1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Attributes.h" 27 #include "llvm/Support/CallSite.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace clang; 32 using namespace CodeGen; 33 34 /***/ 35 36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 37 switch (CC) { 38 default: return llvm::CallingConv::C; 39 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 40 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 41 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 42 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 43 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 44 // TODO: add support for CC_X86Pascal to llvm 45 } 46 } 47 48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 49 /// qualification. 50 /// FIXME: address space qualification? 51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 52 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 53 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 54 } 55 56 /// Returns the canonical formal type of the given C++ method. 57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 58 return MD->getType()->getCanonicalTypeUnqualified() 59 .getAs<FunctionProtoType>(); 60 } 61 62 /// Returns the "extra-canonicalized" return type, which discards 63 /// qualifiers on the return type. Codegen doesn't care about them, 64 /// and it makes ABI code a little easier to be able to assume that 65 /// all parameter and return types are top-level unqualified. 66 static CanQualType GetReturnType(QualType RetTy) { 67 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 68 } 69 70 /// Arrange the argument and result information for a value of the 71 /// given unprototyped function type. 72 const CGFunctionInfo & 73 CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 74 // When translating an unprototyped function type, always use a 75 // variadic type. 76 return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(), 77 ArrayRef<CanQualType>(), 78 FTNP->getExtInfo(), 79 RequiredArgs(0)); 80 } 81 82 /// Arrange the argument and result information for a value of the 83 /// given function type, on top of any implicit parameters already 84 /// stored. 85 static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT, 86 SmallVectorImpl<CanQualType> &argTypes, 87 CanQual<FunctionProtoType> FTP) { 88 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 89 // FIXME: Kill copy. 90 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 91 argTypes.push_back(FTP->getArgType(i)); 92 CanQualType resultType = FTP->getResultType().getUnqualifiedType(); 93 return CGT.arrangeFunctionType(resultType, argTypes, 94 FTP->getExtInfo(), required); 95 } 96 97 /// Arrange the argument and result information for a value of the 98 /// given function type. 99 const CGFunctionInfo & 100 CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) { 101 SmallVector<CanQualType, 16> argTypes; 102 return ::arrangeFunctionType(*this, argTypes, FTP); 103 } 104 105 static CallingConv getCallingConventionForDecl(const Decl *D) { 106 // Set the appropriate calling convention for the Function. 107 if (D->hasAttr<StdCallAttr>()) 108 return CC_X86StdCall; 109 110 if (D->hasAttr<FastCallAttr>()) 111 return CC_X86FastCall; 112 113 if (D->hasAttr<ThisCallAttr>()) 114 return CC_X86ThisCall; 115 116 if (D->hasAttr<PascalAttr>()) 117 return CC_X86Pascal; 118 119 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 120 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 121 122 return CC_C; 123 } 124 125 /// Arrange the argument and result information for a call to an 126 /// unknown C++ non-static member function of the given abstract type. 127 /// The member function must be an ordinary function, i.e. not a 128 /// constructor or destructor. 129 const CGFunctionInfo & 130 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 131 const FunctionProtoType *FTP) { 132 SmallVector<CanQualType, 16> argTypes; 133 134 // Add the 'this' pointer. 135 argTypes.push_back(GetThisType(Context, RD)); 136 137 return ::arrangeFunctionType(*this, argTypes, 138 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 139 } 140 141 /// Arrange the argument and result information for a declaration or 142 /// definition of the given C++ non-static member function. The 143 /// member function must be an ordinary function, i.e. not a 144 /// constructor or destructor. 145 const CGFunctionInfo & 146 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 147 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 148 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 149 150 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 151 152 if (MD->isInstance()) { 153 // The abstract case is perfectly fine. 154 return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr()); 155 } 156 157 return arrangeFunctionType(prototype); 158 } 159 160 /// Arrange the argument and result information for a declaration 161 /// or definition to the given constructor variant. 162 const CGFunctionInfo & 163 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D, 164 CXXCtorType ctorKind) { 165 SmallVector<CanQualType, 16> argTypes; 166 argTypes.push_back(GetThisType(Context, D->getParent())); 167 CanQualType resultType = Context.VoidTy; 168 169 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes); 170 171 CanQual<FunctionProtoType> FTP = GetFormalType(D); 172 173 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size()); 174 175 // Add the formal parameters. 176 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 177 argTypes.push_back(FTP->getArgType(i)); 178 179 return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required); 180 } 181 182 /// Arrange the argument and result information for a declaration, 183 /// definition, or call to the given destructor variant. It so 184 /// happens that all three cases produce the same information. 185 const CGFunctionInfo & 186 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D, 187 CXXDtorType dtorKind) { 188 SmallVector<CanQualType, 2> argTypes; 189 argTypes.push_back(GetThisType(Context, D->getParent())); 190 CanQualType resultType = Context.VoidTy; 191 192 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes); 193 194 CanQual<FunctionProtoType> FTP = GetFormalType(D); 195 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 196 197 return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), 198 RequiredArgs::All); 199 } 200 201 /// Arrange the argument and result information for the declaration or 202 /// definition of the given function. 203 const CGFunctionInfo & 204 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 205 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 206 if (MD->isInstance()) 207 return arrangeCXXMethodDeclaration(MD); 208 209 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 210 211 assert(isa<FunctionType>(FTy)); 212 213 // When declaring a function without a prototype, always use a 214 // non-variadic type. 215 if (isa<FunctionNoProtoType>(FTy)) { 216 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 217 return arrangeFunctionType(noProto->getResultType(), 218 ArrayRef<CanQualType>(), 219 noProto->getExtInfo(), 220 RequiredArgs::All); 221 } 222 223 assert(isa<FunctionProtoType>(FTy)); 224 return arrangeFunctionType(FTy.getAs<FunctionProtoType>()); 225 } 226 227 /// Arrange the argument and result information for the declaration or 228 /// definition of an Objective-C method. 229 const CGFunctionInfo & 230 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 231 // It happens that this is the same as a call with no optional 232 // arguments, except also using the formal 'self' type. 233 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 234 } 235 236 /// Arrange the argument and result information for the function type 237 /// through which to perform a send to the given Objective-C method, 238 /// using the given receiver type. The receiver type is not always 239 /// the 'self' type of the method or even an Objective-C pointer type. 240 /// This is *not* the right method for actually performing such a 241 /// message send, due to the possibility of optional arguments. 242 const CGFunctionInfo & 243 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 244 QualType receiverType) { 245 SmallVector<CanQualType, 16> argTys; 246 argTys.push_back(Context.getCanonicalParamType(receiverType)); 247 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 248 // FIXME: Kill copy? 249 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 250 e = MD->param_end(); i != e; ++i) { 251 argTys.push_back(Context.getCanonicalParamType((*i)->getType())); 252 } 253 254 FunctionType::ExtInfo einfo; 255 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 256 257 if (getContext().getLangOpts().ObjCAutoRefCount && 258 MD->hasAttr<NSReturnsRetainedAttr>()) 259 einfo = einfo.withProducesResult(true); 260 261 RequiredArgs required = 262 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 263 264 return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys, 265 einfo, required); 266 } 267 268 const CGFunctionInfo & 269 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 270 // FIXME: Do we need to handle ObjCMethodDecl? 271 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 272 273 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 274 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType()); 275 276 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 277 return arrangeCXXDestructor(DD, GD.getDtorType()); 278 279 return arrangeFunctionDeclaration(FD); 280 } 281 282 /// Figure out the rules for calling a function with the given formal 283 /// type using the given arguments. The arguments are necessary 284 /// because the function might be unprototyped, in which case it's 285 /// target-dependent in crazy ways. 286 const CGFunctionInfo & 287 CodeGenTypes::arrangeFunctionCall(const CallArgList &args, 288 const FunctionType *fnType) { 289 RequiredArgs required = RequiredArgs::All; 290 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 291 if (proto->isVariadic()) 292 required = RequiredArgs(proto->getNumArgs()); 293 } else if (CGM.getTargetCodeGenInfo() 294 .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) { 295 required = RequiredArgs(0); 296 } 297 298 return arrangeFunctionCall(fnType->getResultType(), args, 299 fnType->getExtInfo(), required); 300 } 301 302 const CGFunctionInfo & 303 CodeGenTypes::arrangeFunctionCall(QualType resultType, 304 const CallArgList &args, 305 const FunctionType::ExtInfo &info, 306 RequiredArgs required) { 307 // FIXME: Kill copy. 308 SmallVector<CanQualType, 16> argTypes; 309 for (CallArgList::const_iterator i = args.begin(), e = args.end(); 310 i != e; ++i) 311 argTypes.push_back(Context.getCanonicalParamType(i->Ty)); 312 return arrangeFunctionType(GetReturnType(resultType), argTypes, info, 313 required); 314 } 315 316 const CGFunctionInfo & 317 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType, 318 const FunctionArgList &args, 319 const FunctionType::ExtInfo &info, 320 bool isVariadic) { 321 // FIXME: Kill copy. 322 SmallVector<CanQualType, 16> argTypes; 323 for (FunctionArgList::const_iterator i = args.begin(), e = args.end(); 324 i != e; ++i) 325 argTypes.push_back(Context.getCanonicalParamType((*i)->getType())); 326 327 RequiredArgs required = 328 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 329 return arrangeFunctionType(GetReturnType(resultType), argTypes, info, 330 required); 331 } 332 333 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 334 return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(), 335 FunctionType::ExtInfo(), RequiredArgs::All); 336 } 337 338 /// Arrange the argument and result information for an abstract value 339 /// of a given function type. This is the method which all of the 340 /// above functions ultimately defer to. 341 const CGFunctionInfo & 342 CodeGenTypes::arrangeFunctionType(CanQualType resultType, 343 ArrayRef<CanQualType> argTypes, 344 const FunctionType::ExtInfo &info, 345 RequiredArgs required) { 346 #ifndef NDEBUG 347 for (ArrayRef<CanQualType>::const_iterator 348 I = argTypes.begin(), E = argTypes.end(); I != E; ++I) 349 assert(I->isCanonicalAsParam()); 350 #endif 351 352 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 353 354 // Lookup or create unique function info. 355 llvm::FoldingSetNodeID ID; 356 CGFunctionInfo::Profile(ID, info, required, resultType, argTypes); 357 358 void *insertPos = 0; 359 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 360 if (FI) 361 return *FI; 362 363 // Construct the function info. We co-allocate the ArgInfos. 364 FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required); 365 FunctionInfos.InsertNode(FI, insertPos); 366 367 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted; 368 assert(inserted && "Recursively being processed?"); 369 370 // Compute ABI information. 371 getABIInfo().computeInfo(*FI); 372 373 // Loop over all of the computed argument and return value info. If any of 374 // them are direct or extend without a specified coerce type, specify the 375 // default now. 376 ABIArgInfo &retInfo = FI->getReturnInfo(); 377 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0) 378 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 379 380 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 381 I != E; ++I) 382 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 383 I->info.setCoerceToType(ConvertType(I->type)); 384 385 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 386 assert(erased && "Not in set?"); 387 388 return *FI; 389 } 390 391 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 392 const FunctionType::ExtInfo &info, 393 CanQualType resultType, 394 ArrayRef<CanQualType> argTypes, 395 RequiredArgs required) { 396 void *buffer = operator new(sizeof(CGFunctionInfo) + 397 sizeof(ArgInfo) * (argTypes.size() + 1)); 398 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 399 FI->CallingConvention = llvmCC; 400 FI->EffectiveCallingConvention = llvmCC; 401 FI->ASTCallingConvention = info.getCC(); 402 FI->NoReturn = info.getNoReturn(); 403 FI->ReturnsRetained = info.getProducesResult(); 404 FI->Required = required; 405 FI->HasRegParm = info.getHasRegParm(); 406 FI->RegParm = info.getRegParm(); 407 FI->NumArgs = argTypes.size(); 408 FI->getArgsBuffer()[0].type = resultType; 409 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 410 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 411 return FI; 412 } 413 414 /***/ 415 416 void CodeGenTypes::GetExpandedTypes(QualType type, 417 SmallVectorImpl<llvm::Type*> &expandedTypes) { 418 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 419 uint64_t NumElts = AT->getSize().getZExtValue(); 420 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 421 GetExpandedTypes(AT->getElementType(), expandedTypes); 422 } else if (const RecordType *RT = type->getAs<RecordType>()) { 423 const RecordDecl *RD = RT->getDecl(); 424 assert(!RD->hasFlexibleArrayMember() && 425 "Cannot expand structure with flexible array."); 426 if (RD->isUnion()) { 427 // Unions can be here only in degenerative cases - all the fields are same 428 // after flattening. Thus we have to use the "largest" field. 429 const FieldDecl *LargestFD = 0; 430 CharUnits UnionSize = CharUnits::Zero(); 431 432 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 433 i != e; ++i) { 434 const FieldDecl *FD = *i; 435 assert(!FD->isBitField() && 436 "Cannot expand structure with bit-field members."); 437 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 438 if (UnionSize < FieldSize) { 439 UnionSize = FieldSize; 440 LargestFD = FD; 441 } 442 } 443 if (LargestFD) 444 GetExpandedTypes(LargestFD->getType(), expandedTypes); 445 } else { 446 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 447 i != e; ++i) { 448 const FieldDecl *FD = *i; 449 assert(!FD->isBitField() && 450 "Cannot expand structure with bit-field members."); 451 GetExpandedTypes(FD->getType(), expandedTypes); 452 } 453 } 454 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 455 llvm::Type *EltTy = ConvertType(CT->getElementType()); 456 expandedTypes.push_back(EltTy); 457 expandedTypes.push_back(EltTy); 458 } else 459 expandedTypes.push_back(ConvertType(type)); 460 } 461 462 llvm::Function::arg_iterator 463 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 464 llvm::Function::arg_iterator AI) { 465 assert(LV.isSimple() && 466 "Unexpected non-simple lvalue during struct expansion."); 467 468 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 469 unsigned NumElts = AT->getSize().getZExtValue(); 470 QualType EltTy = AT->getElementType(); 471 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 472 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt); 473 LValue LV = MakeAddrLValue(EltAddr, EltTy); 474 AI = ExpandTypeFromArgs(EltTy, LV, AI); 475 } 476 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 477 RecordDecl *RD = RT->getDecl(); 478 if (RD->isUnion()) { 479 // Unions can be here only in degenerative cases - all the fields are same 480 // after flattening. Thus we have to use the "largest" field. 481 const FieldDecl *LargestFD = 0; 482 CharUnits UnionSize = CharUnits::Zero(); 483 484 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 485 i != e; ++i) { 486 const FieldDecl *FD = *i; 487 assert(!FD->isBitField() && 488 "Cannot expand structure with bit-field members."); 489 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 490 if (UnionSize < FieldSize) { 491 UnionSize = FieldSize; 492 LargestFD = FD; 493 } 494 } 495 if (LargestFD) { 496 // FIXME: What are the right qualifiers here? 497 LValue SubLV = EmitLValueForField(LV, LargestFD); 498 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI); 499 } 500 } else { 501 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 502 i != e; ++i) { 503 FieldDecl *FD = *i; 504 QualType FT = FD->getType(); 505 506 // FIXME: What are the right qualifiers here? 507 LValue SubLV = EmitLValueForField(LV, FD); 508 AI = ExpandTypeFromArgs(FT, SubLV, AI); 509 } 510 } 511 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 512 QualType EltTy = CT->getElementType(); 513 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real"); 514 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 515 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag"); 516 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 517 } else { 518 EmitStoreThroughLValue(RValue::get(AI), LV); 519 ++AI; 520 } 521 522 return AI; 523 } 524 525 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 526 /// accessing some number of bytes out of it, try to gep into the struct to get 527 /// at its inner goodness. Dive as deep as possible without entering an element 528 /// with an in-memory size smaller than DstSize. 529 static llvm::Value * 530 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 531 llvm::StructType *SrcSTy, 532 uint64_t DstSize, CodeGenFunction &CGF) { 533 // We can't dive into a zero-element struct. 534 if (SrcSTy->getNumElements() == 0) return SrcPtr; 535 536 llvm::Type *FirstElt = SrcSTy->getElementType(0); 537 538 // If the first elt is at least as large as what we're looking for, or if the 539 // first element is the same size as the whole struct, we can enter it. 540 uint64_t FirstEltSize = 541 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 542 if (FirstEltSize < DstSize && 543 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 544 return SrcPtr; 545 546 // GEP into the first element. 547 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 548 549 // If the first element is a struct, recurse. 550 llvm::Type *SrcTy = 551 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 552 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 553 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 554 555 return SrcPtr; 556 } 557 558 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 559 /// are either integers or pointers. This does a truncation of the value if it 560 /// is too large or a zero extension if it is too small. 561 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 562 llvm::Type *Ty, 563 CodeGenFunction &CGF) { 564 if (Val->getType() == Ty) 565 return Val; 566 567 if (isa<llvm::PointerType>(Val->getType())) { 568 // If this is Pointer->Pointer avoid conversion to and from int. 569 if (isa<llvm::PointerType>(Ty)) 570 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 571 572 // Convert the pointer to an integer so we can play with its width. 573 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 574 } 575 576 llvm::Type *DestIntTy = Ty; 577 if (isa<llvm::PointerType>(DestIntTy)) 578 DestIntTy = CGF.IntPtrTy; 579 580 if (Val->getType() != DestIntTy) 581 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 582 583 if (isa<llvm::PointerType>(Ty)) 584 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 585 return Val; 586 } 587 588 589 590 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 591 /// a pointer to an object of type \arg Ty. 592 /// 593 /// This safely handles the case when the src type is smaller than the 594 /// destination type; in this situation the values of bits which not 595 /// present in the src are undefined. 596 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 597 llvm::Type *Ty, 598 CodeGenFunction &CGF) { 599 llvm::Type *SrcTy = 600 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 601 602 // If SrcTy and Ty are the same, just do a load. 603 if (SrcTy == Ty) 604 return CGF.Builder.CreateLoad(SrcPtr); 605 606 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 607 608 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 609 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 610 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 611 } 612 613 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 614 615 // If the source and destination are integer or pointer types, just do an 616 // extension or truncation to the desired type. 617 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 618 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 619 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 620 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 621 } 622 623 // If load is legal, just bitcast the src pointer. 624 if (SrcSize >= DstSize) { 625 // Generally SrcSize is never greater than DstSize, since this means we are 626 // losing bits. However, this can happen in cases where the structure has 627 // additional padding, for example due to a user specified alignment. 628 // 629 // FIXME: Assert that we aren't truncating non-padding bits when have access 630 // to that information. 631 llvm::Value *Casted = 632 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 633 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 634 // FIXME: Use better alignment / avoid requiring aligned load. 635 Load->setAlignment(1); 636 return Load; 637 } 638 639 // Otherwise do coercion through memory. This is stupid, but 640 // simple. 641 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 642 llvm::Value *Casted = 643 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 644 llvm::StoreInst *Store = 645 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 646 // FIXME: Use better alignment / avoid requiring aligned store. 647 Store->setAlignment(1); 648 return CGF.Builder.CreateLoad(Tmp); 649 } 650 651 // Function to store a first-class aggregate into memory. We prefer to 652 // store the elements rather than the aggregate to be more friendly to 653 // fast-isel. 654 // FIXME: Do we need to recurse here? 655 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 656 llvm::Value *DestPtr, bool DestIsVolatile, 657 bool LowAlignment) { 658 // Prefer scalar stores to first-class aggregate stores. 659 if (llvm::StructType *STy = 660 dyn_cast<llvm::StructType>(Val->getType())) { 661 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 662 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 663 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 664 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 665 DestIsVolatile); 666 if (LowAlignment) 667 SI->setAlignment(1); 668 } 669 } else { 670 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 671 if (LowAlignment) 672 SI->setAlignment(1); 673 } 674 } 675 676 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 677 /// where the source and destination may have different types. 678 /// 679 /// This safely handles the case when the src type is larger than the 680 /// destination type; the upper bits of the src will be lost. 681 static void CreateCoercedStore(llvm::Value *Src, 682 llvm::Value *DstPtr, 683 bool DstIsVolatile, 684 CodeGenFunction &CGF) { 685 llvm::Type *SrcTy = Src->getType(); 686 llvm::Type *DstTy = 687 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 688 if (SrcTy == DstTy) { 689 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 690 return; 691 } 692 693 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 694 695 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 696 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 697 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 698 } 699 700 // If the source and destination are integer or pointer types, just do an 701 // extension or truncation to the desired type. 702 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 703 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 704 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 705 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 706 return; 707 } 708 709 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 710 711 // If store is legal, just bitcast the src pointer. 712 if (SrcSize <= DstSize) { 713 llvm::Value *Casted = 714 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 715 // FIXME: Use better alignment / avoid requiring aligned store. 716 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 717 } else { 718 // Otherwise do coercion through memory. This is stupid, but 719 // simple. 720 721 // Generally SrcSize is never greater than DstSize, since this means we are 722 // losing bits. However, this can happen in cases where the structure has 723 // additional padding, for example due to a user specified alignment. 724 // 725 // FIXME: Assert that we aren't truncating non-padding bits when have access 726 // to that information. 727 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 728 CGF.Builder.CreateStore(Src, Tmp); 729 llvm::Value *Casted = 730 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 731 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 732 // FIXME: Use better alignment / avoid requiring aligned load. 733 Load->setAlignment(1); 734 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 735 } 736 } 737 738 /***/ 739 740 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 741 return FI.getReturnInfo().isIndirect(); 742 } 743 744 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 745 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 746 switch (BT->getKind()) { 747 default: 748 return false; 749 case BuiltinType::Float: 750 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 751 case BuiltinType::Double: 752 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 753 case BuiltinType::LongDouble: 754 return getContext().getTargetInfo().useObjCFPRetForRealType( 755 TargetInfo::LongDouble); 756 } 757 } 758 759 return false; 760 } 761 762 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 763 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 764 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 765 if (BT->getKind() == BuiltinType::LongDouble) 766 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 767 } 768 } 769 770 return false; 771 } 772 773 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 774 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 775 return GetFunctionType(FI); 776 } 777 778 llvm::FunctionType * 779 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 780 781 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 782 assert(Inserted && "Recursively being processed?"); 783 784 SmallVector<llvm::Type*, 8> argTypes; 785 llvm::Type *resultType = 0; 786 787 const ABIArgInfo &retAI = FI.getReturnInfo(); 788 switch (retAI.getKind()) { 789 case ABIArgInfo::Expand: 790 llvm_unreachable("Invalid ABI kind for return argument"); 791 792 case ABIArgInfo::Extend: 793 case ABIArgInfo::Direct: 794 resultType = retAI.getCoerceToType(); 795 break; 796 797 case ABIArgInfo::Indirect: { 798 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 799 resultType = llvm::Type::getVoidTy(getLLVMContext()); 800 801 QualType ret = FI.getReturnType(); 802 llvm::Type *ty = ConvertType(ret); 803 unsigned addressSpace = Context.getTargetAddressSpace(ret); 804 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 805 break; 806 } 807 808 case ABIArgInfo::Ignore: 809 resultType = llvm::Type::getVoidTy(getLLVMContext()); 810 break; 811 } 812 813 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 814 ie = FI.arg_end(); it != ie; ++it) { 815 const ABIArgInfo &argAI = it->info; 816 817 switch (argAI.getKind()) { 818 case ABIArgInfo::Ignore: 819 break; 820 821 case ABIArgInfo::Indirect: { 822 // indirect arguments are always on the stack, which is addr space #0. 823 llvm::Type *LTy = ConvertTypeForMem(it->type); 824 argTypes.push_back(LTy->getPointerTo()); 825 break; 826 } 827 828 case ABIArgInfo::Extend: 829 case ABIArgInfo::Direct: { 830 // Insert a padding type to ensure proper alignment. 831 if (llvm::Type *PaddingType = argAI.getPaddingType()) 832 argTypes.push_back(PaddingType); 833 // If the coerce-to type is a first class aggregate, flatten it. Either 834 // way is semantically identical, but fast-isel and the optimizer 835 // generally likes scalar values better than FCAs. 836 llvm::Type *argType = argAI.getCoerceToType(); 837 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 838 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 839 argTypes.push_back(st->getElementType(i)); 840 } else { 841 argTypes.push_back(argType); 842 } 843 break; 844 } 845 846 case ABIArgInfo::Expand: 847 GetExpandedTypes(it->type, argTypes); 848 break; 849 } 850 } 851 852 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 853 assert(Erased && "Not in set?"); 854 855 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic()); 856 } 857 858 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 859 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 860 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 861 862 if (!isFuncTypeConvertible(FPT)) 863 return llvm::StructType::get(getLLVMContext()); 864 865 const CGFunctionInfo *Info; 866 if (isa<CXXDestructorDecl>(MD)) 867 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 868 else 869 Info = &arrangeCXXMethodDeclaration(MD); 870 return GetFunctionType(*Info); 871 } 872 873 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 874 const Decl *TargetDecl, 875 AttributeListType &PAL, 876 unsigned &CallingConv) { 877 llvm::Attributes FuncAttrs; 878 llvm::Attributes RetAttrs; 879 880 CallingConv = FI.getEffectiveCallingConvention(); 881 882 if (FI.isNoReturn()) 883 FuncAttrs |= llvm::Attribute::NoReturn; 884 885 // FIXME: handle sseregparm someday... 886 if (TargetDecl) { 887 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 888 FuncAttrs |= llvm::Attribute::ReturnsTwice; 889 if (TargetDecl->hasAttr<NoThrowAttr>()) 890 FuncAttrs |= llvm::Attribute::NoUnwind; 891 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 892 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 893 if (FPT && FPT->isNothrow(getContext())) 894 FuncAttrs |= llvm::Attribute::NoUnwind; 895 } 896 897 if (TargetDecl->hasAttr<NoReturnAttr>()) 898 FuncAttrs |= llvm::Attribute::NoReturn; 899 900 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 901 FuncAttrs |= llvm::Attribute::ReturnsTwice; 902 903 // 'const' and 'pure' attribute functions are also nounwind. 904 if (TargetDecl->hasAttr<ConstAttr>()) { 905 FuncAttrs |= llvm::Attribute::ReadNone; 906 FuncAttrs |= llvm::Attribute::NoUnwind; 907 } else if (TargetDecl->hasAttr<PureAttr>()) { 908 FuncAttrs |= llvm::Attribute::ReadOnly; 909 FuncAttrs |= llvm::Attribute::NoUnwind; 910 } 911 if (TargetDecl->hasAttr<MallocAttr>()) 912 RetAttrs |= llvm::Attribute::NoAlias; 913 } 914 915 if (CodeGenOpts.OptimizeSize) 916 FuncAttrs |= llvm::Attribute::OptimizeForSize; 917 if (CodeGenOpts.DisableRedZone) 918 FuncAttrs |= llvm::Attribute::NoRedZone; 919 if (CodeGenOpts.NoImplicitFloat) 920 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 921 922 QualType RetTy = FI.getReturnType(); 923 unsigned Index = 1; 924 const ABIArgInfo &RetAI = FI.getReturnInfo(); 925 switch (RetAI.getKind()) { 926 case ABIArgInfo::Extend: 927 if (RetTy->hasSignedIntegerRepresentation()) 928 RetAttrs |= llvm::Attribute::SExt; 929 else if (RetTy->hasUnsignedIntegerRepresentation()) 930 RetAttrs |= llvm::Attribute::ZExt; 931 break; 932 case ABIArgInfo::Direct: 933 case ABIArgInfo::Ignore: 934 break; 935 936 case ABIArgInfo::Indirect: 937 PAL.push_back(llvm::AttributeWithIndex::get(Index, 938 llvm::Attribute::StructRet)); 939 ++Index; 940 // sret disables readnone and readonly 941 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 942 llvm::Attribute::ReadNone); 943 break; 944 945 case ABIArgInfo::Expand: 946 llvm_unreachable("Invalid ABI kind for return argument"); 947 } 948 949 if (RetAttrs) 950 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 951 952 // FIXME: RegParm should be reduced in case of global register variable. 953 signed RegParm; 954 if (FI.getHasRegParm()) 955 RegParm = FI.getRegParm(); 956 else 957 RegParm = CodeGenOpts.NumRegisterParameters; 958 959 unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); 960 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 961 ie = FI.arg_end(); it != ie; ++it) { 962 QualType ParamType = it->type; 963 const ABIArgInfo &AI = it->info; 964 llvm::Attributes Attrs; 965 966 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 967 // have the corresponding parameter variable. It doesn't make 968 // sense to do it here because parameters are so messed up. 969 switch (AI.getKind()) { 970 case ABIArgInfo::Extend: 971 if (ParamType->isSignedIntegerOrEnumerationType()) 972 Attrs |= llvm::Attribute::SExt; 973 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 974 Attrs |= llvm::Attribute::ZExt; 975 // FALL THROUGH 976 case ABIArgInfo::Direct: 977 if (RegParm > 0 && 978 (ParamType->isIntegerType() || ParamType->isPointerType() || 979 ParamType->isReferenceType())) { 980 RegParm -= 981 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 982 if (RegParm >= 0) 983 Attrs |= llvm::Attribute::InReg; 984 } 985 // FIXME: handle sseregparm someday... 986 987 // Increment Index if there is padding. 988 Index += (AI.getPaddingType() != 0); 989 990 if (llvm::StructType *STy = 991 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 992 Index += STy->getNumElements()-1; // 1 will be added below. 993 break; 994 995 case ABIArgInfo::Indirect: 996 if (AI.getIndirectByVal()) 997 Attrs |= llvm::Attribute::ByVal; 998 999 Attrs |= 1000 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 1001 // byval disables readnone and readonly. 1002 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 1003 llvm::Attribute::ReadNone); 1004 break; 1005 1006 case ABIArgInfo::Ignore: 1007 // Skip increment, no matching LLVM parameter. 1008 continue; 1009 1010 case ABIArgInfo::Expand: { 1011 SmallVector<llvm::Type*, 8> types; 1012 // FIXME: This is rather inefficient. Do we ever actually need to do 1013 // anything here? The result should be just reconstructed on the other 1014 // side, so extension should be a non-issue. 1015 getTypes().GetExpandedTypes(ParamType, types); 1016 Index += types.size(); 1017 continue; 1018 } 1019 } 1020 1021 if (Attrs) 1022 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs)); 1023 ++Index; 1024 } 1025 if (FuncAttrs) 1026 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 1027 } 1028 1029 /// An argument came in as a promoted argument; demote it back to its 1030 /// declared type. 1031 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1032 const VarDecl *var, 1033 llvm::Value *value) { 1034 llvm::Type *varType = CGF.ConvertType(var->getType()); 1035 1036 // This can happen with promotions that actually don't change the 1037 // underlying type, like the enum promotions. 1038 if (value->getType() == varType) return value; 1039 1040 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1041 && "unexpected promotion type"); 1042 1043 if (isa<llvm::IntegerType>(varType)) 1044 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1045 1046 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1047 } 1048 1049 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1050 llvm::Function *Fn, 1051 const FunctionArgList &Args) { 1052 // If this is an implicit-return-zero function, go ahead and 1053 // initialize the return value. TODO: it might be nice to have 1054 // a more general mechanism for this that didn't require synthesized 1055 // return statements. 1056 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 1057 if (FD->hasImplicitReturnZero()) { 1058 QualType RetTy = FD->getResultType().getUnqualifiedType(); 1059 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1060 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1061 Builder.CreateStore(Zero, ReturnValue); 1062 } 1063 } 1064 1065 // FIXME: We no longer need the types from FunctionArgList; lift up and 1066 // simplify. 1067 1068 // Emit allocs for param decls. Give the LLVM Argument nodes names. 1069 llvm::Function::arg_iterator AI = Fn->arg_begin(); 1070 1071 // Name the struct return argument. 1072 if (CGM.ReturnTypeUsesSRet(FI)) { 1073 AI->setName("agg.result"); 1074 AI->addAttr(llvm::Attribute::NoAlias); 1075 ++AI; 1076 } 1077 1078 assert(FI.arg_size() == Args.size() && 1079 "Mismatch between function signature & arguments."); 1080 unsigned ArgNo = 1; 1081 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1082 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1083 i != e; ++i, ++info_it, ++ArgNo) { 1084 const VarDecl *Arg = *i; 1085 QualType Ty = info_it->type; 1086 const ABIArgInfo &ArgI = info_it->info; 1087 1088 bool isPromoted = 1089 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1090 1091 switch (ArgI.getKind()) { 1092 case ABIArgInfo::Indirect: { 1093 llvm::Value *V = AI; 1094 1095 if (hasAggregateLLVMType(Ty)) { 1096 // Aggregates and complex variables are accessed by reference. All we 1097 // need to do is realign the value, if requested 1098 if (ArgI.getIndirectRealign()) { 1099 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 1100 1101 // Copy from the incoming argument pointer to the temporary with the 1102 // appropriate alignment. 1103 // 1104 // FIXME: We should have a common utility for generating an aggregate 1105 // copy. 1106 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 1107 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1108 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 1109 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 1110 Builder.CreateMemCpy(Dst, 1111 Src, 1112 llvm::ConstantInt::get(IntPtrTy, 1113 Size.getQuantity()), 1114 ArgI.getIndirectAlign(), 1115 false); 1116 V = AlignedTemp; 1117 } 1118 } else { 1119 // Load scalar value from indirect argument. 1120 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 1121 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 1122 1123 if (isPromoted) 1124 V = emitArgumentDemotion(*this, Arg, V); 1125 } 1126 EmitParmDecl(*Arg, V, ArgNo); 1127 break; 1128 } 1129 1130 case ABIArgInfo::Extend: 1131 case ABIArgInfo::Direct: { 1132 // Skip the dummy padding argument. 1133 if (ArgI.getPaddingType()) 1134 ++AI; 1135 1136 // If we have the trivial case, handle it with no muss and fuss. 1137 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1138 ArgI.getCoerceToType() == ConvertType(Ty) && 1139 ArgI.getDirectOffset() == 0) { 1140 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1141 llvm::Value *V = AI; 1142 1143 if (Arg->getType().isRestrictQualified()) 1144 AI->addAttr(llvm::Attribute::NoAlias); 1145 1146 // Ensure the argument is the correct type. 1147 if (V->getType() != ArgI.getCoerceToType()) 1148 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1149 1150 if (isPromoted) 1151 V = emitArgumentDemotion(*this, Arg, V); 1152 1153 EmitParmDecl(*Arg, V, ArgNo); 1154 break; 1155 } 1156 1157 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName()); 1158 1159 // The alignment we need to use is the max of the requested alignment for 1160 // the argument plus the alignment required by our access code below. 1161 unsigned AlignmentToUse = 1162 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 1163 AlignmentToUse = std::max(AlignmentToUse, 1164 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1165 1166 Alloca->setAlignment(AlignmentToUse); 1167 llvm::Value *V = Alloca; 1168 llvm::Value *Ptr = V; // Pointer to store into. 1169 1170 // If the value is offset in memory, apply the offset now. 1171 if (unsigned Offs = ArgI.getDirectOffset()) { 1172 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1173 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1174 Ptr = Builder.CreateBitCast(Ptr, 1175 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1176 } 1177 1178 // If the coerce-to type is a first class aggregate, we flatten it and 1179 // pass the elements. Either way is semantically identical, but fast-isel 1180 // and the optimizer generally likes scalar values better than FCAs. 1181 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 1182 if (STy && STy->getNumElements() > 1) { 1183 uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy); 1184 llvm::Type *DstTy = 1185 cast<llvm::PointerType>(Ptr->getType())->getElementType(); 1186 uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy); 1187 1188 if (SrcSize <= DstSize) { 1189 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1190 1191 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1192 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1193 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1194 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1195 Builder.CreateStore(AI++, EltPtr); 1196 } 1197 } else { 1198 llvm::AllocaInst *TempAlloca = 1199 CreateTempAlloca(ArgI.getCoerceToType(), "coerce"); 1200 TempAlloca->setAlignment(AlignmentToUse); 1201 llvm::Value *TempV = TempAlloca; 1202 1203 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1204 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1205 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1206 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i); 1207 Builder.CreateStore(AI++, EltPtr); 1208 } 1209 1210 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse); 1211 } 1212 } else { 1213 // Simple case, just do a coerced store of the argument into the alloca. 1214 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1215 AI->setName(Arg->getName() + ".coerce"); 1216 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1217 } 1218 1219 1220 // Match to what EmitParmDecl is expecting for this type. 1221 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1222 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1223 if (isPromoted) 1224 V = emitArgumentDemotion(*this, Arg, V); 1225 } 1226 EmitParmDecl(*Arg, V, ArgNo); 1227 continue; // Skip ++AI increment, already done. 1228 } 1229 1230 case ABIArgInfo::Expand: { 1231 // If this structure was expanded into multiple arguments then 1232 // we need to create a temporary and reconstruct it from the 1233 // arguments. 1234 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1235 CharUnits Align = getContext().getDeclAlign(Arg); 1236 Alloca->setAlignment(Align.getQuantity()); 1237 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1238 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1239 EmitParmDecl(*Arg, Alloca, ArgNo); 1240 1241 // Name the arguments used in expansion and increment AI. 1242 unsigned Index = 0; 1243 for (; AI != End; ++AI, ++Index) 1244 AI->setName(Arg->getName() + "." + Twine(Index)); 1245 continue; 1246 } 1247 1248 case ABIArgInfo::Ignore: 1249 // Initialize the local variable appropriately. 1250 if (hasAggregateLLVMType(Ty)) 1251 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1252 else 1253 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1254 ArgNo); 1255 1256 // Skip increment, no matching LLVM parameter. 1257 continue; 1258 } 1259 1260 ++AI; 1261 } 1262 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1263 } 1264 1265 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1266 while (insn->use_empty()) { 1267 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1268 if (!bitcast) return; 1269 1270 // This is "safe" because we would have used a ConstantExpr otherwise. 1271 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1272 bitcast->eraseFromParent(); 1273 } 1274 } 1275 1276 /// Try to emit a fused autorelease of a return result. 1277 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1278 llvm::Value *result) { 1279 // We must be immediately followed the cast. 1280 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1281 if (BB->empty()) return 0; 1282 if (&BB->back() != result) return 0; 1283 1284 llvm::Type *resultType = result->getType(); 1285 1286 // result is in a BasicBlock and is therefore an Instruction. 1287 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1288 1289 SmallVector<llvm::Instruction*,4> insnsToKill; 1290 1291 // Look for: 1292 // %generator = bitcast %type1* %generator2 to %type2* 1293 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1294 // We would have emitted this as a constant if the operand weren't 1295 // an Instruction. 1296 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1297 1298 // Require the generator to be immediately followed by the cast. 1299 if (generator->getNextNode() != bitcast) 1300 return 0; 1301 1302 insnsToKill.push_back(bitcast); 1303 } 1304 1305 // Look for: 1306 // %generator = call i8* @objc_retain(i8* %originalResult) 1307 // or 1308 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1309 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1310 if (!call) return 0; 1311 1312 bool doRetainAutorelease; 1313 1314 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1315 doRetainAutorelease = true; 1316 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1317 .objc_retainAutoreleasedReturnValue) { 1318 doRetainAutorelease = false; 1319 1320 // Look for an inline asm immediately preceding the call and kill it, too. 1321 llvm::Instruction *prev = call->getPrevNode(); 1322 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1323 if (asmCall->getCalledValue() 1324 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1325 insnsToKill.push_back(prev); 1326 } else { 1327 return 0; 1328 } 1329 1330 result = call->getArgOperand(0); 1331 insnsToKill.push_back(call); 1332 1333 // Keep killing bitcasts, for sanity. Note that we no longer care 1334 // about precise ordering as long as there's exactly one use. 1335 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1336 if (!bitcast->hasOneUse()) break; 1337 insnsToKill.push_back(bitcast); 1338 result = bitcast->getOperand(0); 1339 } 1340 1341 // Delete all the unnecessary instructions, from latest to earliest. 1342 for (SmallVectorImpl<llvm::Instruction*>::iterator 1343 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1344 (*i)->eraseFromParent(); 1345 1346 // Do the fused retain/autorelease if we were asked to. 1347 if (doRetainAutorelease) 1348 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1349 1350 // Cast back to the result type. 1351 return CGF.Builder.CreateBitCast(result, resultType); 1352 } 1353 1354 /// If this is a +1 of the value of an immutable 'self', remove it. 1355 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1356 llvm::Value *result) { 1357 // This is only applicable to a method with an immutable 'self'. 1358 const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl); 1359 if (!method) return 0; 1360 const VarDecl *self = method->getSelfDecl(); 1361 if (!self->getType().isConstQualified()) return 0; 1362 1363 // Look for a retain call. 1364 llvm::CallInst *retainCall = 1365 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1366 if (!retainCall || 1367 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1368 return 0; 1369 1370 // Look for an ordinary load of 'self'. 1371 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1372 llvm::LoadInst *load = 1373 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1374 if (!load || load->isAtomic() || load->isVolatile() || 1375 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1376 return 0; 1377 1378 // Okay! Burn it all down. This relies for correctness on the 1379 // assumption that the retain is emitted as part of the return and 1380 // that thereafter everything is used "linearly". 1381 llvm::Type *resultType = result->getType(); 1382 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1383 assert(retainCall->use_empty()); 1384 retainCall->eraseFromParent(); 1385 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1386 1387 return CGF.Builder.CreateBitCast(load, resultType); 1388 } 1389 1390 /// Emit an ARC autorelease of the result of a function. 1391 /// 1392 /// \return the value to actually return from the function 1393 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1394 llvm::Value *result) { 1395 // If we're returning 'self', kill the initial retain. This is a 1396 // heuristic attempt to "encourage correctness" in the really unfortunate 1397 // case where we have a return of self during a dealloc and we desperately 1398 // need to avoid the possible autorelease. 1399 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1400 return self; 1401 1402 // At -O0, try to emit a fused retain/autorelease. 1403 if (CGF.shouldUseFusedARCCalls()) 1404 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1405 return fused; 1406 1407 return CGF.EmitARCAutoreleaseReturnValue(result); 1408 } 1409 1410 /// Heuristically search for a dominating store to the return-value slot. 1411 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1412 // If there are multiple uses of the return-value slot, just check 1413 // for something immediately preceding the IP. Sometimes this can 1414 // happen with how we generate implicit-returns; it can also happen 1415 // with noreturn cleanups. 1416 if (!CGF.ReturnValue->hasOneUse()) { 1417 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1418 if (IP->empty()) return 0; 1419 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1420 if (!store) return 0; 1421 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1422 assert(!store->isAtomic() && !store->isVolatile()); // see below 1423 return store; 1424 } 1425 1426 llvm::StoreInst *store = 1427 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1428 if (!store) return 0; 1429 1430 // These aren't actually possible for non-coerced returns, and we 1431 // only care about non-coerced returns on this code path. 1432 assert(!store->isAtomic() && !store->isVolatile()); 1433 1434 // Now do a first-and-dirty dominance check: just walk up the 1435 // single-predecessors chain from the current insertion point. 1436 llvm::BasicBlock *StoreBB = store->getParent(); 1437 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1438 while (IP != StoreBB) { 1439 if (!(IP = IP->getSinglePredecessor())) 1440 return 0; 1441 } 1442 1443 // Okay, the store's basic block dominates the insertion point; we 1444 // can do our thing. 1445 return store; 1446 } 1447 1448 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1449 // Functions with no result always return void. 1450 if (ReturnValue == 0) { 1451 Builder.CreateRetVoid(); 1452 return; 1453 } 1454 1455 llvm::DebugLoc RetDbgLoc; 1456 llvm::Value *RV = 0; 1457 QualType RetTy = FI.getReturnType(); 1458 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1459 1460 switch (RetAI.getKind()) { 1461 case ABIArgInfo::Indirect: { 1462 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1463 if (RetTy->isAnyComplexType()) { 1464 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1465 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1466 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1467 // Do nothing; aggregrates get evaluated directly into the destination. 1468 } else { 1469 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1470 false, Alignment, RetTy); 1471 } 1472 break; 1473 } 1474 1475 case ABIArgInfo::Extend: 1476 case ABIArgInfo::Direct: 1477 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1478 RetAI.getDirectOffset() == 0) { 1479 // The internal return value temp always will have pointer-to-return-type 1480 // type, just do a load. 1481 1482 // If there is a dominating store to ReturnValue, we can elide 1483 // the load, zap the store, and usually zap the alloca. 1484 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1485 // Get the stored value and nuke the now-dead store. 1486 RetDbgLoc = SI->getDebugLoc(); 1487 RV = SI->getValueOperand(); 1488 SI->eraseFromParent(); 1489 1490 // If that was the only use of the return value, nuke it as well now. 1491 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1492 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1493 ReturnValue = 0; 1494 } 1495 1496 // Otherwise, we have to do a simple load. 1497 } else { 1498 RV = Builder.CreateLoad(ReturnValue); 1499 } 1500 } else { 1501 llvm::Value *V = ReturnValue; 1502 // If the value is offset in memory, apply the offset now. 1503 if (unsigned Offs = RetAI.getDirectOffset()) { 1504 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1505 V = Builder.CreateConstGEP1_32(V, Offs); 1506 V = Builder.CreateBitCast(V, 1507 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1508 } 1509 1510 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1511 } 1512 1513 // In ARC, end functions that return a retainable type with a call 1514 // to objc_autoreleaseReturnValue. 1515 if (AutoreleaseResult) { 1516 assert(getLangOpts().ObjCAutoRefCount && 1517 !FI.isReturnsRetained() && 1518 RetTy->isObjCRetainableType()); 1519 RV = emitAutoreleaseOfResult(*this, RV); 1520 } 1521 1522 break; 1523 1524 case ABIArgInfo::Ignore: 1525 break; 1526 1527 case ABIArgInfo::Expand: 1528 llvm_unreachable("Invalid ABI kind for return argument"); 1529 } 1530 1531 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1532 if (!RetDbgLoc.isUnknown()) 1533 Ret->setDebugLoc(RetDbgLoc); 1534 } 1535 1536 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1537 const VarDecl *param) { 1538 // StartFunction converted the ABI-lowered parameter(s) into a 1539 // local alloca. We need to turn that into an r-value suitable 1540 // for EmitCall. 1541 llvm::Value *local = GetAddrOfLocalVar(param); 1542 1543 QualType type = param->getType(); 1544 1545 // For the most part, we just need to load the alloca, except: 1546 // 1) aggregate r-values are actually pointers to temporaries, and 1547 // 2) references to aggregates are pointers directly to the aggregate. 1548 // I don't know why references to non-aggregates are different here. 1549 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1550 if (hasAggregateLLVMType(ref->getPointeeType())) 1551 return args.add(RValue::getAggregate(local), type); 1552 1553 // Locals which are references to scalars are represented 1554 // with allocas holding the pointer. 1555 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1556 } 1557 1558 if (type->isAnyComplexType()) { 1559 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1560 return args.add(RValue::getComplex(complex), type); 1561 } 1562 1563 if (hasAggregateLLVMType(type)) 1564 return args.add(RValue::getAggregate(local), type); 1565 1566 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1567 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1568 return args.add(RValue::get(value), type); 1569 } 1570 1571 static bool isProvablyNull(llvm::Value *addr) { 1572 return isa<llvm::ConstantPointerNull>(addr); 1573 } 1574 1575 static bool isProvablyNonNull(llvm::Value *addr) { 1576 return isa<llvm::AllocaInst>(addr); 1577 } 1578 1579 /// Emit the actual writing-back of a writeback. 1580 static void emitWriteback(CodeGenFunction &CGF, 1581 const CallArgList::Writeback &writeback) { 1582 llvm::Value *srcAddr = writeback.Address; 1583 assert(!isProvablyNull(srcAddr) && 1584 "shouldn't have writeback for provably null argument"); 1585 1586 llvm::BasicBlock *contBB = 0; 1587 1588 // If the argument wasn't provably non-null, we need to null check 1589 // before doing the store. 1590 bool provablyNonNull = isProvablyNonNull(srcAddr); 1591 if (!provablyNonNull) { 1592 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1593 contBB = CGF.createBasicBlock("icr.done"); 1594 1595 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1596 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1597 CGF.EmitBlock(writebackBB); 1598 } 1599 1600 // Load the value to writeback. 1601 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1602 1603 // Cast it back, in case we're writing an id to a Foo* or something. 1604 value = CGF.Builder.CreateBitCast(value, 1605 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1606 "icr.writeback-cast"); 1607 1608 // Perform the writeback. 1609 QualType srcAddrType = writeback.AddressType; 1610 CGF.EmitStoreThroughLValue(RValue::get(value), 1611 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1612 1613 // Jump to the continuation block. 1614 if (!provablyNonNull) 1615 CGF.EmitBlock(contBB); 1616 } 1617 1618 static void emitWritebacks(CodeGenFunction &CGF, 1619 const CallArgList &args) { 1620 for (CallArgList::writeback_iterator 1621 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1622 emitWriteback(CGF, *i); 1623 } 1624 1625 /// Emit an argument that's being passed call-by-writeback. That is, 1626 /// we are passing the address of 1627 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1628 const ObjCIndirectCopyRestoreExpr *CRE) { 1629 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1630 1631 // The dest and src types don't necessarily match in LLVM terms 1632 // because of the crazy ObjC compatibility rules. 1633 1634 llvm::PointerType *destType = 1635 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1636 1637 // If the address is a constant null, just pass the appropriate null. 1638 if (isProvablyNull(srcAddr)) { 1639 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1640 CRE->getType()); 1641 return; 1642 } 1643 1644 QualType srcAddrType = 1645 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1646 1647 // Create the temporary. 1648 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1649 "icr.temp"); 1650 1651 // Zero-initialize it if we're not doing a copy-initialization. 1652 bool shouldCopy = CRE->shouldCopy(); 1653 if (!shouldCopy) { 1654 llvm::Value *null = 1655 llvm::ConstantPointerNull::get( 1656 cast<llvm::PointerType>(destType->getElementType())); 1657 CGF.Builder.CreateStore(null, temp); 1658 } 1659 1660 llvm::BasicBlock *contBB = 0; 1661 1662 // If the address is *not* known to be non-null, we need to switch. 1663 llvm::Value *finalArgument; 1664 1665 bool provablyNonNull = isProvablyNonNull(srcAddr); 1666 if (provablyNonNull) { 1667 finalArgument = temp; 1668 } else { 1669 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1670 1671 finalArgument = CGF.Builder.CreateSelect(isNull, 1672 llvm::ConstantPointerNull::get(destType), 1673 temp, "icr.argument"); 1674 1675 // If we need to copy, then the load has to be conditional, which 1676 // means we need control flow. 1677 if (shouldCopy) { 1678 contBB = CGF.createBasicBlock("icr.cont"); 1679 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1680 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1681 CGF.EmitBlock(copyBB); 1682 } 1683 } 1684 1685 // Perform a copy if necessary. 1686 if (shouldCopy) { 1687 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1688 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1689 assert(srcRV.isScalar()); 1690 1691 llvm::Value *src = srcRV.getScalarVal(); 1692 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1693 "icr.cast"); 1694 1695 // Use an ordinary store, not a store-to-lvalue. 1696 CGF.Builder.CreateStore(src, temp); 1697 } 1698 1699 // Finish the control flow if we needed it. 1700 if (shouldCopy && !provablyNonNull) 1701 CGF.EmitBlock(contBB); 1702 1703 args.addWriteback(srcAddr, srcAddrType, temp); 1704 args.add(RValue::get(finalArgument), CRE->getType()); 1705 } 1706 1707 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1708 QualType type) { 1709 if (const ObjCIndirectCopyRestoreExpr *CRE 1710 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1711 assert(getContext().getLangOpts().ObjCAutoRefCount); 1712 assert(getContext().hasSameType(E->getType(), type)); 1713 return emitWritebackArg(*this, args, CRE); 1714 } 1715 1716 assert(type->isReferenceType() == E->isGLValue() && 1717 "reference binding to unmaterialized r-value!"); 1718 1719 if (E->isGLValue()) { 1720 assert(E->getObjectKind() == OK_Ordinary); 1721 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1722 type); 1723 } 1724 1725 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1726 isa<ImplicitCastExpr>(E) && 1727 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1728 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1729 assert(L.isSimple()); 1730 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1731 return; 1732 } 1733 1734 args.add(EmitAnyExprToTemp(E), type); 1735 } 1736 1737 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1738 // optimizer it can aggressively ignore unwind edges. 1739 void 1740 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 1741 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 1742 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 1743 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 1744 CGM.getNoObjCARCExceptionsMetadata()); 1745 } 1746 1747 /// Emits a call or invoke instruction to the given function, depending 1748 /// on the current state of the EH stack. 1749 llvm::CallSite 1750 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1751 ArrayRef<llvm::Value *> Args, 1752 const Twine &Name) { 1753 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1754 1755 llvm::Instruction *Inst; 1756 if (!InvokeDest) 1757 Inst = Builder.CreateCall(Callee, Args, Name); 1758 else { 1759 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1760 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 1761 EmitBlock(ContBB); 1762 } 1763 1764 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 1765 // optimizer it can aggressively ignore unwind edges. 1766 if (CGM.getLangOpts().ObjCAutoRefCount) 1767 AddObjCARCExceptionMetadata(Inst); 1768 1769 return Inst; 1770 } 1771 1772 llvm::CallSite 1773 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1774 const Twine &Name) { 1775 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1776 } 1777 1778 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1779 llvm::FunctionType *FTy) { 1780 if (ArgNo < FTy->getNumParams()) 1781 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1782 else 1783 assert(FTy->isVarArg()); 1784 ++ArgNo; 1785 } 1786 1787 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1788 SmallVector<llvm::Value*,16> &Args, 1789 llvm::FunctionType *IRFuncTy) { 1790 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1791 unsigned NumElts = AT->getSize().getZExtValue(); 1792 QualType EltTy = AT->getElementType(); 1793 llvm::Value *Addr = RV.getAggregateAddr(); 1794 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1795 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1796 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1797 RValue EltRV; 1798 if (EltTy->isAnyComplexType()) 1799 // FIXME: Volatile? 1800 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1801 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1802 EltRV = LV.asAggregateRValue(); 1803 else 1804 EltRV = EmitLoadOfLValue(LV); 1805 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1806 } 1807 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 1808 RecordDecl *RD = RT->getDecl(); 1809 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1810 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty); 1811 1812 if (RD->isUnion()) { 1813 const FieldDecl *LargestFD = 0; 1814 CharUnits UnionSize = CharUnits::Zero(); 1815 1816 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1817 i != e; ++i) { 1818 const FieldDecl *FD = *i; 1819 assert(!FD->isBitField() && 1820 "Cannot expand structure with bit-field members."); 1821 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType()); 1822 if (UnionSize < FieldSize) { 1823 UnionSize = FieldSize; 1824 LargestFD = FD; 1825 } 1826 } 1827 if (LargestFD) { 1828 RValue FldRV = EmitRValueForField(LV, LargestFD); 1829 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy); 1830 } 1831 } else { 1832 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1833 i != e; ++i) { 1834 FieldDecl *FD = *i; 1835 1836 RValue FldRV = EmitRValueForField(LV, FD); 1837 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy); 1838 } 1839 } 1840 } else if (Ty->isAnyComplexType()) { 1841 ComplexPairTy CV = RV.getComplexVal(); 1842 Args.push_back(CV.first); 1843 Args.push_back(CV.second); 1844 } else { 1845 assert(RV.isScalar() && 1846 "Unexpected non-scalar rvalue during struct expansion."); 1847 1848 // Insert a bitcast as needed. 1849 llvm::Value *V = RV.getScalarVal(); 1850 if (Args.size() < IRFuncTy->getNumParams() && 1851 V->getType() != IRFuncTy->getParamType(Args.size())) 1852 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1853 1854 Args.push_back(V); 1855 } 1856 } 1857 1858 1859 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1860 llvm::Value *Callee, 1861 ReturnValueSlot ReturnValue, 1862 const CallArgList &CallArgs, 1863 const Decl *TargetDecl, 1864 llvm::Instruction **callOrInvoke) { 1865 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1866 SmallVector<llvm::Value*, 16> Args; 1867 1868 // Handle struct-return functions by passing a pointer to the 1869 // location that we would like to return into. 1870 QualType RetTy = CallInfo.getReturnType(); 1871 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1872 1873 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1874 unsigned IRArgNo = 0; 1875 llvm::FunctionType *IRFuncTy = 1876 cast<llvm::FunctionType>( 1877 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1878 1879 // If the call returns a temporary with struct return, create a temporary 1880 // alloca to hold the result, unless one is given to us. 1881 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1882 llvm::Value *Value = ReturnValue.getValue(); 1883 if (!Value) 1884 Value = CreateMemTemp(RetTy); 1885 Args.push_back(Value); 1886 checkArgMatches(Value, IRArgNo, IRFuncTy); 1887 } 1888 1889 assert(CallInfo.arg_size() == CallArgs.size() && 1890 "Mismatch between function signature & arguments."); 1891 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1892 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1893 I != E; ++I, ++info_it) { 1894 const ABIArgInfo &ArgInfo = info_it->info; 1895 RValue RV = I->RV; 1896 1897 unsigned TypeAlign = 1898 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1899 switch (ArgInfo.getKind()) { 1900 case ABIArgInfo::Indirect: { 1901 if (RV.isScalar() || RV.isComplex()) { 1902 // Make a temporary alloca to pass the argument. 1903 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1904 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1905 AI->setAlignment(ArgInfo.getIndirectAlign()); 1906 Args.push_back(AI); 1907 1908 if (RV.isScalar()) 1909 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1910 TypeAlign, I->Ty); 1911 else 1912 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1913 1914 // Validate argument match. 1915 checkArgMatches(AI, IRArgNo, IRFuncTy); 1916 } else { 1917 // We want to avoid creating an unnecessary temporary+copy here; 1918 // however, we need one in two cases: 1919 // 1. If the argument is not byval, and we are required to copy the 1920 // source. (This case doesn't occur on any common architecture.) 1921 // 2. If the argument is byval, RV is not sufficiently aligned, and 1922 // we cannot force it to be sufficiently aligned. 1923 llvm::Value *Addr = RV.getAggregateAddr(); 1924 unsigned Align = ArgInfo.getIndirectAlign(); 1925 const llvm::TargetData *TD = &CGM.getTargetData(); 1926 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1927 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1928 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1929 // Create an aligned temporary, and copy to it. 1930 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1931 if (Align > AI->getAlignment()) 1932 AI->setAlignment(Align); 1933 Args.push_back(AI); 1934 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1935 1936 // Validate argument match. 1937 checkArgMatches(AI, IRArgNo, IRFuncTy); 1938 } else { 1939 // Skip the extra memcpy call. 1940 Args.push_back(Addr); 1941 1942 // Validate argument match. 1943 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1944 } 1945 } 1946 break; 1947 } 1948 1949 case ABIArgInfo::Ignore: 1950 break; 1951 1952 case ABIArgInfo::Extend: 1953 case ABIArgInfo::Direct: { 1954 // Insert a padding argument to ensure proper alignment. 1955 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 1956 Args.push_back(llvm::UndefValue::get(PaddingType)); 1957 ++IRArgNo; 1958 } 1959 1960 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 1961 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 1962 ArgInfo.getDirectOffset() == 0) { 1963 llvm::Value *V; 1964 if (RV.isScalar()) 1965 V = RV.getScalarVal(); 1966 else 1967 V = Builder.CreateLoad(RV.getAggregateAddr()); 1968 1969 // If the argument doesn't match, perform a bitcast to coerce it. This 1970 // can happen due to trivial type mismatches. 1971 if (IRArgNo < IRFuncTy->getNumParams() && 1972 V->getType() != IRFuncTy->getParamType(IRArgNo)) 1973 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 1974 Args.push_back(V); 1975 1976 checkArgMatches(V, IRArgNo, IRFuncTy); 1977 break; 1978 } 1979 1980 // FIXME: Avoid the conversion through memory if possible. 1981 llvm::Value *SrcPtr; 1982 if (RV.isScalar()) { 1983 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1984 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 1985 } else if (RV.isComplex()) { 1986 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1987 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 1988 } else 1989 SrcPtr = RV.getAggregateAddr(); 1990 1991 // If the value is offset in memory, apply the offset now. 1992 if (unsigned Offs = ArgInfo.getDirectOffset()) { 1993 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 1994 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 1995 SrcPtr = Builder.CreateBitCast(SrcPtr, 1996 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 1997 1998 } 1999 2000 // If the coerce-to type is a first class aggregate, we flatten it and 2001 // pass the elements. Either way is semantically identical, but fast-isel 2002 // and the optimizer generally likes scalar values better than FCAs. 2003 if (llvm::StructType *STy = 2004 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 2005 SrcPtr = Builder.CreateBitCast(SrcPtr, 2006 llvm::PointerType::getUnqual(STy)); 2007 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2008 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 2009 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 2010 // We don't know what we're loading from. 2011 LI->setAlignment(1); 2012 Args.push_back(LI); 2013 2014 // Validate argument match. 2015 checkArgMatches(LI, IRArgNo, IRFuncTy); 2016 } 2017 } else { 2018 // In the simple case, just pass the coerced loaded value. 2019 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 2020 *this)); 2021 2022 // Validate argument match. 2023 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 2024 } 2025 2026 break; 2027 } 2028 2029 case ABIArgInfo::Expand: 2030 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 2031 IRArgNo = Args.size(); 2032 break; 2033 } 2034 } 2035 2036 // If the callee is a bitcast of a function to a varargs pointer to function 2037 // type, check to see if we can remove the bitcast. This handles some cases 2038 // with unprototyped functions. 2039 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 2040 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 2041 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 2042 llvm::FunctionType *CurFT = 2043 cast<llvm::FunctionType>(CurPT->getElementType()); 2044 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 2045 2046 if (CE->getOpcode() == llvm::Instruction::BitCast && 2047 ActualFT->getReturnType() == CurFT->getReturnType() && 2048 ActualFT->getNumParams() == CurFT->getNumParams() && 2049 ActualFT->getNumParams() == Args.size() && 2050 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 2051 bool ArgsMatch = true; 2052 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 2053 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 2054 ArgsMatch = false; 2055 break; 2056 } 2057 2058 // Strip the cast if we can get away with it. This is a nice cleanup, 2059 // but also allows us to inline the function at -O0 if it is marked 2060 // always_inline. 2061 if (ArgsMatch) 2062 Callee = CalleeF; 2063 } 2064 } 2065 2066 unsigned CallingConv; 2067 CodeGen::AttributeListType AttributeList; 2068 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 2069 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 2070 AttributeList.end()); 2071 2072 llvm::BasicBlock *InvokeDest = 0; 2073 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 2074 InvokeDest = getInvokeDest(); 2075 2076 llvm::CallSite CS; 2077 if (!InvokeDest) { 2078 CS = Builder.CreateCall(Callee, Args); 2079 } else { 2080 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 2081 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 2082 EmitBlock(Cont); 2083 } 2084 if (callOrInvoke) 2085 *callOrInvoke = CS.getInstruction(); 2086 2087 CS.setAttributes(Attrs); 2088 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2089 2090 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2091 // optimizer it can aggressively ignore unwind edges. 2092 if (CGM.getLangOpts().ObjCAutoRefCount) 2093 AddObjCARCExceptionMetadata(CS.getInstruction()); 2094 2095 // If the call doesn't return, finish the basic block and clear the 2096 // insertion point; this allows the rest of IRgen to discard 2097 // unreachable code. 2098 if (CS.doesNotReturn()) { 2099 Builder.CreateUnreachable(); 2100 Builder.ClearInsertionPoint(); 2101 2102 // FIXME: For now, emit a dummy basic block because expr emitters in 2103 // generally are not ready to handle emitting expressions at unreachable 2104 // points. 2105 EnsureInsertPoint(); 2106 2107 // Return a reasonable RValue. 2108 return GetUndefRValue(RetTy); 2109 } 2110 2111 llvm::Instruction *CI = CS.getInstruction(); 2112 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 2113 CI->setName("call"); 2114 2115 // Emit any writebacks immediately. Arguably this should happen 2116 // after any return-value munging. 2117 if (CallArgs.hasWritebacks()) 2118 emitWritebacks(*this, CallArgs); 2119 2120 switch (RetAI.getKind()) { 2121 case ABIArgInfo::Indirect: { 2122 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2123 if (RetTy->isAnyComplexType()) 2124 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 2125 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2126 return RValue::getAggregate(Args[0]); 2127 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 2128 } 2129 2130 case ABIArgInfo::Ignore: 2131 // If we are ignoring an argument that had a result, make sure to 2132 // construct the appropriate return value for our caller. 2133 return GetUndefRValue(RetTy); 2134 2135 case ABIArgInfo::Extend: 2136 case ABIArgInfo::Direct: { 2137 llvm::Type *RetIRTy = ConvertType(RetTy); 2138 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 2139 if (RetTy->isAnyComplexType()) { 2140 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 2141 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 2142 return RValue::getComplex(std::make_pair(Real, Imag)); 2143 } 2144 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2145 llvm::Value *DestPtr = ReturnValue.getValue(); 2146 bool DestIsVolatile = ReturnValue.isVolatile(); 2147 2148 if (!DestPtr) { 2149 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 2150 DestIsVolatile = false; 2151 } 2152 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 2153 return RValue::getAggregate(DestPtr); 2154 } 2155 2156 // If the argument doesn't match, perform a bitcast to coerce it. This 2157 // can happen due to trivial type mismatches. 2158 llvm::Value *V = CI; 2159 if (V->getType() != RetIRTy) 2160 V = Builder.CreateBitCast(V, RetIRTy); 2161 return RValue::get(V); 2162 } 2163 2164 llvm::Value *DestPtr = ReturnValue.getValue(); 2165 bool DestIsVolatile = ReturnValue.isVolatile(); 2166 2167 if (!DestPtr) { 2168 DestPtr = CreateMemTemp(RetTy, "coerce"); 2169 DestIsVolatile = false; 2170 } 2171 2172 // If the value is offset in memory, apply the offset now. 2173 llvm::Value *StorePtr = DestPtr; 2174 if (unsigned Offs = RetAI.getDirectOffset()) { 2175 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 2176 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 2177 StorePtr = Builder.CreateBitCast(StorePtr, 2178 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 2179 } 2180 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 2181 2182 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 2183 if (RetTy->isAnyComplexType()) 2184 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 2185 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 2186 return RValue::getAggregate(DestPtr); 2187 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 2188 } 2189 2190 case ABIArgInfo::Expand: 2191 llvm_unreachable("Invalid ABI kind for return argument"); 2192 } 2193 2194 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 2195 } 2196 2197 /* VarArg handling */ 2198 2199 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2200 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2201 } 2202