Home | History | Annotate | Download | only in InstCombine
      1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // InstructionCombining - Combine instructions to form fewer, simple
     11 // instructions.  This pass does not modify the CFG.  This pass is where
     12 // algebraic simplification happens.
     13 //
     14 // This pass combines things like:
     15 //    %Y = add i32 %X, 1
     16 //    %Z = add i32 %Y, 1
     17 // into:
     18 //    %Z = add i32 %X, 2
     19 //
     20 // This is a simple worklist driven algorithm.
     21 //
     22 // This pass guarantees that the following canonicalizations are performed on
     23 // the program:
     24 //    1. If a binary operator has a constant operand, it is moved to the RHS
     25 //    2. Bitwise operators with constant operands are always grouped so that
     26 //       shifts are performed first, then or's, then and's, then xor's.
     27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
     28 //    4. All cmp instructions on boolean values are replaced with logical ops
     29 //    5. add X, X is represented as (X*2) => (X << 1)
     30 //    6. Multiplies with a power-of-two constant argument are transformed into
     31 //       shifts.
     32 //   ... etc.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #define DEBUG_TYPE "instcombine"
     37 #include "llvm/Transforms/Scalar.h"
     38 #include "InstCombine.h"
     39 #include "llvm/IntrinsicInst.h"
     40 #include "llvm/Analysis/ConstantFolding.h"
     41 #include "llvm/Analysis/InstructionSimplify.h"
     42 #include "llvm/Analysis/MemoryBuiltins.h"
     43 #include "llvm/Target/TargetData.h"
     44 #include "llvm/Target/TargetLibraryInfo.h"
     45 #include "llvm/Transforms/Utils/Local.h"
     46 #include "llvm/Support/CFG.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/GetElementPtrTypeIterator.h"
     49 #include "llvm/Support/PatternMatch.h"
     50 #include "llvm/Support/ValueHandle.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/Statistic.h"
     53 #include "llvm/ADT/StringSwitch.h"
     54 #include "llvm-c/Initialization.h"
     55 #include <algorithm>
     56 #include <climits>
     57 using namespace llvm;
     58 using namespace llvm::PatternMatch;
     59 
     60 STATISTIC(NumCombined , "Number of insts combined");
     61 STATISTIC(NumConstProp, "Number of constant folds");
     62 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
     63 STATISTIC(NumSunkInst , "Number of instructions sunk");
     64 STATISTIC(NumExpand,    "Number of expansions");
     65 STATISTIC(NumFactor   , "Number of factorizations");
     66 STATISTIC(NumReassoc  , "Number of reassociations");
     67 
     68 // Initialization Routines
     69 void llvm::initializeInstCombine(PassRegistry &Registry) {
     70   initializeInstCombinerPass(Registry);
     71 }
     72 
     73 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
     74   initializeInstCombine(*unwrap(R));
     75 }
     76 
     77 char InstCombiner::ID = 0;
     78 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
     79                 "Combine redundant instructions", false, false)
     80 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     81 INITIALIZE_PASS_END(InstCombiner, "instcombine",
     82                 "Combine redundant instructions", false, false)
     83 
     84 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
     85   AU.setPreservesCFG();
     86   AU.addRequired<TargetLibraryInfo>();
     87 }
     88 
     89 
     90 /// ShouldChangeType - Return true if it is desirable to convert a computation
     91 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
     92 /// type for example, or from a smaller to a larger illegal type.
     93 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
     94   assert(From->isIntegerTy() && To->isIntegerTy());
     95 
     96   // If we don't have TD, we don't know if the source/dest are legal.
     97   if (!TD) return false;
     98 
     99   unsigned FromWidth = From->getPrimitiveSizeInBits();
    100   unsigned ToWidth = To->getPrimitiveSizeInBits();
    101   bool FromLegal = TD->isLegalInteger(FromWidth);
    102   bool ToLegal = TD->isLegalInteger(ToWidth);
    103 
    104   // If this is a legal integer from type, and the result would be an illegal
    105   // type, don't do the transformation.
    106   if (FromLegal && !ToLegal)
    107     return false;
    108 
    109   // Otherwise, if both are illegal, do not increase the size of the result. We
    110   // do allow things like i160 -> i64, but not i64 -> i160.
    111   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    112     return false;
    113 
    114   return true;
    115 }
    116 
    117 // Return true, if No Signed Wrap should be maintained for I.
    118 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
    119 // where both B and C should be ConstantInts, results in a constant that does
    120 // not overflow. This function only handles the Add and Sub opcodes. For
    121 // all other opcodes, the function conservatively returns false.
    122 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
    123   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
    124   if (!OBO || !OBO->hasNoSignedWrap()) {
    125     return false;
    126   }
    127 
    128   // We reason about Add and Sub Only.
    129   Instruction::BinaryOps Opcode = I.getOpcode();
    130   if (Opcode != Instruction::Add &&
    131       Opcode != Instruction::Sub) {
    132     return false;
    133   }
    134 
    135   ConstantInt *CB = dyn_cast<ConstantInt>(B);
    136   ConstantInt *CC = dyn_cast<ConstantInt>(C);
    137 
    138   if (!CB || !CC) {
    139     return false;
    140   }
    141 
    142   const APInt &BVal = CB->getValue();
    143   const APInt &CVal = CC->getValue();
    144   bool Overflow = false;
    145 
    146   if (Opcode == Instruction::Add) {
    147     BVal.sadd_ov(CVal, Overflow);
    148   } else {
    149     BVal.ssub_ov(CVal, Overflow);
    150   }
    151 
    152   return !Overflow;
    153 }
    154 
    155 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    156 /// operators which are associative or commutative:
    157 //
    158 //  Commutative operators:
    159 //
    160 //  1. Order operands such that they are listed from right (least complex) to
    161 //     left (most complex).  This puts constants before unary operators before
    162 //     binary operators.
    163 //
    164 //  Associative operators:
    165 //
    166 //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    167 //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    168 //
    169 //  Associative and commutative operators:
    170 //
    171 //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    172 //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    173 //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    174 //     if C1 and C2 are constants.
    175 //
    176 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
    177   Instruction::BinaryOps Opcode = I.getOpcode();
    178   bool Changed = false;
    179 
    180   do {
    181     // Order operands such that they are listed from right (least complex) to
    182     // left (most complex).  This puts constants before unary operators before
    183     // binary operators.
    184     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
    185         getComplexity(I.getOperand(1)))
    186       Changed = !I.swapOperands();
    187 
    188     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    189     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
    190 
    191     if (I.isAssociative()) {
    192       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    193       if (Op0 && Op0->getOpcode() == Opcode) {
    194         Value *A = Op0->getOperand(0);
    195         Value *B = Op0->getOperand(1);
    196         Value *C = I.getOperand(1);
    197 
    198         // Does "B op C" simplify?
    199         if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
    200           // It simplifies to V.  Form "A op V".
    201           I.setOperand(0, A);
    202           I.setOperand(1, V);
    203           // Conservatively clear the optional flags, since they may not be
    204           // preserved by the reassociation.
    205           if (MaintainNoSignedWrap(I, B, C) &&
    206 	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
    207             // Note: this is only valid because SimplifyBinOp doesn't look at
    208             // the operands to Op0.
    209             I.clearSubclassOptionalData();
    210             I.setHasNoSignedWrap(true);
    211           } else {
    212             I.clearSubclassOptionalData();
    213           }
    214 
    215           Changed = true;
    216           ++NumReassoc;
    217           continue;
    218         }
    219       }
    220 
    221       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    222       if (Op1 && Op1->getOpcode() == Opcode) {
    223         Value *A = I.getOperand(0);
    224         Value *B = Op1->getOperand(0);
    225         Value *C = Op1->getOperand(1);
    226 
    227         // Does "A op B" simplify?
    228         if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
    229           // It simplifies to V.  Form "V op C".
    230           I.setOperand(0, V);
    231           I.setOperand(1, C);
    232           // Conservatively clear the optional flags, since they may not be
    233           // preserved by the reassociation.
    234           I.clearSubclassOptionalData();
    235           Changed = true;
    236           ++NumReassoc;
    237           continue;
    238         }
    239       }
    240     }
    241 
    242     if (I.isAssociative() && I.isCommutative()) {
    243       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    244       if (Op0 && Op0->getOpcode() == Opcode) {
    245         Value *A = Op0->getOperand(0);
    246         Value *B = Op0->getOperand(1);
    247         Value *C = I.getOperand(1);
    248 
    249         // Does "C op A" simplify?
    250         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
    251           // It simplifies to V.  Form "V op B".
    252           I.setOperand(0, V);
    253           I.setOperand(1, B);
    254           // Conservatively clear the optional flags, since they may not be
    255           // preserved by the reassociation.
    256           I.clearSubclassOptionalData();
    257           Changed = true;
    258           ++NumReassoc;
    259           continue;
    260         }
    261       }
    262 
    263       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    264       if (Op1 && Op1->getOpcode() == Opcode) {
    265         Value *A = I.getOperand(0);
    266         Value *B = Op1->getOperand(0);
    267         Value *C = Op1->getOperand(1);
    268 
    269         // Does "C op A" simplify?
    270         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
    271           // It simplifies to V.  Form "B op V".
    272           I.setOperand(0, B);
    273           I.setOperand(1, V);
    274           // Conservatively clear the optional flags, since they may not be
    275           // preserved by the reassociation.
    276           I.clearSubclassOptionalData();
    277           Changed = true;
    278           ++NumReassoc;
    279           continue;
    280         }
    281       }
    282 
    283       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    284       // if C1 and C2 are constants.
    285       if (Op0 && Op1 &&
    286           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
    287           isa<Constant>(Op0->getOperand(1)) &&
    288           isa<Constant>(Op1->getOperand(1)) &&
    289           Op0->hasOneUse() && Op1->hasOneUse()) {
    290         Value *A = Op0->getOperand(0);
    291         Constant *C1 = cast<Constant>(Op0->getOperand(1));
    292         Value *B = Op1->getOperand(0);
    293         Constant *C2 = cast<Constant>(Op1->getOperand(1));
    294 
    295         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
    296         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
    297         InsertNewInstWith(New, I);
    298         New->takeName(Op1);
    299         I.setOperand(0, New);
    300         I.setOperand(1, Folded);
    301         // Conservatively clear the optional flags, since they may not be
    302         // preserved by the reassociation.
    303         I.clearSubclassOptionalData();
    304 
    305         Changed = true;
    306         continue;
    307       }
    308     }
    309 
    310     // No further simplifications.
    311     return Changed;
    312   } while (1);
    313 }
    314 
    315 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
    316 /// "(X LOp Y) ROp (X LOp Z)".
    317 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
    318                                      Instruction::BinaryOps ROp) {
    319   switch (LOp) {
    320   default:
    321     return false;
    322 
    323   case Instruction::And:
    324     // And distributes over Or and Xor.
    325     switch (ROp) {
    326     default:
    327       return false;
    328     case Instruction::Or:
    329     case Instruction::Xor:
    330       return true;
    331     }
    332 
    333   case Instruction::Mul:
    334     // Multiplication distributes over addition and subtraction.
    335     switch (ROp) {
    336     default:
    337       return false;
    338     case Instruction::Add:
    339     case Instruction::Sub:
    340       return true;
    341     }
    342 
    343   case Instruction::Or:
    344     // Or distributes over And.
    345     switch (ROp) {
    346     default:
    347       return false;
    348     case Instruction::And:
    349       return true;
    350     }
    351   }
    352 }
    353 
    354 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
    355 /// "(X ROp Z) LOp (Y ROp Z)".
    356 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
    357                                      Instruction::BinaryOps ROp) {
    358   if (Instruction::isCommutative(ROp))
    359     return LeftDistributesOverRight(ROp, LOp);
    360   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
    361   // but this requires knowing that the addition does not overflow and other
    362   // such subtleties.
    363   return false;
    364 }
    365 
    366 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    367 /// which some other binary operation distributes over either by factorizing
    368 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    369 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    370 /// a win).  Returns the simplified value, or null if it didn't simplify.
    371 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
    372   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    373   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    374   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    375   Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
    376 
    377   // Factorization.
    378   if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
    379     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    380     // a common term.
    381     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
    382     Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
    383     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    384 
    385     // Does "X op' Y" always equal "Y op' X"?
    386     bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
    387 
    388     // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    389     if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    390       // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    391       // commutative case, "(A op' B) op (C op' A)"?
    392       if (A == C || (InnerCommutative && A == D)) {
    393         if (A != C)
    394           std::swap(C, D);
    395         // Consider forming "A op' (B op D)".
    396         // If "B op D" simplifies then it can be formed with no cost.
    397         Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
    398         // If "B op D" doesn't simplify then only go on if both of the existing
    399         // operations "A op' B" and "C op' D" will be zapped as no longer used.
    400         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
    401           V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
    402         if (V) {
    403           ++NumFactor;
    404           V = Builder->CreateBinOp(InnerOpcode, A, V);
    405           V->takeName(&I);
    406           return V;
    407         }
    408       }
    409 
    410     // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    411     if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    412       // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    413       // commutative case, "(A op' B) op (B op' D)"?
    414       if (B == D || (InnerCommutative && B == C)) {
    415         if (B != D)
    416           std::swap(C, D);
    417         // Consider forming "(A op C) op' B".
    418         // If "A op C" simplifies then it can be formed with no cost.
    419         Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
    420         // If "A op C" doesn't simplify then only go on if both of the existing
    421         // operations "A op' B" and "C op' D" will be zapped as no longer used.
    422         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
    423           V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
    424         if (V) {
    425           ++NumFactor;
    426           V = Builder->CreateBinOp(InnerOpcode, V, B);
    427           V->takeName(&I);
    428           return V;
    429         }
    430       }
    431   }
    432 
    433   // Expansion.
    434   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    435     // The instruction has the form "(A op' B) op C".  See if expanding it out
    436     // to "(A op C) op' (B op C)" results in simplifications.
    437     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    438     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    439 
    440     // Do "A op C" and "B op C" both simplify?
    441     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
    442       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
    443         // They do! Return "L op' R".
    444         ++NumExpand;
    445         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    446         if ((L == A && R == B) ||
    447             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
    448           return Op0;
    449         // Otherwise return "L op' R" if it simplifies.
    450         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
    451           return V;
    452         // Otherwise, create a new instruction.
    453         C = Builder->CreateBinOp(InnerOpcode, L, R);
    454         C->takeName(&I);
    455         return C;
    456       }
    457   }
    458 
    459   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    460     // The instruction has the form "A op (B op' C)".  See if expanding it out
    461     // to "(A op B) op' (A op C)" results in simplifications.
    462     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    463     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
    464 
    465     // Do "A op B" and "A op C" both simplify?
    466     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
    467       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
    468         // They do! Return "L op' R".
    469         ++NumExpand;
    470         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    471         if ((L == B && R == C) ||
    472             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
    473           return Op1;
    474         // Otherwise return "L op' R" if it simplifies.
    475         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
    476           return V;
    477         // Otherwise, create a new instruction.
    478         A = Builder->CreateBinOp(InnerOpcode, L, R);
    479         A->takeName(&I);
    480         return A;
    481       }
    482   }
    483 
    484   return 0;
    485 }
    486 
    487 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
    488 // if the LHS is a constant zero (which is the 'negate' form).
    489 //
    490 Value *InstCombiner::dyn_castNegVal(Value *V) const {
    491   if (BinaryOperator::isNeg(V))
    492     return BinaryOperator::getNegArgument(V);
    493 
    494   // Constants can be considered to be negated values if they can be folded.
    495   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    496     return ConstantExpr::getNeg(C);
    497 
    498   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    499     if (C->getType()->getElementType()->isIntegerTy())
    500       return ConstantExpr::getNeg(C);
    501 
    502   return 0;
    503 }
    504 
    505 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
    506 // instruction if the LHS is a constant negative zero (which is the 'negate'
    507 // form).
    508 //
    509 Value *InstCombiner::dyn_castFNegVal(Value *V) const {
    510   if (BinaryOperator::isFNeg(V))
    511     return BinaryOperator::getFNegArgument(V);
    512 
    513   // Constants can be considered to be negated values if they can be folded.
    514   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    515     return ConstantExpr::getFNeg(C);
    516 
    517   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    518     if (C->getType()->getElementType()->isFloatingPointTy())
    519       return ConstantExpr::getFNeg(C);
    520 
    521   return 0;
    522 }
    523 
    524 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
    525                                              InstCombiner *IC) {
    526   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    527     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
    528   }
    529 
    530   // Figure out if the constant is the left or the right argument.
    531   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
    532   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
    533 
    534   if (Constant *SOC = dyn_cast<Constant>(SO)) {
    535     if (ConstIsRHS)
    536       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    537     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
    538   }
    539 
    540   Value *Op0 = SO, *Op1 = ConstOperand;
    541   if (!ConstIsRHS)
    542     std::swap(Op0, Op1);
    543 
    544   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
    545     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
    546                                     SO->getName()+".op");
    547   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    548     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    549                                    SO->getName()+".cmp");
    550   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    551     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    552                                    SO->getName()+".cmp");
    553   llvm_unreachable("Unknown binary instruction type!");
    554 }
    555 
    556 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
    557 // constant as the other operand, try to fold the binary operator into the
    558 // select arguments.  This also works for Cast instructions, which obviously do
    559 // not have a second operand.
    560 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
    561   // Don't modify shared select instructions
    562   if (!SI->hasOneUse()) return 0;
    563   Value *TV = SI->getOperand(1);
    564   Value *FV = SI->getOperand(2);
    565 
    566   if (isa<Constant>(TV) || isa<Constant>(FV)) {
    567     // Bool selects with constant operands can be folded to logical ops.
    568     if (SI->getType()->isIntegerTy(1)) return 0;
    569 
    570     // If it's a bitcast involving vectors, make sure it has the same number of
    571     // elements on both sides.
    572     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
    573       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    574       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
    575 
    576       // Verify that either both or neither are vectors.
    577       if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
    578       // If vectors, verify that they have the same number of elements.
    579       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
    580         return 0;
    581     }
    582 
    583     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    584     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
    585 
    586     return SelectInst::Create(SI->getCondition(),
    587                               SelectTrueVal, SelectFalseVal);
    588   }
    589   return 0;
    590 }
    591 
    592 
    593 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
    594 /// has a PHI node as operand #0, see if we can fold the instruction into the
    595 /// PHI (which is only possible if all operands to the PHI are constants).
    596 ///
    597 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
    598   PHINode *PN = cast<PHINode>(I.getOperand(0));
    599   unsigned NumPHIValues = PN->getNumIncomingValues();
    600   if (NumPHIValues == 0)
    601     return 0;
    602 
    603   // We normally only transform phis with a single use.  However, if a PHI has
    604   // multiple uses and they are all the same operation, we can fold *all* of the
    605   // uses into the PHI.
    606   if (!PN->hasOneUse()) {
    607     // Walk the use list for the instruction, comparing them to I.
    608     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
    609          UI != E; ++UI) {
    610       Instruction *User = cast<Instruction>(*UI);
    611       if (User != &I && !I.isIdenticalTo(User))
    612         return 0;
    613     }
    614     // Otherwise, we can replace *all* users with the new PHI we form.
    615   }
    616 
    617   // Check to see if all of the operands of the PHI are simple constants
    618   // (constantint/constantfp/undef).  If there is one non-constant value,
    619   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
    620   // bail out.  We don't do arbitrary constant expressions here because moving
    621   // their computation can be expensive without a cost model.
    622   BasicBlock *NonConstBB = 0;
    623   for (unsigned i = 0; i != NumPHIValues; ++i) {
    624     Value *InVal = PN->getIncomingValue(i);
    625     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
    626       continue;
    627 
    628     if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
    629     if (NonConstBB) return 0;  // More than one non-const value.
    630 
    631     NonConstBB = PN->getIncomingBlock(i);
    632 
    633     // If the InVal is an invoke at the end of the pred block, then we can't
    634     // insert a computation after it without breaking the edge.
    635     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
    636       if (II->getParent() == NonConstBB)
    637         return 0;
    638 
    639     // If the incoming non-constant value is in I's block, we will remove one
    640     // instruction, but insert another equivalent one, leading to infinite
    641     // instcombine.
    642     if (NonConstBB == I.getParent())
    643       return 0;
    644   }
    645 
    646   // If there is exactly one non-constant value, we can insert a copy of the
    647   // operation in that block.  However, if this is a critical edge, we would be
    648   // inserting the computation one some other paths (e.g. inside a loop).  Only
    649   // do this if the pred block is unconditionally branching into the phi block.
    650   if (NonConstBB != 0) {
    651     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    652     if (!BI || !BI->isUnconditional()) return 0;
    653   }
    654 
    655   // Okay, we can do the transformation: create the new PHI node.
    656   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
    657   InsertNewInstBefore(NewPN, *PN);
    658   NewPN->takeName(PN);
    659 
    660   // If we are going to have to insert a new computation, do so right before the
    661   // predecessors terminator.
    662   if (NonConstBB)
    663     Builder->SetInsertPoint(NonConstBB->getTerminator());
    664 
    665   // Next, add all of the operands to the PHI.
    666   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    667     // We only currently try to fold the condition of a select when it is a phi,
    668     // not the true/false values.
    669     Value *TrueV = SI->getTrueValue();
    670     Value *FalseV = SI->getFalseValue();
    671     BasicBlock *PhiTransBB = PN->getParent();
    672     for (unsigned i = 0; i != NumPHIValues; ++i) {
    673       BasicBlock *ThisBB = PN->getIncomingBlock(i);
    674       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
    675       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
    676       Value *InV = 0;
    677       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    678         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
    679       else
    680         InV = Builder->CreateSelect(PN->getIncomingValue(i),
    681                                     TrueVInPred, FalseVInPred, "phitmp");
    682       NewPN->addIncoming(InV, ThisBB);
    683     }
    684   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    685     Constant *C = cast<Constant>(I.getOperand(1));
    686     for (unsigned i = 0; i != NumPHIValues; ++i) {
    687       Value *InV = 0;
    688       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    689         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
    690       else if (isa<ICmpInst>(CI))
    691         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
    692                                   C, "phitmp");
    693       else
    694         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
    695                                   C, "phitmp");
    696       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    697     }
    698   } else if (I.getNumOperands() == 2) {
    699     Constant *C = cast<Constant>(I.getOperand(1));
    700     for (unsigned i = 0; i != NumPHIValues; ++i) {
    701       Value *InV = 0;
    702       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    703         InV = ConstantExpr::get(I.getOpcode(), InC, C);
    704       else
    705         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
    706                                    PN->getIncomingValue(i), C, "phitmp");
    707       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    708     }
    709   } else {
    710     CastInst *CI = cast<CastInst>(&I);
    711     Type *RetTy = CI->getType();
    712     for (unsigned i = 0; i != NumPHIValues; ++i) {
    713       Value *InV;
    714       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    715         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
    716       else
    717         InV = Builder->CreateCast(CI->getOpcode(),
    718                                 PN->getIncomingValue(i), I.getType(), "phitmp");
    719       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    720     }
    721   }
    722 
    723   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
    724        UI != E; ) {
    725     Instruction *User = cast<Instruction>(*UI++);
    726     if (User == &I) continue;
    727     ReplaceInstUsesWith(*User, NewPN);
    728     EraseInstFromFunction(*User);
    729   }
    730   return ReplaceInstUsesWith(I, NewPN);
    731 }
    732 
    733 /// FindElementAtOffset - Given a type and a constant offset, determine whether
    734 /// or not there is a sequence of GEP indices into the type that will land us at
    735 /// the specified offset.  If so, fill them into NewIndices and return the
    736 /// resultant element type, otherwise return null.
    737 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
    738                                           SmallVectorImpl<Value*> &NewIndices) {
    739   if (!TD) return 0;
    740   if (!Ty->isSized()) return 0;
    741 
    742   // Start with the index over the outer type.  Note that the type size
    743   // might be zero (even if the offset isn't zero) if the indexed type
    744   // is something like [0 x {int, int}]
    745   Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    746   int64_t FirstIdx = 0;
    747   if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
    748     FirstIdx = Offset/TySize;
    749     Offset -= FirstIdx*TySize;
    750 
    751     // Handle hosts where % returns negative instead of values [0..TySize).
    752     if (Offset < 0) {
    753       --FirstIdx;
    754       Offset += TySize;
    755       assert(Offset >= 0);
    756     }
    757     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
    758   }
    759 
    760   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    761 
    762   // Index into the types.  If we fail, set OrigBase to null.
    763   while (Offset) {
    764     // Indexing into tail padding between struct/array elements.
    765     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
    766       return 0;
    767 
    768     if (StructType *STy = dyn_cast<StructType>(Ty)) {
    769       const StructLayout *SL = TD->getStructLayout(STy);
    770       assert(Offset < (int64_t)SL->getSizeInBytes() &&
    771              "Offset must stay within the indexed type");
    772 
    773       unsigned Elt = SL->getElementContainingOffset(Offset);
    774       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    775                                             Elt));
    776 
    777       Offset -= SL->getElementOffset(Elt);
    778       Ty = STy->getElementType(Elt);
    779     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    780       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
    781       assert(EltSize && "Cannot index into a zero-sized array");
    782       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
    783       Offset %= EltSize;
    784       Ty = AT->getElementType();
    785     } else {
    786       // Otherwise, we can't index into the middle of this atomic type, bail.
    787       return 0;
    788     }
    789   }
    790 
    791   return Ty;
    792 }
    793 
    794 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
    795   // If this GEP has only 0 indices, it is the same pointer as
    796   // Src. If Src is not a trivial GEP too, don't combine
    797   // the indices.
    798   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
    799       !Src.hasOneUse())
    800     return false;
    801   return true;
    802 }
    803 
    804 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
    805   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
    806 
    807   if (Value *V = SimplifyGEPInst(Ops, TD))
    808     return ReplaceInstUsesWith(GEP, V);
    809 
    810   Value *PtrOp = GEP.getOperand(0);
    811 
    812   // Eliminate unneeded casts for indices, and replace indices which displace
    813   // by multiples of a zero size type with zero.
    814   if (TD) {
    815     bool MadeChange = false;
    816     Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
    817 
    818     gep_type_iterator GTI = gep_type_begin(GEP);
    819     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
    820          I != E; ++I, ++GTI) {
    821       // Skip indices into struct types.
    822       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
    823       if (!SeqTy) continue;
    824 
    825       // If the element type has zero size then any index over it is equivalent
    826       // to an index of zero, so replace it with zero if it is not zero already.
    827       if (SeqTy->getElementType()->isSized() &&
    828           TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
    829         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
    830           *I = Constant::getNullValue(IntPtrTy);
    831           MadeChange = true;
    832         }
    833 
    834       Type *IndexTy = (*I)->getType();
    835       if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
    836         // If we are using a wider index than needed for this platform, shrink
    837         // it to what we need.  If narrower, sign-extend it to what we need.
    838         // This explicit cast can make subsequent optimizations more obvious.
    839         *I = Builder->CreateIntCast(*I, IntPtrTy, true);
    840         MadeChange = true;
    841       }
    842     }
    843     if (MadeChange) return &GEP;
    844   }
    845 
    846   // Combine Indices - If the source pointer to this getelementptr instruction
    847   // is a getelementptr instruction, combine the indices of the two
    848   // getelementptr instructions into a single instruction.
    849   //
    850   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
    851     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
    852       return 0;
    853 
    854     // Note that if our source is a gep chain itself that we wait for that
    855     // chain to be resolved before we perform this transformation.  This
    856     // avoids us creating a TON of code in some cases.
    857     if (GEPOperator *SrcGEP =
    858           dyn_cast<GEPOperator>(Src->getOperand(0)))
    859       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
    860         return 0;   // Wait until our source is folded to completion.
    861 
    862     SmallVector<Value*, 8> Indices;
    863 
    864     // Find out whether the last index in the source GEP is a sequential idx.
    865     bool EndsWithSequential = false;
    866     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
    867          I != E; ++I)
    868       EndsWithSequential = !(*I)->isStructTy();
    869 
    870     // Can we combine the two pointer arithmetics offsets?
    871     if (EndsWithSequential) {
    872       // Replace: gep (gep %P, long B), long A, ...
    873       // With:    T = long A+B; gep %P, T, ...
    874       //
    875       Value *Sum;
    876       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
    877       Value *GO1 = GEP.getOperand(1);
    878       if (SO1 == Constant::getNullValue(SO1->getType())) {
    879         Sum = GO1;
    880       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
    881         Sum = SO1;
    882       } else {
    883         // If they aren't the same type, then the input hasn't been processed
    884         // by the loop above yet (which canonicalizes sequential index types to
    885         // intptr_t).  Just avoid transforming this until the input has been
    886         // normalized.
    887         if (SO1->getType() != GO1->getType())
    888           return 0;
    889         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
    890       }
    891 
    892       // Update the GEP in place if possible.
    893       if (Src->getNumOperands() == 2) {
    894         GEP.setOperand(0, Src->getOperand(0));
    895         GEP.setOperand(1, Sum);
    896         return &GEP;
    897       }
    898       Indices.append(Src->op_begin()+1, Src->op_end()-1);
    899       Indices.push_back(Sum);
    900       Indices.append(GEP.op_begin()+2, GEP.op_end());
    901     } else if (isa<Constant>(*GEP.idx_begin()) &&
    902                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
    903                Src->getNumOperands() != 1) {
    904       // Otherwise we can do the fold if the first index of the GEP is a zero
    905       Indices.append(Src->op_begin()+1, Src->op_end());
    906       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    907     }
    908 
    909     if (!Indices.empty())
    910       return (GEP.isInBounds() && Src->isInBounds()) ?
    911         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
    912                                           GEP.getName()) :
    913         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
    914   }
    915 
    916   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
    917   Value *StrippedPtr = PtrOp->stripPointerCasts();
    918   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
    919 
    920   // We do not handle pointer-vector geps here.
    921   if (!StrippedPtrTy)
    922     return 0;
    923 
    924   if (StrippedPtr != PtrOp &&
    925     StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
    926 
    927     bool HasZeroPointerIndex = false;
    928     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
    929       HasZeroPointerIndex = C->isZero();
    930 
    931     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    932     // into     : GEP [10 x i8]* X, i32 0, ...
    933     //
    934     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    935     //           into     : GEP i8* X, ...
    936     //
    937     // This occurs when the program declares an array extern like "int X[];"
    938     if (HasZeroPointerIndex) {
    939       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
    940       if (ArrayType *CATy =
    941           dyn_cast<ArrayType>(CPTy->getElementType())) {
    942         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
    943         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
    944           // -> GEP i8* X, ...
    945           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
    946           GetElementPtrInst *Res =
    947             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
    948           Res->setIsInBounds(GEP.isInBounds());
    949           return Res;
    950         }
    951 
    952         if (ArrayType *XATy =
    953               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
    954           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
    955           if (CATy->getElementType() == XATy->getElementType()) {
    956             // -> GEP [10 x i8]* X, i32 0, ...
    957             // At this point, we know that the cast source type is a pointer
    958             // to an array of the same type as the destination pointer
    959             // array.  Because the array type is never stepped over (there
    960             // is a leading zero) we can fold the cast into this GEP.
    961             GEP.setOperand(0, StrippedPtr);
    962             return &GEP;
    963           }
    964         }
    965       }
    966     } else if (GEP.getNumOperands() == 2) {
    967       // Transform things like:
    968       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
    969       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
    970       Type *SrcElTy = StrippedPtrTy->getElementType();
    971       Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
    972       if (TD && SrcElTy->isArrayTy() &&
    973           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
    974           TD->getTypeAllocSize(ResElTy)) {
    975         Value *Idx[2];
    976         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
    977         Idx[1] = GEP.getOperand(1);
    978         Value *NewGEP = GEP.isInBounds() ?
    979           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
    980           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
    981         // V and GEP are both pointer types --> BitCast
    982         return new BitCastInst(NewGEP, GEP.getType());
    983       }
    984 
    985       // Transform things like:
    986       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
    987       //   (where tmp = 8*tmp2) into:
    988       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
    989 
    990       if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
    991         uint64_t ArrayEltSize =
    992             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
    993 
    994         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
    995         // allow either a mul, shift, or constant here.
    996         Value *NewIdx = 0;
    997         ConstantInt *Scale = 0;
    998         if (ArrayEltSize == 1) {
    999           NewIdx = GEP.getOperand(1);
   1000           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
   1001         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
   1002           NewIdx = ConstantInt::get(CI->getType(), 1);
   1003           Scale = CI;
   1004         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
   1005           if (Inst->getOpcode() == Instruction::Shl &&
   1006               isa<ConstantInt>(Inst->getOperand(1))) {
   1007             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
   1008             uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
   1009             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
   1010                                      1ULL << ShAmtVal);
   1011             NewIdx = Inst->getOperand(0);
   1012           } else if (Inst->getOpcode() == Instruction::Mul &&
   1013                      isa<ConstantInt>(Inst->getOperand(1))) {
   1014             Scale = cast<ConstantInt>(Inst->getOperand(1));
   1015             NewIdx = Inst->getOperand(0);
   1016           }
   1017         }
   1018 
   1019         // If the index will be to exactly the right offset with the scale taken
   1020         // out, perform the transformation. Note, we don't know whether Scale is
   1021         // signed or not. We'll use unsigned version of division/modulo
   1022         // operation after making sure Scale doesn't have the sign bit set.
   1023         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
   1024             Scale->getZExtValue() % ArrayEltSize == 0) {
   1025           Scale = ConstantInt::get(Scale->getType(),
   1026                                    Scale->getZExtValue() / ArrayEltSize);
   1027           if (Scale->getZExtValue() != 1) {
   1028             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
   1029                                                        false /*ZExt*/);
   1030             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
   1031           }
   1032 
   1033           // Insert the new GEP instruction.
   1034           Value *Idx[2];
   1035           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
   1036           Idx[1] = NewIdx;
   1037           Value *NewGEP = GEP.isInBounds() ?
   1038             Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
   1039             Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
   1040           // The NewGEP must be pointer typed, so must the old one -> BitCast
   1041           return new BitCastInst(NewGEP, GEP.getType());
   1042         }
   1043       }
   1044     }
   1045   }
   1046 
   1047   /// See if we can simplify:
   1048   ///   X = bitcast A* to B*
   1049   ///   Y = gep X, <...constant indices...>
   1050   /// into a gep of the original struct.  This is important for SROA and alias
   1051   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
   1052   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
   1053     if (TD &&
   1054         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
   1055         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
   1056 
   1057       // Determine how much the GEP moves the pointer.  We are guaranteed to get
   1058       // a constant back from EmitGEPOffset.
   1059       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
   1060       int64_t Offset = OffsetV->getSExtValue();
   1061 
   1062       // If this GEP instruction doesn't move the pointer, just replace the GEP
   1063       // with a bitcast of the real input to the dest type.
   1064       if (Offset == 0) {
   1065         // If the bitcast is of an allocation, and the allocation will be
   1066         // converted to match the type of the cast, don't touch this.
   1067         if (isa<AllocaInst>(BCI->getOperand(0)) ||
   1068             isMalloc(BCI->getOperand(0))) {
   1069           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
   1070           if (Instruction *I = visitBitCast(*BCI)) {
   1071             if (I != BCI) {
   1072               I->takeName(BCI);
   1073               BCI->getParent()->getInstList().insert(BCI, I);
   1074               ReplaceInstUsesWith(*BCI, I);
   1075             }
   1076             return &GEP;
   1077           }
   1078         }
   1079         return new BitCastInst(BCI->getOperand(0), GEP.getType());
   1080       }
   1081 
   1082       // Otherwise, if the offset is non-zero, we need to find out if there is a
   1083       // field at Offset in 'A's type.  If so, we can pull the cast through the
   1084       // GEP.
   1085       SmallVector<Value*, 8> NewIndices;
   1086       Type *InTy =
   1087         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
   1088       if (FindElementAtOffset(InTy, Offset, NewIndices)) {
   1089         Value *NGEP = GEP.isInBounds() ?
   1090           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
   1091           Builder->CreateGEP(BCI->getOperand(0), NewIndices);
   1092 
   1093         if (NGEP->getType() == GEP.getType())
   1094           return ReplaceInstUsesWith(GEP, NGEP);
   1095         NGEP->takeName(&GEP);
   1096         return new BitCastInst(NGEP, GEP.getType());
   1097       }
   1098     }
   1099   }
   1100 
   1101   return 0;
   1102 }
   1103 
   1104 
   1105 
   1106 static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
   1107                                        int Depth = 0) {
   1108   if (Depth == 8)
   1109     return false;
   1110 
   1111   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
   1112        UI != UE; ++UI) {
   1113     User *U = *UI;
   1114     if (isFreeCall(U)) {
   1115       Users.push_back(U);
   1116       continue;
   1117     }
   1118     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
   1119       if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
   1120         Users.push_back(ICI);
   1121         continue;
   1122       }
   1123     }
   1124     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
   1125       if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
   1126         Users.push_back(BCI);
   1127         continue;
   1128       }
   1129     }
   1130     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
   1131       if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
   1132         Users.push_back(GEPI);
   1133         continue;
   1134       }
   1135     }
   1136     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
   1137       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   1138           II->getIntrinsicID() == Intrinsic::lifetime_end) {
   1139         Users.push_back(II);
   1140         continue;
   1141       }
   1142     }
   1143     return false;
   1144   }
   1145   return true;
   1146 }
   1147 
   1148 Instruction *InstCombiner::visitMalloc(Instruction &MI) {
   1149   // If we have a malloc call which is only used in any amount of comparisons
   1150   // to null and free calls, delete the calls and replace the comparisons with
   1151   // true or false as appropriate.
   1152   SmallVector<WeakVH, 64> Users;
   1153   if (IsOnlyNullComparedAndFreed(&MI, Users)) {
   1154     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1155       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
   1156       if (!I) continue;
   1157 
   1158       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
   1159         ReplaceInstUsesWith(*C,
   1160                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
   1161                                              C->isFalseWhenEqual()));
   1162       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
   1163         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
   1164       }
   1165       EraseInstFromFunction(*I);
   1166     }
   1167     return EraseInstFromFunction(MI);
   1168   }
   1169   return 0;
   1170 }
   1171 
   1172 
   1173 
   1174 Instruction *InstCombiner::visitFree(CallInst &FI) {
   1175   Value *Op = FI.getArgOperand(0);
   1176 
   1177   // free undef -> unreachable.
   1178   if (isa<UndefValue>(Op)) {
   1179     // Insert a new store to null because we cannot modify the CFG here.
   1180     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
   1181                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
   1182     return EraseInstFromFunction(FI);
   1183   }
   1184 
   1185   // If we have 'free null' delete the instruction.  This can happen in stl code
   1186   // when lots of inlining happens.
   1187   if (isa<ConstantPointerNull>(Op))
   1188     return EraseInstFromFunction(FI);
   1189 
   1190   return 0;
   1191 }
   1192 
   1193 
   1194 
   1195 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
   1196   // Change br (not X), label True, label False to: br X, label False, True
   1197   Value *X = 0;
   1198   BasicBlock *TrueDest;
   1199   BasicBlock *FalseDest;
   1200   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
   1201       !isa<Constant>(X)) {
   1202     // Swap Destinations and condition...
   1203     BI.setCondition(X);
   1204     BI.swapSuccessors();
   1205     return &BI;
   1206   }
   1207 
   1208   // Cannonicalize fcmp_one -> fcmp_oeq
   1209   FCmpInst::Predicate FPred; Value *Y;
   1210   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
   1211                              TrueDest, FalseDest)) &&
   1212       BI.getCondition()->hasOneUse())
   1213     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
   1214         FPred == FCmpInst::FCMP_OGE) {
   1215       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
   1216       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
   1217 
   1218       // Swap Destinations and condition.
   1219       BI.swapSuccessors();
   1220       Worklist.Add(Cond);
   1221       return &BI;
   1222     }
   1223 
   1224   // Cannonicalize icmp_ne -> icmp_eq
   1225   ICmpInst::Predicate IPred;
   1226   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
   1227                       TrueDest, FalseDest)) &&
   1228       BI.getCondition()->hasOneUse())
   1229     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
   1230         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
   1231         IPred == ICmpInst::ICMP_SGE) {
   1232       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
   1233       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
   1234       // Swap Destinations and condition.
   1235       BI.swapSuccessors();
   1236       Worklist.Add(Cond);
   1237       return &BI;
   1238     }
   1239 
   1240   return 0;
   1241 }
   1242 
   1243 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
   1244   Value *Cond = SI.getCondition();
   1245   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
   1246     if (I->getOpcode() == Instruction::Add)
   1247       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1248         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
   1249         // Skip the first item since that's the default case.
   1250         for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
   1251              i != e; ++i) {
   1252           ConstantInt* CaseVal = i.getCaseValue();
   1253           Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
   1254                                                       AddRHS);
   1255           assert(isa<ConstantInt>(NewCaseVal) &&
   1256                  "Result of expression should be constant");
   1257           i.setValue(cast<ConstantInt>(NewCaseVal));
   1258         }
   1259         SI.setCondition(I->getOperand(0));
   1260         Worklist.Add(I);
   1261         return &SI;
   1262       }
   1263   }
   1264   return 0;
   1265 }
   1266 
   1267 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
   1268   Value *Agg = EV.getAggregateOperand();
   1269 
   1270   if (!EV.hasIndices())
   1271     return ReplaceInstUsesWith(EV, Agg);
   1272 
   1273   if (Constant *C = dyn_cast<Constant>(Agg)) {
   1274     if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
   1275       if (EV.getNumIndices() == 0)
   1276         return ReplaceInstUsesWith(EV, C2);
   1277       // Extract the remaining indices out of the constant indexed by the
   1278       // first index
   1279       return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
   1280     }
   1281     return 0; // Can't handle other constants
   1282   }
   1283 
   1284   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
   1285     // We're extracting from an insertvalue instruction, compare the indices
   1286     const unsigned *exti, *exte, *insi, *inse;
   1287     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
   1288          exte = EV.idx_end(), inse = IV->idx_end();
   1289          exti != exte && insi != inse;
   1290          ++exti, ++insi) {
   1291       if (*insi != *exti)
   1292         // The insert and extract both reference distinctly different elements.
   1293         // This means the extract is not influenced by the insert, and we can
   1294         // replace the aggregate operand of the extract with the aggregate
   1295         // operand of the insert. i.e., replace
   1296         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   1297         // %E = extractvalue { i32, { i32 } } %I, 0
   1298         // with
   1299         // %E = extractvalue { i32, { i32 } } %A, 0
   1300         return ExtractValueInst::Create(IV->getAggregateOperand(),
   1301                                         EV.getIndices());
   1302     }
   1303     if (exti == exte && insi == inse)
   1304       // Both iterators are at the end: Index lists are identical. Replace
   1305       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   1306       // %C = extractvalue { i32, { i32 } } %B, 1, 0
   1307       // with "i32 42"
   1308       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
   1309     if (exti == exte) {
   1310       // The extract list is a prefix of the insert list. i.e. replace
   1311       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   1312       // %E = extractvalue { i32, { i32 } } %I, 1
   1313       // with
   1314       // %X = extractvalue { i32, { i32 } } %A, 1
   1315       // %E = insertvalue { i32 } %X, i32 42, 0
   1316       // by switching the order of the insert and extract (though the
   1317       // insertvalue should be left in, since it may have other uses).
   1318       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
   1319                                                  EV.getIndices());
   1320       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
   1321                                      makeArrayRef(insi, inse));
   1322     }
   1323     if (insi == inse)
   1324       // The insert list is a prefix of the extract list
   1325       // We can simply remove the common indices from the extract and make it
   1326       // operate on the inserted value instead of the insertvalue result.
   1327       // i.e., replace
   1328       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   1329       // %E = extractvalue { i32, { i32 } } %I, 1, 0
   1330       // with
   1331       // %E extractvalue { i32 } { i32 42 }, 0
   1332       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
   1333                                       makeArrayRef(exti, exte));
   1334   }
   1335   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
   1336     // We're extracting from an intrinsic, see if we're the only user, which
   1337     // allows us to simplify multiple result intrinsics to simpler things that
   1338     // just get one value.
   1339     if (II->hasOneUse()) {
   1340       // Check if we're grabbing the overflow bit or the result of a 'with
   1341       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
   1342       // and replace it with a traditional binary instruction.
   1343       switch (II->getIntrinsicID()) {
   1344       case Intrinsic::uadd_with_overflow:
   1345       case Intrinsic::sadd_with_overflow:
   1346         if (*EV.idx_begin() == 0) {  // Normal result.
   1347           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1348           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1349           EraseInstFromFunction(*II);
   1350           return BinaryOperator::CreateAdd(LHS, RHS);
   1351         }
   1352 
   1353         // If the normal result of the add is dead, and the RHS is a constant,
   1354         // we can transform this into a range comparison.
   1355         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
   1356         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
   1357           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
   1358             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
   1359                                 ConstantExpr::getNot(CI));
   1360         break;
   1361       case Intrinsic::usub_with_overflow:
   1362       case Intrinsic::ssub_with_overflow:
   1363         if (*EV.idx_begin() == 0) {  // Normal result.
   1364           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1365           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1366           EraseInstFromFunction(*II);
   1367           return BinaryOperator::CreateSub(LHS, RHS);
   1368         }
   1369         break;
   1370       case Intrinsic::umul_with_overflow:
   1371       case Intrinsic::smul_with_overflow:
   1372         if (*EV.idx_begin() == 0) {  // Normal result.
   1373           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1374           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1375           EraseInstFromFunction(*II);
   1376           return BinaryOperator::CreateMul(LHS, RHS);
   1377         }
   1378         break;
   1379       default:
   1380         break;
   1381       }
   1382     }
   1383   }
   1384   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
   1385     // If the (non-volatile) load only has one use, we can rewrite this to a
   1386     // load from a GEP. This reduces the size of the load.
   1387     // FIXME: If a load is used only by extractvalue instructions then this
   1388     //        could be done regardless of having multiple uses.
   1389     if (L->isSimple() && L->hasOneUse()) {
   1390       // extractvalue has integer indices, getelementptr has Value*s. Convert.
   1391       SmallVector<Value*, 4> Indices;
   1392       // Prefix an i32 0 since we need the first element.
   1393       Indices.push_back(Builder->getInt32(0));
   1394       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
   1395             I != E; ++I)
   1396         Indices.push_back(Builder->getInt32(*I));
   1397 
   1398       // We need to insert these at the location of the old load, not at that of
   1399       // the extractvalue.
   1400       Builder->SetInsertPoint(L->getParent(), L);
   1401       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
   1402       // Returning the load directly will cause the main loop to insert it in
   1403       // the wrong spot, so use ReplaceInstUsesWith().
   1404       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
   1405     }
   1406   // We could simplify extracts from other values. Note that nested extracts may
   1407   // already be simplified implicitly by the above: extract (extract (insert) )
   1408   // will be translated into extract ( insert ( extract ) ) first and then just
   1409   // the value inserted, if appropriate. Similarly for extracts from single-use
   1410   // loads: extract (extract (load)) will be translated to extract (load (gep))
   1411   // and if again single-use then via load (gep (gep)) to load (gep).
   1412   // However, double extracts from e.g. function arguments or return values
   1413   // aren't handled yet.
   1414   return 0;
   1415 }
   1416 
   1417 enum Personality_Type {
   1418   Unknown_Personality,
   1419   GNU_Ada_Personality,
   1420   GNU_CXX_Personality,
   1421   GNU_ObjC_Personality
   1422 };
   1423 
   1424 /// RecognizePersonality - See if the given exception handling personality
   1425 /// function is one that we understand.  If so, return a description of it;
   1426 /// otherwise return Unknown_Personality.
   1427 static Personality_Type RecognizePersonality(Value *Pers) {
   1428   Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
   1429   if (!F)
   1430     return Unknown_Personality;
   1431   return StringSwitch<Personality_Type>(F->getName())
   1432     .Case("__gnat_eh_personality", GNU_Ada_Personality)
   1433     .Case("__gxx_personality_v0",  GNU_CXX_Personality)
   1434     .Case("__objc_personality_v0", GNU_ObjC_Personality)
   1435     .Default(Unknown_Personality);
   1436 }
   1437 
   1438 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
   1439 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
   1440   switch (Personality) {
   1441   case Unknown_Personality:
   1442     return false;
   1443   case GNU_Ada_Personality:
   1444     // While __gnat_all_others_value will match any Ada exception, it doesn't
   1445     // match foreign exceptions (or didn't, before gcc-4.7).
   1446     return false;
   1447   case GNU_CXX_Personality:
   1448   case GNU_ObjC_Personality:
   1449     return TypeInfo->isNullValue();
   1450   }
   1451   llvm_unreachable("Unknown personality!");
   1452 }
   1453 
   1454 static bool shorter_filter(const Value *LHS, const Value *RHS) {
   1455   return
   1456     cast<ArrayType>(LHS->getType())->getNumElements()
   1457   <
   1458     cast<ArrayType>(RHS->getType())->getNumElements();
   1459 }
   1460 
   1461 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
   1462   // The logic here should be correct for any real-world personality function.
   1463   // However if that turns out not to be true, the offending logic can always
   1464   // be conditioned on the personality function, like the catch-all logic is.
   1465   Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
   1466 
   1467   // Simplify the list of clauses, eg by removing repeated catch clauses
   1468   // (these are often created by inlining).
   1469   bool MakeNewInstruction = false; // If true, recreate using the following:
   1470   SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
   1471   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
   1472 
   1473   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
   1474   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
   1475     bool isLastClause = i + 1 == e;
   1476     if (LI.isCatch(i)) {
   1477       // A catch clause.
   1478       Value *CatchClause = LI.getClause(i);
   1479       Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
   1480 
   1481       // If we already saw this clause, there is no point in having a second
   1482       // copy of it.
   1483       if (AlreadyCaught.insert(TypeInfo)) {
   1484         // This catch clause was not already seen.
   1485         NewClauses.push_back(CatchClause);
   1486       } else {
   1487         // Repeated catch clause - drop the redundant copy.
   1488         MakeNewInstruction = true;
   1489       }
   1490 
   1491       // If this is a catch-all then there is no point in keeping any following
   1492       // clauses or marking the landingpad as having a cleanup.
   1493       if (isCatchAll(Personality, TypeInfo)) {
   1494         if (!isLastClause)
   1495           MakeNewInstruction = true;
   1496         CleanupFlag = false;
   1497         break;
   1498       }
   1499     } else {
   1500       // A filter clause.  If any of the filter elements were already caught
   1501       // then they can be dropped from the filter.  It is tempting to try to
   1502       // exploit the filter further by saying that any typeinfo that does not
   1503       // occur in the filter can't be caught later (and thus can be dropped).
   1504       // However this would be wrong, since typeinfos can match without being
   1505       // equal (for example if one represents a C++ class, and the other some
   1506       // class derived from it).
   1507       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
   1508       Value *FilterClause = LI.getClause(i);
   1509       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
   1510       unsigned NumTypeInfos = FilterType->getNumElements();
   1511 
   1512       // An empty filter catches everything, so there is no point in keeping any
   1513       // following clauses or marking the landingpad as having a cleanup.  By
   1514       // dealing with this case here the following code is made a bit simpler.
   1515       if (!NumTypeInfos) {
   1516         NewClauses.push_back(FilterClause);
   1517         if (!isLastClause)
   1518           MakeNewInstruction = true;
   1519         CleanupFlag = false;
   1520         break;
   1521       }
   1522 
   1523       bool MakeNewFilter = false; // If true, make a new filter.
   1524       SmallVector<Constant *, 16> NewFilterElts; // New elements.
   1525       if (isa<ConstantAggregateZero>(FilterClause)) {
   1526         // Not an empty filter - it contains at least one null typeinfo.
   1527         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
   1528         Constant *TypeInfo =
   1529           Constant::getNullValue(FilterType->getElementType());
   1530         // If this typeinfo is a catch-all then the filter can never match.
   1531         if (isCatchAll(Personality, TypeInfo)) {
   1532           // Throw the filter away.
   1533           MakeNewInstruction = true;
   1534           continue;
   1535         }
   1536 
   1537         // There is no point in having multiple copies of this typeinfo, so
   1538         // discard all but the first copy if there is more than one.
   1539         NewFilterElts.push_back(TypeInfo);
   1540         if (NumTypeInfos > 1)
   1541           MakeNewFilter = true;
   1542       } else {
   1543         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
   1544         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
   1545         NewFilterElts.reserve(NumTypeInfos);
   1546 
   1547         // Remove any filter elements that were already caught or that already
   1548         // occurred in the filter.  While there, see if any of the elements are
   1549         // catch-alls.  If so, the filter can be discarded.
   1550         bool SawCatchAll = false;
   1551         for (unsigned j = 0; j != NumTypeInfos; ++j) {
   1552           Value *Elt = Filter->getOperand(j);
   1553           Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
   1554           if (isCatchAll(Personality, TypeInfo)) {
   1555             // This element is a catch-all.  Bail out, noting this fact.
   1556             SawCatchAll = true;
   1557             break;
   1558           }
   1559           if (AlreadyCaught.count(TypeInfo))
   1560             // Already caught by an earlier clause, so having it in the filter
   1561             // is pointless.
   1562             continue;
   1563           // There is no point in having multiple copies of the same typeinfo in
   1564           // a filter, so only add it if we didn't already.
   1565           if (SeenInFilter.insert(TypeInfo))
   1566             NewFilterElts.push_back(cast<Constant>(Elt));
   1567         }
   1568         // A filter containing a catch-all cannot match anything by definition.
   1569         if (SawCatchAll) {
   1570           // Throw the filter away.
   1571           MakeNewInstruction = true;
   1572           continue;
   1573         }
   1574 
   1575         // If we dropped something from the filter, make a new one.
   1576         if (NewFilterElts.size() < NumTypeInfos)
   1577           MakeNewFilter = true;
   1578       }
   1579       if (MakeNewFilter) {
   1580         FilterType = ArrayType::get(FilterType->getElementType(),
   1581                                     NewFilterElts.size());
   1582         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
   1583         MakeNewInstruction = true;
   1584       }
   1585 
   1586       NewClauses.push_back(FilterClause);
   1587 
   1588       // If the new filter is empty then it will catch everything so there is
   1589       // no point in keeping any following clauses or marking the landingpad
   1590       // as having a cleanup.  The case of the original filter being empty was
   1591       // already handled above.
   1592       if (MakeNewFilter && !NewFilterElts.size()) {
   1593         assert(MakeNewInstruction && "New filter but not a new instruction!");
   1594         CleanupFlag = false;
   1595         break;
   1596       }
   1597     }
   1598   }
   1599 
   1600   // If several filters occur in a row then reorder them so that the shortest
   1601   // filters come first (those with the smallest number of elements).  This is
   1602   // advantageous because shorter filters are more likely to match, speeding up
   1603   // unwinding, but mostly because it increases the effectiveness of the other
   1604   // filter optimizations below.
   1605   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
   1606     unsigned j;
   1607     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
   1608     for (j = i; j != e; ++j)
   1609       if (!isa<ArrayType>(NewClauses[j]->getType()))
   1610         break;
   1611 
   1612     // Check whether the filters are already sorted by length.  We need to know
   1613     // if sorting them is actually going to do anything so that we only make a
   1614     // new landingpad instruction if it does.
   1615     for (unsigned k = i; k + 1 < j; ++k)
   1616       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
   1617         // Not sorted, so sort the filters now.  Doing an unstable sort would be
   1618         // correct too but reordering filters pointlessly might confuse users.
   1619         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
   1620                          shorter_filter);
   1621         MakeNewInstruction = true;
   1622         break;
   1623       }
   1624 
   1625     // Look for the next batch of filters.
   1626     i = j + 1;
   1627   }
   1628 
   1629   // If typeinfos matched if and only if equal, then the elements of a filter L
   1630   // that occurs later than a filter F could be replaced by the intersection of
   1631   // the elements of F and L.  In reality two typeinfos can match without being
   1632   // equal (for example if one represents a C++ class, and the other some class
   1633   // derived from it) so it would be wrong to perform this transform in general.
   1634   // However the transform is correct and useful if F is a subset of L.  In that
   1635   // case L can be replaced by F, and thus removed altogether since repeating a
   1636   // filter is pointless.  So here we look at all pairs of filters F and L where
   1637   // L follows F in the list of clauses, and remove L if every element of F is
   1638   // an element of L.  This can occur when inlining C++ functions with exception
   1639   // specifications.
   1640   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
   1641     // Examine each filter in turn.
   1642     Value *Filter = NewClauses[i];
   1643     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
   1644     if (!FTy)
   1645       // Not a filter - skip it.
   1646       continue;
   1647     unsigned FElts = FTy->getNumElements();
   1648     // Examine each filter following this one.  Doing this backwards means that
   1649     // we don't have to worry about filters disappearing under us when removed.
   1650     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
   1651       Value *LFilter = NewClauses[j];
   1652       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
   1653       if (!LTy)
   1654         // Not a filter - skip it.
   1655         continue;
   1656       // If Filter is a subset of LFilter, i.e. every element of Filter is also
   1657       // an element of LFilter, then discard LFilter.
   1658       SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
   1659       // If Filter is empty then it is a subset of LFilter.
   1660       if (!FElts) {
   1661         // Discard LFilter.
   1662         NewClauses.erase(J);
   1663         MakeNewInstruction = true;
   1664         // Move on to the next filter.
   1665         continue;
   1666       }
   1667       unsigned LElts = LTy->getNumElements();
   1668       // If Filter is longer than LFilter then it cannot be a subset of it.
   1669       if (FElts > LElts)
   1670         // Move on to the next filter.
   1671         continue;
   1672       // At this point we know that LFilter has at least one element.
   1673       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
   1674         // Filter is a subset of LFilter iff Filter contains only zeros (as we
   1675         // already know that Filter is not longer than LFilter).
   1676         if (isa<ConstantAggregateZero>(Filter)) {
   1677           assert(FElts <= LElts && "Should have handled this case earlier!");
   1678           // Discard LFilter.
   1679           NewClauses.erase(J);
   1680           MakeNewInstruction = true;
   1681         }
   1682         // Move on to the next filter.
   1683         continue;
   1684       }
   1685       ConstantArray *LArray = cast<ConstantArray>(LFilter);
   1686       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
   1687         // Since Filter is non-empty and contains only zeros, it is a subset of
   1688         // LFilter iff LFilter contains a zero.
   1689         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
   1690         for (unsigned l = 0; l != LElts; ++l)
   1691           if (LArray->getOperand(l)->isNullValue()) {
   1692             // LFilter contains a zero - discard it.
   1693             NewClauses.erase(J);
   1694             MakeNewInstruction = true;
   1695             break;
   1696           }
   1697         // Move on to the next filter.
   1698         continue;
   1699       }
   1700       // At this point we know that both filters are ConstantArrays.  Loop over
   1701       // operands to see whether every element of Filter is also an element of
   1702       // LFilter.  Since filters tend to be short this is probably faster than
   1703       // using a method that scales nicely.
   1704       ConstantArray *FArray = cast<ConstantArray>(Filter);
   1705       bool AllFound = true;
   1706       for (unsigned f = 0; f != FElts; ++f) {
   1707         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
   1708         AllFound = false;
   1709         for (unsigned l = 0; l != LElts; ++l) {
   1710           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
   1711           if (LTypeInfo == FTypeInfo) {
   1712             AllFound = true;
   1713             break;
   1714           }
   1715         }
   1716         if (!AllFound)
   1717           break;
   1718       }
   1719       if (AllFound) {
   1720         // Discard LFilter.
   1721         NewClauses.erase(J);
   1722         MakeNewInstruction = true;
   1723       }
   1724       // Move on to the next filter.
   1725     }
   1726   }
   1727 
   1728   // If we changed any of the clauses, replace the old landingpad instruction
   1729   // with a new one.
   1730   if (MakeNewInstruction) {
   1731     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
   1732                                                  LI.getPersonalityFn(),
   1733                                                  NewClauses.size());
   1734     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
   1735       NLI->addClause(NewClauses[i]);
   1736     // A landing pad with no clauses must have the cleanup flag set.  It is
   1737     // theoretically possible, though highly unlikely, that we eliminated all
   1738     // clauses.  If so, force the cleanup flag to true.
   1739     if (NewClauses.empty())
   1740       CleanupFlag = true;
   1741     NLI->setCleanup(CleanupFlag);
   1742     return NLI;
   1743   }
   1744 
   1745   // Even if none of the clauses changed, we may nonetheless have understood
   1746   // that the cleanup flag is pointless.  Clear it if so.
   1747   if (LI.isCleanup() != CleanupFlag) {
   1748     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
   1749     LI.setCleanup(CleanupFlag);
   1750     return &LI;
   1751   }
   1752 
   1753   return 0;
   1754 }
   1755 
   1756 
   1757 
   1758 
   1759 /// TryToSinkInstruction - Try to move the specified instruction from its
   1760 /// current block into the beginning of DestBlock, which can only happen if it's
   1761 /// safe to move the instruction past all of the instructions between it and the
   1762 /// end of its block.
   1763 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
   1764   assert(I->hasOneUse() && "Invariants didn't hold!");
   1765 
   1766   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1767   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
   1768       isa<TerminatorInst>(I))
   1769     return false;
   1770 
   1771   // Do not sink alloca instructions out of the entry block.
   1772   if (isa<AllocaInst>(I) && I->getParent() ==
   1773         &DestBlock->getParent()->getEntryBlock())
   1774     return false;
   1775 
   1776   // We can only sink load instructions if there is nothing between the load and
   1777   // the end of block that could change the value.
   1778   if (I->mayReadFromMemory()) {
   1779     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
   1780          Scan != E; ++Scan)
   1781       if (Scan->mayWriteToMemory())
   1782         return false;
   1783   }
   1784 
   1785   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
   1786   I->moveBefore(InsertPos);
   1787   ++NumSunkInst;
   1788   return true;
   1789 }
   1790 
   1791 
   1792 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
   1793 /// all reachable code to the worklist.
   1794 ///
   1795 /// This has a couple of tricks to make the code faster and more powerful.  In
   1796 /// particular, we constant fold and DCE instructions as we go, to avoid adding
   1797 /// them to the worklist (this significantly speeds up instcombine on code where
   1798 /// many instructions are dead or constant).  Additionally, if we find a branch
   1799 /// whose condition is a known constant, we only visit the reachable successors.
   1800 ///
   1801 static bool AddReachableCodeToWorklist(BasicBlock *BB,
   1802                                        SmallPtrSet<BasicBlock*, 64> &Visited,
   1803                                        InstCombiner &IC,
   1804                                        const TargetData *TD,
   1805                                        const TargetLibraryInfo *TLI) {
   1806   bool MadeIRChange = false;
   1807   SmallVector<BasicBlock*, 256> Worklist;
   1808   Worklist.push_back(BB);
   1809 
   1810   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
   1811   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
   1812 
   1813   do {
   1814     BB = Worklist.pop_back_val();
   1815 
   1816     // We have now visited this block!  If we've already been here, ignore it.
   1817     if (!Visited.insert(BB)) continue;
   1818 
   1819     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
   1820       Instruction *Inst = BBI++;
   1821 
   1822       // DCE instruction if trivially dead.
   1823       if (isInstructionTriviallyDead(Inst)) {
   1824         ++NumDeadInst;
   1825         DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
   1826         Inst->eraseFromParent();
   1827         continue;
   1828       }
   1829 
   1830       // ConstantProp instruction if trivially constant.
   1831       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
   1832         if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
   1833           DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
   1834                        << *Inst << '\n');
   1835           Inst->replaceAllUsesWith(C);
   1836           ++NumConstProp;
   1837           Inst->eraseFromParent();
   1838           continue;
   1839         }
   1840 
   1841       if (TD) {
   1842         // See if we can constant fold its operands.
   1843         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
   1844              i != e; ++i) {
   1845           ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
   1846           if (CE == 0) continue;
   1847 
   1848           Constant*& FoldRes = FoldedConstants[CE];
   1849           if (!FoldRes)
   1850             FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
   1851           if (!FoldRes)
   1852             FoldRes = CE;
   1853 
   1854           if (FoldRes != CE) {
   1855             *i = FoldRes;
   1856             MadeIRChange = true;
   1857           }
   1858         }
   1859       }
   1860 
   1861       InstrsForInstCombineWorklist.push_back(Inst);
   1862     }
   1863 
   1864     // Recursively visit successors.  If this is a branch or switch on a
   1865     // constant, only visit the reachable successor.
   1866     TerminatorInst *TI = BB->getTerminator();
   1867     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1868       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
   1869         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
   1870         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
   1871         Worklist.push_back(ReachableBB);
   1872         continue;
   1873       }
   1874     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1875       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
   1876         // See if this is an explicit destination.
   1877         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   1878              i != e; ++i)
   1879           if (i.getCaseValue() == Cond) {
   1880             BasicBlock *ReachableBB = i.getCaseSuccessor();
   1881             Worklist.push_back(ReachableBB);
   1882             continue;
   1883           }
   1884 
   1885         // Otherwise it is the default destination.
   1886         Worklist.push_back(SI->getDefaultDest());
   1887         continue;
   1888       }
   1889     }
   1890 
   1891     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
   1892       Worklist.push_back(TI->getSuccessor(i));
   1893   } while (!Worklist.empty());
   1894 
   1895   // Once we've found all of the instructions to add to instcombine's worklist,
   1896   // add them in reverse order.  This way instcombine will visit from the top
   1897   // of the function down.  This jives well with the way that it adds all uses
   1898   // of instructions to the worklist after doing a transformation, thus avoiding
   1899   // some N^2 behavior in pathological cases.
   1900   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
   1901                               InstrsForInstCombineWorklist.size());
   1902 
   1903   return MadeIRChange;
   1904 }
   1905 
   1906 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
   1907   MadeIRChange = false;
   1908 
   1909   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
   1910                << F.getName() << "\n");
   1911 
   1912   {
   1913     // Do a depth-first traversal of the function, populate the worklist with
   1914     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
   1915     // track of which blocks we visit.
   1916     SmallPtrSet<BasicBlock*, 64> Visited;
   1917     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
   1918                                                TLI);
   1919 
   1920     // Do a quick scan over the function.  If we find any blocks that are
   1921     // unreachable, remove any instructions inside of them.  This prevents
   1922     // the instcombine code from having to deal with some bad special cases.
   1923     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1924       if (Visited.count(BB)) continue;
   1925 
   1926       // Delete the instructions backwards, as it has a reduced likelihood of
   1927       // having to update as many def-use and use-def chains.
   1928       Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1929       while (EndInst != BB->begin()) {
   1930         // Delete the next to last instruction.
   1931         BasicBlock::iterator I = EndInst;
   1932         Instruction *Inst = --I;
   1933         if (!Inst->use_empty())
   1934           Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1935         if (isa<LandingPadInst>(Inst)) {
   1936           EndInst = Inst;
   1937           continue;
   1938         }
   1939         if (!isa<DbgInfoIntrinsic>(Inst)) {
   1940           ++NumDeadInst;
   1941           MadeIRChange = true;
   1942         }
   1943         Inst->eraseFromParent();
   1944       }
   1945     }
   1946   }
   1947 
   1948   while (!Worklist.isEmpty()) {
   1949     Instruction *I = Worklist.RemoveOne();
   1950     if (I == 0) continue;  // skip null values.
   1951 
   1952     // Check to see if we can DCE the instruction.
   1953     if (isInstructionTriviallyDead(I)) {
   1954       DEBUG(errs() << "IC: DCE: " << *I << '\n');
   1955       EraseInstFromFunction(*I);
   1956       ++NumDeadInst;
   1957       MadeIRChange = true;
   1958       continue;
   1959     }
   1960 
   1961     // Instruction isn't dead, see if we can constant propagate it.
   1962     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
   1963       if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
   1964         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
   1965 
   1966         // Add operands to the worklist.
   1967         ReplaceInstUsesWith(*I, C);
   1968         ++NumConstProp;
   1969         EraseInstFromFunction(*I);
   1970         MadeIRChange = true;
   1971         continue;
   1972       }
   1973 
   1974     // See if we can trivially sink this instruction to a successor basic block.
   1975     if (I->hasOneUse()) {
   1976       BasicBlock *BB = I->getParent();
   1977       Instruction *UserInst = cast<Instruction>(I->use_back());
   1978       BasicBlock *UserParent;
   1979 
   1980       // Get the block the use occurs in.
   1981       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
   1982         UserParent = PN->getIncomingBlock(I->use_begin().getUse());
   1983       else
   1984         UserParent = UserInst->getParent();
   1985 
   1986       if (UserParent != BB) {
   1987         bool UserIsSuccessor = false;
   1988         // See if the user is one of our successors.
   1989         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
   1990           if (*SI == UserParent) {
   1991             UserIsSuccessor = true;
   1992             break;
   1993           }
   1994 
   1995         // If the user is one of our immediate successors, and if that successor
   1996         // only has us as a predecessors (we'd have to split the critical edge
   1997         // otherwise), we can keep going.
   1998         if (UserIsSuccessor && UserParent->getSinglePredecessor())
   1999           // Okay, the CFG is simple enough, try to sink this instruction.
   2000           MadeIRChange |= TryToSinkInstruction(I, UserParent);
   2001       }
   2002     }
   2003 
   2004     // Now that we have an instruction, try combining it to simplify it.
   2005     Builder->SetInsertPoint(I->getParent(), I);
   2006     Builder->SetCurrentDebugLocation(I->getDebugLoc());
   2007 
   2008 #ifndef NDEBUG
   2009     std::string OrigI;
   2010 #endif
   2011     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
   2012     DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
   2013 
   2014     if (Instruction *Result = visit(*I)) {
   2015       ++NumCombined;
   2016       // Should we replace the old instruction with a new one?
   2017       if (Result != I) {
   2018         DEBUG(errs() << "IC: Old = " << *I << '\n'
   2019                      << "    New = " << *Result << '\n');
   2020 
   2021         if (!I->getDebugLoc().isUnknown())
   2022           Result->setDebugLoc(I->getDebugLoc());
   2023         // Everything uses the new instruction now.
   2024         I->replaceAllUsesWith(Result);
   2025 
   2026         // Move the name to the new instruction first.
   2027         Result->takeName(I);
   2028 
   2029         // Push the new instruction and any users onto the worklist.
   2030         Worklist.Add(Result);
   2031         Worklist.AddUsersToWorkList(*Result);
   2032 
   2033         // Insert the new instruction into the basic block...
   2034         BasicBlock *InstParent = I->getParent();
   2035         BasicBlock::iterator InsertPos = I;
   2036 
   2037         // If we replace a PHI with something that isn't a PHI, fix up the
   2038         // insertion point.
   2039         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
   2040           InsertPos = InstParent->getFirstInsertionPt();
   2041 
   2042         InstParent->getInstList().insert(InsertPos, Result);
   2043 
   2044         EraseInstFromFunction(*I);
   2045       } else {
   2046 #ifndef NDEBUG
   2047         DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
   2048                      << "    New = " << *I << '\n');
   2049 #endif
   2050 
   2051         // If the instruction was modified, it's possible that it is now dead.
   2052         // if so, remove it.
   2053         if (isInstructionTriviallyDead(I)) {
   2054           EraseInstFromFunction(*I);
   2055         } else {
   2056           Worklist.Add(I);
   2057           Worklist.AddUsersToWorkList(*I);
   2058         }
   2059       }
   2060       MadeIRChange = true;
   2061     }
   2062   }
   2063 
   2064   Worklist.Zap();
   2065   return MadeIRChange;
   2066 }
   2067 
   2068 
   2069 bool InstCombiner::runOnFunction(Function &F) {
   2070   TD = getAnalysisIfAvailable<TargetData>();
   2071   TLI = &getAnalysis<TargetLibraryInfo>();
   2072 
   2073   /// Builder - This is an IRBuilder that automatically inserts new
   2074   /// instructions into the worklist when they are created.
   2075   IRBuilder<true, TargetFolder, InstCombineIRInserter>
   2076     TheBuilder(F.getContext(), TargetFolder(TD),
   2077                InstCombineIRInserter(Worklist));
   2078   Builder = &TheBuilder;
   2079 
   2080   bool EverMadeChange = false;
   2081 
   2082   // Lower dbg.declare intrinsics otherwise their value may be clobbered
   2083   // by instcombiner.
   2084   EverMadeChange = LowerDbgDeclare(F);
   2085 
   2086   // Iterate while there is work to do.
   2087   unsigned Iteration = 0;
   2088   while (DoOneIteration(F, Iteration++))
   2089     EverMadeChange = true;
   2090 
   2091   Builder = 0;
   2092   return EverMadeChange;
   2093 }
   2094 
   2095 FunctionPass *llvm::createInstructionCombiningPass() {
   2096   return new InstCombiner();
   2097 }
   2098