Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/LLVMContext.h"
     24 #include "llvm/Metadata.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     27 #include "llvm/Transforms/Utils/Local.h"
     28 #include "llvm/Transforms/Utils/ValueMapper.h"
     29 #include "llvm/Analysis/ConstantFolding.h"
     30 #include "llvm/Analysis/InstructionSimplify.h"
     31 #include "llvm/Analysis/DebugInfo.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include <map>
     34 using namespace llvm;
     35 
     36 // CloneBasicBlock - See comments in Cloning.h
     37 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     38                                   ValueToValueMapTy &VMap,
     39                                   const Twine &NameSuffix, Function *F,
     40                                   ClonedCodeInfo *CodeInfo) {
     41   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     42   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     43 
     44   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     45 
     46   // Loop over all instructions, and copy them over.
     47   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     48        II != IE; ++II) {
     49     Instruction *NewInst = II->clone();
     50     if (II->hasName())
     51       NewInst->setName(II->getName()+NameSuffix);
     52     NewBB->getInstList().push_back(NewInst);
     53     VMap[II] = NewInst;                // Add instruction map to value.
     54 
     55     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     56     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     57       if (isa<ConstantInt>(AI->getArraySize()))
     58         hasStaticAllocas = true;
     59       else
     60         hasDynamicAllocas = true;
     61     }
     62   }
     63 
     64   if (CodeInfo) {
     65     CodeInfo->ContainsCalls          |= hasCalls;
     66     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     67     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     68                                         BB != &BB->getParent()->getEntryBlock();
     69   }
     70   return NewBB;
     71 }
     72 
     73 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     74 // VMap values.
     75 //
     76 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     77                              ValueToValueMapTy &VMap,
     78                              bool ModuleLevelChanges,
     79                              SmallVectorImpl<ReturnInst*> &Returns,
     80                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
     81                              ValueMapTypeRemapper *TypeMapper) {
     82   assert(NameSuffix && "NameSuffix cannot be null!");
     83 
     84 #ifndef NDEBUG
     85   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     86        E = OldFunc->arg_end(); I != E; ++I)
     87     assert(VMap.count(I) && "No mapping from source argument specified!");
     88 #endif
     89 
     90   // Clone any attributes.
     91   if (NewFunc->arg_size() == OldFunc->arg_size())
     92     NewFunc->copyAttributesFrom(OldFunc);
     93   else {
     94     //Some arguments were deleted with the VMap. Copy arguments one by one
     95     for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     96            E = OldFunc->arg_end(); I != E; ++I)
     97       if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
     98         Anew->addAttr( OldFunc->getAttributes()
     99                        .getParamAttributes(I->getArgNo() + 1));
    100     NewFunc->setAttributes(NewFunc->getAttributes()
    101                            .addAttr(0, OldFunc->getAttributes()
    102                                      .getRetAttributes()));
    103     NewFunc->setAttributes(NewFunc->getAttributes()
    104                            .addAttr(~0, OldFunc->getAttributes()
    105                                      .getFnAttributes()));
    106 
    107   }
    108 
    109   // Loop over all of the basic blocks in the function, cloning them as
    110   // appropriate.  Note that we save BE this way in order to handle cloning of
    111   // recursive functions into themselves.
    112   //
    113   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    114        BI != BE; ++BI) {
    115     const BasicBlock &BB = *BI;
    116 
    117     // Create a new basic block and copy instructions into it!
    118     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    119 
    120     // Add basic block mapping.
    121     VMap[&BB] = CBB;
    122 
    123     // It is only legal to clone a function if a block address within that
    124     // function is never referenced outside of the function.  Given that, we
    125     // want to map block addresses from the old function to block addresses in
    126     // the clone. (This is different from the generic ValueMapper
    127     // implementation, which generates an invalid blockaddress when
    128     // cloning a function.)
    129     if (BB.hasAddressTaken()) {
    130       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    131                                               const_cast<BasicBlock*>(&BB));
    132       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
    133     }
    134 
    135     // Note return instructions for the caller.
    136     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    137       Returns.push_back(RI);
    138   }
    139 
    140   // Loop over all of the instructions in the function, fixing up operand
    141   // references as we go.  This uses VMap to do all the hard work.
    142   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
    143          BE = NewFunc->end(); BB != BE; ++BB)
    144     // Loop over all instructions, fixing each one as we find it...
    145     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
    146       RemapInstruction(II, VMap,
    147                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
    148                        TypeMapper);
    149 }
    150 
    151 /// CloneFunction - Return a copy of the specified function, but without
    152 /// embedding the function into another module.  Also, any references specified
    153 /// in the VMap are changed to refer to their mapped value instead of the
    154 /// original one.  If any of the arguments to the function are in the VMap,
    155 /// the arguments are deleted from the resultant function.  The VMap is
    156 /// updated to include mappings from all of the instructions and basicblocks in
    157 /// the function from their old to new values.
    158 ///
    159 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    160                               bool ModuleLevelChanges,
    161                               ClonedCodeInfo *CodeInfo) {
    162   std::vector<Type*> ArgTypes;
    163 
    164   // The user might be deleting arguments to the function by specifying them in
    165   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    166   //
    167   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    168        I != E; ++I)
    169     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
    170       ArgTypes.push_back(I->getType());
    171 
    172   // Create a new function type...
    173   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    174                                     ArgTypes, F->getFunctionType()->isVarArg());
    175 
    176   // Create the new function...
    177   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    178 
    179   // Loop over the arguments, copying the names of the mapped arguments over...
    180   Function::arg_iterator DestI = NewF->arg_begin();
    181   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    182        I != E; ++I)
    183     if (VMap.count(I) == 0) {   // Is this argument preserved?
    184       DestI->setName(I->getName()); // Copy the name over...
    185       VMap[I] = DestI++;        // Add mapping to VMap
    186     }
    187 
    188   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    189   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    190   return NewF;
    191 }
    192 
    193 
    194 
    195 namespace {
    196   /// PruningFunctionCloner - This class is a private class used to implement
    197   /// the CloneAndPruneFunctionInto method.
    198   struct PruningFunctionCloner {
    199     Function *NewFunc;
    200     const Function *OldFunc;
    201     ValueToValueMapTy &VMap;
    202     bool ModuleLevelChanges;
    203     const char *NameSuffix;
    204     ClonedCodeInfo *CodeInfo;
    205     const TargetData *TD;
    206   public:
    207     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    208                           ValueToValueMapTy &valueMap,
    209                           bool moduleLevelChanges,
    210                           const char *nameSuffix,
    211                           ClonedCodeInfo *codeInfo,
    212                           const TargetData *td)
    213     : NewFunc(newFunc), OldFunc(oldFunc),
    214       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
    215       NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
    216     }
    217 
    218     /// CloneBlock - The specified block is found to be reachable, clone it and
    219     /// anything that it can reach.
    220     void CloneBlock(const BasicBlock *BB,
    221                     std::vector<const BasicBlock*> &ToClone);
    222   };
    223 }
    224 
    225 /// CloneBlock - The specified block is found to be reachable, clone it and
    226 /// anything that it can reach.
    227 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    228                                        std::vector<const BasicBlock*> &ToClone){
    229   WeakVH &BBEntry = VMap[BB];
    230 
    231   // Have we already cloned this block?
    232   if (BBEntry) return;
    233 
    234   // Nope, clone it now.
    235   BasicBlock *NewBB;
    236   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    237   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    238 
    239   // It is only legal to clone a function if a block address within that
    240   // function is never referenced outside of the function.  Given that, we
    241   // want to map block addresses from the old function to block addresses in
    242   // the clone. (This is different from the generic ValueMapper
    243   // implementation, which generates an invalid blockaddress when
    244   // cloning a function.)
    245   //
    246   // Note that we don't need to fix the mapping for unreachable blocks;
    247   // the default mapping there is safe.
    248   if (BB->hasAddressTaken()) {
    249     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
    250                                             const_cast<BasicBlock*>(BB));
    251     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
    252   }
    253 
    254 
    255   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    256 
    257   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    258   // loop doesn't include the terminator.
    259   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
    260        II != IE; ++II) {
    261     Instruction *NewInst = II->clone();
    262 
    263     // Eagerly remap operands to the newly cloned instruction, except for PHI
    264     // nodes for which we defer processing until we update the CFG.
    265     if (!isa<PHINode>(NewInst)) {
    266       RemapInstruction(NewInst, VMap,
    267                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    268 
    269       // If we can simplify this instruction to some other value, simply add
    270       // a mapping to that value rather than inserting a new instruction into
    271       // the basic block.
    272       if (Value *V = SimplifyInstruction(NewInst, TD)) {
    273         // On the off-chance that this simplifies to an instruction in the old
    274         // function, map it back into the new function.
    275         if (Value *MappedV = VMap.lookup(V))
    276           V = MappedV;
    277 
    278         VMap[II] = V;
    279         delete NewInst;
    280         continue;
    281       }
    282     }
    283 
    284     if (II->hasName())
    285       NewInst->setName(II->getName()+NameSuffix);
    286     VMap[II] = NewInst;                // Add instruction map to value.
    287     NewBB->getInstList().push_back(NewInst);
    288     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    289     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    290       if (isa<ConstantInt>(AI->getArraySize()))
    291         hasStaticAllocas = true;
    292       else
    293         hasDynamicAllocas = true;
    294     }
    295   }
    296 
    297   // Finally, clone over the terminator.
    298   const TerminatorInst *OldTI = BB->getTerminator();
    299   bool TerminatorDone = false;
    300   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    301     if (BI->isConditional()) {
    302       // If the condition was a known constant in the callee...
    303       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    304       // Or is a known constant in the caller...
    305       if (Cond == 0) {
    306         Value *V = VMap[BI->getCondition()];
    307         Cond = dyn_cast_or_null<ConstantInt>(V);
    308       }
    309 
    310       // Constant fold to uncond branch!
    311       if (Cond) {
    312         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    313         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    314         ToClone.push_back(Dest);
    315         TerminatorDone = true;
    316       }
    317     }
    318   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    319     // If switching on a value known constant in the caller.
    320     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    321     if (Cond == 0) { // Or known constant after constant prop in the callee...
    322       Value *V = VMap[SI->getCondition()];
    323       Cond = dyn_cast_or_null<ConstantInt>(V);
    324     }
    325     if (Cond) {     // Constant fold to uncond branch!
    326       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
    327       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
    328       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    329       ToClone.push_back(Dest);
    330       TerminatorDone = true;
    331     }
    332   }
    333 
    334   if (!TerminatorDone) {
    335     Instruction *NewInst = OldTI->clone();
    336     if (OldTI->hasName())
    337       NewInst->setName(OldTI->getName()+NameSuffix);
    338     NewBB->getInstList().push_back(NewInst);
    339     VMap[OldTI] = NewInst;             // Add instruction map to value.
    340 
    341     // Recursively clone any reachable successor blocks.
    342     const TerminatorInst *TI = BB->getTerminator();
    343     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    344       ToClone.push_back(TI->getSuccessor(i));
    345   }
    346 
    347   if (CodeInfo) {
    348     CodeInfo->ContainsCalls          |= hasCalls;
    349     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    350     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    351       BB != &BB->getParent()->front();
    352   }
    353 }
    354 
    355 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    356 /// except that it does some simple constant prop and DCE on the fly.  The
    357 /// effect of this is to copy significantly less code in cases where (for
    358 /// example) a function call with constant arguments is inlined, and those
    359 /// constant arguments cause a significant amount of code in the callee to be
    360 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    361 /// used for things like CloneFunction or CloneModule.
    362 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    363                                      ValueToValueMapTy &VMap,
    364                                      bool ModuleLevelChanges,
    365                                      SmallVectorImpl<ReturnInst*> &Returns,
    366                                      const char *NameSuffix,
    367                                      ClonedCodeInfo *CodeInfo,
    368                                      const TargetData *TD,
    369                                      Instruction *TheCall) {
    370   assert(NameSuffix && "NameSuffix cannot be null!");
    371 
    372 #ifndef NDEBUG
    373   for (Function::const_arg_iterator II = OldFunc->arg_begin(),
    374        E = OldFunc->arg_end(); II != E; ++II)
    375     assert(VMap.count(II) && "No mapping from source argument specified!");
    376 #endif
    377 
    378   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    379                             NameSuffix, CodeInfo, TD);
    380 
    381   // Clone the entry block, and anything recursively reachable from it.
    382   std::vector<const BasicBlock*> CloneWorklist;
    383   CloneWorklist.push_back(&OldFunc->getEntryBlock());
    384   while (!CloneWorklist.empty()) {
    385     const BasicBlock *BB = CloneWorklist.back();
    386     CloneWorklist.pop_back();
    387     PFC.CloneBlock(BB, CloneWorklist);
    388   }
    389 
    390   // Loop over all of the basic blocks in the old function.  If the block was
    391   // reachable, we have cloned it and the old block is now in the value map:
    392   // insert it into the new function in the right order.  If not, ignore it.
    393   //
    394   // Defer PHI resolution until rest of function is resolved.
    395   SmallVector<const PHINode*, 16> PHIToResolve;
    396   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    397        BI != BE; ++BI) {
    398     Value *V = VMap[BI];
    399     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    400     if (NewBB == 0) continue;  // Dead block.
    401 
    402     // Add the new block to the new function.
    403     NewFunc->getBasicBlockList().push_back(NewBB);
    404 
    405     // Handle PHI nodes specially, as we have to remove references to dead
    406     // blocks.
    407     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
    408       if (const PHINode *PN = dyn_cast<PHINode>(I))
    409         PHIToResolve.push_back(PN);
    410       else
    411         break;
    412 
    413     // Finally, remap the terminator instructions, as those can't be remapped
    414     // until all BBs are mapped.
    415     RemapInstruction(NewBB->getTerminator(), VMap,
    416                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    417   }
    418 
    419   // Defer PHI resolution until rest of function is resolved, PHI resolution
    420   // requires the CFG to be up-to-date.
    421   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    422     const PHINode *OPN = PHIToResolve[phino];
    423     unsigned NumPreds = OPN->getNumIncomingValues();
    424     const BasicBlock *OldBB = OPN->getParent();
    425     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    426 
    427     // Map operands for blocks that are live and remove operands for blocks
    428     // that are dead.
    429     for (; phino != PHIToResolve.size() &&
    430          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    431       OPN = PHIToResolve[phino];
    432       PHINode *PN = cast<PHINode>(VMap[OPN]);
    433       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    434         Value *V = VMap[PN->getIncomingBlock(pred)];
    435         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    436           Value *InVal = MapValue(PN->getIncomingValue(pred),
    437                                   VMap,
    438                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    439           assert(InVal && "Unknown input value?");
    440           PN->setIncomingValue(pred, InVal);
    441           PN->setIncomingBlock(pred, MappedBlock);
    442         } else {
    443           PN->removeIncomingValue(pred, false);
    444           --pred, --e;  // Revisit the next entry.
    445         }
    446       }
    447     }
    448 
    449     // The loop above has removed PHI entries for those blocks that are dead
    450     // and has updated others.  However, if a block is live (i.e. copied over)
    451     // but its terminator has been changed to not go to this block, then our
    452     // phi nodes will have invalid entries.  Update the PHI nodes in this
    453     // case.
    454     PHINode *PN = cast<PHINode>(NewBB->begin());
    455     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    456     if (NumPreds != PN->getNumIncomingValues()) {
    457       assert(NumPreds < PN->getNumIncomingValues());
    458       // Count how many times each predecessor comes to this block.
    459       std::map<BasicBlock*, unsigned> PredCount;
    460       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    461            PI != E; ++PI)
    462         --PredCount[*PI];
    463 
    464       // Figure out how many entries to remove from each PHI.
    465       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    466         ++PredCount[PN->getIncomingBlock(i)];
    467 
    468       // At this point, the excess predecessor entries are positive in the
    469       // map.  Loop over all of the PHIs and remove excess predecessor
    470       // entries.
    471       BasicBlock::iterator I = NewBB->begin();
    472       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    473         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    474              E = PredCount.end(); PCI != E; ++PCI) {
    475           BasicBlock *Pred     = PCI->first;
    476           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    477             PN->removeIncomingValue(Pred, false);
    478         }
    479       }
    480     }
    481 
    482     // If the loops above have made these phi nodes have 0 or 1 operand,
    483     // replace them with undef or the input value.  We must do this for
    484     // correctness, because 0-operand phis are not valid.
    485     PN = cast<PHINode>(NewBB->begin());
    486     if (PN->getNumIncomingValues() == 0) {
    487       BasicBlock::iterator I = NewBB->begin();
    488       BasicBlock::const_iterator OldI = OldBB->begin();
    489       while ((PN = dyn_cast<PHINode>(I++))) {
    490         Value *NV = UndefValue::get(PN->getType());
    491         PN->replaceAllUsesWith(NV);
    492         assert(VMap[OldI] == PN && "VMap mismatch");
    493         VMap[OldI] = NV;
    494         PN->eraseFromParent();
    495         ++OldI;
    496       }
    497     }
    498   }
    499 
    500   // Make a second pass over the PHINodes now that all of them have been
    501   // remapped into the new function, simplifying the PHINode and performing any
    502   // recursive simplifications exposed. This will transparently update the
    503   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
    504   // two PHINodes, the iteration over the old PHIs remains valid, and the
    505   // mapping will just map us to the new node (which may not even be a PHI
    506   // node).
    507   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
    508     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
    509       recursivelySimplifyInstruction(PN, TD);
    510 
    511   // Now that the inlined function body has been fully constructed, go through
    512   // and zap unconditional fall-through branches.  This happen all the time when
    513   // specializing code: code specialization turns conditional branches into
    514   // uncond branches, and this code folds them.
    515   Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
    516   Function::iterator I = Begin;
    517   while (I != NewFunc->end()) {
    518     // Check if this block has become dead during inlining or other
    519     // simplifications. Note that the first block will appear dead, as it has
    520     // not yet been wired up properly.
    521     if (I != Begin && (pred_begin(I) == pred_end(I) ||
    522                        I->getSinglePredecessor() == I)) {
    523       BasicBlock *DeadBB = I++;
    524       DeleteDeadBlock(DeadBB);
    525       continue;
    526     }
    527 
    528     // We need to simplify conditional branches and switches with a constant
    529     // operand. We try to prune these out when cloning, but if the
    530     // simplification required looking through PHI nodes, those are only
    531     // available after forming the full basic block. That may leave some here,
    532     // and we still want to prune the dead code as early as possible.
    533     ConstantFoldTerminator(I);
    534 
    535     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    536     if (!BI || BI->isConditional()) { ++I; continue; }
    537 
    538     BasicBlock *Dest = BI->getSuccessor(0);
    539     if (!Dest->getSinglePredecessor()) {
    540       ++I; continue;
    541     }
    542 
    543     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
    544     // above should have zapped all of them..
    545     assert(!isa<PHINode>(Dest->begin()));
    546 
    547     // We know all single-entry PHI nodes in the inlined function have been
    548     // removed, so we just need to splice the blocks.
    549     BI->eraseFromParent();
    550 
    551     // Make all PHI nodes that referred to Dest now refer to I as their source.
    552     Dest->replaceAllUsesWith(I);
    553 
    554     // Move all the instructions in the succ to the pred.
    555     I->getInstList().splice(I->end(), Dest->getInstList());
    556 
    557     // Remove the dest block.
    558     Dest->eraseFromParent();
    559 
    560     // Do not increment I, iteratively merge all things this block branches to.
    561   }
    562 
    563   // Make a final pass over the basic blocks from theh old function to gather
    564   // any return instructions which survived folding. We have to do this here
    565   // because we can iteratively remove and merge returns above.
    566   for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
    567                           E = NewFunc->end();
    568        I != E; ++I)
    569     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
    570       Returns.push_back(RI);
    571 }
    572