Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 
     29 // Declares a Simulator for ARM instructions if we are not generating a native
     30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
     31 // regular desktop machines.
     32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
     33 // which will start execution in the Simulator or forwards to the real entry
     34 // on a ARM HW platform.
     35 
     36 #ifndef V8_ARM_SIMULATOR_ARM_H_
     37 #define V8_ARM_SIMULATOR_ARM_H_
     38 
     39 #include "allocation.h"
     40 
     41 #if !defined(USE_SIMULATOR)
     42 // Running without a simulator on a native arm platform.
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 // When running without a simulator we call the entry directly.
     48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
     49   (entry(p0, p1, p2, p3, p4))
     50 
     51 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
     52                                   void*, int*, Address, int, Isolate*);
     53 
     54 
     55 // Call the generated regexp code directly. The code at the entry address
     56 // should act as a function matching the type arm_regexp_matcher.
     57 // The fifth argument is a dummy that reserves the space used for
     58 // the return address added by the ExitFrame in native calls.
     59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
     60   (FUNCTION_CAST<arm_regexp_matcher>(entry)(                              \
     61       p0, p1, p2, p3, NULL, p4, p5, p6, p7))
     62 
     63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
     64   reinterpret_cast<TryCatch*>(try_catch_address)
     65 
     66 // The stack limit beyond which we will throw stack overflow errors in
     67 // generated code. Because generated code on arm uses the C stack, we
     68 // just use the C stack limit.
     69 class SimulatorStack : public v8::internal::AllStatic {
     70  public:
     71   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
     72                                             uintptr_t c_limit) {
     73     USE(isolate);
     74     return c_limit;
     75   }
     76 
     77   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
     78     return try_catch_address;
     79   }
     80 
     81   static inline void UnregisterCTryCatch() { }
     82 };
     83 
     84 } }  // namespace v8::internal
     85 
     86 #else  // !defined(USE_SIMULATOR)
     87 // Running with a simulator.
     88 
     89 #include "constants-arm.h"
     90 #include "hashmap.h"
     91 #include "assembler.h"
     92 
     93 namespace v8 {
     94 namespace internal {
     95 
     96 class CachePage {
     97  public:
     98   static const int LINE_VALID = 0;
     99   static const int LINE_INVALID = 1;
    100 
    101   static const int kPageShift = 12;
    102   static const int kPageSize = 1 << kPageShift;
    103   static const int kPageMask = kPageSize - 1;
    104   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
    105   static const int kLineLength = 1 << kLineShift;
    106   static const int kLineMask = kLineLength - 1;
    107 
    108   CachePage() {
    109     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
    110   }
    111 
    112   char* ValidityByte(int offset) {
    113     return &validity_map_[offset >> kLineShift];
    114   }
    115 
    116   char* CachedData(int offset) {
    117     return &data_[offset];
    118   }
    119 
    120  private:
    121   char data_[kPageSize];   // The cached data.
    122   static const int kValidityMapSize = kPageSize >> kLineShift;
    123   char validity_map_[kValidityMapSize];  // One byte per line.
    124 };
    125 
    126 
    127 class Simulator {
    128  public:
    129   friend class ArmDebugger;
    130   enum Register {
    131     no_reg = -1,
    132     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
    133     r8, r9, r10, r11, r12, r13, r14, r15,
    134     num_registers,
    135     sp = 13,
    136     lr = 14,
    137     pc = 15,
    138     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
    139     s8, s9, s10, s11, s12, s13, s14, s15,
    140     s16, s17, s18, s19, s20, s21, s22, s23,
    141     s24, s25, s26, s27, s28, s29, s30, s31,
    142     num_s_registers = 32,
    143     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
    144     d8, d9, d10, d11, d12, d13, d14, d15,
    145     num_d_registers = 16
    146   };
    147 
    148   explicit Simulator(Isolate* isolate);
    149   ~Simulator();
    150 
    151   // The currently executing Simulator instance. Potentially there can be one
    152   // for each native thread.
    153   static Simulator* current(v8::internal::Isolate* isolate);
    154 
    155   // Accessors for register state. Reading the pc value adheres to the ARM
    156   // architecture specification and is off by a 8 from the currently executing
    157   // instruction.
    158   void set_register(int reg, int32_t value);
    159   int32_t get_register(int reg) const;
    160   double get_double_from_register_pair(int reg);
    161   void set_dw_register(int dreg, const int* dbl);
    162 
    163   // Support for VFP.
    164   void set_s_register(int reg, unsigned int value);
    165   unsigned int get_s_register(int reg) const;
    166   void set_d_register_from_double(int dreg, const double& dbl);
    167   double get_double_from_d_register(int dreg);
    168   void set_s_register_from_float(int sreg, const float dbl);
    169   float get_float_from_s_register(int sreg);
    170   void set_s_register_from_sinteger(int reg, const int value);
    171   int get_sinteger_from_s_register(int reg);
    172 
    173   // Special case of set_register and get_register to access the raw PC value.
    174   void set_pc(int32_t value);
    175   int32_t get_pc() const;
    176 
    177   // Accessor to the internal simulator stack area.
    178   uintptr_t StackLimit() const;
    179 
    180   // Executes ARM instructions until the PC reaches end_sim_pc.
    181   void Execute();
    182 
    183   // Call on program start.
    184   static void Initialize(Isolate* isolate);
    185 
    186   // V8 generally calls into generated JS code with 5 parameters and into
    187   // generated RegExp code with 7 parameters. This is a convenience function,
    188   // which sets up the simulator state and grabs the result on return.
    189   int32_t Call(byte* entry, int argument_count, ...);
    190 
    191   // Push an address onto the JS stack.
    192   uintptr_t PushAddress(uintptr_t address);
    193 
    194   // Pop an address from the JS stack.
    195   uintptr_t PopAddress();
    196 
    197   // Debugger input.
    198   void set_last_debugger_input(char* input);
    199   char* last_debugger_input() { return last_debugger_input_; }
    200 
    201   // ICache checking.
    202   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
    203                           size_t size);
    204 
    205   // Returns true if pc register contains one of the 'special_values' defined
    206   // below (bad_lr, end_sim_pc).
    207   bool has_bad_pc() const;
    208 
    209   // EABI variant for double arguments in use.
    210   bool use_eabi_hardfloat() {
    211 #if USE_EABI_HARDFLOAT
    212     return true;
    213 #else
    214     return false;
    215 #endif
    216   }
    217 
    218  private:
    219   enum special_values {
    220     // Known bad pc value to ensure that the simulator does not execute
    221     // without being properly setup.
    222     bad_lr = -1,
    223     // A pc value used to signal the simulator to stop execution.  Generally
    224     // the lr is set to this value on transition from native C code to
    225     // simulated execution, so that the simulator can "return" to the native
    226     // C code.
    227     end_sim_pc = -2
    228   };
    229 
    230   // Unsupported instructions use Format to print an error and stop execution.
    231   void Format(Instruction* instr, const char* format);
    232 
    233   // Checks if the current instruction should be executed based on its
    234   // condition bits.
    235   bool ConditionallyExecute(Instruction* instr);
    236 
    237   // Helper functions to set the conditional flags in the architecture state.
    238   void SetNZFlags(int32_t val);
    239   void SetCFlag(bool val);
    240   void SetVFlag(bool val);
    241   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
    242   bool BorrowFrom(int32_t left, int32_t right);
    243   bool OverflowFrom(int32_t alu_out,
    244                     int32_t left,
    245                     int32_t right,
    246                     bool addition);
    247 
    248   inline int GetCarry() {
    249     return c_flag_ ? 1 : 0;
    250   };
    251 
    252   // Support for VFP.
    253   void Compute_FPSCR_Flags(double val1, double val2);
    254   void Copy_FPSCR_to_APSR();
    255 
    256   // Helper functions to decode common "addressing" modes
    257   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
    258   int32_t GetImm(Instruction* instr, bool* carry_out);
    259   void ProcessPUW(Instruction* instr,
    260                   int num_regs,
    261                   int operand_size,
    262                   intptr_t* start_address,
    263                   intptr_t* end_address);
    264   void HandleRList(Instruction* instr, bool load);
    265   void HandleVList(Instruction* inst);
    266   void SoftwareInterrupt(Instruction* instr);
    267 
    268   // Stop helper functions.
    269   inline bool isStopInstruction(Instruction* instr);
    270   inline bool isWatchedStop(uint32_t bkpt_code);
    271   inline bool isEnabledStop(uint32_t bkpt_code);
    272   inline void EnableStop(uint32_t bkpt_code);
    273   inline void DisableStop(uint32_t bkpt_code);
    274   inline void IncreaseStopCounter(uint32_t bkpt_code);
    275   void PrintStopInfo(uint32_t code);
    276 
    277   // Read and write memory.
    278   inline uint8_t ReadBU(int32_t addr);
    279   inline int8_t ReadB(int32_t addr);
    280   inline void WriteB(int32_t addr, uint8_t value);
    281   inline void WriteB(int32_t addr, int8_t value);
    282 
    283   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
    284   inline int16_t ReadH(int32_t addr, Instruction* instr);
    285   // Note: Overloaded on the sign of the value.
    286   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
    287   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
    288 
    289   inline int ReadW(int32_t addr, Instruction* instr);
    290   inline void WriteW(int32_t addr, int value, Instruction* instr);
    291 
    292   int32_t* ReadDW(int32_t addr);
    293   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
    294 
    295   // Executing is handled based on the instruction type.
    296   // Both type 0 and type 1 rolled into one.
    297   void DecodeType01(Instruction* instr);
    298   void DecodeType2(Instruction* instr);
    299   void DecodeType3(Instruction* instr);
    300   void DecodeType4(Instruction* instr);
    301   void DecodeType5(Instruction* instr);
    302   void DecodeType6(Instruction* instr);
    303   void DecodeType7(Instruction* instr);
    304 
    305   // Support for VFP.
    306   void DecodeTypeVFP(Instruction* instr);
    307   void DecodeType6CoprocessorIns(Instruction* instr);
    308 
    309   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
    310   void DecodeVCMP(Instruction* instr);
    311   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
    312   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
    313 
    314   // Executes one instruction.
    315   void InstructionDecode(Instruction* instr);
    316 
    317   // ICache.
    318   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
    319   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
    320                            int size);
    321   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
    322 
    323   // Runtime call support.
    324   static void* RedirectExternalReference(
    325       void* external_function,
    326       v8::internal::ExternalReference::Type type);
    327 
    328   // For use in calls that take double value arguments.
    329   void GetFpArgs(double* x, double* y);
    330   void GetFpArgs(double* x);
    331   void GetFpArgs(double* x, int32_t* y);
    332   void SetFpResult(const double& result);
    333   void TrashCallerSaveRegisters();
    334 
    335   // Architecture state.
    336   // Saturating instructions require a Q flag to indicate saturation.
    337   // There is currently no way to read the CPSR directly, and thus read the Q
    338   // flag, so this is left unimplemented.
    339   int32_t registers_[16];
    340   bool n_flag_;
    341   bool z_flag_;
    342   bool c_flag_;
    343   bool v_flag_;
    344 
    345   // VFP architecture state.
    346   unsigned int vfp_register[num_s_registers];
    347   bool n_flag_FPSCR_;
    348   bool z_flag_FPSCR_;
    349   bool c_flag_FPSCR_;
    350   bool v_flag_FPSCR_;
    351 
    352   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
    353   VFPRoundingMode FPSCR_rounding_mode_;
    354 
    355   // VFP FP exception flags architecture state.
    356   bool inv_op_vfp_flag_;
    357   bool div_zero_vfp_flag_;
    358   bool overflow_vfp_flag_;
    359   bool underflow_vfp_flag_;
    360   bool inexact_vfp_flag_;
    361 
    362   // Simulator support.
    363   char* stack_;
    364   bool pc_modified_;
    365   int icount_;
    366 
    367   // Debugger input.
    368   char* last_debugger_input_;
    369 
    370   // Icache simulation
    371   v8::internal::HashMap* i_cache_;
    372 
    373   // Registered breakpoints.
    374   Instruction* break_pc_;
    375   Instr break_instr_;
    376 
    377   v8::internal::Isolate* isolate_;
    378 
    379   // A stop is watched if its code is less than kNumOfWatchedStops.
    380   // Only watched stops support enabling/disabling and the counter feature.
    381   static const uint32_t kNumOfWatchedStops = 256;
    382 
    383   // Breakpoint is disabled if bit 31 is set.
    384   static const uint32_t kStopDisabledBit = 1 << 31;
    385 
    386   // A stop is enabled, meaning the simulator will stop when meeting the
    387   // instruction, if bit 31 of watched_stops[code].count is unset.
    388   // The value watched_stops[code].count & ~(1 << 31) indicates how many times
    389   // the breakpoint was hit or gone through.
    390   struct StopCountAndDesc {
    391     uint32_t count;
    392     char* desc;
    393   };
    394   StopCountAndDesc watched_stops[kNumOfWatchedStops];
    395 };
    396 
    397 
    398 // When running with the simulator transition into simulated execution at this
    399 // point.
    400 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
    401   reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
    402       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
    403 
    404 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
    405   Simulator::current(Isolate::Current())->Call( \
    406       entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
    407 
    408 #define TRY_CATCH_FROM_ADDRESS(try_catch_address)                              \
    409   try_catch_address == NULL ?                                                  \
    410       NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
    411 
    412 
    413 // The simulator has its own stack. Thus it has a different stack limit from
    414 // the C-based native code.  Setting the c_limit to indicate a very small
    415 // stack cause stack overflow errors, since the simulator ignores the input.
    416 // This is unlikely to be an issue in practice, though it might cause testing
    417 // trouble down the line.
    418 class SimulatorStack : public v8::internal::AllStatic {
    419  public:
    420   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
    421                                             uintptr_t c_limit) {
    422     return Simulator::current(isolate)->StackLimit();
    423   }
    424 
    425   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
    426     Simulator* sim = Simulator::current(Isolate::Current());
    427     return sim->PushAddress(try_catch_address);
    428   }
    429 
    430   static inline void UnregisterCTryCatch() {
    431     Simulator::current(Isolate::Current())->PopAddress();
    432   }
    433 };
    434 
    435 } }  // namespace v8::internal
    436 
    437 #endif  // !defined(USE_SIMULATOR)
    438 #endif  // V8_ARM_SIMULATOR_ARM_H_
    439