Home | History | Annotate | Download | only in Analysis
      1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  Note that the
     12 // loops identified may actually be several natural loops that share the same
     13 // header node... not just a single natural loop.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Analysis/Dominators.h"
     21 #include "llvm/Analysis/LoopIterator.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/Assembly/Writer.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/ADT/DepthFirstIterator.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 // Always verify loopinfo if expensive checking is enabled.
     33 #ifdef XDEBUG
     34 static bool VerifyLoopInfo = true;
     35 #else
     36 static bool VerifyLoopInfo = false;
     37 #endif
     38 static cl::opt<bool,true>
     39 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
     40                 cl::desc("Verify loop info (time consuming)"));
     41 
     42 char LoopInfo::ID = 0;
     43 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
     44 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     45 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
     46 
     47 //===----------------------------------------------------------------------===//
     48 // Loop implementation
     49 //
     50 
     51 /// isLoopInvariant - Return true if the specified value is loop invariant
     52 ///
     53 bool Loop::isLoopInvariant(Value *V) const {
     54   if (Instruction *I = dyn_cast<Instruction>(V))
     55     return !contains(I);
     56   return true;  // All non-instructions are loop invariant
     57 }
     58 
     59 /// hasLoopInvariantOperands - Return true if all the operands of the
     60 /// specified instruction are loop invariant.
     61 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
     62   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     63     if (!isLoopInvariant(I->getOperand(i)))
     64       return false;
     65 
     66   return true;
     67 }
     68 
     69 /// makeLoopInvariant - If the given value is an instruciton inside of the
     70 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     71 /// Return true if the value after any hoisting is loop invariant. This
     72 /// function can be used as a slightly more aggressive replacement for
     73 /// isLoopInvariant.
     74 ///
     75 /// If InsertPt is specified, it is the point to hoist instructions to.
     76 /// If null, the terminator of the loop preheader is used.
     77 ///
     78 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
     79                              Instruction *InsertPt) const {
     80   if (Instruction *I = dyn_cast<Instruction>(V))
     81     return makeLoopInvariant(I, Changed, InsertPt);
     82   return true;  // All non-instructions are loop-invariant.
     83 }
     84 
     85 /// makeLoopInvariant - If the given instruction is inside of the
     86 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     87 /// Return true if the instruction after any hoisting is loop invariant. This
     88 /// function can be used as a slightly more aggressive replacement for
     89 /// isLoopInvariant.
     90 ///
     91 /// If InsertPt is specified, it is the point to hoist instructions to.
     92 /// If null, the terminator of the loop preheader is used.
     93 ///
     94 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
     95                              Instruction *InsertPt) const {
     96   // Test if the value is already loop-invariant.
     97   if (isLoopInvariant(I))
     98     return true;
     99   if (!isSafeToSpeculativelyExecute(I))
    100     return false;
    101   if (I->mayReadFromMemory())
    102     return false;
    103   // The landingpad instruction is immobile.
    104   if (isa<LandingPadInst>(I))
    105     return false;
    106   // Determine the insertion point, unless one was given.
    107   if (!InsertPt) {
    108     BasicBlock *Preheader = getLoopPreheader();
    109     // Without a preheader, hoisting is not feasible.
    110     if (!Preheader)
    111       return false;
    112     InsertPt = Preheader->getTerminator();
    113   }
    114   // Don't hoist instructions with loop-variant operands.
    115   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    116     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
    117       return false;
    118 
    119   // Hoist.
    120   I->moveBefore(InsertPt);
    121   Changed = true;
    122   return true;
    123 }
    124 
    125 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    126 /// induction variable: an integer recurrence that starts at 0 and increments
    127 /// by one each time through the loop.  If so, return the phi node that
    128 /// corresponds to it.
    129 ///
    130 /// The IndVarSimplify pass transforms loops to have a canonical induction
    131 /// variable.
    132 ///
    133 PHINode *Loop::getCanonicalInductionVariable() const {
    134   BasicBlock *H = getHeader();
    135 
    136   BasicBlock *Incoming = 0, *Backedge = 0;
    137   pred_iterator PI = pred_begin(H);
    138   assert(PI != pred_end(H) &&
    139          "Loop must have at least one backedge!");
    140   Backedge = *PI++;
    141   if (PI == pred_end(H)) return 0;  // dead loop
    142   Incoming = *PI++;
    143   if (PI != pred_end(H)) return 0;  // multiple backedges?
    144 
    145   if (contains(Incoming)) {
    146     if (contains(Backedge))
    147       return 0;
    148     std::swap(Incoming, Backedge);
    149   } else if (!contains(Backedge))
    150     return 0;
    151 
    152   // Loop over all of the PHI nodes, looking for a canonical indvar.
    153   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    154     PHINode *PN = cast<PHINode>(I);
    155     if (ConstantInt *CI =
    156         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
    157       if (CI->isNullValue())
    158         if (Instruction *Inc =
    159             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
    160           if (Inc->getOpcode() == Instruction::Add &&
    161                 Inc->getOperand(0) == PN)
    162             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
    163               if (CI->equalsInt(1))
    164                 return PN;
    165   }
    166   return 0;
    167 }
    168 
    169 /// isLCSSAForm - Return true if the Loop is in LCSSA form
    170 bool Loop::isLCSSAForm(DominatorTree &DT) const {
    171   // Sort the blocks vector so that we can use binary search to do quick
    172   // lookups.
    173   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
    174 
    175   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    176     BasicBlock *BB = *BI;
    177     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
    178       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    179            ++UI) {
    180         User *U = *UI;
    181         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
    182         if (PHINode *P = dyn_cast<PHINode>(U))
    183           UserBB = P->getIncomingBlock(UI);
    184 
    185         // Check the current block, as a fast-path, before checking whether
    186         // the use is anywhere in the loop.  Most values are used in the same
    187         // block they are defined in.  Also, blocks not reachable from the
    188         // entry are special; uses in them don't need to go through PHIs.
    189         if (UserBB != BB &&
    190             !LoopBBs.count(UserBB) &&
    191             DT.isReachableFromEntry(UserBB))
    192           return false;
    193       }
    194   }
    195 
    196   return true;
    197 }
    198 
    199 /// isLoopSimplifyForm - Return true if the Loop is in the form that
    200 /// the LoopSimplify form transforms loops to, which is sometimes called
    201 /// normal form.
    202 bool Loop::isLoopSimplifyForm() const {
    203   // Normal-form loops have a preheader, a single backedge, and all of their
    204   // exits have all their predecessors inside the loop.
    205   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
    206 }
    207 
    208 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    209 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
    210 bool Loop::isSafeToClone() const {
    211   // Return false if any loop blocks contain indirectbrs.
    212   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
    213     if (isa<IndirectBrInst>((*I)->getTerminator()))
    214       return false;
    215   }
    216   return true;
    217 }
    218 
    219 /// hasDedicatedExits - Return true if no exit block for the loop
    220 /// has a predecessor that is outside the loop.
    221 bool Loop::hasDedicatedExits() const {
    222   // Sort the blocks vector so that we can use binary search to do quick
    223   // lookups.
    224   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
    225   // Each predecessor of each exit block of a normal loop is contained
    226   // within the loop.
    227   SmallVector<BasicBlock *, 4> ExitBlocks;
    228   getExitBlocks(ExitBlocks);
    229   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    230     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
    231          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
    232       if (!LoopBBs.count(*PI))
    233         return false;
    234   // All the requirements are met.
    235   return true;
    236 }
    237 
    238 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    239 /// These are the blocks _outside of the current loop_ which are branched to.
    240 /// This assumes that loop exits are in canonical form.
    241 ///
    242 void
    243 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
    244   assert(hasDedicatedExits() &&
    245          "getUniqueExitBlocks assumes the loop has canonical form exits!");
    246 
    247   // Sort the blocks vector so that we can use binary search to do quick
    248   // lookups.
    249   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
    250   std::sort(LoopBBs.begin(), LoopBBs.end());
    251 
    252   SmallVector<BasicBlock *, 32> switchExitBlocks;
    253 
    254   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
    255 
    256     BasicBlock *current = *BI;
    257     switchExitBlocks.clear();
    258 
    259     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
    260       // If block is inside the loop then it is not a exit block.
    261       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    262         continue;
    263 
    264       pred_iterator PI = pred_begin(*I);
    265       BasicBlock *firstPred = *PI;
    266 
    267       // If current basic block is this exit block's first predecessor
    268       // then only insert exit block in to the output ExitBlocks vector.
    269       // This ensures that same exit block is not inserted twice into
    270       // ExitBlocks vector.
    271       if (current != firstPred)
    272         continue;
    273 
    274       // If a terminator has more then two successors, for example SwitchInst,
    275       // then it is possible that there are multiple edges from current block
    276       // to one exit block.
    277       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
    278         ExitBlocks.push_back(*I);
    279         continue;
    280       }
    281 
    282       // In case of multiple edges from current block to exit block, collect
    283       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
    284       // duplicate edges.
    285       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
    286           == switchExitBlocks.end()) {
    287         switchExitBlocks.push_back(*I);
    288         ExitBlocks.push_back(*I);
    289       }
    290     }
    291   }
    292 }
    293 
    294 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    295 /// block, return that block. Otherwise return null.
    296 BasicBlock *Loop::getUniqueExitBlock() const {
    297   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
    298   getUniqueExitBlocks(UniqueExitBlocks);
    299   if (UniqueExitBlocks.size() == 1)
    300     return UniqueExitBlocks[0];
    301   return 0;
    302 }
    303 
    304 void Loop::dump() const {
    305   print(dbgs());
    306 }
    307 
    308 //===----------------------------------------------------------------------===//
    309 // UnloopUpdater implementation
    310 //
    311 
    312 namespace {
    313 /// Find the new parent loop for all blocks within the "unloop" whose last
    314 /// backedges has just been removed.
    315 class UnloopUpdater {
    316   Loop *Unloop;
    317   LoopInfo *LI;
    318 
    319   LoopBlocksDFS DFS;
    320 
    321   // Map unloop's immediate subloops to their nearest reachable parents. Nested
    322   // loops within these subloops will not change parents. However, an immediate
    323   // subloop's new parent will be the nearest loop reachable from either its own
    324   // exits *or* any of its nested loop's exits.
    325   DenseMap<Loop*, Loop*> SubloopParents;
    326 
    327   // Flag the presence of an irreducible backedge whose destination is a block
    328   // directly contained by the original unloop.
    329   bool FoundIB;
    330 
    331 public:
    332   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    333     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
    334 
    335   void updateBlockParents();
    336 
    337   void removeBlocksFromAncestors();
    338 
    339   void updateSubloopParents();
    340 
    341 protected:
    342   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
    343 };
    344 } // end anonymous namespace
    345 
    346 /// updateBlockParents - Update the parent loop for all blocks that are directly
    347 /// contained within the original "unloop".
    348 void UnloopUpdater::updateBlockParents() {
    349   if (Unloop->getNumBlocks()) {
    350     // Perform a post order CFG traversal of all blocks within this loop,
    351     // propagating the nearest loop from sucessors to predecessors.
    352     LoopBlocksTraversal Traversal(DFS, LI);
    353     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    354            POE = Traversal.end(); POI != POE; ++POI) {
    355 
    356       Loop *L = LI->getLoopFor(*POI);
    357       Loop *NL = getNearestLoop(*POI, L);
    358 
    359       if (NL != L) {
    360         // For reducible loops, NL is now an ancestor of Unloop.
    361         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
    362                "uninitialized successor");
    363         LI->changeLoopFor(*POI, NL);
    364       }
    365       else {
    366         // Or the current block is part of a subloop, in which case its parent
    367         // is unchanged.
    368         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
    369       }
    370     }
    371   }
    372   // Each irreducible loop within the unloop induces a round of iteration using
    373   // the DFS result cached by Traversal.
    374   bool Changed = FoundIB;
    375   for (unsigned NIters = 0; Changed; ++NIters) {
    376     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
    377 
    378     // Iterate over the postorder list of blocks, propagating the nearest loop
    379     // from successors to predecessors as before.
    380     Changed = false;
    381     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
    382            POE = DFS.endPostorder(); POI != POE; ++POI) {
    383 
    384       Loop *L = LI->getLoopFor(*POI);
    385       Loop *NL = getNearestLoop(*POI, L);
    386       if (NL != L) {
    387         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
    388                "uninitialized successor");
    389         LI->changeLoopFor(*POI, NL);
    390         Changed = true;
    391       }
    392     }
    393   }
    394 }
    395 
    396 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
    397 /// their new parents.
    398 void UnloopUpdater::removeBlocksFromAncestors() {
    399   // Remove all unloop's blocks (including those in nested subloops) from
    400   // ancestors below the new parent loop.
    401   for (Loop::block_iterator BI = Unloop->block_begin(),
    402          BE = Unloop->block_end(); BI != BE; ++BI) {
    403     Loop *OuterParent = LI->getLoopFor(*BI);
    404     if (Unloop->contains(OuterParent)) {
    405       while (OuterParent->getParentLoop() != Unloop)
    406         OuterParent = OuterParent->getParentLoop();
    407       OuterParent = SubloopParents[OuterParent];
    408     }
    409     // Remove blocks from former Ancestors except Unloop itself which will be
    410     // deleted.
    411     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
    412          OldParent = OldParent->getParentLoop()) {
    413       assert(OldParent && "new loop is not an ancestor of the original");
    414       OldParent->removeBlockFromLoop(*BI);
    415     }
    416   }
    417 }
    418 
    419 /// updateSubloopParents - Update the parent loop for all subloops directly
    420 /// nested within unloop.
    421 void UnloopUpdater::updateSubloopParents() {
    422   while (!Unloop->empty()) {
    423     Loop *Subloop = *llvm::prior(Unloop->end());
    424     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
    425 
    426     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    427     if (SubloopParents[Subloop])
    428       SubloopParents[Subloop]->addChildLoop(Subloop);
    429     else
    430       LI->addTopLevelLoop(Subloop);
    431   }
    432 }
    433 
    434 /// getNearestLoop - Return the nearest parent loop among this block's
    435 /// successors. If a successor is a subloop header, consider its parent to be
    436 /// the nearest parent of the subloop's exits.
    437 ///
    438 /// For subloop blocks, simply update SubloopParents and return NULL.
    439 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
    440 
    441   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
    442   // is considered uninitialized.
    443   Loop *NearLoop = BBLoop;
    444 
    445   Loop *Subloop = 0;
    446   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    447     Subloop = NearLoop;
    448     // Find the subloop ancestor that is directly contained within Unloop.
    449     while (Subloop->getParentLoop() != Unloop) {
    450       Subloop = Subloop->getParentLoop();
    451       assert(Subloop && "subloop is not an ancestor of the original loop");
    452     }
    453     // Get the current nearest parent of the Subloop exits, initially Unloop.
    454     if (!SubloopParents.count(Subloop))
    455       SubloopParents[Subloop] = Unloop;
    456     NearLoop = SubloopParents[Subloop];
    457   }
    458 
    459   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    460   if (I == E) {
    461     assert(!Subloop && "subloop blocks must have a successor");
    462     NearLoop = 0; // unloop blocks may now exit the function.
    463   }
    464   for (; I != E; ++I) {
    465     if (*I == BB)
    466       continue; // self loops are uninteresting
    467 
    468     Loop *L = LI->getLoopFor(*I);
    469     if (L == Unloop) {
    470       // This successor has not been processed. This path must lead to an
    471       // irreducible backedge.
    472       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
    473       FoundIB = true;
    474     }
    475     if (L != Unloop && Unloop->contains(L)) {
    476       // Successor is in a subloop.
    477       if (Subloop)
    478         continue; // Branching within subloops. Ignore it.
    479 
    480       // BB branches from the original into a subloop header.
    481       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
    482 
    483       // Get the current nearest parent of the Subloop's exits.
    484       L = SubloopParents[L];
    485       // L could be Unloop if the only exit was an irreducible backedge.
    486     }
    487     if (L == Unloop) {
    488       continue;
    489     }
    490     // Handle critical edges from Unloop into a sibling loop.
    491     if (L && !L->contains(Unloop)) {
    492       L = L->getParentLoop();
    493     }
    494     // Remember the nearest parent loop among successors or subloop exits.
    495     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
    496       NearLoop = L;
    497   }
    498   if (Subloop) {
    499     SubloopParents[Subloop] = NearLoop;
    500     return BBLoop;
    501   }
    502   return NearLoop;
    503 }
    504 
    505 //===----------------------------------------------------------------------===//
    506 // LoopInfo implementation
    507 //
    508 bool LoopInfo::runOnFunction(Function &) {
    509   releaseMemory();
    510   LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
    511   return false;
    512 }
    513 
    514 /// updateUnloop - The last backedge has been removed from a loop--now the
    515 /// "unloop". Find a new parent for the blocks contained within unloop and
    516 /// update the loop tree. We don't necessarily have valid dominators at this
    517 /// point, but LoopInfo is still valid except for the removal of this loop.
    518 ///
    519 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
    520 /// checking first is illegal.
    521 void LoopInfo::updateUnloop(Loop *Unloop) {
    522 
    523   // First handle the special case of no parent loop to simplify the algorithm.
    524   if (!Unloop->getParentLoop()) {
    525     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    526     for (Loop::block_iterator I = Unloop->block_begin(),
    527          E = Unloop->block_end(); I != E; ++I) {
    528 
    529       // Don't reparent blocks in subloops.
    530       if (getLoopFor(*I) != Unloop)
    531         continue;
    532 
    533       // Blocks no longer have a parent but are still referenced by Unloop until
    534       // the Unloop object is deleted.
    535       LI.changeLoopFor(*I, 0);
    536     }
    537 
    538     // Remove the loop from the top-level LoopInfo object.
    539     for (LoopInfo::iterator I = LI.begin();; ++I) {
    540       assert(I != LI.end() && "Couldn't find loop");
    541       if (*I == Unloop) {
    542         LI.removeLoop(I);
    543         break;
    544       }
    545     }
    546 
    547     // Move all of the subloops to the top-level.
    548     while (!Unloop->empty())
    549       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
    550 
    551     return;
    552   }
    553 
    554   // Update the parent loop for all blocks within the loop. Blocks within
    555   // subloops will not change parents.
    556   UnloopUpdater Updater(Unloop, this);
    557   Updater.updateBlockParents();
    558 
    559   // Remove blocks from former ancestor loops.
    560   Updater.removeBlocksFromAncestors();
    561 
    562   // Add direct subloops as children in their new parent loop.
    563   Updater.updateSubloopParents();
    564 
    565   // Remove unloop from its parent loop.
    566   Loop *ParentLoop = Unloop->getParentLoop();
    567   for (Loop::iterator I = ParentLoop->begin();; ++I) {
    568     assert(I != ParentLoop->end() && "Couldn't find loop");
    569     if (*I == Unloop) {
    570       ParentLoop->removeChildLoop(I);
    571       break;
    572     }
    573   }
    574 }
    575 
    576 void LoopInfo::verifyAnalysis() const {
    577   // LoopInfo is a FunctionPass, but verifying every loop in the function
    578   // each time verifyAnalysis is called is very expensive. The
    579   // -verify-loop-info option can enable this. In order to perform some
    580   // checking by default, LoopPass has been taught to call verifyLoop
    581   // manually during loop pass sequences.
    582 
    583   if (!VerifyLoopInfo) return;
    584 
    585   DenseSet<const Loop*> Loops;
    586   for (iterator I = begin(), E = end(); I != E; ++I) {
    587     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    588     (*I)->verifyLoopNest(&Loops);
    589   }
    590 
    591   // Verify that blocks are mapped to valid loops.
    592   //
    593   // FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we
    594   // could also verify that the blocks are still in the correct loops.
    595   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
    596          E = LI.BBMap.end(); I != E; ++I) {
    597     assert(Loops.count(I->second) && "orphaned loop");
    598     assert(I->second->contains(I->first) && "orphaned block");
    599   }
    600 }
    601 
    602 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
    603   AU.setPreservesAll();
    604   AU.addRequired<DominatorTree>();
    605 }
    606 
    607 void LoopInfo::print(raw_ostream &OS, const Module*) const {
    608   LI.print(OS);
    609 }
    610 
    611 //===----------------------------------------------------------------------===//
    612 // LoopBlocksDFS implementation
    613 //
    614 
    615 /// Traverse the loop blocks and store the DFS result.
    616 /// Useful for clients that just want the final DFS result and don't need to
    617 /// visit blocks during the initial traversal.
    618 void LoopBlocksDFS::perform(LoopInfo *LI) {
    619   LoopBlocksTraversal Traversal(*this, LI);
    620   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    621          POE = Traversal.end(); POI != POE; ++POI) ;
    622 }
    623