }  // namespace v8::internal
    739