Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/MC/MCAsmInfo.h"
     16 #include "llvm/MC/MCExpr.h"
     17 #include "llvm/Target/TargetData.h"
     18 #include "llvm/Target/TargetLoweringObjectFile.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetRegisterInfo.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/DerivedTypes.h"
     23 #include "llvm/CodeGen/Analysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/SelectionDAG.h"
     28 #include "llvm/ADT/STLExtras.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/MathExtras.h"
     32 #include <cctype>
     33 using namespace llvm;
     34 
     35 /// We are in the process of implementing a new TypeLegalization action
     36 /// - the promotion of vector elements. This feature is disabled by default
     37 /// and only enabled using this flag.
     38 static cl::opt<bool>
     39 AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true),
     40   cl::desc("Allow promotion of integer vector element types"));
     41 
     42 /// InitLibcallNames - Set default libcall names.
     43 ///
     44 static void InitLibcallNames(const char **Names) {
     45   Names[RTLIB::SHL_I16] = "__ashlhi3";
     46   Names[RTLIB::SHL_I32] = "__ashlsi3";
     47   Names[RTLIB::SHL_I64] = "__ashldi3";
     48   Names[RTLIB::SHL_I128] = "__ashlti3";
     49   Names[RTLIB::SRL_I16] = "__lshrhi3";
     50   Names[RTLIB::SRL_I32] = "__lshrsi3";
     51   Names[RTLIB::SRL_I64] = "__lshrdi3";
     52   Names[RTLIB::SRL_I128] = "__lshrti3";
     53   Names[RTLIB::SRA_I16] = "__ashrhi3";
     54   Names[RTLIB::SRA_I32] = "__ashrsi3";
     55   Names[RTLIB::SRA_I64] = "__ashrdi3";
     56   Names[RTLIB::SRA_I128] = "__ashrti3";
     57   Names[RTLIB::MUL_I8] = "__mulqi3";
     58   Names[RTLIB::MUL_I16] = "__mulhi3";
     59   Names[RTLIB::MUL_I32] = "__mulsi3";
     60   Names[RTLIB::MUL_I64] = "__muldi3";
     61   Names[RTLIB::MUL_I128] = "__multi3";
     62   Names[RTLIB::MULO_I32] = "__mulosi4";
     63   Names[RTLIB::MULO_I64] = "__mulodi4";
     64   Names[RTLIB::MULO_I128] = "__muloti4";
     65   Names[RTLIB::SDIV_I8] = "__divqi3";
     66   Names[RTLIB::SDIV_I16] = "__divhi3";
     67   Names[RTLIB::SDIV_I32] = "__divsi3";
     68   Names[RTLIB::SDIV_I64] = "__divdi3";
     69   Names[RTLIB::SDIV_I128] = "__divti3";
     70   Names[RTLIB::UDIV_I8] = "__udivqi3";
     71   Names[RTLIB::UDIV_I16] = "__udivhi3";
     72   Names[RTLIB::UDIV_I32] = "__udivsi3";
     73   Names[RTLIB::UDIV_I64] = "__udivdi3";
     74   Names[RTLIB::UDIV_I128] = "__udivti3";
     75   Names[RTLIB::SREM_I8] = "__modqi3";
     76   Names[RTLIB::SREM_I16] = "__modhi3";
     77   Names[RTLIB::SREM_I32] = "__modsi3";
     78   Names[RTLIB::SREM_I64] = "__moddi3";
     79   Names[RTLIB::SREM_I128] = "__modti3";
     80   Names[RTLIB::UREM_I8] = "__umodqi3";
     81   Names[RTLIB::UREM_I16] = "__umodhi3";
     82   Names[RTLIB::UREM_I32] = "__umodsi3";
     83   Names[RTLIB::UREM_I64] = "__umoddi3";
     84   Names[RTLIB::UREM_I128] = "__umodti3";
     85 
     86   // These are generally not available.
     87   Names[RTLIB::SDIVREM_I8] = 0;
     88   Names[RTLIB::SDIVREM_I16] = 0;
     89   Names[RTLIB::SDIVREM_I32] = 0;
     90   Names[RTLIB::SDIVREM_I64] = 0;
     91   Names[RTLIB::SDIVREM_I128] = 0;
     92   Names[RTLIB::UDIVREM_I8] = 0;
     93   Names[RTLIB::UDIVREM_I16] = 0;
     94   Names[RTLIB::UDIVREM_I32] = 0;
     95   Names[RTLIB::UDIVREM_I64] = 0;
     96   Names[RTLIB::UDIVREM_I128] = 0;
     97 
     98   Names[RTLIB::NEG_I32] = "__negsi2";
     99   Names[RTLIB::NEG_I64] = "__negdi2";
    100   Names[RTLIB::ADD_F32] = "__addsf3";
    101   Names[RTLIB::ADD_F64] = "__adddf3";
    102   Names[RTLIB::ADD_F80] = "__addxf3";
    103   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    104   Names[RTLIB::SUB_F32] = "__subsf3";
    105   Names[RTLIB::SUB_F64] = "__subdf3";
    106   Names[RTLIB::SUB_F80] = "__subxf3";
    107   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    108   Names[RTLIB::MUL_F32] = "__mulsf3";
    109   Names[RTLIB::MUL_F64] = "__muldf3";
    110   Names[RTLIB::MUL_F80] = "__mulxf3";
    111   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    112   Names[RTLIB::DIV_F32] = "__divsf3";
    113   Names[RTLIB::DIV_F64] = "__divdf3";
    114   Names[RTLIB::DIV_F80] = "__divxf3";
    115   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    116   Names[RTLIB::REM_F32] = "fmodf";
    117   Names[RTLIB::REM_F64] = "fmod";
    118   Names[RTLIB::REM_F80] = "fmodl";
    119   Names[RTLIB::REM_PPCF128] = "fmodl";
    120   Names[RTLIB::FMA_F32] = "fmaf";
    121   Names[RTLIB::FMA_F64] = "fma";
    122   Names[RTLIB::FMA_F80] = "fmal";
    123   Names[RTLIB::FMA_PPCF128] = "fmal";
    124   Names[RTLIB::POWI_F32] = "__powisf2";
    125   Names[RTLIB::POWI_F64] = "__powidf2";
    126   Names[RTLIB::POWI_F80] = "__powixf2";
    127   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    128   Names[RTLIB::SQRT_F32] = "sqrtf";
    129   Names[RTLIB::SQRT_F64] = "sqrt";
    130   Names[RTLIB::SQRT_F80] = "sqrtl";
    131   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    132   Names[RTLIB::LOG_F32] = "logf";
    133   Names[RTLIB::LOG_F64] = "log";
    134   Names[RTLIB::LOG_F80] = "logl";
    135   Names[RTLIB::LOG_PPCF128] = "logl";
    136   Names[RTLIB::LOG2_F32] = "log2f";
    137   Names[RTLIB::LOG2_F64] = "log2";
    138   Names[RTLIB::LOG2_F80] = "log2l";
    139   Names[RTLIB::LOG2_PPCF128] = "log2l";
    140   Names[RTLIB::LOG10_F32] = "log10f";
    141   Names[RTLIB::LOG10_F64] = "log10";
    142   Names[RTLIB::LOG10_F80] = "log10l";
    143   Names[RTLIB::LOG10_PPCF128] = "log10l";
    144   Names[RTLIB::EXP_F32] = "expf";
    145   Names[RTLIB::EXP_F64] = "exp";
    146   Names[RTLIB::EXP_F80] = "expl";
    147   Names[RTLIB::EXP_PPCF128] = "expl";
    148   Names[RTLIB::EXP2_F32] = "exp2f";
    149   Names[RTLIB::EXP2_F64] = "exp2";
    150   Names[RTLIB::EXP2_F80] = "exp2l";
    151   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    152   Names[RTLIB::SIN_F32] = "sinf";
    153   Names[RTLIB::SIN_F64] = "sin";
    154   Names[RTLIB::SIN_F80] = "sinl";
    155   Names[RTLIB::SIN_PPCF128] = "sinl";
    156   Names[RTLIB::COS_F32] = "cosf";
    157   Names[RTLIB::COS_F64] = "cos";
    158   Names[RTLIB::COS_F80] = "cosl";
    159   Names[RTLIB::COS_PPCF128] = "cosl";
    160   Names[RTLIB::POW_F32] = "powf";
    161   Names[RTLIB::POW_F64] = "pow";
    162   Names[RTLIB::POW_F80] = "powl";
    163   Names[RTLIB::POW_PPCF128] = "powl";
    164   Names[RTLIB::CEIL_F32] = "ceilf";
    165   Names[RTLIB::CEIL_F64] = "ceil";
    166   Names[RTLIB::CEIL_F80] = "ceill";
    167   Names[RTLIB::CEIL_PPCF128] = "ceill";
    168   Names[RTLIB::TRUNC_F32] = "truncf";
    169   Names[RTLIB::TRUNC_F64] = "trunc";
    170   Names[RTLIB::TRUNC_F80] = "truncl";
    171   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    172   Names[RTLIB::RINT_F32] = "rintf";
    173   Names[RTLIB::RINT_F64] = "rint";
    174   Names[RTLIB::RINT_F80] = "rintl";
    175   Names[RTLIB::RINT_PPCF128] = "rintl";
    176   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    177   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    178   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    179   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    180   Names[RTLIB::FLOOR_F32] = "floorf";
    181   Names[RTLIB::FLOOR_F64] = "floor";
    182   Names[RTLIB::FLOOR_F80] = "floorl";
    183   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    184   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    185   Names[RTLIB::COPYSIGN_F64] = "copysign";
    186   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    187   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    188   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    189   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    190   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    191   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    192   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    193   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    194   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    195   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    196   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    197   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    198   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    199   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    200   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    201   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    202   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    203   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    204   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    205   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    206   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    207   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    208   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    209   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    210   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    211   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    212   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    213   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    214   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    215   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    216   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    217   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    218   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    219   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    220   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    221   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    222   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    223   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    224   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    225   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    226   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    227   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    228   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    229   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    230   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    231   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    232   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    233   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    234   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    235   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    236   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    237   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    238   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    239   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    240   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    241   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    242   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    243   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    244   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    245   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    246   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    247   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    248   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    249   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    250   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    251   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    252   Names[RTLIB::OEQ_F32] = "__eqsf2";
    253   Names[RTLIB::OEQ_F64] = "__eqdf2";
    254   Names[RTLIB::UNE_F32] = "__nesf2";
    255   Names[RTLIB::UNE_F64] = "__nedf2";
    256   Names[RTLIB::OGE_F32] = "__gesf2";
    257   Names[RTLIB::OGE_F64] = "__gedf2";
    258   Names[RTLIB::OLT_F32] = "__ltsf2";
    259   Names[RTLIB::OLT_F64] = "__ltdf2";
    260   Names[RTLIB::OLE_F32] = "__lesf2";
    261   Names[RTLIB::OLE_F64] = "__ledf2";
    262   Names[RTLIB::OGT_F32] = "__gtsf2";
    263   Names[RTLIB::OGT_F64] = "__gtdf2";
    264   Names[RTLIB::UO_F32] = "__unordsf2";
    265   Names[RTLIB::UO_F64] = "__unorddf2";
    266   Names[RTLIB::O_F32] = "__unordsf2";
    267   Names[RTLIB::O_F64] = "__unorddf2";
    268   Names[RTLIB::MEMCPY] = "memcpy";
    269   Names[RTLIB::MEMMOVE] = "memmove";
    270   Names[RTLIB::MEMSET] = "memset";
    271   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    272   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    273   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    274   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    275   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    276   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    277   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    278   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    279   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    280   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    281   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    282   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    283   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    284   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    285   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    286   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    287   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    288   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    289   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    290   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    291   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    292   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    293   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    294   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    295   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    296   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    297   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    298   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    299   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    300   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    301   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    302   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    303   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    304 }
    305 
    306 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    307 ///
    308 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    309   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    310     CCs[i] = CallingConv::C;
    311   }
    312 }
    313 
    314 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    315 /// UNKNOWN_LIBCALL if there is none.
    316 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    317   if (OpVT == MVT::f32) {
    318     if (RetVT == MVT::f64)
    319       return FPEXT_F32_F64;
    320   }
    321 
    322   return UNKNOWN_LIBCALL;
    323 }
    324 
    325 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    326 /// UNKNOWN_LIBCALL if there is none.
    327 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    328   if (RetVT == MVT::f32) {
    329     if (OpVT == MVT::f64)
    330       return FPROUND_F64_F32;
    331     if (OpVT == MVT::f80)
    332       return FPROUND_F80_F32;
    333     if (OpVT == MVT::ppcf128)
    334       return FPROUND_PPCF128_F32;
    335   } else if (RetVT == MVT::f64) {
    336     if (OpVT == MVT::f80)
    337       return FPROUND_F80_F64;
    338     if (OpVT == MVT::ppcf128)
    339       return FPROUND_PPCF128_F64;
    340   }
    341 
    342   return UNKNOWN_LIBCALL;
    343 }
    344 
    345 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    346 /// UNKNOWN_LIBCALL if there is none.
    347 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    348   if (OpVT == MVT::f32) {
    349     if (RetVT == MVT::i8)
    350       return FPTOSINT_F32_I8;
    351     if (RetVT == MVT::i16)
    352       return FPTOSINT_F32_I16;
    353     if (RetVT == MVT::i32)
    354       return FPTOSINT_F32_I32;
    355     if (RetVT == MVT::i64)
    356       return FPTOSINT_F32_I64;
    357     if (RetVT == MVT::i128)
    358       return FPTOSINT_F32_I128;
    359   } else if (OpVT == MVT::f64) {
    360     if (RetVT == MVT::i8)
    361       return FPTOSINT_F64_I8;
    362     if (RetVT == MVT::i16)
    363       return FPTOSINT_F64_I16;
    364     if (RetVT == MVT::i32)
    365       return FPTOSINT_F64_I32;
    366     if (RetVT == MVT::i64)
    367       return FPTOSINT_F64_I64;
    368     if (RetVT == MVT::i128)
    369       return FPTOSINT_F64_I128;
    370   } else if (OpVT == MVT::f80) {
    371     if (RetVT == MVT::i32)
    372       return FPTOSINT_F80_I32;
    373     if (RetVT == MVT::i64)
    374       return FPTOSINT_F80_I64;
    375     if (RetVT == MVT::i128)
    376       return FPTOSINT_F80_I128;
    377   } else if (OpVT == MVT::ppcf128) {
    378     if (RetVT == MVT::i32)
    379       return FPTOSINT_PPCF128_I32;
    380     if (RetVT == MVT::i64)
    381       return FPTOSINT_PPCF128_I64;
    382     if (RetVT == MVT::i128)
    383       return FPTOSINT_PPCF128_I128;
    384   }
    385   return UNKNOWN_LIBCALL;
    386 }
    387 
    388 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    389 /// UNKNOWN_LIBCALL if there is none.
    390 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    391   if (OpVT == MVT::f32) {
    392     if (RetVT == MVT::i8)
    393       return FPTOUINT_F32_I8;
    394     if (RetVT == MVT::i16)
    395       return FPTOUINT_F32_I16;
    396     if (RetVT == MVT::i32)
    397       return FPTOUINT_F32_I32;
    398     if (RetVT == MVT::i64)
    399       return FPTOUINT_F32_I64;
    400     if (RetVT == MVT::i128)
    401       return FPTOUINT_F32_I128;
    402   } else if (OpVT == MVT::f64) {
    403     if (RetVT == MVT::i8)
    404       return FPTOUINT_F64_I8;
    405     if (RetVT == MVT::i16)
    406       return FPTOUINT_F64_I16;
    407     if (RetVT == MVT::i32)
    408       return FPTOUINT_F64_I32;
    409     if (RetVT == MVT::i64)
    410       return FPTOUINT_F64_I64;
    411     if (RetVT == MVT::i128)
    412       return FPTOUINT_F64_I128;
    413   } else if (OpVT == MVT::f80) {
    414     if (RetVT == MVT::i32)
    415       return FPTOUINT_F80_I32;
    416     if (RetVT == MVT::i64)
    417       return FPTOUINT_F80_I64;
    418     if (RetVT == MVT::i128)
    419       return FPTOUINT_F80_I128;
    420   } else if (OpVT == MVT::ppcf128) {
    421     if (RetVT == MVT::i32)
    422       return FPTOUINT_PPCF128_I32;
    423     if (RetVT == MVT::i64)
    424       return FPTOUINT_PPCF128_I64;
    425     if (RetVT == MVT::i128)
    426       return FPTOUINT_PPCF128_I128;
    427   }
    428   return UNKNOWN_LIBCALL;
    429 }
    430 
    431 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    432 /// UNKNOWN_LIBCALL if there is none.
    433 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    434   if (OpVT == MVT::i32) {
    435     if (RetVT == MVT::f32)
    436       return SINTTOFP_I32_F32;
    437     else if (RetVT == MVT::f64)
    438       return SINTTOFP_I32_F64;
    439     else if (RetVT == MVT::f80)
    440       return SINTTOFP_I32_F80;
    441     else if (RetVT == MVT::ppcf128)
    442       return SINTTOFP_I32_PPCF128;
    443   } else if (OpVT == MVT::i64) {
    444     if (RetVT == MVT::f32)
    445       return SINTTOFP_I64_F32;
    446     else if (RetVT == MVT::f64)
    447       return SINTTOFP_I64_F64;
    448     else if (RetVT == MVT::f80)
    449       return SINTTOFP_I64_F80;
    450     else if (RetVT == MVT::ppcf128)
    451       return SINTTOFP_I64_PPCF128;
    452   } else if (OpVT == MVT::i128) {
    453     if (RetVT == MVT::f32)
    454       return SINTTOFP_I128_F32;
    455     else if (RetVT == MVT::f64)
    456       return SINTTOFP_I128_F64;
    457     else if (RetVT == MVT::f80)
    458       return SINTTOFP_I128_F80;
    459     else if (RetVT == MVT::ppcf128)
    460       return SINTTOFP_I128_PPCF128;
    461   }
    462   return UNKNOWN_LIBCALL;
    463 }
    464 
    465 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    466 /// UNKNOWN_LIBCALL if there is none.
    467 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    468   if (OpVT == MVT::i32) {
    469     if (RetVT == MVT::f32)
    470       return UINTTOFP_I32_F32;
    471     else if (RetVT == MVT::f64)
    472       return UINTTOFP_I32_F64;
    473     else if (RetVT == MVT::f80)
    474       return UINTTOFP_I32_F80;
    475     else if (RetVT == MVT::ppcf128)
    476       return UINTTOFP_I32_PPCF128;
    477   } else if (OpVT == MVT::i64) {
    478     if (RetVT == MVT::f32)
    479       return UINTTOFP_I64_F32;
    480     else if (RetVT == MVT::f64)
    481       return UINTTOFP_I64_F64;
    482     else if (RetVT == MVT::f80)
    483       return UINTTOFP_I64_F80;
    484     else if (RetVT == MVT::ppcf128)
    485       return UINTTOFP_I64_PPCF128;
    486   } else if (OpVT == MVT::i128) {
    487     if (RetVT == MVT::f32)
    488       return UINTTOFP_I128_F32;
    489     else if (RetVT == MVT::f64)
    490       return UINTTOFP_I128_F64;
    491     else if (RetVT == MVT::f80)
    492       return UINTTOFP_I128_F80;
    493     else if (RetVT == MVT::ppcf128)
    494       return UINTTOFP_I128_PPCF128;
    495   }
    496   return UNKNOWN_LIBCALL;
    497 }
    498 
    499 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    500 ///
    501 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    502   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    503   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    504   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    505   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    506   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    507   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    508   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    511   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    512   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    513   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    514   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    515   CCs[RTLIB::UO_F32] = ISD::SETNE;
    516   CCs[RTLIB::UO_F64] = ISD::SETNE;
    517   CCs[RTLIB::O_F32] = ISD::SETEQ;
    518   CCs[RTLIB::O_F64] = ISD::SETEQ;
    519 }
    520 
    521 /// NOTE: The constructor takes ownership of TLOF.
    522 TargetLowering::TargetLowering(const TargetMachine &tm,
    523                                const TargetLoweringObjectFile *tlof)
    524   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
    525   mayPromoteElements(AllowPromoteIntElem) {
    526   // All operations default to being supported.
    527   memset(OpActions, 0, sizeof(OpActions));
    528   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    529   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    530   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    531   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    532 
    533   // Set default actions for various operations.
    534   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
    535     // Default all indexed load / store to expand.
    536     for (unsigned IM = (unsigned)ISD::PRE_INC;
    537          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    538       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
    539       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
    540     }
    541 
    542     // These operations default to expand.
    543     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
    544     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
    545   }
    546 
    547   // Most targets ignore the @llvm.prefetch intrinsic.
    548   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    549 
    550   // ConstantFP nodes default to expand.  Targets can either change this to
    551   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    552   // to optimize expansions for certain constants.
    553   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    554   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    555   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    556   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    557 
    558   // These library functions default to expand.
    559   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
    560   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
    561   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
    562   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
    563   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
    564   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
    565   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
    566   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
    567   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
    568   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
    569   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
    570   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
    571   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
    572   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
    573   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
    574   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
    575   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
    576   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
    577   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
    578   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
    579   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
    580   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
    581   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
    582   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
    583   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
    584   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
    585   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    586   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
    587   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
    588   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
    589 
    590   // Default ISD::TRAP to expand (which turns it into abort).
    591   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    592 
    593   IsLittleEndian = TD->isLittleEndian();
    594   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
    595   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    596   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    597   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
    598   maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
    599     = maxStoresPerMemmoveOptSize = 4;
    600   benefitFromCodePlacementOpt = false;
    601   UseUnderscoreSetJmp = false;
    602   UseUnderscoreLongJmp = false;
    603   SelectIsExpensive = false;
    604   IntDivIsCheap = false;
    605   Pow2DivIsCheap = false;
    606   JumpIsExpensive = false;
    607   StackPointerRegisterToSaveRestore = 0;
    608   ExceptionPointerRegister = 0;
    609   ExceptionSelectorRegister = 0;
    610   BooleanContents = UndefinedBooleanContent;
    611   BooleanVectorContents = UndefinedBooleanContent;
    612   SchedPreferenceInfo = Sched::ILP;
    613   JumpBufSize = 0;
    614   JumpBufAlignment = 0;
    615   MinFunctionAlignment = 0;
    616   PrefFunctionAlignment = 0;
    617   PrefLoopAlignment = 0;
    618   MinStackArgumentAlignment = 1;
    619   ShouldFoldAtomicFences = false;
    620   InsertFencesForAtomic = false;
    621 
    622   InitLibcallNames(LibcallRoutineNames);
    623   InitCmpLibcallCCs(CmpLibcallCCs);
    624   InitLibcallCallingConvs(LibcallCallingConvs);
    625 }
    626 
    627 TargetLowering::~TargetLowering() {
    628   delete &TLOF;
    629 }
    630 
    631 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
    632   return MVT::getIntegerVT(8*TD->getPointerSize());
    633 }
    634 
    635 /// canOpTrap - Returns true if the operation can trap for the value type.
    636 /// VT must be a legal type.
    637 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
    638   assert(isTypeLegal(VT));
    639   switch (Op) {
    640   default:
    641     return false;
    642   case ISD::FDIV:
    643   case ISD::FREM:
    644   case ISD::SDIV:
    645   case ISD::UDIV:
    646   case ISD::SREM:
    647   case ISD::UREM:
    648     return true;
    649   }
    650 }
    651 
    652 
    653 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
    654                                           unsigned &NumIntermediates,
    655                                           EVT &RegisterVT,
    656                                           TargetLowering *TLI) {
    657   // Figure out the right, legal destination reg to copy into.
    658   unsigned NumElts = VT.getVectorNumElements();
    659   MVT EltTy = VT.getVectorElementType();
    660 
    661   unsigned NumVectorRegs = 1;
    662 
    663   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    664   // could break down into LHS/RHS like LegalizeDAG does.
    665   if (!isPowerOf2_32(NumElts)) {
    666     NumVectorRegs = NumElts;
    667     NumElts = 1;
    668   }
    669 
    670   // Divide the input until we get to a supported size.  This will always
    671   // end with a scalar if the target doesn't support vectors.
    672   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    673     NumElts >>= 1;
    674     NumVectorRegs <<= 1;
    675   }
    676 
    677   NumIntermediates = NumVectorRegs;
    678 
    679   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
    680   if (!TLI->isTypeLegal(NewVT))
    681     NewVT = EltTy;
    682   IntermediateVT = NewVT;
    683 
    684   unsigned NewVTSize = NewVT.getSizeInBits();
    685 
    686   // Convert sizes such as i33 to i64.
    687   if (!isPowerOf2_32(NewVTSize))
    688     NewVTSize = NextPowerOf2(NewVTSize);
    689 
    690   EVT DestVT = TLI->getRegisterType(NewVT);
    691   RegisterVT = DestVT;
    692   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    693     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    694 
    695   // Otherwise, promotion or legal types use the same number of registers as
    696   // the vector decimated to the appropriate level.
    697   return NumVectorRegs;
    698 }
    699 
    700 /// isLegalRC - Return true if the value types that can be represented by the
    701 /// specified register class are all legal.
    702 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
    703   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
    704        I != E; ++I) {
    705     if (isTypeLegal(*I))
    706       return true;
    707   }
    708   return false;
    709 }
    710 
    711 /// hasLegalSuperRegRegClasses - Return true if the specified register class
    712 /// has one or more super-reg register classes that are legal.
    713 bool
    714 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
    715   if (*RC->superregclasses_begin() == 0)
    716     return false;
    717   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
    718          E = RC->superregclasses_end(); I != E; ++I) {
    719     const TargetRegisterClass *RRC = *I;
    720     if (isLegalRC(RRC))
    721       return true;
    722   }
    723   return false;
    724 }
    725 
    726 /// findRepresentativeClass - Return the largest legal super-reg register class
    727 /// of the register class for the specified type and its associated "cost".
    728 std::pair<const TargetRegisterClass*, uint8_t>
    729 TargetLowering::findRepresentativeClass(EVT VT) const {
    730   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    731   if (!RC)
    732     return std::make_pair(RC, 0);
    733   const TargetRegisterClass *BestRC = RC;
    734   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
    735          E = RC->superregclasses_end(); I != E; ++I) {
    736     const TargetRegisterClass *RRC = *I;
    737     if (RRC->isASubClass() || !isLegalRC(RRC))
    738       continue;
    739     if (!hasLegalSuperRegRegClasses(RRC))
    740       return std::make_pair(RRC, 1);
    741     BestRC = RRC;
    742   }
    743   return std::make_pair(BestRC, 1);
    744 }
    745 
    746 
    747 /// computeRegisterProperties - Once all of the register classes are added,
    748 /// this allows us to compute derived properties we expose.
    749 void TargetLowering::computeRegisterProperties() {
    750   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
    751          "Too many value types for ValueTypeActions to hold!");
    752 
    753   // Everything defaults to needing one register.
    754   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    755     NumRegistersForVT[i] = 1;
    756     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
    757   }
    758   // ...except isVoid, which doesn't need any registers.
    759   NumRegistersForVT[MVT::isVoid] = 0;
    760 
    761   // Find the largest integer register class.
    762   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
    763   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
    764     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
    765 
    766   // Every integer value type larger than this largest register takes twice as
    767   // many registers to represent as the previous ValueType.
    768   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
    769     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
    770     if (!ExpandedVT.isInteger())
    771       break;
    772     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    773     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    774     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    775     ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
    776   }
    777 
    778   // Inspect all of the ValueType's smaller than the largest integer
    779   // register to see which ones need promotion.
    780   unsigned LegalIntReg = LargestIntReg;
    781   for (unsigned IntReg = LargestIntReg - 1;
    782        IntReg >= (unsigned)MVT::i1; --IntReg) {
    783     EVT IVT = (MVT::SimpleValueType)IntReg;
    784     if (isTypeLegal(IVT)) {
    785       LegalIntReg = IntReg;
    786     } else {
    787       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
    788         (MVT::SimpleValueType)LegalIntReg;
    789       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    790     }
    791   }
    792 
    793   // ppcf128 type is really two f64's.
    794   if (!isTypeLegal(MVT::ppcf128)) {
    795     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
    796     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
    797     TransformToType[MVT::ppcf128] = MVT::f64;
    798     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    799   }
    800 
    801   // Decide how to handle f64. If the target does not have native f64 support,
    802   // expand it to i64 and we will be generating soft float library calls.
    803   if (!isTypeLegal(MVT::f64)) {
    804     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    805     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    806     TransformToType[MVT::f64] = MVT::i64;
    807     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
    808   }
    809 
    810   // Decide how to handle f32. If the target does not have native support for
    811   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
    812   if (!isTypeLegal(MVT::f32)) {
    813     if (isTypeLegal(MVT::f64)) {
    814       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
    815       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
    816       TransformToType[MVT::f32] = MVT::f64;
    817       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
    818     } else {
    819       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    820       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    821       TransformToType[MVT::f32] = MVT::i32;
    822       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
    823     }
    824   }
    825 
    826   // Loop over all of the vector value types to see which need transformations.
    827   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
    828        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    829     MVT VT = (MVT::SimpleValueType)i;
    830     if (isTypeLegal(VT)) continue;
    831 
    832     // Determine if there is a legal wider type.  If so, we should promote to
    833     // that wider vector type.
    834     EVT EltVT = VT.getVectorElementType();
    835     unsigned NElts = VT.getVectorNumElements();
    836     if (NElts != 1) {
    837       bool IsLegalWiderType = false;
    838       // If we allow the promotion of vector elements using a flag,
    839       // then return TypePromoteInteger on vector elements.
    840       // First try to promote the elements of integer vectors. If no legal
    841       // promotion was found, fallback to the widen-vector method.
    842       if (mayPromoteElements)
    843       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    844         EVT SVT = (MVT::SimpleValueType)nVT;
    845         // Promote vectors of integers to vectors with the same number
    846         // of elements, with a wider element type.
    847         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
    848             && SVT.getVectorNumElements() == NElts &&
    849             isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
    850           TransformToType[i] = SVT;
    851           RegisterTypeForVT[i] = SVT;
    852           NumRegistersForVT[i] = 1;
    853           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
    854           IsLegalWiderType = true;
    855           break;
    856         }
    857       }
    858 
    859       if (IsLegalWiderType) continue;
    860 
    861       // Try to widen the vector.
    862       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
    863         EVT SVT = (MVT::SimpleValueType)nVT;
    864         if (SVT.getVectorElementType() == EltVT &&
    865             SVT.getVectorNumElements() > NElts &&
    866             isTypeLegal(SVT)) {
    867           TransformToType[i] = SVT;
    868           RegisterTypeForVT[i] = SVT;
    869           NumRegistersForVT[i] = 1;
    870           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    871           IsLegalWiderType = true;
    872           break;
    873         }
    874       }
    875       if (IsLegalWiderType) continue;
    876     }
    877 
    878     MVT IntermediateVT;
    879     EVT RegisterVT;
    880     unsigned NumIntermediates;
    881     NumRegistersForVT[i] =
    882       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
    883                                 RegisterVT, this);
    884     RegisterTypeForVT[i] = RegisterVT;
    885 
    886     EVT NVT = VT.getPow2VectorType();
    887     if (NVT == VT) {
    888       // Type is already a power of 2.  The default action is to split.
    889       TransformToType[i] = MVT::Other;
    890       unsigned NumElts = VT.getVectorNumElements();
    891       ValueTypeActions.setTypeAction(VT,
    892             NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
    893     } else {
    894       TransformToType[i] = NVT;
    895       ValueTypeActions.setTypeAction(VT, TypeWidenVector);
    896     }
    897   }
    898 
    899   // Determine the 'representative' register class for each value type.
    900   // An representative register class is the largest (meaning one which is
    901   // not a sub-register class / subreg register class) legal register class for
    902   // a group of value types. For example, on i386, i8, i16, and i32
    903   // representative would be GR32; while on x86_64 it's GR64.
    904   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    905     const TargetRegisterClass* RRC;
    906     uint8_t Cost;
    907     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
    908     RepRegClassForVT[i] = RRC;
    909     RepRegClassCostForVT[i] = Cost;
    910   }
    911 }
    912 
    913 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
    914   return NULL;
    915 }
    916 
    917 
    918 EVT TargetLowering::getSetCCResultType(EVT VT) const {
    919   assert(!VT.isVector() && "No default SetCC type for vectors!");
    920   return PointerTy.SimpleTy;
    921 }
    922 
    923 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
    924   return MVT::i32; // return the default value
    925 }
    926 
    927 /// getVectorTypeBreakdown - Vector types are broken down into some number of
    928 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
    929 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
    930 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
    931 ///
    932 /// This method returns the number of registers needed, and the VT for each
    933 /// register.  It also returns the VT and quantity of the intermediate values
    934 /// before they are promoted/expanded.
    935 ///
    936 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    937                                                 EVT &IntermediateVT,
    938                                                 unsigned &NumIntermediates,
    939                                                 EVT &RegisterVT) const {
    940   unsigned NumElts = VT.getVectorNumElements();
    941 
    942   // If there is a wider vector type with the same element type as this one,
    943   // we should widen to that legal vector type.  This handles things like
    944   // <2 x float> -> <4 x float>.
    945   if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
    946     RegisterVT = getTypeToTransformTo(Context, VT);
    947     if (isTypeLegal(RegisterVT)) {
    948       IntermediateVT = RegisterVT;
    949       NumIntermediates = 1;
    950       return 1;
    951     }
    952   }
    953 
    954   // Figure out the right, legal destination reg to copy into.
    955   EVT EltTy = VT.getVectorElementType();
    956 
    957   unsigned NumVectorRegs = 1;
    958 
    959   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
    960   // could break down into LHS/RHS like LegalizeDAG does.
    961   if (!isPowerOf2_32(NumElts)) {
    962     NumVectorRegs = NumElts;
    963     NumElts = 1;
    964   }
    965 
    966   // Divide the input until we get to a supported size.  This will always
    967   // end with a scalar if the target doesn't support vectors.
    968   while (NumElts > 1 && !isTypeLegal(
    969                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
    970     NumElts >>= 1;
    971     NumVectorRegs <<= 1;
    972   }
    973 
    974   NumIntermediates = NumVectorRegs;
    975 
    976   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
    977   if (!isTypeLegal(NewVT))
    978     NewVT = EltTy;
    979   IntermediateVT = NewVT;
    980 
    981   EVT DestVT = getRegisterType(Context, NewVT);
    982   RegisterVT = DestVT;
    983   unsigned NewVTSize = NewVT.getSizeInBits();
    984 
    985   // Convert sizes such as i33 to i64.
    986   if (!isPowerOf2_32(NewVTSize))
    987     NewVTSize = NextPowerOf2(NewVTSize);
    988 
    989   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
    990     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
    991 
    992   // Otherwise, promotion or legal types use the same number of registers as
    993   // the vector decimated to the appropriate level.
    994   return NumVectorRegs;
    995 }
    996 
    997 /// Get the EVTs and ArgFlags collections that represent the legalized return
    998 /// type of the given function.  This does not require a DAG or a return value,
    999 /// and is suitable for use before any DAGs for the function are constructed.
   1000 /// TODO: Move this out of TargetLowering.cpp.
   1001 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
   1002                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1003                          const TargetLowering &TLI,
   1004                          SmallVectorImpl<uint64_t> *Offsets) {
   1005   SmallVector<EVT, 4> ValueVTs;
   1006   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   1007   unsigned NumValues = ValueVTs.size();
   1008   if (NumValues == 0) return;
   1009   unsigned Offset = 0;
   1010 
   1011   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1012     EVT VT = ValueVTs[j];
   1013     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1014 
   1015     if (attr & Attribute::SExt)
   1016       ExtendKind = ISD::SIGN_EXTEND;
   1017     else if (attr & Attribute::ZExt)
   1018       ExtendKind = ISD::ZERO_EXTEND;
   1019 
   1020     // FIXME: C calling convention requires the return type to be promoted to
   1021     // at least 32-bit. But this is not necessary for non-C calling
   1022     // conventions. The frontend should mark functions whose return values
   1023     // require promoting with signext or zeroext attributes.
   1024     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1025       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1026       if (VT.bitsLT(MinVT))
   1027         VT = MinVT;
   1028     }
   1029 
   1030     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1031     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1032     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
   1033                         PartVT.getTypeForEVT(ReturnType->getContext()));
   1034 
   1035     // 'inreg' on function refers to return value
   1036     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1037     if (attr & Attribute::InReg)
   1038       Flags.setInReg();
   1039 
   1040     // Propagate extension type if any
   1041     if (attr & Attribute::SExt)
   1042       Flags.setSExt();
   1043     else if (attr & Attribute::ZExt)
   1044       Flags.setZExt();
   1045 
   1046     for (unsigned i = 0; i < NumParts; ++i) {
   1047       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
   1048       if (Offsets) {
   1049         Offsets->push_back(Offset);
   1050         Offset += PartSize;
   1051       }
   1052     }
   1053   }
   1054 }
   1055 
   1056 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1057 /// function arguments in the caller parameter area.  This is the actual
   1058 /// alignment, not its logarithm.
   1059 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1060   return TD->getCallFrameTypeAlignment(Ty);
   1061 }
   1062 
   1063 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1064 /// current function.  The returned value is a member of the
   1065 /// MachineJumpTableInfo::JTEntryKind enum.
   1066 unsigned TargetLowering::getJumpTableEncoding() const {
   1067   // In non-pic modes, just use the address of a block.
   1068   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   1069     return MachineJumpTableInfo::EK_BlockAddress;
   1070 
   1071   // In PIC mode, if the target supports a GPRel32 directive, use it.
   1072   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
   1073     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
   1074 
   1075   // Otherwise, use a label difference.
   1076   return MachineJumpTableInfo::EK_LabelDifference32;
   1077 }
   1078 
   1079 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1080                                                  SelectionDAG &DAG) const {
   1081   // If our PIC model is GP relative, use the global offset table as the base.
   1082   unsigned JTEncoding = getJumpTableEncoding();
   1083 
   1084   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
   1085       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
   1086     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
   1087 
   1088   return Table;
   1089 }
   1090 
   1091 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1092 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1093 /// MCExpr.
   1094 const MCExpr *
   1095 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   1096                                              unsigned JTI,MCContext &Ctx) const{
   1097   // The normal PIC reloc base is the label at the start of the jump table.
   1098   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
   1099 }
   1100 
   1101 bool
   1102 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   1103   // Assume that everything is safe in static mode.
   1104   if (getTargetMachine().getRelocationModel() == Reloc::Static)
   1105     return true;
   1106 
   1107   // In dynamic-no-pic mode, assume that known defined values are safe.
   1108   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
   1109       GA &&
   1110       !GA->getGlobal()->isDeclaration() &&
   1111       !GA->getGlobal()->isWeakForLinker())
   1112     return true;
   1113 
   1114   // Otherwise assume nothing is safe.
   1115   return false;
   1116 }
   1117 
   1118 //===----------------------------------------------------------------------===//
   1119 //  Optimization Methods
   1120 //===----------------------------------------------------------------------===//
   1121 
   1122 /// ShrinkDemandedConstant - Check to see if the specified operand of the
   1123 /// specified instruction is a constant integer.  If so, check to see if there
   1124 /// are any bits set in the constant that are not demanded.  If so, shrink the
   1125 /// constant and return true.
   1126 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
   1127                                                         const APInt &Demanded) {
   1128   DebugLoc dl = Op.getDebugLoc();
   1129 
   1130   // FIXME: ISD::SELECT, ISD::SELECT_CC
   1131   switch (Op.getOpcode()) {
   1132   default: break;
   1133   case ISD::XOR:
   1134   case ISD::AND:
   1135   case ISD::OR: {
   1136     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   1137     if (!C) return false;
   1138 
   1139     if (Op.getOpcode() == ISD::XOR &&
   1140         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
   1141       return false;
   1142 
   1143     // if we can expand it to have all bits set, do it
   1144     if (C->getAPIntValue().intersects(~Demanded)) {
   1145       EVT VT = Op.getValueType();
   1146       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
   1147                                 DAG.getConstant(Demanded &
   1148                                                 C->getAPIntValue(),
   1149                                                 VT));
   1150       return CombineTo(Op, New);
   1151     }
   1152 
   1153     break;
   1154   }
   1155   }
   1156 
   1157   return false;
   1158 }
   1159 
   1160 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
   1161 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
   1162 /// cast, but it could be generalized for targets with other types of
   1163 /// implicit widening casts.
   1164 bool
   1165 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
   1166                                                     unsigned BitWidth,
   1167                                                     const APInt &Demanded,
   1168                                                     DebugLoc dl) {
   1169   assert(Op.getNumOperands() == 2 &&
   1170          "ShrinkDemandedOp only supports binary operators!");
   1171   assert(Op.getNode()->getNumValues() == 1 &&
   1172          "ShrinkDemandedOp only supports nodes with one result!");
   1173 
   1174   // Don't do this if the node has another user, which may require the
   1175   // full value.
   1176   if (!Op.getNode()->hasOneUse())
   1177     return false;
   1178 
   1179   // Search for the smallest integer type with free casts to and from
   1180   // Op's type. For expedience, just check power-of-2 integer types.
   1181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1182   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
   1183   if (!isPowerOf2_32(SmallVTBits))
   1184     SmallVTBits = NextPowerOf2(SmallVTBits);
   1185   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
   1186     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
   1187     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
   1188         TLI.isZExtFree(SmallVT, Op.getValueType())) {
   1189       // We found a type with free casts.
   1190       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
   1191                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1192                                           Op.getNode()->getOperand(0)),
   1193                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
   1194                                           Op.getNode()->getOperand(1)));
   1195       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
   1196       return CombineTo(Op, Z);
   1197     }
   1198   }
   1199   return false;
   1200 }
   1201 
   1202 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
   1203 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
   1204 /// use this information to simplify Op, create a new simplified DAG node and
   1205 /// return true, returning the original and new nodes in Old and New. Otherwise,
   1206 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
   1207 /// the expression (used to simplify the caller).  The KnownZero/One bits may
   1208 /// only be accurate for those bits in the DemandedMask.
   1209 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   1210                                           const APInt &DemandedMask,
   1211                                           APInt &KnownZero,
   1212                                           APInt &KnownOne,
   1213                                           TargetLoweringOpt &TLO,
   1214                                           unsigned Depth) const {
   1215   unsigned BitWidth = DemandedMask.getBitWidth();
   1216   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
   1217          "Mask size mismatches value type size!");
   1218   APInt NewMask = DemandedMask;
   1219   DebugLoc dl = Op.getDebugLoc();
   1220 
   1221   // Don't know anything.
   1222   KnownZero = KnownOne = APInt(BitWidth, 0);
   1223 
   1224   // Other users may use these bits.
   1225   if (!Op.getNode()->hasOneUse()) {
   1226     if (Depth != 0) {
   1227       // If not at the root, Just compute the KnownZero/KnownOne bits to
   1228       // simplify things downstream.
   1229       TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
   1230       return false;
   1231     }
   1232     // If this is the root being simplified, allow it to have multiple uses,
   1233     // just set the NewMask to all bits.
   1234     NewMask = APInt::getAllOnesValue(BitWidth);
   1235   } else if (DemandedMask == 0) {
   1236     // Not demanding any bits from Op.
   1237     if (Op.getOpcode() != ISD::UNDEF)
   1238       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
   1239     return false;
   1240   } else if (Depth == 6) {        // Limit search depth.
   1241     return false;
   1242   }
   1243 
   1244   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
   1245   switch (Op.getOpcode()) {
   1246   case ISD::Constant:
   1247     // We know all of the bits for a constant!
   1248     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
   1249     KnownZero = ~KnownOne;
   1250     return false;   // Don't fall through, will infinitely loop.
   1251   case ISD::AND:
   1252     // If the RHS is a constant, check to see if the LHS would be zero without
   1253     // using the bits from the RHS.  Below, we use knowledge about the RHS to
   1254     // simplify the LHS, here we're using information from the LHS to simplify
   1255     // the RHS.
   1256     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1257       APInt LHSZero, LHSOne;
   1258       // Do not increment Depth here; that can cause an infinite loop.
   1259       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
   1260       // If the LHS already has zeros where RHSC does, this and is dead.
   1261       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
   1262         return TLO.CombineTo(Op, Op.getOperand(0));
   1263       // If any of the set bits in the RHS are known zero on the LHS, shrink
   1264       // the constant.
   1265       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
   1266         return true;
   1267     }
   1268 
   1269     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1270                              KnownOne, TLO, Depth+1))
   1271       return true;
   1272     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1273     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
   1274                              KnownZero2, KnownOne2, TLO, Depth+1))
   1275       return true;
   1276     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1277 
   1278     // If all of the demanded bits are known one on one side, return the other.
   1279     // These bits cannot contribute to the result of the 'and'.
   1280     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1281       return TLO.CombineTo(Op, Op.getOperand(0));
   1282     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1283       return TLO.CombineTo(Op, Op.getOperand(1));
   1284     // If all of the demanded bits in the inputs are known zeros, return zero.
   1285     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
   1286       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
   1287     // If the RHS is a constant, see if we can simplify it.
   1288     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
   1289       return true;
   1290     // If the operation can be done in a smaller type, do so.
   1291     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1292       return true;
   1293 
   1294     // Output known-1 bits are only known if set in both the LHS & RHS.
   1295     KnownOne &= KnownOne2;
   1296     // Output known-0 are known to be clear if zero in either the LHS | RHS.
   1297     KnownZero |= KnownZero2;
   1298     break;
   1299   case ISD::OR:
   1300     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1301                              KnownOne, TLO, Depth+1))
   1302       return true;
   1303     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1304     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
   1305                              KnownZero2, KnownOne2, TLO, Depth+1))
   1306       return true;
   1307     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1308 
   1309     // If all of the demanded bits are known zero on one side, return the other.
   1310     // These bits cannot contribute to the result of the 'or'.
   1311     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
   1312       return TLO.CombineTo(Op, Op.getOperand(0));
   1313     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
   1314       return TLO.CombineTo(Op, Op.getOperand(1));
   1315     // If all of the potentially set bits on one side are known to be set on
   1316     // the other side, just use the 'other' side.
   1317     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
   1318       return TLO.CombineTo(Op, Op.getOperand(0));
   1319     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
   1320       return TLO.CombineTo(Op, Op.getOperand(1));
   1321     // If the RHS is a constant, see if we can simplify it.
   1322     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1323       return true;
   1324     // If the operation can be done in a smaller type, do so.
   1325     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1326       return true;
   1327 
   1328     // Output known-0 bits are only known if clear in both the LHS & RHS.
   1329     KnownZero &= KnownZero2;
   1330     // Output known-1 are known to be set if set in either the LHS | RHS.
   1331     KnownOne |= KnownOne2;
   1332     break;
   1333   case ISD::XOR:
   1334     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
   1335                              KnownOne, TLO, Depth+1))
   1336       return true;
   1337     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1338     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
   1339                              KnownOne2, TLO, Depth+1))
   1340       return true;
   1341     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1342 
   1343     // If all of the demanded bits are known zero on one side, return the other.
   1344     // These bits cannot contribute to the result of the 'xor'.
   1345     if ((KnownZero & NewMask) == NewMask)
   1346       return TLO.CombineTo(Op, Op.getOperand(0));
   1347     if ((KnownZero2 & NewMask) == NewMask)
   1348       return TLO.CombineTo(Op, Op.getOperand(1));
   1349     // If the operation can be done in a smaller type, do so.
   1350     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1351       return true;
   1352 
   1353     // If all of the unknown bits are known to be zero on one side or the other
   1354     // (but not both) turn this into an *inclusive* or.
   1355     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
   1356     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
   1357       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
   1358                                                Op.getOperand(0),
   1359                                                Op.getOperand(1)));
   1360 
   1361     // Output known-0 bits are known if clear or set in both the LHS & RHS.
   1362     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
   1363     // Output known-1 are known to be set if set in only one of the LHS, RHS.
   1364     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
   1365 
   1366     // If all of the demanded bits on one side are known, and all of the set
   1367     // bits on that side are also known to be set on the other side, turn this
   1368     // into an AND, as we know the bits will be cleared.
   1369     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
   1370     // NB: it is okay if more bits are known than are requested
   1371     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
   1372       if (KnownOne == KnownOne2) { // set bits are the same on both sides
   1373         EVT VT = Op.getValueType();
   1374         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
   1375         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
   1376                                                  Op.getOperand(0), ANDC));
   1377       }
   1378     }
   1379 
   1380     // If the RHS is a constant, see if we can simplify it.
   1381     // for XOR, we prefer to force bits to 1 if they will make a -1.
   1382     // if we can't force bits, try to shrink constant
   1383     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1384       APInt Expanded = C->getAPIntValue() | (~NewMask);
   1385       // if we can expand it to have all bits set, do it
   1386       if (Expanded.isAllOnesValue()) {
   1387         if (Expanded != C->getAPIntValue()) {
   1388           EVT VT = Op.getValueType();
   1389           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
   1390                                           TLO.DAG.getConstant(Expanded, VT));
   1391           return TLO.CombineTo(Op, New);
   1392         }
   1393         // if it already has all the bits set, nothing to change
   1394         // but don't shrink either!
   1395       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
   1396         return true;
   1397       }
   1398     }
   1399 
   1400     KnownZero = KnownZeroOut;
   1401     KnownOne  = KnownOneOut;
   1402     break;
   1403   case ISD::SELECT:
   1404     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
   1405                              KnownOne, TLO, Depth+1))
   1406       return true;
   1407     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
   1408                              KnownOne2, TLO, Depth+1))
   1409       return true;
   1410     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1411     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1412 
   1413     // If the operands are constants, see if we can simplify them.
   1414     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1415       return true;
   1416 
   1417     // Only known if known in both the LHS and RHS.
   1418     KnownOne &= KnownOne2;
   1419     KnownZero &= KnownZero2;
   1420     break;
   1421   case ISD::SELECT_CC:
   1422     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
   1423                              KnownOne, TLO, Depth+1))
   1424       return true;
   1425     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
   1426                              KnownOne2, TLO, Depth+1))
   1427       return true;
   1428     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1429     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
   1430 
   1431     // If the operands are constants, see if we can simplify them.
   1432     if (TLO.ShrinkDemandedConstant(Op, NewMask))
   1433       return true;
   1434 
   1435     // Only known if known in both the LHS and RHS.
   1436     KnownOne &= KnownOne2;
   1437     KnownZero &= KnownZero2;
   1438     break;
   1439   case ISD::SHL:
   1440     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1441       unsigned ShAmt = SA->getZExtValue();
   1442       SDValue InOp = Op.getOperand(0);
   1443 
   1444       // If the shift count is an invalid immediate, don't do anything.
   1445       if (ShAmt >= BitWidth)
   1446         break;
   1447 
   1448       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
   1449       // single shift.  We can do this if the bottom bits (which are shifted
   1450       // out) are never demanded.
   1451       if (InOp.getOpcode() == ISD::SRL &&
   1452           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1453         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
   1454           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1455           unsigned Opc = ISD::SHL;
   1456           int Diff = ShAmt-C1;
   1457           if (Diff < 0) {
   1458             Diff = -Diff;
   1459             Opc = ISD::SRL;
   1460           }
   1461 
   1462           SDValue NewSA =
   1463             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1464           EVT VT = Op.getValueType();
   1465           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1466                                                    InOp.getOperand(0), NewSA));
   1467         }
   1468       }
   1469 
   1470       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
   1471                                KnownZero, KnownOne, TLO, Depth+1))
   1472         return true;
   1473 
   1474       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
   1475       // are not demanded. This will likely allow the anyext to be folded away.
   1476       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
   1477         SDValue InnerOp = InOp.getNode()->getOperand(0);
   1478         EVT InnerVT = InnerOp.getValueType();
   1479         unsigned InnerBits = InnerVT.getSizeInBits();
   1480         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
   1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
   1482           EVT ShTy = getShiftAmountTy(InnerVT);
   1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
   1484             ShTy = InnerVT;
   1485           SDValue NarrowShl =
   1486             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
   1487                             TLO.DAG.getConstant(ShAmt, ShTy));
   1488           return
   1489             TLO.CombineTo(Op,
   1490                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
   1491                                           NarrowShl));
   1492         }
   1493       }
   1494 
   1495       KnownZero <<= SA->getZExtValue();
   1496       KnownOne  <<= SA->getZExtValue();
   1497       // low bits known zero.
   1498       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
   1499     }
   1500     break;
   1501   case ISD::SRL:
   1502     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1503       EVT VT = Op.getValueType();
   1504       unsigned ShAmt = SA->getZExtValue();
   1505       unsigned VTSize = VT.getSizeInBits();
   1506       SDValue InOp = Op.getOperand(0);
   1507 
   1508       // If the shift count is an invalid immediate, don't do anything.
   1509       if (ShAmt >= BitWidth)
   1510         break;
   1511 
   1512       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
   1513       // single shift.  We can do this if the top bits (which are shifted out)
   1514       // are never demanded.
   1515       if (InOp.getOpcode() == ISD::SHL &&
   1516           isa<ConstantSDNode>(InOp.getOperand(1))) {
   1517         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
   1518           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
   1519           unsigned Opc = ISD::SRL;
   1520           int Diff = ShAmt-C1;
   1521           if (Diff < 0) {
   1522             Diff = -Diff;
   1523             Opc = ISD::SHL;
   1524           }
   1525 
   1526           SDValue NewSA =
   1527             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
   1528           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
   1529                                                    InOp.getOperand(0), NewSA));
   1530         }
   1531       }
   1532 
   1533       // Compute the new bits that are at the top now.
   1534       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
   1535                                KnownZero, KnownOne, TLO, Depth+1))
   1536         return true;
   1537       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1538       KnownZero = KnownZero.lshr(ShAmt);
   1539       KnownOne  = KnownOne.lshr(ShAmt);
   1540 
   1541       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1542       KnownZero |= HighBits;  // High bits known zero.
   1543     }
   1544     break;
   1545   case ISD::SRA:
   1546     // If this is an arithmetic shift right and only the low-bit is set, we can
   1547     // always convert this into a logical shr, even if the shift amount is
   1548     // variable.  The low bit of the shift cannot be an input sign bit unless
   1549     // the shift amount is >= the size of the datatype, which is undefined.
   1550     if (NewMask == 1)
   1551       return TLO.CombineTo(Op,
   1552                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
   1553                                            Op.getOperand(0), Op.getOperand(1)));
   1554 
   1555     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   1556       EVT VT = Op.getValueType();
   1557       unsigned ShAmt = SA->getZExtValue();
   1558 
   1559       // If the shift count is an invalid immediate, don't do anything.
   1560       if (ShAmt >= BitWidth)
   1561         break;
   1562 
   1563       APInt InDemandedMask = (NewMask << ShAmt);
   1564 
   1565       // If any of the demanded bits are produced by the sign extension, we also
   1566       // demand the input sign bit.
   1567       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
   1568       if (HighBits.intersects(NewMask))
   1569         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
   1570 
   1571       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
   1572                                KnownZero, KnownOne, TLO, Depth+1))
   1573         return true;
   1574       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1575       KnownZero = KnownZero.lshr(ShAmt);
   1576       KnownOne  = KnownOne.lshr(ShAmt);
   1577 
   1578       // Handle the sign bit, adjusted to where it is now in the mask.
   1579       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
   1580 
   1581       // If the input sign bit is known to be zero, or if none of the top bits
   1582       // are demanded, turn this into an unsigned shift right.
   1583       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
   1584         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
   1585                                                  Op.getOperand(0),
   1586                                                  Op.getOperand(1)));
   1587       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
   1588         KnownOne |= HighBits;
   1589       }
   1590     }
   1591     break;
   1592   case ISD::SIGN_EXTEND_INREG: {
   1593     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1594 
   1595     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
   1596     // If we only care about the highest bit, don't bother shifting right.
   1597     if (MsbMask == DemandedMask) {
   1598       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
   1599       SDValue InOp = Op.getOperand(0);
   1600 
   1601       // Compute the correct shift amount type, which must be getShiftAmountTy
   1602       // for scalar types after legalization.
   1603       EVT ShiftAmtTy = Op.getValueType();
   1604       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
   1605         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
   1606 
   1607       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
   1608       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1609                                             Op.getValueType(), InOp, ShiftAmt));
   1610     }
   1611 
   1612     // Sign extension.  Compute the demanded bits in the result that are not
   1613     // present in the input.
   1614     APInt NewBits =
   1615       APInt::getHighBitsSet(BitWidth,
   1616                             BitWidth - ExVT.getScalarType().getSizeInBits());
   1617 
   1618     // If none of the extended bits are demanded, eliminate the sextinreg.
   1619     if ((NewBits & NewMask) == 0)
   1620       return TLO.CombineTo(Op, Op.getOperand(0));
   1621 
   1622     APInt InSignBit =
   1623       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
   1624     APInt InputDemandedBits =
   1625       APInt::getLowBitsSet(BitWidth,
   1626                            ExVT.getScalarType().getSizeInBits()) &
   1627       NewMask;
   1628 
   1629     // Since the sign extended bits are demanded, we know that the sign
   1630     // bit is demanded.
   1631     InputDemandedBits |= InSignBit;
   1632 
   1633     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
   1634                              KnownZero, KnownOne, TLO, Depth+1))
   1635       return true;
   1636     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1637 
   1638     // If the sign bit of the input is known set or clear, then we know the
   1639     // top bits of the result.
   1640 
   1641     // If the input sign bit is known zero, convert this into a zero extension.
   1642     if (KnownZero.intersects(InSignBit))
   1643       return TLO.CombineTo(Op,
   1644                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
   1645 
   1646     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
   1647       KnownOne |= NewBits;
   1648       KnownZero &= ~NewBits;
   1649     } else {                       // Input sign bit unknown
   1650       KnownZero &= ~NewBits;
   1651       KnownOne &= ~NewBits;
   1652     }
   1653     break;
   1654   }
   1655   case ISD::ZERO_EXTEND: {
   1656     unsigned OperandBitWidth =
   1657       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1658     APInt InMask = NewMask.trunc(OperandBitWidth);
   1659 
   1660     // If none of the top bits are demanded, convert this into an any_extend.
   1661     APInt NewBits =
   1662       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
   1663     if (!NewBits.intersects(NewMask))
   1664       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1665                                                Op.getValueType(),
   1666                                                Op.getOperand(0)));
   1667 
   1668     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1669                              KnownZero, KnownOne, TLO, Depth+1))
   1670       return true;
   1671     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1672     KnownZero = KnownZero.zext(BitWidth);
   1673     KnownOne = KnownOne.zext(BitWidth);
   1674     KnownZero |= NewBits;
   1675     break;
   1676   }
   1677   case ISD::SIGN_EXTEND: {
   1678     EVT InVT = Op.getOperand(0).getValueType();
   1679     unsigned InBits = InVT.getScalarType().getSizeInBits();
   1680     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
   1681     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
   1682     APInt NewBits   = ~InMask & NewMask;
   1683 
   1684     // If none of the top bits are demanded, convert this into an any_extend.
   1685     if (NewBits == 0)
   1686       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
   1687                                               Op.getValueType(),
   1688                                               Op.getOperand(0)));
   1689 
   1690     // Since some of the sign extended bits are demanded, we know that the sign
   1691     // bit is demanded.
   1692     APInt InDemandedBits = InMask & NewMask;
   1693     InDemandedBits |= InSignBit;
   1694     InDemandedBits = InDemandedBits.trunc(InBits);
   1695 
   1696     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
   1697                              KnownOne, TLO, Depth+1))
   1698       return true;
   1699     KnownZero = KnownZero.zext(BitWidth);
   1700     KnownOne = KnownOne.zext(BitWidth);
   1701 
   1702     // If the sign bit is known zero, convert this to a zero extend.
   1703     if (KnownZero.intersects(InSignBit))
   1704       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
   1705                                                Op.getValueType(),
   1706                                                Op.getOperand(0)));
   1707 
   1708     // If the sign bit is known one, the top bits match.
   1709     if (KnownOne.intersects(InSignBit)) {
   1710       KnownOne |= NewBits;
   1711       assert((KnownZero & NewBits) == 0);
   1712     } else {   // Otherwise, top bits aren't known.
   1713       assert((KnownOne & NewBits) == 0);
   1714       assert((KnownZero & NewBits) == 0);
   1715     }
   1716     break;
   1717   }
   1718   case ISD::ANY_EXTEND: {
   1719     unsigned OperandBitWidth =
   1720       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1721     APInt InMask = NewMask.trunc(OperandBitWidth);
   1722     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
   1723                              KnownZero, KnownOne, TLO, Depth+1))
   1724       return true;
   1725     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1726     KnownZero = KnownZero.zext(BitWidth);
   1727     KnownOne = KnownOne.zext(BitWidth);
   1728     break;
   1729   }
   1730   case ISD::TRUNCATE: {
   1731     // Simplify the input, using demanded bit information, and compute the known
   1732     // zero/one bits live out.
   1733     unsigned OperandBitWidth =
   1734       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
   1735     APInt TruncMask = NewMask.zext(OperandBitWidth);
   1736     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
   1737                              KnownZero, KnownOne, TLO, Depth+1))
   1738       return true;
   1739     KnownZero = KnownZero.trunc(BitWidth);
   1740     KnownOne = KnownOne.trunc(BitWidth);
   1741 
   1742     // If the input is only used by this truncate, see if we can shrink it based
   1743     // on the known demanded bits.
   1744     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1745       SDValue In = Op.getOperand(0);
   1746       switch (In.getOpcode()) {
   1747       default: break;
   1748       case ISD::SRL:
   1749         // Shrink SRL by a constant if none of the high bits shifted in are
   1750         // demanded.
   1751         if (TLO.LegalTypes() &&
   1752             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
   1753           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1754           // undesirable.
   1755           break;
   1756         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1757         if (!ShAmt)
   1758           break;
   1759         SDValue Shift = In.getOperand(1);
   1760         if (TLO.LegalTypes()) {
   1761           uint64_t ShVal = ShAmt->getZExtValue();
   1762           Shift =
   1763             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
   1764         }
   1765 
   1766         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1767                                                OperandBitWidth - BitWidth);
   1768         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1769 
   1770         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1771           // None of the shifted in bits are needed.  Add a truncate of the
   1772           // shift input, then shift it.
   1773           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1774                                              Op.getValueType(),
   1775                                              In.getOperand(0));
   1776           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1777                                                    Op.getValueType(),
   1778                                                    NewTrunc,
   1779                                                    Shift));
   1780         }
   1781         break;
   1782       }
   1783     }
   1784 
   1785     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1786     break;
   1787   }
   1788   case ISD::AssertZext: {
   1789     // AssertZext demands all of the high bits, plus any of the low bits
   1790     // demanded by its users.
   1791     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1792     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1793                                         VT.getSizeInBits());
   1794     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1795                              KnownZero, KnownOne, TLO, Depth+1))
   1796       return true;
   1797     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1798 
   1799     KnownZero |= ~InMask & NewMask;
   1800     break;
   1801   }
   1802   case ISD::BITCAST:
   1803     // If this is an FP->Int bitcast and if the sign bit is the only
   1804     // thing demanded, turn this into a FGETSIGN.
   1805     if (!TLO.LegalOperations() &&
   1806         !Op.getValueType().isVector() &&
   1807         !Op.getOperand(0).getValueType().isVector() &&
   1808         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1809         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1810       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1811       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1812       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
   1813         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1814         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1815         // place.  We expect the SHL to be eliminated by other optimizations.
   1816         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1817         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1818         if (!OpVTLegal && OpVTSizeInBits > 32)
   1819           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1820         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1821         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
   1822         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1823                                                  Op.getValueType(),
   1824                                                  Sign, ShAmt));
   1825       }
   1826     }
   1827     break;
   1828   case ISD::ADD:
   1829   case ISD::MUL:
   1830   case ISD::SUB: {
   1831     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1832     // of the highest bit demanded of them.
   1833     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1834                                         BitWidth - NewMask.countLeadingZeros());
   1835     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1836                              KnownOne2, TLO, Depth+1))
   1837       return true;
   1838     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1839                              KnownOne2, TLO, Depth+1))
   1840       return true;
   1841     // See if the operation should be performed at a smaller bit width.
   1842     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1843       return true;
   1844   }
   1845   // FALL THROUGH
   1846   default:
   1847     // Just use ComputeMaskedBits to compute output bits.
   1848     TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
   1849     break;
   1850   }
   1851 
   1852   // If we know the value of all of the demanded bits, return this as a
   1853   // constant.
   1854   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
   1855     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
   1856 
   1857   return false;
   1858 }
   1859 
   1860 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
   1861 /// in Mask are known to be either zero or one and return them in the
   1862 /// KnownZero/KnownOne bitsets.
   1863 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   1864                                                     APInt &KnownZero,
   1865                                                     APInt &KnownOne,
   1866                                                     const SelectionDAG &DAG,
   1867                                                     unsigned Depth) const {
   1868   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1869           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1870           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1871           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1872          "Should use MaskedValueIsZero if you don't know whether Op"
   1873          " is a target node!");
   1874   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1875 }
   1876 
   1877 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1878 /// targets that want to expose additional information about sign bits to the
   1879 /// DAG Combiner.
   1880 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1881                                                          unsigned Depth) const {
   1882   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1883           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1884           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1885           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1886          "Should use ComputeNumSignBits if you don't know whether Op"
   1887          " is a target node!");
   1888   return 1;
   1889 }
   1890 
   1891 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1892 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
   1893 /// determine which bit is set.
   1894 ///
   1895 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1896   // A left-shift of a constant one will have exactly one bit set, because
   1897   // shifting the bit off the end is undefined.
   1898   if (Val.getOpcode() == ISD::SHL)
   1899     if (ConstantSDNode *C =
   1900          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1901       if (C->getAPIntValue() == 1)
   1902         return true;
   1903 
   1904   // Similarly, a right-shift of a constant sign-bit will have exactly
   1905   // one bit set.
   1906   if (Val.getOpcode() == ISD::SRL)
   1907     if (ConstantSDNode *C =
   1908          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1909       if (C->getAPIntValue().isSignBit())
   1910         return true;
   1911 
   1912   // More could be done here, though the above checks are enough
   1913   // to handle some common cases.
   1914 
   1915   // Fall back to ComputeMaskedBits to catch other known cases.
   1916   EVT OpVT = Val.getValueType();
   1917   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1918   APInt KnownZero, KnownOne;
   1919   DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
   1920   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1921          (KnownOne.countPopulation() == 1);
   1922 }
   1923 
   1924 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1925 /// and cc. If it is unable to simplify it, return a null SDValue.
   1926 SDValue
   1927 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1928                               ISD::CondCode Cond, bool foldBooleans,
   1929                               DAGCombinerInfo &DCI, DebugLoc dl) const {
   1930   SelectionDAG &DAG = DCI.DAG;
   1931 
   1932   // These setcc operations always fold.
   1933   switch (Cond) {
   1934   default: break;
   1935   case ISD::SETFALSE:
   1936   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1937   case ISD::SETTRUE:
   1938   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
   1939   }
   1940 
   1941   // Ensure that the constant occurs on the RHS, and fold constant
   1942   // comparisons.
   1943   if (isa<ConstantSDNode>(N0.getNode()))
   1944     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
   1945 
   1946   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1947     const APInt &C1 = N1C->getAPIntValue();
   1948 
   1949     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1950     // equality comparison, then we're just comparing whether X itself is
   1951     // zero.
   1952     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1953         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1954         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1955       const APInt &ShAmt
   1956         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1957       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1958           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1959         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1960           // (srl (ctlz x), 5) == 0  -> X != 0
   1961           // (srl (ctlz x), 5) != 1  -> X != 0
   1962           Cond = ISD::SETNE;
   1963         } else {
   1964           // (srl (ctlz x), 5) != 0  -> X == 0
   1965           // (srl (ctlz x), 5) == 1  -> X == 0
   1966           Cond = ISD::SETEQ;
   1967         }
   1968         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1969         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1970                             Zero, Cond);
   1971       }
   1972     }
   1973 
   1974     SDValue CTPOP = N0;
   1975     // Look through truncs that don't change the value of a ctpop.
   1976     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1977       CTPOP = N0.getOperand(0);
   1978 
   1979     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1980         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1981                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1982       EVT CTVT = CTPOP.getValueType();
   1983       SDValue CTOp = CTPOP.getOperand(0);
   1984 
   1985       // (ctpop x) u< 2 -> (x & x-1) == 0
   1986       // (ctpop x) u> 1 -> (x & x-1) != 0
   1987       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1988         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1989                                   DAG.getConstant(1, CTVT));
   1990         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1991         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1992         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1993       }
   1994 
   1995       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1996     }
   1997 
   1998     // (zext x) == C --> x == (trunc C)
   1999     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   2000         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2001       unsigned MinBits = N0.getValueSizeInBits();
   2002       SDValue PreZExt;
   2003       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   2004         // ZExt
   2005         MinBits = N0->getOperand(0).getValueSizeInBits();
   2006         PreZExt = N0->getOperand(0);
   2007       } else if (N0->getOpcode() == ISD::AND) {
   2008         // DAGCombine turns costly ZExts into ANDs
   2009         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   2010           if ((C->getAPIntValue()+1).isPowerOf2()) {
   2011             MinBits = C->getAPIntValue().countTrailingOnes();
   2012             PreZExt = N0->getOperand(0);
   2013           }
   2014       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   2015         // ZEXTLOAD
   2016         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   2017           MinBits = LN0->getMemoryVT().getSizeInBits();
   2018           PreZExt = N0;
   2019         }
   2020       }
   2021 
   2022       // Make sure we're not loosing bits from the constant.
   2023       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
   2024         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   2025         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   2026           // Will get folded away.
   2027           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   2028           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   2029           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   2030         }
   2031       }
   2032     }
   2033 
   2034     // If the LHS is '(and load, const)', the RHS is 0,
   2035     // the test is for equality or unsigned, and all 1 bits of the const are
   2036     // in the same partial word, see if we can shorten the load.
   2037     if (DCI.isBeforeLegalize() &&
   2038         N0.getOpcode() == ISD::AND && C1 == 0 &&
   2039         N0.getNode()->hasOneUse() &&
   2040         isa<LoadSDNode>(N0.getOperand(0)) &&
   2041         N0.getOperand(0).getNode()->hasOneUse() &&
   2042         isa<ConstantSDNode>(N0.getOperand(1))) {
   2043       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   2044       APInt bestMask;
   2045       unsigned bestWidth = 0, bestOffset = 0;
   2046       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   2047         unsigned origWidth = N0.getValueType().getSizeInBits();
   2048         unsigned maskWidth = origWidth;
   2049         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   2050         // 8 bits, but have to be careful...
   2051         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   2052           origWidth = Lod->getMemoryVT().getSizeInBits();
   2053         const APInt &Mask =
   2054           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   2055         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   2056           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   2057           for (unsigned offset=0; offset<origWidth/width; offset++) {
   2058             if ((newMask & Mask) == Mask) {
   2059               if (!TD->isLittleEndian())
   2060                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   2061               else
   2062                 bestOffset = (uint64_t)offset * (width/8);
   2063               bestMask = Mask.lshr(offset * (width/8) * 8);
   2064               bestWidth = width;
   2065               break;
   2066             }
   2067             newMask = newMask << width;
   2068           }
   2069         }
   2070       }
   2071       if (bestWidth) {
   2072         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   2073         if (newVT.isRound()) {
   2074           EVT PtrType = Lod->getOperand(1).getValueType();
   2075           SDValue Ptr = Lod->getBasePtr();
   2076           if (bestOffset != 0)
   2077             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   2078                               DAG.getConstant(bestOffset, PtrType));
   2079           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   2080           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   2081                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   2082                                         false, false, false, NewAlign);
   2083           return DAG.getSetCC(dl, VT,
   2084                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   2085                                       DAG.getConstant(bestMask.trunc(bestWidth),
   2086                                                       newVT)),
   2087                               DAG.getConstant(0LL, newVT), Cond);
   2088         }
   2089       }
   2090     }
   2091 
   2092     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   2093     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   2094       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   2095 
   2096       // If the comparison constant has bits in the upper part, the
   2097       // zero-extended value could never match.
   2098       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   2099                                               C1.getBitWidth() - InSize))) {
   2100         switch (Cond) {
   2101         case ISD::SETUGT:
   2102         case ISD::SETUGE:
   2103         case ISD::SETEQ: return DAG.getConstant(0, VT);
   2104         case ISD::SETULT:
   2105         case ISD::SETULE:
   2106         case ISD::SETNE: return DAG.getConstant(1, VT);
   2107         case ISD::SETGT:
   2108         case ISD::SETGE:
   2109           // True if the sign bit of C1 is set.
   2110           return DAG.getConstant(C1.isNegative(), VT);
   2111         case ISD::SETLT:
   2112         case ISD::SETLE:
   2113           // True if the sign bit of C1 isn't set.
   2114           return DAG.getConstant(C1.isNonNegative(), VT);
   2115         default:
   2116           break;
   2117         }
   2118       }
   2119 
   2120       // Otherwise, we can perform the comparison with the low bits.
   2121       switch (Cond) {
   2122       case ISD::SETEQ:
   2123       case ISD::SETNE:
   2124       case ISD::SETUGT:
   2125       case ISD::SETUGE:
   2126       case ISD::SETULT:
   2127       case ISD::SETULE: {
   2128         EVT newVT = N0.getOperand(0).getValueType();
   2129         if (DCI.isBeforeLegalizeOps() ||
   2130             (isOperationLegal(ISD::SETCC, newVT) &&
   2131               getCondCodeAction(Cond, newVT)==Legal))
   2132           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2133                               DAG.getConstant(C1.trunc(InSize), newVT),
   2134                               Cond);
   2135         break;
   2136       }
   2137       default:
   2138         break;   // todo, be more careful with signed comparisons
   2139       }
   2140     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   2141                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2142       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   2143       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   2144       EVT ExtDstTy = N0.getValueType();
   2145       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   2146 
   2147       // If the constant doesn't fit into the number of bits for the source of
   2148       // the sign extension, it is impossible for both sides to be equal.
   2149       if (C1.getMinSignedBits() > ExtSrcTyBits)
   2150         return DAG.getConstant(Cond == ISD::SETNE, VT);
   2151 
   2152       SDValue ZextOp;
   2153       EVT Op0Ty = N0.getOperand(0).getValueType();
   2154       if (Op0Ty == ExtSrcTy) {
   2155         ZextOp = N0.getOperand(0);
   2156       } else {
   2157         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   2158         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   2159                               DAG.getConstant(Imm, Op0Ty));
   2160       }
   2161       if (!DCI.isCalledByLegalizer())
   2162         DCI.AddToWorklist(ZextOp.getNode());
   2163       // Otherwise, make this a use of a zext.
   2164       return DAG.getSetCC(dl, VT, ZextOp,
   2165                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   2166                                                               ExtDstTyBits,
   2167                                                               ExtSrcTyBits),
   2168                                           ExtDstTy),
   2169                           Cond);
   2170     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   2171                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   2172       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   2173       if (N0.getOpcode() == ISD::SETCC &&
   2174           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   2175         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   2176         if (TrueWhenTrue)
   2177           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   2178         // Invert the condition.
   2179         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   2180         CC = ISD::getSetCCInverse(CC,
   2181                                   N0.getOperand(0).getValueType().isInteger());
   2182         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   2183       }
   2184 
   2185       if ((N0.getOpcode() == ISD::XOR ||
   2186            (N0.getOpcode() == ISD::AND &&
   2187             N0.getOperand(0).getOpcode() == ISD::XOR &&
   2188             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   2189           isa<ConstantSDNode>(N0.getOperand(1)) &&
   2190           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   2191         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   2192         // can only do this if the top bits are known zero.
   2193         unsigned BitWidth = N0.getValueSizeInBits();
   2194         if (DAG.MaskedValueIsZero(N0,
   2195                                   APInt::getHighBitsSet(BitWidth,
   2196                                                         BitWidth-1))) {
   2197           // Okay, get the un-inverted input value.
   2198           SDValue Val;
   2199           if (N0.getOpcode() == ISD::XOR)
   2200             Val = N0.getOperand(0);
   2201           else {
   2202             assert(N0.getOpcode() == ISD::AND &&
   2203                     N0.getOperand(0).getOpcode() == ISD::XOR);
   2204             // ((X^1)&1)^1 -> X & 1
   2205             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   2206                               N0.getOperand(0).getOperand(0),
   2207                               N0.getOperand(1));
   2208           }
   2209 
   2210           return DAG.getSetCC(dl, VT, Val, N1,
   2211                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2212         }
   2213       } else if (N1C->getAPIntValue() == 1 &&
   2214                  (VT == MVT::i1 ||
   2215                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
   2216         SDValue Op0 = N0;
   2217         if (Op0.getOpcode() == ISD::TRUNCATE)
   2218           Op0 = Op0.getOperand(0);
   2219 
   2220         if ((Op0.getOpcode() == ISD::XOR) &&
   2221             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   2222             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   2223           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   2224           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   2225           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   2226                               Cond);
   2227         } else if (Op0.getOpcode() == ISD::AND &&
   2228                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
   2229                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   2230           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   2231           if (Op0.getValueType().bitsGT(VT))
   2232             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2233                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   2234                           DAG.getConstant(1, VT));
   2235           else if (Op0.getValueType().bitsLT(VT))
   2236             Op0 = DAG.getNode(ISD::AND, dl, VT,
   2237                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   2238                         DAG.getConstant(1, VT));
   2239 
   2240           return DAG.getSetCC(dl, VT, Op0,
   2241                               DAG.getConstant(0, Op0.getValueType()),
   2242                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   2243         }
   2244       }
   2245     }
   2246 
   2247     APInt MinVal, MaxVal;
   2248     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   2249     if (ISD::isSignedIntSetCC(Cond)) {
   2250       MinVal = APInt::getSignedMinValue(OperandBitSize);
   2251       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   2252     } else {
   2253       MinVal = APInt::getMinValue(OperandBitSize);
   2254       MaxVal = APInt::getMaxValue(OperandBitSize);
   2255     }
   2256 
   2257     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   2258     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   2259       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   2260       // X >= C0 --> X > (C0-1)
   2261       return DAG.getSetCC(dl, VT, N0,
   2262                           DAG.getConstant(C1-1, N1.getValueType()),
   2263                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
   2264     }
   2265 
   2266     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   2267       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   2268       // X <= C0 --> X < (C0+1)
   2269       return DAG.getSetCC(dl, VT, N0,
   2270                           DAG.getConstant(C1+1, N1.getValueType()),
   2271                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
   2272     }
   2273 
   2274     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   2275       return DAG.getConstant(0, VT);      // X < MIN --> false
   2276     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   2277       return DAG.getConstant(1, VT);      // X >= MIN --> true
   2278     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   2279       return DAG.getConstant(0, VT);      // X > MAX --> false
   2280     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   2281       return DAG.getConstant(1, VT);      // X <= MAX --> true
   2282 
   2283     // Canonicalize setgt X, Min --> setne X, Min
   2284     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   2285       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2286     // Canonicalize setlt X, Max --> setne X, Max
   2287     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   2288       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   2289 
   2290     // If we have setult X, 1, turn it into seteq X, 0
   2291     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   2292       return DAG.getSetCC(dl, VT, N0,
   2293                           DAG.getConstant(MinVal, N0.getValueType()),
   2294                           ISD::SETEQ);
   2295     // If we have setugt X, Max-1, turn it into seteq X, Max
   2296     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   2297       return DAG.getSetCC(dl, VT, N0,
   2298                           DAG.getConstant(MaxVal, N0.getValueType()),
   2299                           ISD::SETEQ);
   2300 
   2301     // If we have "setcc X, C0", check to see if we can shrink the immediate
   2302     // by changing cc.
   2303 
   2304     // SETUGT X, SINTMAX  -> SETLT X, 0
   2305     if (Cond == ISD::SETUGT &&
   2306         C1 == APInt::getSignedMaxValue(OperandBitSize))
   2307       return DAG.getSetCC(dl, VT, N0,
   2308                           DAG.getConstant(0, N1.getValueType()),
   2309                           ISD::SETLT);
   2310 
   2311     // SETULT X, SINTMIN  -> SETGT X, -1
   2312     if (Cond == ISD::SETULT &&
   2313         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   2314       SDValue ConstMinusOne =
   2315           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   2316                           N1.getValueType());
   2317       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   2318     }
   2319 
   2320     // Fold bit comparisons when we can.
   2321     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2322         (VT == N0.getValueType() ||
   2323          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   2324         N0.getOpcode() == ISD::AND)
   2325       if (ConstantSDNode *AndRHS =
   2326                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2327         EVT ShiftTy = DCI.isBeforeLegalize() ?
   2328           getPointerTy() : getShiftAmountTy(N0.getValueType());
   2329         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   2330           // Perform the xform if the AND RHS is a single bit.
   2331           if (AndRHS->getAPIntValue().isPowerOf2()) {
   2332             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2333                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2334                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   2335           }
   2336         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   2337           // (X & 8) == 8  -->  (X & 8) >> 3
   2338           // Perform the xform if C1 is a single bit.
   2339           if (C1.isPowerOf2()) {
   2340             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   2341                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   2342                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   2343           }
   2344         }
   2345       }
   2346   }
   2347 
   2348   if (isa<ConstantFPSDNode>(N0.getNode())) {
   2349     // Constant fold or commute setcc.
   2350     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   2351     if (O.getNode()) return O;
   2352   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   2353     // If the RHS of an FP comparison is a constant, simplify it away in
   2354     // some cases.
   2355     if (CFP->getValueAPF().isNaN()) {
   2356       // If an operand is known to be a nan, we can fold it.
   2357       switch (ISD::getUnorderedFlavor(Cond)) {
   2358       default: llvm_unreachable("Unknown flavor!");
   2359       case 0:  // Known false.
   2360         return DAG.getConstant(0, VT);
   2361       case 1:  // Known true.
   2362         return DAG.getConstant(1, VT);
   2363       case 2:  // Undefined.
   2364         return DAG.getUNDEF(VT);
   2365       }
   2366     }
   2367 
   2368     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   2369     // constant if knowing that the operand is non-nan is enough.  We prefer to
   2370     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   2371     // materialize 0.0.
   2372     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   2373       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   2374 
   2375     // If the condition is not legal, see if we can find an equivalent one
   2376     // which is legal.
   2377     if (!isCondCodeLegal(Cond, N0.getValueType())) {
   2378       // If the comparison was an awkward floating-point == or != and one of
   2379       // the comparison operands is infinity or negative infinity, convert the
   2380       // condition to a less-awkward <= or >=.
   2381       if (CFP->getValueAPF().isInfinity()) {
   2382         if (CFP->getValueAPF().isNegative()) {
   2383           if (Cond == ISD::SETOEQ &&
   2384               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2385             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   2386           if (Cond == ISD::SETUEQ &&
   2387               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
   2388             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   2389           if (Cond == ISD::SETUNE &&
   2390               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2391             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   2392           if (Cond == ISD::SETONE &&
   2393               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
   2394             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   2395         } else {
   2396           if (Cond == ISD::SETOEQ &&
   2397               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2398             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   2399           if (Cond == ISD::SETUEQ &&
   2400               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
   2401             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   2402           if (Cond == ISD::SETUNE &&
   2403               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2404             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   2405           if (Cond == ISD::SETONE &&
   2406               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
   2407             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   2408         }
   2409       }
   2410     }
   2411   }
   2412 
   2413   if (N0 == N1) {
   2414     // We can always fold X == X for integer setcc's.
   2415     if (N0.getValueType().isInteger()) {
   2416       switch (getBooleanContents(N0.getValueType().isVector())) {
   2417       case UndefinedBooleanContent:
   2418       case ZeroOrOneBooleanContent:
   2419         return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
   2420       case ZeroOrNegativeOneBooleanContent:
   2421         return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT);
   2422       }
   2423     }
   2424     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   2425     if (UOF == 2)   // FP operators that are undefined on NaNs.
   2426       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
   2427     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   2428       return DAG.getConstant(UOF, VT);
   2429     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   2430     // if it is not already.
   2431     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   2432     if (NewCond != Cond)
   2433       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   2434   }
   2435 
   2436   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   2437       N0.getValueType().isInteger()) {
   2438     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   2439         N0.getOpcode() == ISD::XOR) {
   2440       // Simplify (X+Y) == (X+Z) -->  Y == Z
   2441       if (N0.getOpcode() == N1.getOpcode()) {
   2442         if (N0.getOperand(0) == N1.getOperand(0))
   2443           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   2444         if (N0.getOperand(1) == N1.getOperand(1))
   2445           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   2446         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   2447           // If X op Y == Y op X, try other combinations.
   2448           if (N0.getOperand(0) == N1.getOperand(1))
   2449             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   2450                                 Cond);
   2451           if (N0.getOperand(1) == N1.getOperand(0))
   2452             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   2453                                 Cond);
   2454         }
   2455       }
   2456 
   2457       // If RHS is a legal immediate value for a compare instruction, we need
   2458       // to be careful about increasing register pressure needlessly.
   2459       bool LegalRHSImm = false;
   2460 
   2461       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   2462         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   2463           // Turn (X+C1) == C2 --> X == C2-C1
   2464           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   2465             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2466                                 DAG.getConstant(RHSC->getAPIntValue()-
   2467                                                 LHSR->getAPIntValue(),
   2468                                 N0.getValueType()), Cond);
   2469           }
   2470 
   2471           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   2472           if (N0.getOpcode() == ISD::XOR)
   2473             // If we know that all of the inverted bits are zero, don't bother
   2474             // performing the inversion.
   2475             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   2476               return
   2477                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   2478                              DAG.getConstant(LHSR->getAPIntValue() ^
   2479                                                RHSC->getAPIntValue(),
   2480                                              N0.getValueType()),
   2481                              Cond);
   2482         }
   2483 
   2484         // Turn (C1-X) == C2 --> X == C1-C2
   2485         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   2486           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   2487             return
   2488               DAG.getSetCC(dl, VT, N0.getOperand(1),
   2489                            DAG.getConstant(SUBC->getAPIntValue() -
   2490                                              RHSC->getAPIntValue(),
   2491                                            N0.getValueType()),
   2492                            Cond);
   2493           }
   2494         }
   2495 
   2496         // Could RHSC fold directly into a compare?
   2497         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   2498           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   2499       }
   2500 
   2501       // Simplify (X+Z) == X -->  Z == 0
   2502       // Don't do this if X is an immediate that can fold into a cmp
   2503       // instruction and X+Z has other uses. It could be an induction variable
   2504       // chain, and the transform would increase register pressure.
   2505       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   2506         if (N0.getOperand(0) == N1)
   2507           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   2508                               DAG.getConstant(0, N0.getValueType()), Cond);
   2509         if (N0.getOperand(1) == N1) {
   2510           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   2511             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   2512                                 DAG.getConstant(0, N0.getValueType()), Cond);
   2513           else if (N0.getNode()->hasOneUse()) {
   2514             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   2515             // (Z-X) == X  --> Z == X<<1
   2516             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   2517                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   2518             if (!DCI.isCalledByLegalizer())
   2519               DCI.AddToWorklist(SH.getNode());
   2520             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   2521           }
   2522         }
   2523       }
   2524     }
   2525 
   2526     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   2527         N1.getOpcode() == ISD::XOR) {
   2528       // Simplify  X == (X+Z) -->  Z == 0
   2529       if (N1.getOperand(0) == N0) {
   2530         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   2531                         DAG.getConstant(0, N1.getValueType()), Cond);
   2532       } else if (N1.getOperand(1) == N0) {
   2533         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
   2534           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   2535                           DAG.getConstant(0, N1.getValueType()), Cond);
   2536         } else if (N1.getNode()->hasOneUse()) {
   2537           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   2538           // X == (Z-X)  --> X<<1 == Z
   2539           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   2540                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   2541           if (!DCI.isCalledByLegalizer())
   2542             DCI.AddToWorklist(SH.getNode());
   2543           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2544         }
   2545       }
   2546     }
   2547 
   2548     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   2549     // Note that where y is variable and is known to have at most
   2550     // one bit set (for example, if it is z&1) we cannot do this;
   2551     // the expressions are not equivalent when y==0.
   2552     if (N0.getOpcode() == ISD::AND)
   2553       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   2554         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   2555           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2556           SDValue Zero = DAG.getConstant(0, N1.getValueType());
   2557           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   2558         }
   2559       }
   2560     if (N1.getOpcode() == ISD::AND)
   2561       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   2562         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   2563           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2564           SDValue Zero = DAG.getConstant(0, N0.getValueType());
   2565           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   2566         }
   2567       }
   2568   }
   2569 
   2570   // Fold away ALL boolean setcc's.
   2571   SDValue Temp;
   2572   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   2573     switch (Cond) {
   2574     default: llvm_unreachable("Unknown integer setcc!");
   2575     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2576       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2577       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   2578       if (!DCI.isCalledByLegalizer())
   2579         DCI.AddToWorklist(Temp.getNode());
   2580       break;
   2581     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2582       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2583       break;
   2584     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2585     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2586       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2587       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   2588       if (!DCI.isCalledByLegalizer())
   2589         DCI.AddToWorklist(Temp.getNode());
   2590       break;
   2591     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2592     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2593       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2594       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2595       if (!DCI.isCalledByLegalizer())
   2596         DCI.AddToWorklist(Temp.getNode());
   2597       break;
   2598     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2599     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2600       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2601       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2602       if (!DCI.isCalledByLegalizer())
   2603         DCI.AddToWorklist(Temp.getNode());
   2604       break;
   2605     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2606     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2607       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2608       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2609       break;
   2610     }
   2611     if (VT != MVT::i1) {
   2612       if (!DCI.isCalledByLegalizer())
   2613         DCI.AddToWorklist(N0.getNode());
   2614       // FIXME: If running after legalize, we probably can't do this.
   2615       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2616     }
   2617     return N0;
   2618   }
   2619 
   2620   // Could not fold it.
   2621   return SDValue();
   2622 }
   2623 
   2624 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2625 /// node is a GlobalAddress + offset.
   2626 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2627                                     int64_t &Offset) const {
   2628   if (isa<GlobalAddressSDNode>(N)) {
   2629     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2630     GA = GASD->getGlobal();
   2631     Offset += GASD->getOffset();
   2632     return true;
   2633   }
   2634 
   2635   if (N->getOpcode() == ISD::ADD) {
   2636     SDValue N1 = N->getOperand(0);
   2637     SDValue N2 = N->getOperand(1);
   2638     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2639       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2640       if (V) {
   2641         Offset += V->getSExtValue();
   2642         return true;
   2643       }
   2644     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2645       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2646       if (V) {
   2647         Offset += V->getSExtValue();
   2648         return true;
   2649       }
   2650     }
   2651   }
   2652 
   2653   return false;
   2654 }
   2655 
   2656 
   2657 SDValue TargetLowering::
   2658 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   2659   // Default implementation: no optimization.
   2660   return SDValue();
   2661 }
   2662 
   2663 //===----------------------------------------------------------------------===//
   2664 //  Inline Assembler Implementation Methods
   2665 //===----------------------------------------------------------------------===//
   2666 
   2667 
   2668 TargetLowering::ConstraintType
   2669 TargetLowering::getConstraintType(const std::string &Constraint) const {
   2670   if (Constraint.size() == 1) {
   2671     switch (Constraint[0]) {
   2672     default: break;
   2673     case 'r': return C_RegisterClass;
   2674     case 'm':    // memory
   2675     case 'o':    // offsetable
   2676     case 'V':    // not offsetable
   2677       return C_Memory;
   2678     case 'i':    // Simple Integer or Relocatable Constant
   2679     case 'n':    // Simple Integer
   2680     case 'E':    // Floating Point Constant
   2681     case 'F':    // Floating Point Constant
   2682     case 's':    // Relocatable Constant
   2683     case 'p':    // Address.
   2684     case 'X':    // Allow ANY value.
   2685     case 'I':    // Target registers.
   2686     case 'J':
   2687     case 'K':
   2688     case 'L':
   2689     case 'M':
   2690     case 'N':
   2691     case 'O':
   2692     case 'P':
   2693     case '<':
   2694     case '>':
   2695       return C_Other;
   2696     }
   2697   }
   2698 
   2699   if (Constraint.size() > 1 && Constraint[0] == '{' &&
   2700       Constraint[Constraint.size()-1] == '}')
   2701     return C_Register;
   2702   return C_Unknown;
   2703 }
   2704 
   2705 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2706 /// with another that has more specific requirements based on the type of the
   2707 /// corresponding operand.
   2708 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2709   if (ConstraintVT.isInteger())
   2710     return "r";
   2711   if (ConstraintVT.isFloatingPoint())
   2712     return "f";      // works for many targets
   2713   return 0;
   2714 }
   2715 
   2716 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2717 /// vector.  If it is invalid, don't add anything to Ops.
   2718 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2719                                                   std::string &Constraint,
   2720                                                   std::vector<SDValue> &Ops,
   2721                                                   SelectionDAG &DAG) const {
   2722 
   2723   if (Constraint.length() > 1) return;
   2724 
   2725   char ConstraintLetter = Constraint[0];
   2726   switch (ConstraintLetter) {
   2727   default: break;
   2728   case 'X':     // Allows any operand; labels (basic block) use this.
   2729     if (Op.getOpcode() == ISD::BasicBlock) {
   2730       Ops.push_back(Op);
   2731       return;
   2732     }
   2733     // fall through
   2734   case 'i':    // Simple Integer or Relocatable Constant
   2735   case 'n':    // Simple Integer
   2736   case 's': {  // Relocatable Constant
   2737     // These operands are interested in values of the form (GV+C), where C may
   2738     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2739     // is possible and fine if either GV or C are missing.
   2740     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2741     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2742 
   2743     // If we have "(add GV, C)", pull out GV/C
   2744     if (Op.getOpcode() == ISD::ADD) {
   2745       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2746       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2747       if (C == 0 || GA == 0) {
   2748         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2749         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2750       }
   2751       if (C == 0 || GA == 0)
   2752         C = 0, GA = 0;
   2753     }
   2754 
   2755     // If we find a valid operand, map to the TargetXXX version so that the
   2756     // value itself doesn't get selected.
   2757     if (GA) {   // Either &GV   or   &GV+C
   2758       if (ConstraintLetter != 'n') {
   2759         int64_t Offs = GA->getOffset();
   2760         if (C) Offs += C->getZExtValue();
   2761         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2762                                                  C ? C->getDebugLoc() : DebugLoc(),
   2763                                                  Op.getValueType(), Offs));
   2764         return;
   2765       }
   2766     }
   2767     if (C) {   // just C, no GV.
   2768       // Simple constants are not allowed for 's'.
   2769       if (ConstraintLetter != 's') {
   2770         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2771         // now; without this it would get ZExt'd later in
   2772         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2773         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2774                                             MVT::i64));
   2775         return;
   2776       }
   2777     }
   2778     break;
   2779   }
   2780   }
   2781 }
   2782 
   2783 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   2784 getRegForInlineAsmConstraint(const std::string &Constraint,
   2785                              EVT VT) const {
   2786   if (Constraint[0] != '{')
   2787     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
   2788   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2789 
   2790   // Remove the braces from around the name.
   2791   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2792 
   2793   // Figure out which register class contains this reg.
   2794   const TargetRegisterInfo *RI = TM.getRegisterInfo();
   2795   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2796        E = RI->regclass_end(); RCI != E; ++RCI) {
   2797     const TargetRegisterClass *RC = *RCI;
   2798 
   2799     // If none of the value types for this register class are valid, we
   2800     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2801     if (!isLegalRC(RC))
   2802       continue;
   2803 
   2804     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2805          I != E; ++I) {
   2806       if (RegName.equals_lower(RI->getName(*I)))
   2807         return std::make_pair(*I, RC);
   2808     }
   2809   }
   2810 
   2811   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   2812 }
   2813 
   2814 //===----------------------------------------------------------------------===//
   2815 // Constraint Selection.
   2816 
   2817 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2818 /// a matching constraint like "4".
   2819 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2820   assert(!ConstraintCode.empty() && "No known constraint!");
   2821   return isdigit(ConstraintCode[0]);
   2822 }
   2823 
   2824 /// getMatchedOperand - If this is an input matching constraint, this method
   2825 /// returns the output operand it matches.
   2826 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2827   assert(!ConstraintCode.empty() && "No known constraint!");
   2828   return atoi(ConstraintCode.c_str());
   2829 }
   2830 
   2831 
   2832 /// ParseConstraints - Split up the constraint string from the inline
   2833 /// assembly value into the specific constraints and their prefixes,
   2834 /// and also tie in the associated operand values.
   2835 /// If this returns an empty vector, and if the constraint string itself
   2836 /// isn't empty, there was an error parsing.
   2837 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2838     ImmutableCallSite CS) const {
   2839   /// ConstraintOperands - Information about all of the constraints.
   2840   AsmOperandInfoVector ConstraintOperands;
   2841   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2842   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2843 
   2844   // Do a prepass over the constraints, canonicalizing them, and building up the
   2845   // ConstraintOperands list.
   2846   InlineAsm::ConstraintInfoVector
   2847     ConstraintInfos = IA->ParseConstraints();
   2848 
   2849   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2850   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2851 
   2852   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2853     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2854     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2855 
   2856     // Update multiple alternative constraint count.
   2857     if (OpInfo.multipleAlternatives.size() > maCount)
   2858       maCount = OpInfo.multipleAlternatives.size();
   2859 
   2860     OpInfo.ConstraintVT = MVT::Other;
   2861 
   2862     // Compute the value type for each operand.
   2863     switch (OpInfo.Type) {
   2864     case InlineAsm::isOutput:
   2865       // Indirect outputs just consume an argument.
   2866       if (OpInfo.isIndirect) {
   2867         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2868         break;
   2869       }
   2870 
   2871       // The return value of the call is this value.  As such, there is no
   2872       // corresponding argument.
   2873       assert(!CS.getType()->isVoidTy() &&
   2874              "Bad inline asm!");
   2875       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2876         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
   2877       } else {
   2878         assert(ResNo == 0 && "Asm only has one result!");
   2879         OpInfo.ConstraintVT = getValueType(CS.getType());
   2880       }
   2881       ++ResNo;
   2882       break;
   2883     case InlineAsm::isInput:
   2884       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2885       break;
   2886     case InlineAsm::isClobber:
   2887       // Nothing to do.
   2888       break;
   2889     }
   2890 
   2891     if (OpInfo.CallOperandVal) {
   2892       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2893       if (OpInfo.isIndirect) {
   2894         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2895         if (!PtrTy)
   2896           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2897         OpTy = PtrTy->getElementType();
   2898       }
   2899 
   2900       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2901       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2902         if (STy->getNumElements() == 1)
   2903           OpTy = STy->getElementType(0);
   2904 
   2905       // If OpTy is not a single value, it may be a struct/union that we
   2906       // can tile with integers.
   2907       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2908         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   2909         switch (BitSize) {
   2910         default: break;
   2911         case 1:
   2912         case 8:
   2913         case 16:
   2914         case 32:
   2915         case 64:
   2916         case 128:
   2917           OpInfo.ConstraintVT =
   2918               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2919           break;
   2920         }
   2921       } else if (dyn_cast<PointerType>(OpTy)) {
   2922         OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
   2923       } else {
   2924         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
   2925       }
   2926     }
   2927   }
   2928 
   2929   // If we have multiple alternative constraints, select the best alternative.
   2930   if (ConstraintInfos.size()) {
   2931     if (maCount) {
   2932       unsigned bestMAIndex = 0;
   2933       int bestWeight = -1;
   2934       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2935       int weight = -1;
   2936       unsigned maIndex;
   2937       // Compute the sums of the weights for each alternative, keeping track
   2938       // of the best (highest weight) one so far.
   2939       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2940         int weightSum = 0;
   2941         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2942             cIndex != eIndex; ++cIndex) {
   2943           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2944           if (OpInfo.Type == InlineAsm::isClobber)
   2945             continue;
   2946 
   2947           // If this is an output operand with a matching input operand,
   2948           // look up the matching input. If their types mismatch, e.g. one
   2949           // is an integer, the other is floating point, or their sizes are
   2950           // different, flag it as an maCantMatch.
   2951           if (OpInfo.hasMatchingInput()) {
   2952             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2953             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2954               if ((OpInfo.ConstraintVT.isInteger() !=
   2955                    Input.ConstraintVT.isInteger()) ||
   2956                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2957                    Input.ConstraintVT.getSizeInBits())) {
   2958                 weightSum = -1;  // Can't match.
   2959                 break;
   2960               }
   2961             }
   2962           }
   2963           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2964           if (weight == -1) {
   2965             weightSum = -1;
   2966             break;
   2967           }
   2968           weightSum += weight;
   2969         }
   2970         // Update best.
   2971         if (weightSum > bestWeight) {
   2972           bestWeight = weightSum;
   2973           bestMAIndex = maIndex;
   2974         }
   2975       }
   2976 
   2977       // Now select chosen alternative in each constraint.
   2978       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2979           cIndex != eIndex; ++cIndex) {
   2980         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2981         if (cInfo.Type == InlineAsm::isClobber)
   2982           continue;
   2983         cInfo.selectAlternative(bestMAIndex);
   2984       }
   2985     }
   2986   }
   2987 
   2988   // Check and hook up tied operands, choose constraint code to use.
   2989   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2990       cIndex != eIndex; ++cIndex) {
   2991     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2992 
   2993     // If this is an output operand with a matching input operand, look up the
   2994     // matching input. If their types mismatch, e.g. one is an integer, the
   2995     // other is floating point, or their sizes are different, flag it as an
   2996     // error.
   2997     if (OpInfo.hasMatchingInput()) {
   2998       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2999 
   3000       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   3001 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   3002 	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
   3003 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
   3004 	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
   3005         if ((OpInfo.ConstraintVT.isInteger() !=
   3006              Input.ConstraintVT.isInteger()) ||
   3007             (MatchRC.second != InputRC.second)) {
   3008           report_fatal_error("Unsupported asm: input constraint"
   3009                              " with a matching output constraint of"
   3010                              " incompatible type!");
   3011         }
   3012       }
   3013 
   3014     }
   3015   }
   3016 
   3017   return ConstraintOperands;
   3018 }
   3019 
   3020 
   3021 /// getConstraintGenerality - Return an integer indicating how general CT
   3022 /// is.
   3023 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   3024   switch (CT) {
   3025   case TargetLowering::C_Other:
   3026   case TargetLowering::C_Unknown:
   3027     return 0;
   3028   case TargetLowering::C_Register:
   3029     return 1;
   3030   case TargetLowering::C_RegisterClass:
   3031     return 2;
   3032   case TargetLowering::C_Memory:
   3033     return 3;
   3034   }
   3035   llvm_unreachable("Invalid constraint type");
   3036 }
   3037 
   3038 /// Examine constraint type and operand type and determine a weight value.
   3039 /// This object must already have been set up with the operand type
   3040 /// and the current alternative constraint selected.
   3041 TargetLowering::ConstraintWeight
   3042   TargetLowering::getMultipleConstraintMatchWeight(
   3043     AsmOperandInfo &info, int maIndex) const {
   3044   InlineAsm::ConstraintCodeVector *rCodes;
   3045   if (maIndex >= (int)info.multipleAlternatives.size())
   3046     rCodes = &info.Codes;
   3047   else
   3048     rCodes = &info.multipleAlternatives[maIndex].Codes;
   3049   ConstraintWeight BestWeight = CW_Invalid;
   3050 
   3051   // Loop over the options, keeping track of the most general one.
   3052   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   3053     ConstraintWeight weight =
   3054       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   3055     if (weight > BestWeight)
   3056       BestWeight = weight;
   3057   }
   3058 
   3059   return BestWeight;
   3060 }
   3061 
   3062 /// Examine constraint type and operand type and determine a weight value.
   3063 /// This object must already have been set up with the operand type
   3064 /// and the current alternative constraint selected.
   3065 TargetLowering::ConstraintWeight
   3066   TargetLowering::getSingleConstraintMatchWeight(
   3067     AsmOperandInfo &info, const char *constraint) const {
   3068   ConstraintWeight weight = CW_Invalid;
   3069   Value *CallOperandVal = info.CallOperandVal;
   3070     // If we don't have a value, we can't do a match,
   3071     // but allow it at the lowest weight.
   3072   if (CallOperandVal == NULL)
   3073     return CW_Default;
   3074   // Look at the constraint type.
   3075   switch (*constraint) {
   3076     case 'i': // immediate integer.
   3077     case 'n': // immediate integer with a known value.
   3078       if (isa<ConstantInt>(CallOperandVal))
   3079         weight = CW_Constant;
   3080       break;
   3081     case 's': // non-explicit intregal immediate.
   3082       if (isa<GlobalValue>(CallOperandVal))
   3083         weight = CW_Constant;
   3084       break;
   3085     case 'E': // immediate float if host format.
   3086     case 'F': // immediate float.
   3087       if (isa<ConstantFP>(CallOperandVal))
   3088         weight = CW_Constant;
   3089       break;
   3090     case '<': // memory operand with autodecrement.
   3091     case '>': // memory operand with autoincrement.
   3092     case 'm': // memory operand.
   3093     case 'o': // offsettable memory operand
   3094     case 'V': // non-offsettable memory operand
   3095       weight = CW_Memory;
   3096       break;
   3097     case 'r': // general register.
   3098     case 'g': // general register, memory operand or immediate integer.
   3099               // note: Clang converts "g" to "imr".
   3100       if (CallOperandVal->getType()->isIntegerTy())
   3101         weight = CW_Register;
   3102       break;
   3103     case 'X': // any operand.
   3104     default:
   3105       weight = CW_Default;
   3106       break;
   3107   }
   3108   return weight;
   3109 }
   3110 
   3111 /// ChooseConstraint - If there are multiple different constraints that we
   3112 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   3113 /// This is somewhat tricky: constraints fall into four classes:
   3114 ///    Other         -> immediates and magic values
   3115 ///    Register      -> one specific register
   3116 ///    RegisterClass -> a group of regs
   3117 ///    Memory        -> memory
   3118 /// Ideally, we would pick the most specific constraint possible: if we have
   3119 /// something that fits into a register, we would pick it.  The problem here
   3120 /// is that if we have something that could either be in a register or in
   3121 /// memory that use of the register could cause selection of *other*
   3122 /// operands to fail: they might only succeed if we pick memory.  Because of
   3123 /// this the heuristic we use is:
   3124 ///
   3125 ///  1) If there is an 'other' constraint, and if the operand is valid for
   3126 ///     that constraint, use it.  This makes us take advantage of 'i'
   3127 ///     constraints when available.
   3128 ///  2) Otherwise, pick the most general constraint present.  This prefers
   3129 ///     'm' over 'r', for example.
   3130 ///
   3131 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   3132                              const TargetLowering &TLI,
   3133                              SDValue Op, SelectionDAG *DAG) {
   3134   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   3135   unsigned BestIdx = 0;
   3136   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   3137   int BestGenerality = -1;
   3138 
   3139   // Loop over the options, keeping track of the most general one.
   3140   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   3141     TargetLowering::ConstraintType CType =
   3142       TLI.getConstraintType(OpInfo.Codes[i]);
   3143 
   3144     // If this is an 'other' constraint, see if the operand is valid for it.
   3145     // For example, on X86 we might have an 'rI' constraint.  If the operand
   3146     // is an integer in the range [0..31] we want to use I (saving a load
   3147     // of a register), otherwise we must use 'r'.
   3148     if (CType == TargetLowering::C_Other && Op.getNode()) {
   3149       assert(OpInfo.Codes[i].size() == 1 &&
   3150              "Unhandled multi-letter 'other' constraint");
   3151       std::vector<SDValue> ResultOps;
   3152       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   3153                                        ResultOps, *DAG);
   3154       if (!ResultOps.empty()) {
   3155         BestType = CType;
   3156         BestIdx = i;
   3157         break;
   3158       }
   3159     }
   3160 
   3161     // Things with matching constraints can only be registers, per gcc
   3162     // documentation.  This mainly affects "g" constraints.
   3163     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   3164       continue;
   3165 
   3166     // This constraint letter is more general than the previous one, use it.
   3167     int Generality = getConstraintGenerality(CType);
   3168     if (Generality > BestGenerality) {
   3169       BestType = CType;
   3170       BestIdx = i;
   3171       BestGenerality = Generality;
   3172     }
   3173   }
   3174 
   3175   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   3176   OpInfo.ConstraintType = BestType;
   3177 }
   3178 
   3179 /// ComputeConstraintToUse - Determines the constraint code and constraint
   3180 /// type to use for the specific AsmOperandInfo, setting
   3181 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   3182 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   3183                                             SDValue Op,
   3184                                             SelectionDAG *DAG) const {
   3185   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   3186 
   3187   // Single-letter constraints ('r') are very common.
   3188   if (OpInfo.Codes.size() == 1) {
   3189     OpInfo.ConstraintCode = OpInfo.Codes[0];
   3190     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3191   } else {
   3192     ChooseConstraint(OpInfo, *this, Op, DAG);
   3193   }
   3194 
   3195   // 'X' matches anything.
   3196   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   3197     // Labels and constants are handled elsewhere ('X' is the only thing
   3198     // that matches labels).  For Functions, the type here is the type of
   3199     // the result, which is not what we want to look at; leave them alone.
   3200     Value *v = OpInfo.CallOperandVal;
   3201     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   3202       OpInfo.CallOperandVal = v;
   3203       return;
   3204     }
   3205 
   3206     // Otherwise, try to resolve it to something we know about by looking at
   3207     // the actual operand type.
   3208     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   3209       OpInfo.ConstraintCode = Repl;
   3210       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   3211     }
   3212   }
   3213 }
   3214 
   3215 //===----------------------------------------------------------------------===//
   3216 //  Loop Strength Reduction hooks
   3217 //===----------------------------------------------------------------------===//
   3218 
   3219 /// isLegalAddressingMode - Return true if the addressing mode represented
   3220 /// by AM is legal for this target, for a load/store of the specified type.
   3221 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   3222                                            Type *Ty) const {
   3223   // The default implementation of this implements a conservative RISCy, r+r and
   3224   // r+i addr mode.
   3225 
   3226   // Allows a sign-extended 16-bit immediate field.
   3227   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   3228     return false;
   3229 
   3230   // No global is ever allowed as a base.
   3231   if (AM.BaseGV)
   3232     return false;
   3233 
   3234   // Only support r+r,
   3235   switch (AM.Scale) {
   3236   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   3237     break;
   3238   case 1:
   3239     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   3240       return false;
   3241     // Otherwise we have r+r or r+i.
   3242     break;
   3243   case 2:
   3244     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   3245       return false;
   3246     // Allow 2*r as r+r.
   3247     break;
   3248   }
   3249 
   3250   return true;
   3251 }
   3252 
   3253 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
   3254 /// with the multiplicative inverse of the constant.
   3255 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   3256                                        SelectionDAG &DAG) const {
   3257   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   3258   APInt d = C->getAPIntValue();
   3259   assert(d != 0 && "Division by zero!");
   3260 
   3261   // Shift the value upfront if it is even, so the LSB is one.
   3262   unsigned ShAmt = d.countTrailingZeros();
   3263   if (ShAmt) {
   3264     // TODO: For UDIV use SRL instead of SRA.
   3265     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   3266     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
   3267     d = d.ashr(ShAmt);
   3268   }
   3269 
   3270   // Calculate the multiplicative inverse, using Newton's method.
   3271   APInt t, xn = d;
   3272   while ((t = d*xn) != 1)
   3273     xn *= APInt(d.getBitWidth(), 2) - t;
   3274 
   3275   Op2 = DAG.getConstant(xn, Op1.getValueType());
   3276   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   3277 }
   3278 
   3279 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
   3280 /// return a DAG expression to select that will generate the same value by
   3281 /// multiplying by a magic number.  See:
   3282 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3283 SDValue TargetLowering::
   3284 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   3285           std::vector<SDNode*>* Created) const {
   3286   EVT VT = N->getValueType(0);
   3287   DebugLoc dl= N->getDebugLoc();
   3288 
   3289   // Check to see if we can do this.
   3290   // FIXME: We should be more aggressive here.
   3291   if (!isTypeLegal(VT))
   3292     return SDValue();
   3293 
   3294   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3295   APInt::ms magics = d.magic();
   3296 
   3297   // Multiply the numerator (operand 0) by the magic value
   3298   // FIXME: We should support doing a MUL in a wider type
   3299   SDValue Q;
   3300   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   3301                             isOperationLegalOrCustom(ISD::MULHS, VT))
   3302     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   3303                     DAG.getConstant(magics.m, VT));
   3304   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   3305                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   3306     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   3307                               N->getOperand(0),
   3308                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   3309   else
   3310     return SDValue();       // No mulhs or equvialent
   3311   // If d > 0 and m < 0, add the numerator
   3312   if (d.isStrictlyPositive() && magics.m.isNegative()) {
   3313     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   3314     if (Created)
   3315       Created->push_back(Q.getNode());
   3316   }
   3317   // If d < 0 and m > 0, subtract the numerator.
   3318   if (d.isNegative() && magics.m.isStrictlyPositive()) {
   3319     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   3320     if (Created)
   3321       Created->push_back(Q.getNode());
   3322   }
   3323   // Shift right algebraic if shift value is nonzero
   3324   if (magics.s > 0) {
   3325     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   3326                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3327     if (Created)
   3328       Created->push_back(Q.getNode());
   3329   }
   3330   // Extract the sign bit and add it to the quotient
   3331   SDValue T =
   3332     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
   3333                                            getShiftAmountTy(Q.getValueType())));
   3334   if (Created)
   3335     Created->push_back(T.getNode());
   3336   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   3337 }
   3338 
   3339 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
   3340 /// return a DAG expression to select that will generate the same value by
   3341 /// multiplying by a magic number.  See:
   3342 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   3343 SDValue TargetLowering::
   3344 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   3345           std::vector<SDNode*>* Created) const {
   3346   EVT VT = N->getValueType(0);
   3347   DebugLoc dl = N->getDebugLoc();
   3348 
   3349   // Check to see if we can do this.
   3350   // FIXME: We should be more aggressive here.
   3351   if (!isTypeLegal(VT))
   3352     return SDValue();
   3353 
   3354   // FIXME: We should use a narrower constant when the upper
   3355   // bits are known to be zero.
   3356   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   3357   APInt::mu magics = N1C.magicu();
   3358 
   3359   SDValue Q = N->getOperand(0);
   3360 
   3361   // If the divisor is even, we can avoid using the expensive fixup by shifting
   3362   // the divided value upfront.
   3363   if (magics.a != 0 && !N1C[0]) {
   3364     unsigned Shift = N1C.countTrailingZeros();
   3365     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   3366                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   3367     if (Created)
   3368       Created->push_back(Q.getNode());
   3369 
   3370     // Get magic number for the shifted divisor.
   3371     magics = N1C.lshr(Shift).magicu(Shift);
   3372     assert(magics.a == 0 && "Should use cheap fixup now");
   3373   }
   3374 
   3375   // Multiply the numerator (operand 0) by the magic value
   3376   // FIXME: We should support doing a MUL in a wider type
   3377   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   3378                             isOperationLegalOrCustom(ISD::MULHU, VT))
   3379     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   3380   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   3381                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   3382     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   3383                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   3384   else
   3385     return SDValue();       // No mulhu or equvialent
   3386   if (Created)
   3387     Created->push_back(Q.getNode());
   3388 
   3389   if (magics.a == 0) {
   3390     assert(magics.s < N1C.getBitWidth() &&
   3391            "We shouldn't generate an undefined shift!");
   3392     return DAG.getNode(ISD::SRL, dl, VT, Q,
   3393                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   3394   } else {
   3395     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   3396     if (Created)
   3397       Created->push_back(NPQ.getNode());
   3398     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3399                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   3400     if (Created)
   3401       Created->push_back(NPQ.getNode());
   3402     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   3403     if (Created)
   3404       Created->push_back(NPQ.getNode());
   3405     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   3406              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   3407   }
   3408 }
   3409