Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                        Intel License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
     14 // Third party copyrights are property of their respective owners.
     15 //
     16 // Redistribution and use in source and binary forms, with or without modification,
     17 // are permitted provided that the following conditions are met:
     18 //
     19 //   * Redistribution's of source code must retain the above copyright notice,
     20 //     this list of conditions and the following disclaimer.
     21 //
     22 //   * Redistribution's in binary form must reproduce the above copyright notice,
     23 //     this list of conditions and the following disclaimer in the documentation
     24 //     and/or other materials provided with the distribution.
     25 //
     26 //   * The name of Intel Corporation may not be used to endorse or promote products
     27 //     derived from this software without specific prior written permission.
     28 //
     29 // This software is provided by the copyright holders and contributors "as is" and
     30 // any express or implied warranties, including, but not limited to, the implied
     31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     32 // In no event shall the Intel Corporation or contributors be liable for any direct,
     33 // indirect, incidental, special, exemplary, or consequential damages
     34 // (including, but not limited to, procurement of substitute goods or services;
     35 // loss of use, data, or profits; or business interruption) however caused
     36 // and on any theory of liability, whether in contract, strict liability,
     37 // or tort (including negligence or otherwise) arising in any way out of
     38 // the use of this software, even if advised of the possibility of such damage.
     39 //
     40 //M*/
     41 
     42 #include "_cv.h"
     43 
     44 void
     45 icvCrossCorr( const CvArr* _img, const CvArr* _templ, CvArr* _corr, CvPoint anchor )
     46 {
     47     const double block_scale = 4.5;
     48     const int min_block_size = 256;
     49     CvMat* dft_img[CV_MAX_THREADS] = {0};
     50     CvMat* dft_templ = 0;
     51     void* buf[CV_MAX_THREADS] = {0};
     52     int k, num_threads = 0;
     53 
     54     CV_FUNCNAME( "icvCrossCorr" );
     55 
     56     __BEGIN__;
     57 
     58     CvMat istub, *img = (CvMat*)_img;
     59     CvMat tstub, *templ = (CvMat*)_templ;
     60     CvMat cstub, *corr = (CvMat*)_corr;
     61     CvSize dftsize, blocksize;
     62     int depth, templ_depth, corr_depth, max_depth = CV_32F,
     63         cn, templ_cn, corr_cn, buf_size = 0,
     64         tile_count_x, tile_count_y, tile_count;
     65 
     66     CV_CALL( img = cvGetMat( img, &istub ));
     67     CV_CALL( templ = cvGetMat( templ, &tstub ));
     68     CV_CALL( corr = cvGetMat( corr, &cstub ));
     69 
     70     if( CV_MAT_DEPTH( img->type ) != CV_8U &&
     71         CV_MAT_DEPTH( img->type ) != CV_16U &&
     72         CV_MAT_DEPTH( img->type ) != CV_32F )
     73         CV_ERROR( CV_StsUnsupportedFormat,
     74         "The function supports only 8u, 16u and 32f data types" );
     75 
     76     if( !CV_ARE_DEPTHS_EQ( img, templ ) && CV_MAT_DEPTH( templ->type ) != CV_32F )
     77         CV_ERROR( CV_StsUnsupportedFormat,
     78         "Template (kernel) must be of the same depth as the input image, or be 32f" );
     79 
     80     if( !CV_ARE_DEPTHS_EQ( img, corr ) && CV_MAT_DEPTH( corr->type ) != CV_32F &&
     81         CV_MAT_DEPTH( corr->type ) != CV_64F )
     82         CV_ERROR( CV_StsUnsupportedFormat,
     83         "The output image must have the same depth as the input image, or be 32f/64f" );
     84 
     85     if( (!CV_ARE_CNS_EQ( img, corr ) || CV_MAT_CN(templ->type) > 1) &&
     86         (CV_MAT_CN( corr->type ) > 1 || !CV_ARE_CNS_EQ( img, templ)) )
     87         CV_ERROR( CV_StsUnsupportedFormat,
     88         "The output must have the same number of channels as the input (when the template has 1 channel), "
     89         "or the output must have 1 channel when the input and the template have the same number of channels" );
     90 
     91     depth = CV_MAT_DEPTH(img->type);
     92     cn = CV_MAT_CN(img->type);
     93     templ_depth = CV_MAT_DEPTH(templ->type);
     94     templ_cn = CV_MAT_CN(templ->type);
     95     corr_depth = CV_MAT_DEPTH(corr->type);
     96     corr_cn = CV_MAT_CN(corr->type);
     97     max_depth = MAX( max_depth, templ_depth );
     98     max_depth = MAX( max_depth, depth );
     99     max_depth = MAX( max_depth, corr_depth );
    100     if( depth > CV_8U )
    101         max_depth = CV_64F;
    102 
    103     if( img->cols < templ->cols || img->rows < templ->rows )
    104         CV_ERROR( CV_StsUnmatchedSizes,
    105         "Such a combination of image and template/filter size is not supported" );
    106 
    107     if( corr->rows > img->rows + templ->rows - 1 ||
    108         corr->cols > img->cols + templ->cols - 1 )
    109         CV_ERROR( CV_StsUnmatchedSizes,
    110         "output image should not be greater than (W + w - 1)x(H + h - 1)" );
    111 
    112     blocksize.width = cvRound(templ->cols*block_scale);
    113     blocksize.width = MAX( blocksize.width, min_block_size - templ->cols + 1 );
    114     blocksize.width = MIN( blocksize.width, corr->cols );
    115     blocksize.height = cvRound(templ->rows*block_scale);
    116     blocksize.height = MAX( blocksize.height, min_block_size - templ->rows + 1 );
    117     blocksize.height = MIN( blocksize.height, corr->rows );
    118 
    119     dftsize.width = cvGetOptimalDFTSize(blocksize.width + templ->cols - 1);
    120     if( dftsize.width == 1 )
    121         dftsize.width = 2;
    122     dftsize.height = cvGetOptimalDFTSize(blocksize.height + templ->rows - 1);
    123     if( dftsize.width <= 0 || dftsize.height <= 0 )
    124         CV_ERROR( CV_StsOutOfRange, "the input arrays are too big" );
    125 
    126     // recompute block size
    127     blocksize.width = dftsize.width - templ->cols + 1;
    128     blocksize.width = MIN( blocksize.width, corr->cols );
    129     blocksize.height = dftsize.height - templ->rows + 1;
    130     blocksize.height = MIN( blocksize.height, corr->rows );
    131 
    132     CV_CALL( dft_templ = cvCreateMat( dftsize.height*templ_cn, dftsize.width, max_depth ));
    133 
    134     num_threads = cvGetNumThreads();
    135 
    136     for( k = 0; k < num_threads; k++ )
    137         CV_CALL( dft_img[k] = cvCreateMat( dftsize.height, dftsize.width, max_depth ));
    138 
    139     if( templ_cn > 1 && templ_depth != max_depth )
    140         buf_size = templ->cols*templ->rows*CV_ELEM_SIZE(templ_depth);
    141 
    142     if( cn > 1 && depth != max_depth )
    143         buf_size = MAX( buf_size, (blocksize.width + templ->cols - 1)*
    144             (blocksize.height + templ->rows - 1)*CV_ELEM_SIZE(depth));
    145 
    146     if( (corr_cn > 1 || cn > 1) && corr_depth != max_depth )
    147         buf_size = MAX( buf_size, blocksize.width*blocksize.height*CV_ELEM_SIZE(corr_depth));
    148 
    149     if( buf_size > 0 )
    150     {
    151         for( k = 0; k < num_threads; k++ )
    152             CV_CALL( buf[k] = cvAlloc(buf_size) );
    153     }
    154 
    155     // compute DFT of each template plane
    156     for( k = 0; k < templ_cn; k++ )
    157     {
    158         CvMat dstub, *src, *dst, temp;
    159         CvMat* planes[] = { 0, 0, 0, 0 };
    160         int yofs = k*dftsize.height;
    161 
    162         src = templ;
    163         dst = cvGetSubRect( dft_templ, &dstub, cvRect(0,yofs,templ->cols,templ->rows));
    164 
    165         if( templ_cn > 1 )
    166         {
    167             planes[k] = templ_depth == max_depth ? dst :
    168                 cvInitMatHeader( &temp, templ->rows, templ->cols, templ_depth, buf[0] );
    169             cvSplit( templ, planes[0], planes[1], planes[2], planes[3] );
    170             src = planes[k];
    171             planes[k] = 0;
    172         }
    173 
    174         if( dst != src )
    175             cvConvert( src, dst );
    176 
    177         if( dft_templ->cols > templ->cols )
    178         {
    179             cvGetSubRect( dft_templ, dst, cvRect(templ->cols, yofs,
    180                           dft_templ->cols - templ->cols, templ->rows) );
    181             cvZero( dst );
    182         }
    183         cvGetSubRect( dft_templ, dst, cvRect(0,yofs,dftsize.width,dftsize.height) );
    184         cvDFT( dst, dst, CV_DXT_FORWARD + CV_DXT_SCALE, templ->rows );
    185     }
    186 
    187     tile_count_x = (corr->cols + blocksize.width - 1)/blocksize.width;
    188     tile_count_y = (corr->rows + blocksize.height - 1)/blocksize.height;
    189     tile_count = tile_count_x*tile_count_y;
    190 
    191     {
    192 #ifdef _OPENMP
    193     #pragma omp parallel for num_threads(num_threads) schedule(dynamic)
    194 #endif
    195     // calculate correlation by blocks
    196     for( k = 0; k < tile_count; k++ )
    197     {
    198         int thread_idx = cvGetThreadNum();
    199         int x = (k%tile_count_x)*blocksize.width;
    200         int y = (k/tile_count_x)*blocksize.height;
    201         int i, yofs;
    202         CvMat sstub, dstub, *src, *dst, temp;
    203         CvMat* planes[] = { 0, 0, 0, 0 };
    204         CvMat* _dft_img = dft_img[thread_idx];
    205         void* _buf = buf[thread_idx];
    206         CvSize csz = { blocksize.width, blocksize.height }, isz;
    207         int x0 = x - anchor.x, y0 = y - anchor.y;
    208         int x1 = MAX( 0, x0 ), y1 = MAX( 0, y0 ), x2, y2;
    209         csz.width = MIN( csz.width, corr->cols - x );
    210         csz.height = MIN( csz.height, corr->rows - y );
    211         isz.width = csz.width + templ->cols - 1;
    212         isz.height = csz.height + templ->rows - 1;
    213         x2 = MIN( img->cols, x0 + isz.width );
    214         y2 = MIN( img->rows, y0 + isz.height );
    215 
    216         for( i = 0; i < cn; i++ )
    217         {
    218             CvMat dstub1, *dst1;
    219             yofs = i*dftsize.height;
    220 
    221             src = cvGetSubRect( img, &sstub, cvRect(x1,y1,x2-x1,y2-y1) );
    222             dst = cvGetSubRect( _dft_img, &dstub,
    223                 cvRect(0,0,isz.width,isz.height) );
    224             dst1 = dst;
    225 
    226             if( x2 - x1 < isz.width || y2 - y1 < isz.height )
    227                 dst1 = cvGetSubRect( _dft_img, &dstub1,
    228                     cvRect( x1 - x0, y1 - y0, x2 - x1, y2 - y1 ));
    229 
    230             if( cn > 1 )
    231             {
    232                 planes[i] = dst1;
    233                 if( depth != max_depth )
    234                     planes[i] = cvInitMatHeader( &temp, y2 - y1, x2 - x1, depth, _buf );
    235                 cvSplit( src, planes[0], planes[1], planes[2], planes[3] );
    236                 src = planes[i];
    237                 planes[i] = 0;
    238             }
    239 
    240             if( dst1 != src )
    241                 cvConvert( src, dst1 );
    242 
    243             if( dst != dst1 )
    244                 cvCopyMakeBorder( dst1, dst, cvPoint(x1 - x0, y1 - y0), IPL_BORDER_REPLICATE );
    245 
    246             if( dftsize.width > isz.width )
    247             {
    248                 cvGetSubRect( _dft_img, dst, cvRect(isz.width, 0,
    249                       dftsize.width - isz.width,dftsize.height) );
    250                 cvZero( dst );
    251             }
    252 
    253             cvDFT( _dft_img, _dft_img, CV_DXT_FORWARD, isz.height );
    254             cvGetSubRect( dft_templ, dst,
    255                 cvRect(0,(templ_cn>1?yofs:0),dftsize.width,dftsize.height) );
    256 
    257             cvMulSpectrums( _dft_img, dst, _dft_img, CV_DXT_MUL_CONJ );
    258             cvDFT( _dft_img, _dft_img, CV_DXT_INVERSE, csz.height );
    259 
    260             src = cvGetSubRect( _dft_img, &sstub, cvRect(0,0,csz.width,csz.height) );
    261             dst = cvGetSubRect( corr, &dstub, cvRect(x,y,csz.width,csz.height) );
    262 
    263             if( corr_cn > 1 )
    264             {
    265                 planes[i] = src;
    266                 if( corr_depth != max_depth )
    267                 {
    268                     planes[i] = cvInitMatHeader( &temp, csz.height, csz.width,
    269                                                  corr_depth, _buf );
    270                     cvConvert( src, planes[i] );
    271                 }
    272                 cvMerge( planes[0], planes[1], planes[2], planes[3], dst );
    273                 planes[i] = 0;
    274             }
    275             else
    276             {
    277                 if( i == 0 )
    278                     cvConvert( src, dst );
    279                 else
    280                 {
    281                     if( max_depth > corr_depth )
    282                     {
    283                         cvInitMatHeader( &temp, csz.height, csz.width,
    284                                          corr_depth, _buf );
    285                         cvConvert( src, &temp );
    286                         src = &temp;
    287                     }
    288                     cvAcc( src, dst );
    289                 }
    290             }
    291         }
    292     }
    293     }
    294 
    295     __END__;
    296 
    297     cvReleaseMat( &dft_templ );
    298 
    299     for( k = 0; k < num_threads; k++ )
    300     {
    301         cvReleaseMat( &dft_img[k] );
    302         cvFree( &buf[k] );
    303     }
    304 }
    305 
    306 
    307 /***************************** IPP Match Template Functions ******************************/
    308 
    309 icvCrossCorrValid_Norm_8u32f_C1R_t  icvCrossCorrValid_Norm_8u32f_C1R_p = 0;
    310 icvCrossCorrValid_NormLevel_8u32f_C1R_t  icvCrossCorrValid_NormLevel_8u32f_C1R_p = 0;
    311 icvSqrDistanceValid_Norm_8u32f_C1R_t  icvSqrDistanceValid_Norm_8u32f_C1R_p = 0;
    312 icvCrossCorrValid_Norm_32f_C1R_t  icvCrossCorrValid_Norm_32f_C1R_p = 0;
    313 icvCrossCorrValid_NormLevel_32f_C1R_t  icvCrossCorrValid_NormLevel_32f_C1R_p = 0;
    314 icvSqrDistanceValid_Norm_32f_C1R_t  icvSqrDistanceValid_Norm_32f_C1R_p = 0;
    315 
    316 typedef CvStatus (CV_STDCALL * CvTemplMatchIPPFunc)
    317     ( const void* img, int imgstep, CvSize imgsize,
    318       const void* templ, int templstep, CvSize templsize,
    319       void* result, int rstep );
    320 
    321 /*****************************************************************************************/
    322 
    323 CV_IMPL void
    324 cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method )
    325 {
    326     CvMat* sum = 0;
    327     CvMat* sqsum = 0;
    328 
    329     CV_FUNCNAME( "cvMatchTemplate" );
    330 
    331     __BEGIN__;
    332 
    333     int coi1 = 0, coi2 = 0;
    334     int depth, cn;
    335     int i, j, k;
    336     CvMat stub, *img = (CvMat*)_img;
    337     CvMat tstub, *templ = (CvMat*)_templ;
    338     CvMat rstub, *result = (CvMat*)_result;
    339     CvScalar templ_mean = cvScalarAll(0);
    340     double templ_norm = 0, templ_sum2 = 0;
    341 
    342     int idx = 0, idx2 = 0;
    343     double *p0, *p1, *p2, *p3;
    344     double *q0, *q1, *q2, *q3;
    345     double inv_area;
    346     int sum_step, sqsum_step;
    347     int num_type = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
    348                    method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
    349     int is_normed = method == CV_TM_CCORR_NORMED ||
    350                     method == CV_TM_SQDIFF_NORMED ||
    351                     method == CV_TM_CCOEFF_NORMED;
    352 
    353     CV_CALL( img = cvGetMat( img, &stub, &coi1 ));
    354     CV_CALL( templ = cvGetMat( templ, &tstub, &coi2 ));
    355     CV_CALL( result = cvGetMat( result, &rstub ));
    356 
    357     if( CV_MAT_DEPTH( img->type ) != CV_8U &&
    358         CV_MAT_DEPTH( img->type ) != CV_32F )
    359         CV_ERROR( CV_StsUnsupportedFormat,
    360         "The function supports only 8u and 32f data types" );
    361 
    362     if( !CV_ARE_TYPES_EQ( img, templ ))
    363         CV_ERROR( CV_StsUnmatchedSizes, "image and template should have the same type" );
    364 
    365     if( CV_MAT_TYPE( result->type ) != CV_32FC1 )
    366         CV_ERROR( CV_StsUnsupportedFormat, "output image should have 32f type" );
    367 
    368     if( img->rows < templ->rows || img->cols < templ->cols )
    369     {
    370         CvMat* t;
    371         CV_SWAP( img, templ, t );
    372     }
    373 
    374     if( result->rows != img->rows - templ->rows + 1 ||
    375         result->cols != img->cols - templ->cols + 1 )
    376         CV_ERROR( CV_StsUnmatchedSizes, "output image should be (W - w + 1)x(H - h + 1)" );
    377 
    378     if( method < CV_TM_SQDIFF || method > CV_TM_CCOEFF_NORMED )
    379         CV_ERROR( CV_StsBadArg, "unknown comparison method" );
    380 
    381     depth = CV_MAT_DEPTH(img->type);
    382     cn = CV_MAT_CN(img->type);
    383 
    384     if( is_normed && cn == 1 && templ->rows > 8 && templ->cols > 8 &&
    385         img->rows > templ->cols && img->cols > templ->cols )
    386     {
    387         CvTemplMatchIPPFunc ipp_func =
    388             depth == CV_8U ?
    389             (method == CV_TM_SQDIFF_NORMED ? (CvTemplMatchIPPFunc)icvSqrDistanceValid_Norm_8u32f_C1R_p :
    390             method == CV_TM_CCORR_NORMED ? (CvTemplMatchIPPFunc)icvCrossCorrValid_Norm_8u32f_C1R_p :
    391             (CvTemplMatchIPPFunc)icvCrossCorrValid_NormLevel_8u32f_C1R_p) :
    392             (method == CV_TM_SQDIFF_NORMED ? (CvTemplMatchIPPFunc)icvSqrDistanceValid_Norm_32f_C1R_p :
    393             method == CV_TM_CCORR_NORMED ? (CvTemplMatchIPPFunc)icvCrossCorrValid_Norm_32f_C1R_p :
    394             (CvTemplMatchIPPFunc)icvCrossCorrValid_NormLevel_32f_C1R_p);
    395 
    396         if( ipp_func )
    397         {
    398             CvSize img_size = cvGetMatSize(img), templ_size = cvGetMatSize(templ);
    399 
    400             IPPI_CALL( ipp_func( img->data.ptr, img->step ? img->step : CV_STUB_STEP,
    401                                  img_size, templ->data.ptr,
    402                                  templ->step ? templ->step : CV_STUB_STEP,
    403                                  templ_size, result->data.ptr,
    404                                  result->step ? result->step : CV_STUB_STEP ));
    405             for( i = 0; i < result->rows; i++ )
    406             {
    407                 float* rrow = (float*)(result->data.ptr + i*result->step);
    408                 for( j = 0; j < result->cols; j++ )
    409                 {
    410                     if( fabs(rrow[j]) > 1. )
    411                         rrow[j] = rrow[j] < 0 ? -1.f : 1.f;
    412                 }
    413             }
    414             EXIT;
    415         }
    416     }
    417 
    418     CV_CALL( icvCrossCorr( img, templ, result ));
    419 
    420     if( method == CV_TM_CCORR )
    421         EXIT;
    422 
    423     inv_area = 1./((double)templ->rows * templ->cols);
    424 
    425     CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1,
    426                                 CV_MAKETYPE( CV_64F, cn )));
    427     if( method == CV_TM_CCOEFF )
    428     {
    429         CV_CALL( cvIntegral( img, sum, 0, 0 ));
    430         CV_CALL( templ_mean = cvAvg( templ ));
    431         q0 = q1 = q2 = q3 = 0;
    432     }
    433     else
    434     {
    435         CvScalar _templ_sdv = cvScalarAll(0);
    436         CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1,
    437                                       CV_MAKETYPE( CV_64F, cn )));
    438         CV_CALL( cvIntegral( img, sum, sqsum, 0 ));
    439         CV_CALL( cvAvgSdv( templ, &templ_mean, &_templ_sdv ));
    440 
    441         templ_norm = CV_SQR(_templ_sdv.val[0]) + CV_SQR(_templ_sdv.val[1]) +
    442                     CV_SQR(_templ_sdv.val[2]) + CV_SQR(_templ_sdv.val[3]);
    443 
    444         if( templ_norm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
    445         {
    446             cvSet( result, cvScalarAll(1.) );
    447             EXIT;
    448         }
    449 
    450         templ_sum2 = templ_norm +
    451                      CV_SQR(templ_mean.val[0]) + CV_SQR(templ_mean.val[1]) +
    452                      CV_SQR(templ_mean.val[2]) + CV_SQR(templ_mean.val[3]);
    453 
    454         if( num_type != 1 )
    455         {
    456             templ_mean = cvScalarAll(0);
    457             templ_norm = templ_sum2;
    458         }
    459 
    460         templ_sum2 /= inv_area;
    461         templ_norm = sqrt(templ_norm);
    462         templ_norm /= sqrt(inv_area); // care of accuracy here
    463 
    464         q0 = (double*)sqsum->data.ptr;
    465         q1 = q0 + templ->cols*cn;
    466         q2 = (double*)(sqsum->data.ptr + templ->rows*sqsum->step);
    467         q3 = q2 + templ->cols*cn;
    468     }
    469 
    470     p0 = (double*)sum->data.ptr;
    471     p1 = p0 + templ->cols*cn;
    472     p2 = (double*)(sum->data.ptr + templ->rows*sum->step);
    473     p3 = p2 + templ->cols*cn;
    474 
    475     sum_step = sum ? sum->step / sizeof(double) : 0;
    476     sqsum_step = sqsum ? sqsum->step / sizeof(double) : 0;
    477 
    478     for( i = 0; i < result->rows; i++ )
    479     {
    480         float* rrow = (float*)(result->data.ptr + i*result->step);
    481         idx = i * sum_step;
    482         idx2 = i * sqsum_step;
    483 
    484         for( j = 0; j < result->cols; j++, idx += cn, idx2 += cn )
    485         {
    486             double num = rrow[j], t;
    487             double wnd_mean2 = 0, wnd_sum2 = 0;
    488 
    489             if( num_type == 1 )
    490             {
    491                 for( k = 0; k < cn; k++ )
    492                 {
    493                     t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k];
    494                     wnd_mean2 += CV_SQR(t);
    495                     num -= t*templ_mean.val[k];
    496                 }
    497 
    498                 wnd_mean2 *= inv_area;
    499             }
    500 
    501             if( is_normed || num_type == 2 )
    502             {
    503                 for( k = 0; k < cn; k++ )
    504                 {
    505                     t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k];
    506                     wnd_sum2 += t;
    507                 }
    508 
    509                 if( num_type == 2 )
    510                     num = wnd_sum2 - 2*num + templ_sum2;
    511             }
    512 
    513             if( is_normed )
    514             {
    515                 t = sqrt(MAX(wnd_sum2 - wnd_mean2,0))*templ_norm;
    516                 if( t > DBL_EPSILON )
    517                 {
    518                     num /= t;
    519                     if( fabs(num) > 1. )
    520                         num = num > 0 ? 1 : -1;
    521                 }
    522                 else
    523                     num = method != CV_TM_SQDIFF_NORMED || num < DBL_EPSILON ? 0 : 1;
    524             }
    525 
    526             rrow[j] = (float)num;
    527         }
    528     }
    529 
    530     __END__;
    531 
    532     cvReleaseMat( &sum );
    533     cvReleaseMat( &sqsum );
    534 }
    535 
    536 /* End of file. */
    537