Home | History | Annotate | Download | only in X86
      1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains code to lower X86 MachineInstrs to their corresponding
     11 // MCInst records.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86MCInstLower.h"
     16 #include "X86AsmPrinter.h"
     17 #include "X86COFFMachineModuleInfo.h"
     18 #include "InstPrinter/X86ATTInstPrinter.h"
     19 #include "llvm/Type.h"
     20 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     21 #include "llvm/MC/MCAsmInfo.h"
     22 #include "llvm/MC/MCContext.h"
     23 #include "llvm/MC/MCExpr.h"
     24 #include "llvm/MC/MCInst.h"
     25 #include "llvm/MC/MCStreamer.h"
     26 #include "llvm/MC/MCSymbol.h"
     27 #include "llvm/Target/Mangler.h"
     28 #include "llvm/Support/FormattedStream.h"
     29 #include "llvm/ADT/SmallString.h"
     30 using namespace llvm;
     31 
     32 X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
     33                                X86AsmPrinter &asmprinter)
     34 : Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
     35   MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
     36 
     37 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
     38   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
     39 }
     40 
     41 
     42 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
     43 /// operand to an MCSymbol.
     44 MCSymbol *X86MCInstLower::
     45 GetSymbolFromOperand(const MachineOperand &MO) const {
     46   assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");
     47 
     48   SmallString<128> Name;
     49 
     50   if (!MO.isGlobal()) {
     51     assert(MO.isSymbol());
     52     Name += MAI.getGlobalPrefix();
     53     Name += MO.getSymbolName();
     54   } else {
     55     const GlobalValue *GV = MO.getGlobal();
     56     bool isImplicitlyPrivate = false;
     57     if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
     58         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
     59         MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
     60         MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
     61       isImplicitlyPrivate = true;
     62 
     63     Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
     64   }
     65 
     66   // If the target flags on the operand changes the name of the symbol, do that
     67   // before we return the symbol.
     68   switch (MO.getTargetFlags()) {
     69   default: break;
     70   case X86II::MO_DLLIMPORT: {
     71     // Handle dllimport linkage.
     72     const char *Prefix = "__imp_";
     73     Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
     74     break;
     75   }
     76   case X86II::MO_DARWIN_NONLAZY:
     77   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
     78     Name += "$non_lazy_ptr";
     79     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
     80 
     81     MachineModuleInfoImpl::StubValueTy &StubSym =
     82       getMachOMMI().getGVStubEntry(Sym);
     83     if (StubSym.getPointer() == 0) {
     84       assert(MO.isGlobal() && "Extern symbol not handled yet");
     85       StubSym =
     86         MachineModuleInfoImpl::
     87         StubValueTy(Mang->getSymbol(MO.getGlobal()),
     88                     !MO.getGlobal()->hasInternalLinkage());
     89     }
     90     return Sym;
     91   }
     92   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
     93     Name += "$non_lazy_ptr";
     94     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
     95     MachineModuleInfoImpl::StubValueTy &StubSym =
     96       getMachOMMI().getHiddenGVStubEntry(Sym);
     97     if (StubSym.getPointer() == 0) {
     98       assert(MO.isGlobal() && "Extern symbol not handled yet");
     99       StubSym =
    100         MachineModuleInfoImpl::
    101         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    102                     !MO.getGlobal()->hasInternalLinkage());
    103     }
    104     return Sym;
    105   }
    106   case X86II::MO_DARWIN_STUB: {
    107     Name += "$stub";
    108     MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    109     MachineModuleInfoImpl::StubValueTy &StubSym =
    110       getMachOMMI().getFnStubEntry(Sym);
    111     if (StubSym.getPointer())
    112       return Sym;
    113 
    114     if (MO.isGlobal()) {
    115       StubSym =
    116         MachineModuleInfoImpl::
    117         StubValueTy(Mang->getSymbol(MO.getGlobal()),
    118                     !MO.getGlobal()->hasInternalLinkage());
    119     } else {
    120       Name.erase(Name.end()-5, Name.end());
    121       StubSym =
    122         MachineModuleInfoImpl::
    123         StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
    124     }
    125     return Sym;
    126   }
    127   }
    128 
    129   return Ctx.GetOrCreateSymbol(Name.str());
    130 }
    131 
    132 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
    133                                              MCSymbol *Sym) const {
    134   // FIXME: We would like an efficient form for this, so we don't have to do a
    135   // lot of extra uniquing.
    136   const MCExpr *Expr = 0;
    137   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
    138 
    139   switch (MO.getTargetFlags()) {
    140   default: llvm_unreachable("Unknown target flag on GV operand");
    141   case X86II::MO_NO_FLAG:    // No flag.
    142   // These affect the name of the symbol, not any suffix.
    143   case X86II::MO_DARWIN_NONLAZY:
    144   case X86II::MO_DLLIMPORT:
    145   case X86II::MO_DARWIN_STUB:
    146     break;
    147 
    148   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
    149   case X86II::MO_TLVP_PIC_BASE:
    150     Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    151     // Subtract the pic base.
    152     Expr = MCBinaryExpr::CreateSub(Expr,
    153                                   MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
    154                                                            Ctx),
    155                                    Ctx);
    156     break;
    157   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
    158   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
    159   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
    160   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
    161   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
    162   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
    163   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
    164   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
    165   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
    166   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
    167   case X86II::MO_PIC_BASE_OFFSET:
    168   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    169   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    170     Expr = MCSymbolRefExpr::Create(Sym, Ctx);
    171     // Subtract the pic base.
    172     Expr = MCBinaryExpr::CreateSub(Expr,
    173                             MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
    174                                    Ctx);
    175     if (MO.isJTI() && MAI.hasSetDirective()) {
    176       // If .set directive is supported, use it to reduce the number of
    177       // relocations the assembler will generate for differences between
    178       // local labels. This is only safe when the symbols are in the same
    179       // section so we are restricting it to jumptable references.
    180       MCSymbol *Label = Ctx.CreateTempSymbol();
    181       AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
    182       Expr = MCSymbolRefExpr::Create(Label, Ctx);
    183     }
    184     break;
    185   }
    186 
    187   if (Expr == 0)
    188     Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
    189 
    190   if (!MO.isJTI() && MO.getOffset())
    191     Expr = MCBinaryExpr::CreateAdd(Expr,
    192                                    MCConstantExpr::Create(MO.getOffset(), Ctx),
    193                                    Ctx);
    194   return MCOperand::CreateExpr(Expr);
    195 }
    196 
    197 
    198 
    199 static void lower_subreg32(MCInst *MI, unsigned OpNo) {
    200   // Convert registers in the addr mode according to subreg32.
    201   unsigned Reg = MI->getOperand(OpNo).getReg();
    202   if (Reg != 0)
    203     MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
    204 }
    205 
    206 static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
    207   // Convert registers in the addr mode according to subreg64.
    208   for (unsigned i = 0; i != 4; ++i) {
    209     if (!MI->getOperand(OpNo+i).isReg()) continue;
    210 
    211     unsigned Reg = MI->getOperand(OpNo+i).getReg();
    212     if (Reg == 0) continue;
    213 
    214     MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
    215   }
    216 }
    217 
    218 /// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
    219 static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
    220   OutMI.setOpcode(NewOpc);
    221   lower_subreg32(&OutMI, 0);
    222 }
    223 /// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
    224 static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
    225   OutMI.setOpcode(NewOpc);
    226   OutMI.addOperand(OutMI.getOperand(0));
    227   OutMI.addOperand(OutMI.getOperand(0));
    228 }
    229 
    230 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
    231 /// a short fixed-register form.
    232 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
    233   unsigned ImmOp = Inst.getNumOperands() - 1;
    234   assert(Inst.getOperand(0).isReg() &&
    235          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
    236          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
    237            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
    238           Inst.getNumOperands() == 2) && "Unexpected instruction!");
    239 
    240   // Check whether the destination register can be fixed.
    241   unsigned Reg = Inst.getOperand(0).getReg();
    242   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    243     return;
    244 
    245   // If so, rewrite the instruction.
    246   MCOperand Saved = Inst.getOperand(ImmOp);
    247   Inst = MCInst();
    248   Inst.setOpcode(Opcode);
    249   Inst.addOperand(Saved);
    250 }
    251 
    252 /// \brief Simplify things like MOV32rm to MOV32o32a.
    253 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
    254                                   unsigned Opcode) {
    255   // Don't make these simplifications in 64-bit mode; other assemblers don't
    256   // perform them because they make the code larger.
    257   if (Printer.getSubtarget().is64Bit())
    258     return;
    259 
    260   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
    261   unsigned AddrBase = IsStore;
    262   unsigned RegOp = IsStore ? 0 : 5;
    263   unsigned AddrOp = AddrBase + 3;
    264   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
    265          Inst.getOperand(AddrBase + 0).isReg() && // base
    266          Inst.getOperand(AddrBase + 1).isImm() && // scale
    267          Inst.getOperand(AddrBase + 2).isReg() && // index register
    268          (Inst.getOperand(AddrOp).isExpr() ||     // address
    269           Inst.getOperand(AddrOp).isImm())&&
    270          Inst.getOperand(AddrBase + 4).isReg() && // segment
    271          "Unexpected instruction!");
    272 
    273   // Check whether the destination register can be fixed.
    274   unsigned Reg = Inst.getOperand(RegOp).getReg();
    275   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    276     return;
    277 
    278   // Check whether this is an absolute address.
    279   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
    280   // to do this here.
    281   bool Absolute = true;
    282   if (Inst.getOperand(AddrOp).isExpr()) {
    283     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    284     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
    285       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
    286         Absolute = false;
    287   }
    288 
    289   if (Absolute &&
    290       (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
    291        Inst.getOperand(AddrBase + 2).getReg() != 0 ||
    292        Inst.getOperand(AddrBase + 4).getReg() != 0 ||
    293        Inst.getOperand(AddrBase + 1).getImm() != 1))
    294     return;
    295 
    296   // If so, rewrite the instruction.
    297   MCOperand Saved = Inst.getOperand(AddrOp);
    298   Inst = MCInst();
    299   Inst.setOpcode(Opcode);
    300   Inst.addOperand(Saved);
    301 }
    302 
    303 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
    304   OutMI.setOpcode(MI->getOpcode());
    305 
    306   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    307     const MachineOperand &MO = MI->getOperand(i);
    308 
    309     MCOperand MCOp;
    310     switch (MO.getType()) {
    311     default:
    312       MI->dump();
    313       llvm_unreachable("unknown operand type");
    314     case MachineOperand::MO_Register:
    315       // Ignore all implicit register operands.
    316       if (MO.isImplicit()) continue;
    317       MCOp = MCOperand::CreateReg(MO.getReg());
    318       break;
    319     case MachineOperand::MO_Immediate:
    320       MCOp = MCOperand::CreateImm(MO.getImm());
    321       break;
    322     case MachineOperand::MO_MachineBasicBlock:
    323       MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
    324                        MO.getMBB()->getSymbol(), Ctx));
    325       break;
    326     case MachineOperand::MO_GlobalAddress:
    327     case MachineOperand::MO_ExternalSymbol:
    328       MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
    329       break;
    330     case MachineOperand::MO_JumpTableIndex:
    331       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
    332       break;
    333     case MachineOperand::MO_ConstantPoolIndex:
    334       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
    335       break;
    336     case MachineOperand::MO_BlockAddress:
    337       MCOp = LowerSymbolOperand(MO,
    338                      AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
    339       break;
    340     case MachineOperand::MO_RegisterMask:
    341       // Ignore call clobbers.
    342       continue;
    343     }
    344 
    345     OutMI.addOperand(MCOp);
    346   }
    347 
    348   // Handle a few special cases to eliminate operand modifiers.
    349 ReSimplify:
    350   switch (OutMI.getOpcode()) {
    351   case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
    352     lower_lea64_32mem(&OutMI, 1);
    353     // FALL THROUGH.
    354   case X86::LEA64r:
    355   case X86::LEA16r:
    356   case X86::LEA32r:
    357     // LEA should have a segment register, but it must be empty.
    358     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
    359            "Unexpected # of LEA operands");
    360     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
    361            "LEA has segment specified!");
    362     break;
    363   case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
    364   case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
    365   case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
    366   case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
    367   case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
    368   case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
    369   case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
    370   case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
    371   case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
    372   case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
    373   case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
    374   case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
    375   case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
    376   case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
    377   case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
    378   case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
    379   case X86::AVX_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDrr); break;
    380   case X86::AVX2_SETALLONES: LowerUnaryToTwoAddr(OutMI, X86::VPCMPEQDYrr);break;
    381   case X86::AVX2_SET0:     LowerUnaryToTwoAddr(OutMI, X86::VPXORYrr); break;
    382 
    383   case X86::MOV16r0:
    384     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
    385     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    386     break;
    387   case X86::MOV64r0:
    388     LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
    389     LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
    390     break;
    391 
    392   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
    393   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
    394   // off all but the first operand (the callee).  FIXME: Change isel.
    395   case X86::TAILJMPr64:
    396   case X86::CALL64r:
    397   case X86::CALL64pcrel32: {
    398     unsigned Opcode = OutMI.getOpcode();
    399     MCOperand Saved = OutMI.getOperand(0);
    400     OutMI = MCInst();
    401     OutMI.setOpcode(Opcode);
    402     OutMI.addOperand(Saved);
    403     break;
    404   }
    405 
    406   case X86::EH_RETURN:
    407   case X86::EH_RETURN64: {
    408     OutMI = MCInst();
    409     OutMI.setOpcode(X86::RET);
    410     break;
    411   }
    412 
    413   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
    414   case X86::TAILJMPr:
    415   case X86::TAILJMPd:
    416   case X86::TAILJMPd64: {
    417     unsigned Opcode;
    418     switch (OutMI.getOpcode()) {
    419     default: llvm_unreachable("Invalid opcode");
    420     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    421     case X86::TAILJMPd:
    422     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    423     }
    424 
    425     MCOperand Saved = OutMI.getOperand(0);
    426     OutMI = MCInst();
    427     OutMI.setOpcode(Opcode);
    428     OutMI.addOperand(Saved);
    429     break;
    430   }
    431 
    432   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
    433   // this with an ugly goto in case the resultant OR uses EAX and needs the
    434   // short form.
    435   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
    436   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
    437   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
    438   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
    439   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
    440   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
    441   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
    442   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
    443   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
    444 
    445   // The assembler backend wants to see branches in their small form and relax
    446   // them to their large form.  The JIT can only handle the large form because
    447   // it does not do relaxation.  For now, translate the large form to the
    448   // small one here.
    449   case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
    450   case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
    451   case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
    452   case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
    453   case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
    454   case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
    455   case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
    456   case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
    457   case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
    458   case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
    459   case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
    460   case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
    461   case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
    462   case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
    463   case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
    464   case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
    465   case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
    466 
    467   // Atomic load and store require a separate pseudo-inst because Acquire
    468   // implies mayStore and Release implies mayLoad; fix these to regular MOV
    469   // instructions here
    470   case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
    471   case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
    472   case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
    473   case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
    474   case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
    475   case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
    476   case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
    477   case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
    478 
    479   // We don't currently select the correct instruction form for instructions
    480   // which have a short %eax, etc. form. Handle this by custom lowering, for
    481   // now.
    482   //
    483   // Note, we are currently not handling the following instructions:
    484   // MOV64ao8, MOV64o8a
    485   // XCHG16ar, XCHG32ar, XCHG64ar
    486   case X86::MOV8mr_NOREX:
    487   case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
    488   case X86::MOV8rm_NOREX:
    489   case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
    490   case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
    491   case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
    492   case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
    493   case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
    494 
    495   case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
    496   case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
    497   case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
    498   case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
    499   case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
    500   case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
    501   case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
    502   case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
    503   case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
    504   case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
    505   case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
    506   case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
    507   case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
    508   case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
    509   case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
    510   case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
    511   case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
    512   case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
    513   case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
    514   case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
    515   case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
    516   case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
    517   case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
    518   case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
    519   case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
    520   case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
    521   case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
    522   case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
    523   case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
    524   case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
    525   case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
    526   case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
    527   case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
    528   case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
    529   case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
    530   case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
    531 
    532   case X86::MORESTACK_RET:
    533     OutMI.setOpcode(X86::RET);
    534     break;
    535 
    536   case X86::MORESTACK_RET_RESTORE_R10: {
    537     MCInst retInst;
    538 
    539     OutMI.setOpcode(X86::MOV64rr);
    540     OutMI.addOperand(MCOperand::CreateReg(X86::R10));
    541     OutMI.addOperand(MCOperand::CreateReg(X86::RAX));
    542 
    543     retInst.setOpcode(X86::RET);
    544     AsmPrinter.OutStreamer.EmitInstruction(retInst);
    545     break;
    546   }
    547   }
    548 }
    549 
    550 static void LowerTlsAddr(MCStreamer &OutStreamer,
    551                          X86MCInstLower &MCInstLowering,
    552                          const MachineInstr &MI) {
    553   bool is64Bits = MI.getOpcode() == X86::TLS_addr64;
    554   MCContext &context = OutStreamer.getContext();
    555 
    556   if (is64Bits) {
    557     MCInst prefix;
    558     prefix.setOpcode(X86::DATA16_PREFIX);
    559     OutStreamer.EmitInstruction(prefix);
    560   }
    561   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
    562   const MCSymbolRefExpr *symRef =
    563     MCSymbolRefExpr::Create(sym, MCSymbolRefExpr::VK_TLSGD, context);
    564 
    565   MCInst LEA;
    566   if (is64Bits) {
    567     LEA.setOpcode(X86::LEA64r);
    568     LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    569     LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    570     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    571     LEA.addOperand(MCOperand::CreateReg(0));        // index
    572     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    573     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    574   } else {
    575     LEA.setOpcode(X86::LEA32r);
    576     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    577     LEA.addOperand(MCOperand::CreateReg(0));        // base
    578     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    579     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    580     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    581     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    582   }
    583   OutStreamer.EmitInstruction(LEA);
    584 
    585   if (is64Bits) {
    586     MCInst prefix;
    587     prefix.setOpcode(X86::DATA16_PREFIX);
    588     OutStreamer.EmitInstruction(prefix);
    589     prefix.setOpcode(X86::DATA16_PREFIX);
    590     OutStreamer.EmitInstruction(prefix);
    591     prefix.setOpcode(X86::REX64_PREFIX);
    592     OutStreamer.EmitInstruction(prefix);
    593   }
    594 
    595   MCInst call;
    596   if (is64Bits)
    597     call.setOpcode(X86::CALL64pcrel32);
    598   else
    599     call.setOpcode(X86::CALLpcrel32);
    600   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
    601   MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
    602   const MCSymbolRefExpr *tlsRef =
    603     MCSymbolRefExpr::Create(tlsGetAddr,
    604                             MCSymbolRefExpr::VK_PLT,
    605                             context);
    606 
    607   call.addOperand(MCOperand::CreateExpr(tlsRef));
    608   OutStreamer.EmitInstruction(call);
    609 }
    610 
    611 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
    612   OutStreamer.EmitCodeRegion();
    613 
    614   X86MCInstLower MCInstLowering(Mang, *MF, *this);
    615   switch (MI->getOpcode()) {
    616   case TargetOpcode::DBG_VALUE:
    617     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
    618       std::string TmpStr;
    619       raw_string_ostream OS(TmpStr);
    620       PrintDebugValueComment(MI, OS);
    621       OutStreamer.EmitRawText(StringRef(OS.str()));
    622     }
    623     return;
    624 
    625   // Emit nothing here but a comment if we can.
    626   case X86::Int_MemBarrier:
    627     if (OutStreamer.hasRawTextSupport())
    628       OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
    629     return;
    630 
    631 
    632   case X86::EH_RETURN:
    633   case X86::EH_RETURN64: {
    634     // Lower these as normal, but add some comments.
    635     unsigned Reg = MI->getOperand(0).getReg();
    636     OutStreamer.AddComment(StringRef("eh_return, addr: %") +
    637                            X86ATTInstPrinter::getRegisterName(Reg));
    638     break;
    639   }
    640   case X86::TAILJMPr:
    641   case X86::TAILJMPd:
    642   case X86::TAILJMPd64:
    643     // Lower these as normal, but add some comments.
    644     OutStreamer.AddComment("TAILCALL");
    645     break;
    646 
    647   case X86::TLS_addr32:
    648   case X86::TLS_addr64:
    649     return LowerTlsAddr(OutStreamer, MCInstLowering, *MI);
    650 
    651   case X86::MOVPC32r: {
    652     MCInst TmpInst;
    653     // This is a pseudo op for a two instruction sequence with a label, which
    654     // looks like:
    655     //     call "L1$pb"
    656     // "L1$pb":
    657     //     popl %esi
    658 
    659     // Emit the call.
    660     MCSymbol *PICBase = MF->getPICBaseSymbol();
    661     TmpInst.setOpcode(X86::CALLpcrel32);
    662     // FIXME: We would like an efficient form for this, so we don't have to do a
    663     // lot of extra uniquing.
    664     TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
    665                                                                  OutContext)));
    666     OutStreamer.EmitInstruction(TmpInst);
    667 
    668     // Emit the label.
    669     OutStreamer.EmitLabel(PICBase);
    670 
    671     // popl $reg
    672     TmpInst.setOpcode(X86::POP32r);
    673     TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
    674     OutStreamer.EmitInstruction(TmpInst);
    675     return;
    676   }
    677 
    678   case X86::ADD32ri: {
    679     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    680     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
    681       break;
    682 
    683     // Okay, we have something like:
    684     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
    685 
    686     // For this, we want to print something like:
    687     //   MYGLOBAL + (. - PICBASE)
    688     // However, we can't generate a ".", so just emit a new label here and refer
    689     // to it.
    690     MCSymbol *DotSym = OutContext.CreateTempSymbol();
    691     OutStreamer.EmitLabel(DotSym);
    692 
    693     // Now that we have emitted the label, lower the complex operand expression.
    694     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
    695 
    696     const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    697     const MCExpr *PICBase =
    698       MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
    699     DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
    700 
    701     DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
    702                                       DotExpr, OutContext);
    703 
    704     MCInst TmpInst;
    705     TmpInst.setOpcode(X86::ADD32ri);
    706     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
    707     TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
    708     TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
    709     OutStreamer.EmitInstruction(TmpInst);
    710     return;
    711   }
    712   }
    713 
    714   MCInst TmpInst;
    715   MCInstLowering.Lower(MI, TmpInst);
    716   OutStreamer.EmitInstruction(TmpInst);
    717 }
    718 
    719