Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the ARM target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "arm-isel"
     15 #include "ARM.h"
     16 #include "ARMBaseInstrInfo.h"
     17 #include "ARMTargetMachine.h"
     18 #include "MCTargetDesc/ARMAddressingModes.h"
     19 #include "llvm/CallingConv.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/LLVMContext.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/SelectionDAG.h"
     29 #include "llvm/CodeGen/SelectionDAGISel.h"
     30 #include "llvm/Target/TargetLowering.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Compiler.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 
     38 using namespace llvm;
     39 
     40 static cl::opt<bool>
     41 DisableShifterOp("disable-shifter-op", cl::Hidden,
     42   cl::desc("Disable isel of shifter-op"),
     43   cl::init(false));
     44 
     45 static cl::opt<bool>
     46 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
     47   cl::desc("Check fp vmla / vmls hazard at isel time"),
     48   cl::init(true));
     49 
     50 static cl::opt<bool>
     51 DisableARMIntABS("disable-arm-int-abs", cl::Hidden,
     52   cl::desc("Enable / disable ARM integer abs transform"),
     53   cl::init(false));
     54 
     55 //===--------------------------------------------------------------------===//
     56 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
     57 /// instructions for SelectionDAG operations.
     58 ///
     59 namespace {
     60 
     61 enum AddrMode2Type {
     62   AM2_BASE, // Simple AM2 (+-imm12)
     63   AM2_SHOP  // Shifter-op AM2
     64 };
     65 
     66 class ARMDAGToDAGISel : public SelectionDAGISel {
     67   ARMBaseTargetMachine &TM;
     68   const ARMBaseInstrInfo *TII;
     69 
     70   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     71   /// make the right decision when generating code for different targets.
     72   const ARMSubtarget *Subtarget;
     73 
     74 public:
     75   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
     76                            CodeGenOpt::Level OptLevel)
     77     : SelectionDAGISel(tm, OptLevel), TM(tm),
     78       TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())),
     79       Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
     80   }
     81 
     82   virtual const char *getPassName() const {
     83     return "ARM Instruction Selection";
     84   }
     85 
     86   /// getI32Imm - Return a target constant of type i32 with the specified
     87   /// value.
     88   inline SDValue getI32Imm(unsigned Imm) {
     89     return CurDAG->getTargetConstant(Imm, MVT::i32);
     90   }
     91 
     92   SDNode *Select(SDNode *N);
     93 
     94 
     95   bool hasNoVMLxHazardUse(SDNode *N) const;
     96   bool isShifterOpProfitable(const SDValue &Shift,
     97                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
     98   bool SelectRegShifterOperand(SDValue N, SDValue &A,
     99                                SDValue &B, SDValue &C,
    100                                bool CheckProfitability = true);
    101   bool SelectImmShifterOperand(SDValue N, SDValue &A,
    102                                SDValue &B, bool CheckProfitability = true);
    103   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
    104                                     SDValue &B, SDValue &C) {
    105     // Don't apply the profitability check
    106     return SelectRegShifterOperand(N, A, B, C, false);
    107   }
    108   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
    109                                     SDValue &B) {
    110     // Don't apply the profitability check
    111     return SelectImmShifterOperand(N, A, B, false);
    112   }
    113 
    114   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    115   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
    116 
    117   AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
    118                                       SDValue &Offset, SDValue &Opc);
    119   bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
    120                            SDValue &Opc) {
    121     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
    122   }
    123 
    124   bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
    125                            SDValue &Opc) {
    126     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
    127   }
    128 
    129   bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
    130                        SDValue &Opc) {
    131     SelectAddrMode2Worker(N, Base, Offset, Opc);
    132 //    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
    133     // This always matches one way or another.
    134     return true;
    135   }
    136 
    137   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    138                              SDValue &Offset, SDValue &Opc);
    139   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    140                              SDValue &Offset, SDValue &Opc);
    141   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    142                              SDValue &Offset, SDValue &Opc);
    143   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
    144   bool SelectAddrMode3(SDValue N, SDValue &Base,
    145                        SDValue &Offset, SDValue &Opc);
    146   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
    147                              SDValue &Offset, SDValue &Opc);
    148   bool SelectAddrMode5(SDValue N, SDValue &Base,
    149                        SDValue &Offset);
    150   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
    151   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
    152 
    153   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
    154 
    155   // Thumb Addressing Modes:
    156   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
    157   bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
    158                              unsigned Scale);
    159   bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
    160   bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
    161   bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
    162   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
    163                                 SDValue &OffImm);
    164   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
    165                                  SDValue &OffImm);
    166   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
    167                                  SDValue &OffImm);
    168   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
    169                                  SDValue &OffImm);
    170   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
    171 
    172   // Thumb 2 Addressing Modes:
    173   bool SelectT2ShifterOperandReg(SDValue N,
    174                                  SDValue &BaseReg, SDValue &Opc);
    175   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    176   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
    177                             SDValue &OffImm);
    178   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
    179                                  SDValue &OffImm);
    180   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
    181                              SDValue &OffReg, SDValue &ShImm);
    182 
    183   inline bool is_so_imm(unsigned Imm) const {
    184     return ARM_AM::getSOImmVal(Imm) != -1;
    185   }
    186 
    187   inline bool is_so_imm_not(unsigned Imm) const {
    188     return ARM_AM::getSOImmVal(~Imm) != -1;
    189   }
    190 
    191   inline bool is_t2_so_imm(unsigned Imm) const {
    192     return ARM_AM::getT2SOImmVal(Imm) != -1;
    193   }
    194 
    195   inline bool is_t2_so_imm_not(unsigned Imm) const {
    196     return ARM_AM::getT2SOImmVal(~Imm) != -1;
    197   }
    198 
    199   // Include the pieces autogenerated from the target description.
    200 #include "ARMGenDAGISel.inc"
    201 
    202 private:
    203   /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
    204   /// ARM.
    205   SDNode *SelectARMIndexedLoad(SDNode *N);
    206   SDNode *SelectT2IndexedLoad(SDNode *N);
    207 
    208   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
    209   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    210   /// loads of D registers and even subregs and odd subregs of Q registers.
    211   /// For NumVecs <= 2, QOpcodes1 is not used.
    212   SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
    213                     unsigned *DOpcodes,
    214                     unsigned *QOpcodes0, unsigned *QOpcodes1);
    215 
    216   /// SelectVST - Select NEON store intrinsics.  NumVecs should
    217   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    218   /// stores of D registers and even subregs and odd subregs of Q registers.
    219   /// For NumVecs <= 2, QOpcodes1 is not used.
    220   SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
    221                     unsigned *DOpcodes,
    222                     unsigned *QOpcodes0, unsigned *QOpcodes1);
    223 
    224   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
    225   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
    226   /// load/store of D registers and Q registers.
    227   SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
    228                           bool isUpdating, unsigned NumVecs,
    229                           unsigned *DOpcodes, unsigned *QOpcodes);
    230 
    231   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
    232   /// should be 2, 3 or 4.  The opcode array specifies the instructions used
    233   /// for loading D registers.  (Q registers are not supported.)
    234   SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
    235                        unsigned *Opcodes);
    236 
    237   /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
    238   /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
    239   /// generated to force the table registers to be consecutive.
    240   SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
    241 
    242   /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
    243   SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
    244 
    245   /// SelectCMOVOp - Select CMOV instructions for ARM.
    246   SDNode *SelectCMOVOp(SDNode *N);
    247   SDNode *SelectConditionalOp(SDNode *N);
    248   SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    249                               ARMCC::CondCodes CCVal, SDValue CCR,
    250                               SDValue InFlag);
    251   SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    252                                ARMCC::CondCodes CCVal, SDValue CCR,
    253                                SDValue InFlag);
    254   SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    255                               ARMCC::CondCodes CCVal, SDValue CCR,
    256                               SDValue InFlag);
    257   SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    258                                ARMCC::CondCodes CCVal, SDValue CCR,
    259                                SDValue InFlag);
    260 
    261   // Select special operations if node forms integer ABS pattern
    262   SDNode *SelectABSOp(SDNode *N);
    263 
    264   SDNode *SelectConcatVector(SDNode *N);
    265 
    266   SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    267 
    268   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    269   /// inline asm expressions.
    270   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    271                                             char ConstraintCode,
    272                                             std::vector<SDValue> &OutOps);
    273 
    274   // Form pairs of consecutive S, D, or Q registers.
    275   SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1);
    276   SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
    277   SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
    278 
    279   // Form sequences of 4 consecutive S, D, or Q registers.
    280   SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    281   SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    282   SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    283 
    284   // Get the alignment operand for a NEON VLD or VST instruction.
    285   SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
    286 };
    287 }
    288 
    289 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    290 /// operand. If so Imm will receive the 32-bit value.
    291 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    292   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    293     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    294     return true;
    295   }
    296   return false;
    297 }
    298 
    299 // isInt32Immediate - This method tests to see if a constant operand.
    300 // If so Imm will receive the 32 bit value.
    301 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    302   return isInt32Immediate(N.getNode(), Imm);
    303 }
    304 
    305 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    306 // opcode and that it has a immediate integer right operand.
    307 // If so Imm will receive the 32 bit value.
    308 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    309   return N->getOpcode() == Opc &&
    310          isInt32Immediate(N->getOperand(1).getNode(), Imm);
    311 }
    312 
    313 /// \brief Check whether a particular node is a constant value representable as
    314 /// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax).
    315 ///
    316 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
    317 static bool isScaledConstantInRange(SDValue Node, int Scale,
    318                                     int RangeMin, int RangeMax,
    319                                     int &ScaledConstant) {
    320   assert(Scale > 0 && "Invalid scale!");
    321 
    322   // Check that this is a constant.
    323   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
    324   if (!C)
    325     return false;
    326 
    327   ScaledConstant = (int) C->getZExtValue();
    328   if ((ScaledConstant % Scale) != 0)
    329     return false;
    330 
    331   ScaledConstant /= Scale;
    332   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
    333 }
    334 
    335 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
    336 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
    337 /// least on current ARM implementations) which should be avoidded.
    338 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
    339   if (OptLevel == CodeGenOpt::None)
    340     return true;
    341 
    342   if (!CheckVMLxHazard)
    343     return true;
    344 
    345   if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9())
    346     return true;
    347 
    348   if (!N->hasOneUse())
    349     return false;
    350 
    351   SDNode *Use = *N->use_begin();
    352   if (Use->getOpcode() == ISD::CopyToReg)
    353     return true;
    354   if (Use->isMachineOpcode()) {
    355     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
    356     if (MCID.mayStore())
    357       return true;
    358     unsigned Opcode = MCID.getOpcode();
    359     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
    360       return true;
    361     // vmlx feeding into another vmlx. We actually want to unfold
    362     // the use later in the MLxExpansion pass. e.g.
    363     // vmla
    364     // vmla (stall 8 cycles)
    365     //
    366     // vmul (5 cycles)
    367     // vadd (5 cycles)
    368     // vmla
    369     // This adds up to about 18 - 19 cycles.
    370     //
    371     // vmla
    372     // vmul (stall 4 cycles)
    373     // vadd adds up to about 14 cycles.
    374     return TII->isFpMLxInstruction(Opcode);
    375   }
    376 
    377   return false;
    378 }
    379 
    380 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
    381                                             ARM_AM::ShiftOpc ShOpcVal,
    382                                             unsigned ShAmt) {
    383   if (!Subtarget->isCortexA9())
    384     return true;
    385   if (Shift.hasOneUse())
    386     return true;
    387   // R << 2 is free.
    388   return ShOpcVal == ARM_AM::lsl && ShAmt == 2;
    389 }
    390 
    391 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
    392                                               SDValue &BaseReg,
    393                                               SDValue &Opc,
    394                                               bool CheckProfitability) {
    395   if (DisableShifterOp)
    396     return false;
    397 
    398   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    399 
    400   // Don't match base register only case. That is matched to a separate
    401   // lower complexity pattern with explicit register operand.
    402   if (ShOpcVal == ARM_AM::no_shift) return false;
    403 
    404   BaseReg = N.getOperand(0);
    405   unsigned ShImmVal = 0;
    406   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    407   if (!RHS) return false;
    408   ShImmVal = RHS->getZExtValue() & 31;
    409   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    410                                   MVT::i32);
    411   return true;
    412 }
    413 
    414 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
    415                                               SDValue &BaseReg,
    416                                               SDValue &ShReg,
    417                                               SDValue &Opc,
    418                                               bool CheckProfitability) {
    419   if (DisableShifterOp)
    420     return false;
    421 
    422   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    423 
    424   // Don't match base register only case. That is matched to a separate
    425   // lower complexity pattern with explicit register operand.
    426   if (ShOpcVal == ARM_AM::no_shift) return false;
    427 
    428   BaseReg = N.getOperand(0);
    429   unsigned ShImmVal = 0;
    430   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    431   if (RHS) return false;
    432 
    433   ShReg = N.getOperand(1);
    434   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
    435     return false;
    436   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    437                                   MVT::i32);
    438   return true;
    439 }
    440 
    441 
    442 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
    443                                           SDValue &Base,
    444                                           SDValue &OffImm) {
    445   // Match simple R + imm12 operands.
    446 
    447   // Base only.
    448   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    449       !CurDAG->isBaseWithConstantOffset(N)) {
    450     if (N.getOpcode() == ISD::FrameIndex) {
    451       // Match frame index.
    452       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    453       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    454       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    455       return true;
    456     }
    457 
    458     if (N.getOpcode() == ARMISD::Wrapper &&
    459         !(Subtarget->useMovt() &&
    460                      N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    461       Base = N.getOperand(0);
    462     } else
    463       Base = N;
    464     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    465     return true;
    466   }
    467 
    468   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    469     int RHSC = (int)RHS->getZExtValue();
    470     if (N.getOpcode() == ISD::SUB)
    471       RHSC = -RHSC;
    472 
    473     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
    474       Base   = N.getOperand(0);
    475       if (Base.getOpcode() == ISD::FrameIndex) {
    476         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    477         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    478       }
    479       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
    480       return true;
    481     }
    482   }
    483 
    484   // Base only.
    485   Base = N;
    486   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    487   return true;
    488 }
    489 
    490 
    491 
    492 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
    493                                       SDValue &Opc) {
    494   if (N.getOpcode() == ISD::MUL &&
    495       (!Subtarget->isCortexA9() || N.hasOneUse())) {
    496     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    497       // X * [3,5,9] -> X + X * [2,4,8] etc.
    498       int RHSC = (int)RHS->getZExtValue();
    499       if (RHSC & 1) {
    500         RHSC = RHSC & ~1;
    501         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    502         if (RHSC < 0) {
    503           AddSub = ARM_AM::sub;
    504           RHSC = - RHSC;
    505         }
    506         if (isPowerOf2_32(RHSC)) {
    507           unsigned ShAmt = Log2_32(RHSC);
    508           Base = Offset = N.getOperand(0);
    509           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    510                                                             ARM_AM::lsl),
    511                                           MVT::i32);
    512           return true;
    513         }
    514       }
    515     }
    516   }
    517 
    518   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    519       // ISD::OR that is equivalent to an ISD::ADD.
    520       !CurDAG->isBaseWithConstantOffset(N))
    521     return false;
    522 
    523   // Leave simple R +/- imm12 operands for LDRi12
    524   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
    525     int RHSC;
    526     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    527                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
    528       return false;
    529   }
    530 
    531   // Otherwise this is R +/- [possibly shifted] R.
    532   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
    533   ARM_AM::ShiftOpc ShOpcVal =
    534     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    535   unsigned ShAmt = 0;
    536 
    537   Base   = N.getOperand(0);
    538   Offset = N.getOperand(1);
    539 
    540   if (ShOpcVal != ARM_AM::no_shift) {
    541     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    542     // it.
    543     if (ConstantSDNode *Sh =
    544            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    545       ShAmt = Sh->getZExtValue();
    546       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    547         Offset = N.getOperand(1).getOperand(0);
    548       else {
    549         ShAmt = 0;
    550         ShOpcVal = ARM_AM::no_shift;
    551       }
    552     } else {
    553       ShOpcVal = ARM_AM::no_shift;
    554     }
    555   }
    556 
    557   // Try matching (R shl C) + (R).
    558   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    559       !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
    560     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    561     if (ShOpcVal != ARM_AM::no_shift) {
    562       // Check to see if the RHS of the shift is a constant, if not, we can't
    563       // fold it.
    564       if (ConstantSDNode *Sh =
    565           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    566         ShAmt = Sh->getZExtValue();
    567         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    568           Offset = N.getOperand(0).getOperand(0);
    569           Base = N.getOperand(1);
    570         } else {
    571           ShAmt = 0;
    572           ShOpcVal = ARM_AM::no_shift;
    573         }
    574       } else {
    575         ShOpcVal = ARM_AM::no_shift;
    576       }
    577     }
    578   }
    579 
    580   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    581                                   MVT::i32);
    582   return true;
    583 }
    584 
    585 
    586 
    587 
    588 //-----
    589 
    590 AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
    591                                                      SDValue &Base,
    592                                                      SDValue &Offset,
    593                                                      SDValue &Opc) {
    594   if (N.getOpcode() == ISD::MUL &&
    595       (!Subtarget->isCortexA9() || N.hasOneUse())) {
    596     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    597       // X * [3,5,9] -> X + X * [2,4,8] etc.
    598       int RHSC = (int)RHS->getZExtValue();
    599       if (RHSC & 1) {
    600         RHSC = RHSC & ~1;
    601         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    602         if (RHSC < 0) {
    603           AddSub = ARM_AM::sub;
    604           RHSC = - RHSC;
    605         }
    606         if (isPowerOf2_32(RHSC)) {
    607           unsigned ShAmt = Log2_32(RHSC);
    608           Base = Offset = N.getOperand(0);
    609           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    610                                                             ARM_AM::lsl),
    611                                           MVT::i32);
    612           return AM2_SHOP;
    613         }
    614       }
    615     }
    616   }
    617 
    618   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    619       // ISD::OR that is equivalent to an ADD.
    620       !CurDAG->isBaseWithConstantOffset(N)) {
    621     Base = N;
    622     if (N.getOpcode() == ISD::FrameIndex) {
    623       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    624       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    625     } else if (N.getOpcode() == ARMISD::Wrapper &&
    626                !(Subtarget->useMovt() &&
    627                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    628       Base = N.getOperand(0);
    629     }
    630     Offset = CurDAG->getRegister(0, MVT::i32);
    631     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    632                                                       ARM_AM::no_shift),
    633                                     MVT::i32);
    634     return AM2_BASE;
    635   }
    636 
    637   // Match simple R +/- imm12 operands.
    638   if (N.getOpcode() != ISD::SUB) {
    639     int RHSC;
    640     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    641                                 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
    642       Base = N.getOperand(0);
    643       if (Base.getOpcode() == ISD::FrameIndex) {
    644         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    645         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    646       }
    647       Offset = CurDAG->getRegister(0, MVT::i32);
    648 
    649       ARM_AM::AddrOpc AddSub = ARM_AM::add;
    650       if (RHSC < 0) {
    651         AddSub = ARM_AM::sub;
    652         RHSC = - RHSC;
    653       }
    654       Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
    655                                                         ARM_AM::no_shift),
    656                                       MVT::i32);
    657       return AM2_BASE;
    658     }
    659   }
    660 
    661   if (Subtarget->isCortexA9() && !N.hasOneUse()) {
    662     // Compute R +/- (R << N) and reuse it.
    663     Base = N;
    664     Offset = CurDAG->getRegister(0, MVT::i32);
    665     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    666                                                       ARM_AM::no_shift),
    667                                     MVT::i32);
    668     return AM2_BASE;
    669   }
    670 
    671   // Otherwise this is R +/- [possibly shifted] R.
    672   ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
    673   ARM_AM::ShiftOpc ShOpcVal =
    674     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    675   unsigned ShAmt = 0;
    676 
    677   Base   = N.getOperand(0);
    678   Offset = N.getOperand(1);
    679 
    680   if (ShOpcVal != ARM_AM::no_shift) {
    681     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    682     // it.
    683     if (ConstantSDNode *Sh =
    684            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    685       ShAmt = Sh->getZExtValue();
    686       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    687         Offset = N.getOperand(1).getOperand(0);
    688       else {
    689         ShAmt = 0;
    690         ShOpcVal = ARM_AM::no_shift;
    691       }
    692     } else {
    693       ShOpcVal = ARM_AM::no_shift;
    694     }
    695   }
    696 
    697   // Try matching (R shl C) + (R).
    698   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    699       !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
    700     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    701     if (ShOpcVal != ARM_AM::no_shift) {
    702       // Check to see if the RHS of the shift is a constant, if not, we can't
    703       // fold it.
    704       if (ConstantSDNode *Sh =
    705           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    706         ShAmt = Sh->getZExtValue();
    707         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    708           Offset = N.getOperand(0).getOperand(0);
    709           Base = N.getOperand(1);
    710         } else {
    711           ShAmt = 0;
    712           ShOpcVal = ARM_AM::no_shift;
    713         }
    714       } else {
    715         ShOpcVal = ARM_AM::no_shift;
    716       }
    717     }
    718   }
    719 
    720   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    721                                   MVT::i32);
    722   return AM2_SHOP;
    723 }
    724 
    725 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    726                                             SDValue &Offset, SDValue &Opc) {
    727   unsigned Opcode = Op->getOpcode();
    728   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    729     ? cast<LoadSDNode>(Op)->getAddressingMode()
    730     : cast<StoreSDNode>(Op)->getAddressingMode();
    731   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    732     ? ARM_AM::add : ARM_AM::sub;
    733   int Val;
    734   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
    735     return false;
    736 
    737   Offset = N;
    738   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    739   unsigned ShAmt = 0;
    740   if (ShOpcVal != ARM_AM::no_shift) {
    741     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    742     // it.
    743     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    744       ShAmt = Sh->getZExtValue();
    745       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
    746         Offset = N.getOperand(0);
    747       else {
    748         ShAmt = 0;
    749         ShOpcVal = ARM_AM::no_shift;
    750       }
    751     } else {
    752       ShOpcVal = ARM_AM::no_shift;
    753     }
    754   }
    755 
    756   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    757                                   MVT::i32);
    758   return true;
    759 }
    760 
    761 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    762                                             SDValue &Offset, SDValue &Opc) {
    763   unsigned Opcode = Op->getOpcode();
    764   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    765     ? cast<LoadSDNode>(Op)->getAddressingMode()
    766     : cast<StoreSDNode>(Op)->getAddressingMode();
    767   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    768     ? ARM_AM::add : ARM_AM::sub;
    769   int Val;
    770   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    771     if (AddSub == ARM_AM::sub) Val *= -1;
    772     Offset = CurDAG->getRegister(0, MVT::i32);
    773     Opc = CurDAG->getTargetConstant(Val, MVT::i32);
    774     return true;
    775   }
    776 
    777   return false;
    778 }
    779 
    780 
    781 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    782                                             SDValue &Offset, SDValue &Opc) {
    783   unsigned Opcode = Op->getOpcode();
    784   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    785     ? cast<LoadSDNode>(Op)->getAddressingMode()
    786     : cast<StoreSDNode>(Op)->getAddressingMode();
    787   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    788     ? ARM_AM::add : ARM_AM::sub;
    789   int Val;
    790   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    791     Offset = CurDAG->getRegister(0, MVT::i32);
    792     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
    793                                                       ARM_AM::no_shift),
    794                                     MVT::i32);
    795     return true;
    796   }
    797 
    798   return false;
    799 }
    800 
    801 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
    802   Base = N;
    803   return true;
    804 }
    805 
    806 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
    807                                       SDValue &Base, SDValue &Offset,
    808                                       SDValue &Opc) {
    809   if (N.getOpcode() == ISD::SUB) {
    810     // X - C  is canonicalize to X + -C, no need to handle it here.
    811     Base = N.getOperand(0);
    812     Offset = N.getOperand(1);
    813     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
    814     return true;
    815   }
    816 
    817   if (!CurDAG->isBaseWithConstantOffset(N)) {
    818     Base = N;
    819     if (N.getOpcode() == ISD::FrameIndex) {
    820       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    821       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    822     }
    823     Offset = CurDAG->getRegister(0, MVT::i32);
    824     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
    825     return true;
    826   }
    827 
    828   // If the RHS is +/- imm8, fold into addr mode.
    829   int RHSC;
    830   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    831                               -256 + 1, 256, RHSC)) { // 8 bits.
    832     Base = N.getOperand(0);
    833     if (Base.getOpcode() == ISD::FrameIndex) {
    834       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    835       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    836     }
    837     Offset = CurDAG->getRegister(0, MVT::i32);
    838 
    839     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    840     if (RHSC < 0) {
    841       AddSub = ARM_AM::sub;
    842       RHSC = -RHSC;
    843     }
    844     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
    845     return true;
    846   }
    847 
    848   Base = N.getOperand(0);
    849   Offset = N.getOperand(1);
    850   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
    851   return true;
    852 }
    853 
    854 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
    855                                             SDValue &Offset, SDValue &Opc) {
    856   unsigned Opcode = Op->getOpcode();
    857   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    858     ? cast<LoadSDNode>(Op)->getAddressingMode()
    859     : cast<StoreSDNode>(Op)->getAddressingMode();
    860   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    861     ? ARM_AM::add : ARM_AM::sub;
    862   int Val;
    863   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
    864     Offset = CurDAG->getRegister(0, MVT::i32);
    865     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
    866     return true;
    867   }
    868 
    869   Offset = N;
    870   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
    871   return true;
    872 }
    873 
    874 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
    875                                       SDValue &Base, SDValue &Offset) {
    876   if (!CurDAG->isBaseWithConstantOffset(N)) {
    877     Base = N;
    878     if (N.getOpcode() == ISD::FrameIndex) {
    879       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    880       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    881     } else if (N.getOpcode() == ARMISD::Wrapper &&
    882                !(Subtarget->useMovt() &&
    883                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    884       Base = N.getOperand(0);
    885     }
    886     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
    887                                        MVT::i32);
    888     return true;
    889   }
    890 
    891   // If the RHS is +/- imm8, fold into addr mode.
    892   int RHSC;
    893   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
    894                               -256 + 1, 256, RHSC)) {
    895     Base = N.getOperand(0);
    896     if (Base.getOpcode() == ISD::FrameIndex) {
    897       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    898       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    899     }
    900 
    901     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    902     if (RHSC < 0) {
    903       AddSub = ARM_AM::sub;
    904       RHSC = -RHSC;
    905     }
    906     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
    907                                        MVT::i32);
    908     return true;
    909   }
    910 
    911   Base = N;
    912   Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
    913                                      MVT::i32);
    914   return true;
    915 }
    916 
    917 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
    918                                       SDValue &Align) {
    919   Addr = N;
    920 
    921   unsigned Alignment = 0;
    922   if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
    923     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
    924     // The maximum alignment is equal to the memory size being referenced.
    925     unsigned LSNAlign = LSN->getAlignment();
    926     unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
    927     if (LSNAlign >= MemSize && MemSize > 1)
    928       Alignment = MemSize;
    929   } else {
    930     // All other uses of addrmode6 are for intrinsics.  For now just record
    931     // the raw alignment value; it will be refined later based on the legal
    932     // alignment operands for the intrinsic.
    933     Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
    934   }
    935 
    936   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
    937   return true;
    938 }
    939 
    940 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
    941                                             SDValue &Offset) {
    942   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
    943   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
    944   if (AM != ISD::POST_INC)
    945     return false;
    946   Offset = N;
    947   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
    948     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
    949       Offset = CurDAG->getRegister(0, MVT::i32);
    950   }
    951   return true;
    952 }
    953 
    954 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
    955                                        SDValue &Offset, SDValue &Label) {
    956   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
    957     Offset = N.getOperand(0);
    958     SDValue N1 = N.getOperand(1);
    959     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
    960                                       MVT::i32);
    961     return true;
    962   }
    963 
    964   return false;
    965 }
    966 
    967 
    968 //===----------------------------------------------------------------------===//
    969 //                         Thumb Addressing Modes
    970 //===----------------------------------------------------------------------===//
    971 
    972 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
    973                                             SDValue &Base, SDValue &Offset){
    974   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
    975     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
    976     if (!NC || !NC->isNullValue())
    977       return false;
    978 
    979     Base = Offset = N;
    980     return true;
    981   }
    982 
    983   Base = N.getOperand(0);
    984   Offset = N.getOperand(1);
    985   return true;
    986 }
    987 
    988 bool
    989 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
    990                                        SDValue &Offset, unsigned Scale) {
    991   if (Scale == 4) {
    992     SDValue TmpBase, TmpOffImm;
    993     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
    994       return false;  // We want to select tLDRspi / tSTRspi instead.
    995 
    996     if (N.getOpcode() == ARMISD::Wrapper &&
    997         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
    998       return false;  // We want to select tLDRpci instead.
    999   }
   1000 
   1001   if (!CurDAG->isBaseWithConstantOffset(N))
   1002     return false;
   1003 
   1004   // Thumb does not have [sp, r] address mode.
   1005   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1006   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1007   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1008       (RHSR && RHSR->getReg() == ARM::SP))
   1009     return false;
   1010 
   1011   // FIXME: Why do we explicitly check for a match here and then return false?
   1012   // Presumably to allow something else to match, but shouldn't this be
   1013   // documented?
   1014   int RHSC;
   1015   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
   1016     return false;
   1017 
   1018   Base = N.getOperand(0);
   1019   Offset = N.getOperand(1);
   1020   return true;
   1021 }
   1022 
   1023 bool
   1024 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
   1025                                           SDValue &Base,
   1026                                           SDValue &Offset) {
   1027   return SelectThumbAddrModeRI(N, Base, Offset, 1);
   1028 }
   1029 
   1030 bool
   1031 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
   1032                                           SDValue &Base,
   1033                                           SDValue &Offset) {
   1034   return SelectThumbAddrModeRI(N, Base, Offset, 2);
   1035 }
   1036 
   1037 bool
   1038 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
   1039                                           SDValue &Base,
   1040                                           SDValue &Offset) {
   1041   return SelectThumbAddrModeRI(N, Base, Offset, 4);
   1042 }
   1043 
   1044 bool
   1045 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
   1046                                           SDValue &Base, SDValue &OffImm) {
   1047   if (Scale == 4) {
   1048     SDValue TmpBase, TmpOffImm;
   1049     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
   1050       return false;  // We want to select tLDRspi / tSTRspi instead.
   1051 
   1052     if (N.getOpcode() == ARMISD::Wrapper &&
   1053         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
   1054       return false;  // We want to select tLDRpci instead.
   1055   }
   1056 
   1057   if (!CurDAG->isBaseWithConstantOffset(N)) {
   1058     if (N.getOpcode() == ARMISD::Wrapper &&
   1059         !(Subtarget->useMovt() &&
   1060           N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1061       Base = N.getOperand(0);
   1062     } else {
   1063       Base = N;
   1064     }
   1065 
   1066     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1067     return true;
   1068   }
   1069 
   1070   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1071   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1072   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1073       (RHSR && RHSR->getReg() == ARM::SP)) {
   1074     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
   1075     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1076     unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
   1077     unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
   1078 
   1079     // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
   1080     if (LHSC != 0 || RHSC != 0) return false;
   1081 
   1082     Base = N;
   1083     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1084     return true;
   1085   }
   1086 
   1087   // If the RHS is + imm5 * scale, fold into addr mode.
   1088   int RHSC;
   1089   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
   1090     Base = N.getOperand(0);
   1091     OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1092     return true;
   1093   }
   1094 
   1095   Base = N.getOperand(0);
   1096   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1097   return true;
   1098 }
   1099 
   1100 bool
   1101 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
   1102                                            SDValue &OffImm) {
   1103   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
   1104 }
   1105 
   1106 bool
   1107 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
   1108                                            SDValue &OffImm) {
   1109   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
   1110 }
   1111 
   1112 bool
   1113 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
   1114                                            SDValue &OffImm) {
   1115   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
   1116 }
   1117 
   1118 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
   1119                                             SDValue &Base, SDValue &OffImm) {
   1120   if (N.getOpcode() == ISD::FrameIndex) {
   1121     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1122     Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1123     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1124     return true;
   1125   }
   1126 
   1127   if (!CurDAG->isBaseWithConstantOffset(N))
   1128     return false;
   1129 
   1130   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1131   if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
   1132       (LHSR && LHSR->getReg() == ARM::SP)) {
   1133     // If the RHS is + imm8 * scale, fold into addr mode.
   1134     int RHSC;
   1135     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
   1136       Base = N.getOperand(0);
   1137       if (Base.getOpcode() == ISD::FrameIndex) {
   1138         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1139         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1140       }
   1141       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1142       return true;
   1143     }
   1144   }
   1145 
   1146   return false;
   1147 }
   1148 
   1149 
   1150 //===----------------------------------------------------------------------===//
   1151 //                        Thumb 2 Addressing Modes
   1152 //===----------------------------------------------------------------------===//
   1153 
   1154 
   1155 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
   1156                                                 SDValue &Opc) {
   1157   if (DisableShifterOp)
   1158     return false;
   1159 
   1160   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
   1161 
   1162   // Don't match base register only case. That is matched to a separate
   1163   // lower complexity pattern with explicit register operand.
   1164   if (ShOpcVal == ARM_AM::no_shift) return false;
   1165 
   1166   BaseReg = N.getOperand(0);
   1167   unsigned ShImmVal = 0;
   1168   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1169     ShImmVal = RHS->getZExtValue() & 31;
   1170     Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
   1171     return true;
   1172   }
   1173 
   1174   return false;
   1175 }
   1176 
   1177 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
   1178                                             SDValue &Base, SDValue &OffImm) {
   1179   // Match simple R + imm12 operands.
   1180 
   1181   // Base only.
   1182   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1183       !CurDAG->isBaseWithConstantOffset(N)) {
   1184     if (N.getOpcode() == ISD::FrameIndex) {
   1185       // Match frame index.
   1186       int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1187       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1188       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1189       return true;
   1190     }
   1191 
   1192     if (N.getOpcode() == ARMISD::Wrapper &&
   1193                !(Subtarget->useMovt() &&
   1194                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1195       Base = N.getOperand(0);
   1196       if (Base.getOpcode() == ISD::TargetConstantPool)
   1197         return false;  // We want to select t2LDRpci instead.
   1198     } else
   1199       Base = N;
   1200     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1201     return true;
   1202   }
   1203 
   1204   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1205     if (SelectT2AddrModeImm8(N, Base, OffImm))
   1206       // Let t2LDRi8 handle (R - imm8).
   1207       return false;
   1208 
   1209     int RHSC = (int)RHS->getZExtValue();
   1210     if (N.getOpcode() == ISD::SUB)
   1211       RHSC = -RHSC;
   1212 
   1213     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
   1214       Base   = N.getOperand(0);
   1215       if (Base.getOpcode() == ISD::FrameIndex) {
   1216         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1217         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1218       }
   1219       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1220       return true;
   1221     }
   1222   }
   1223 
   1224   // Base only.
   1225   Base = N;
   1226   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1227   return true;
   1228 }
   1229 
   1230 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
   1231                                            SDValue &Base, SDValue &OffImm) {
   1232   // Match simple R - imm8 operands.
   1233   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1234       !CurDAG->isBaseWithConstantOffset(N))
   1235     return false;
   1236 
   1237   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1238     int RHSC = (int)RHS->getSExtValue();
   1239     if (N.getOpcode() == ISD::SUB)
   1240       RHSC = -RHSC;
   1241 
   1242     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
   1243       Base = N.getOperand(0);
   1244       if (Base.getOpcode() == ISD::FrameIndex) {
   1245         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1246         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1247       }
   1248       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1249       return true;
   1250     }
   1251   }
   1252 
   1253   return false;
   1254 }
   1255 
   1256 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
   1257                                                  SDValue &OffImm){
   1258   unsigned Opcode = Op->getOpcode();
   1259   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
   1260     ? cast<LoadSDNode>(Op)->getAddressingMode()
   1261     : cast<StoreSDNode>(Op)->getAddressingMode();
   1262   int RHSC;
   1263   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
   1264     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
   1265       ? CurDAG->getTargetConstant(RHSC, MVT::i32)
   1266       : CurDAG->getTargetConstant(-RHSC, MVT::i32);
   1267     return true;
   1268   }
   1269 
   1270   return false;
   1271 }
   1272 
   1273 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
   1274                                             SDValue &Base,
   1275                                             SDValue &OffReg, SDValue &ShImm) {
   1276   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
   1277   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
   1278     return false;
   1279 
   1280   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
   1281   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1282     int RHSC = (int)RHS->getZExtValue();
   1283     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
   1284       return false;
   1285     else if (RHSC < 0 && RHSC >= -255) // 8 bits
   1286       return false;
   1287   }
   1288 
   1289   // Look for (R + R) or (R + (R << [1,2,3])).
   1290   unsigned ShAmt = 0;
   1291   Base   = N.getOperand(0);
   1292   OffReg = N.getOperand(1);
   1293 
   1294   // Swap if it is ((R << c) + R).
   1295   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
   1296   if (ShOpcVal != ARM_AM::lsl) {
   1297     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
   1298     if (ShOpcVal == ARM_AM::lsl)
   1299       std::swap(Base, OffReg);
   1300   }
   1301 
   1302   if (ShOpcVal == ARM_AM::lsl) {
   1303     // Check to see if the RHS of the shift is a constant, if not, we can't fold
   1304     // it.
   1305     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
   1306       ShAmt = Sh->getZExtValue();
   1307       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
   1308         OffReg = OffReg.getOperand(0);
   1309       else {
   1310         ShAmt = 0;
   1311         ShOpcVal = ARM_AM::no_shift;
   1312       }
   1313     } else {
   1314       ShOpcVal = ARM_AM::no_shift;
   1315     }
   1316   }
   1317 
   1318   ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
   1319 
   1320   return true;
   1321 }
   1322 
   1323 //===--------------------------------------------------------------------===//
   1324 
   1325 /// getAL - Returns a ARMCC::AL immediate node.
   1326 static inline SDValue getAL(SelectionDAG *CurDAG) {
   1327   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
   1328 }
   1329 
   1330 SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
   1331   LoadSDNode *LD = cast<LoadSDNode>(N);
   1332   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1333   if (AM == ISD::UNINDEXED)
   1334     return NULL;
   1335 
   1336   EVT LoadedVT = LD->getMemoryVT();
   1337   SDValue Offset, AMOpc;
   1338   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1339   unsigned Opcode = 0;
   1340   bool Match = false;
   1341   if (LoadedVT == MVT::i32 && isPre &&
   1342       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1343     Opcode = ARM::LDR_PRE_IMM;
   1344     Match = true;
   1345   } else if (LoadedVT == MVT::i32 && !isPre &&
   1346       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1347     Opcode = ARM::LDR_POST_IMM;
   1348     Match = true;
   1349   } else if (LoadedVT == MVT::i32 &&
   1350       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1351     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
   1352     Match = true;
   1353 
   1354   } else if (LoadedVT == MVT::i16 &&
   1355              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1356     Match = true;
   1357     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
   1358       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
   1359       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
   1360   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
   1361     if (LD->getExtensionType() == ISD::SEXTLOAD) {
   1362       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1363         Match = true;
   1364         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
   1365       }
   1366     } else {
   1367       if (isPre &&
   1368           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1369         Match = true;
   1370         Opcode = ARM::LDRB_PRE_IMM;
   1371       } else if (!isPre &&
   1372                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1373         Match = true;
   1374         Opcode = ARM::LDRB_POST_IMM;
   1375       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1376         Match = true;
   1377         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
   1378       }
   1379     }
   1380   }
   1381 
   1382   if (Match) {
   1383     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
   1384       SDValue Chain = LD->getChain();
   1385       SDValue Base = LD->getBasePtr();
   1386       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
   1387                        CurDAG->getRegister(0, MVT::i32), Chain };
   1388       return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
   1389                                     MVT::i32, MVT::Other, Ops, 5);
   1390     } else {
   1391       SDValue Chain = LD->getChain();
   1392       SDValue Base = LD->getBasePtr();
   1393       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
   1394                        CurDAG->getRegister(0, MVT::i32), Chain };
   1395       return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
   1396                                     MVT::i32, MVT::Other, Ops, 6);
   1397     }
   1398   }
   1399 
   1400   return NULL;
   1401 }
   1402 
   1403 SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
   1404   LoadSDNode *LD = cast<LoadSDNode>(N);
   1405   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1406   if (AM == ISD::UNINDEXED)
   1407     return NULL;
   1408 
   1409   EVT LoadedVT = LD->getMemoryVT();
   1410   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
   1411   SDValue Offset;
   1412   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1413   unsigned Opcode = 0;
   1414   bool Match = false;
   1415   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
   1416     switch (LoadedVT.getSimpleVT().SimpleTy) {
   1417     case MVT::i32:
   1418       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
   1419       break;
   1420     case MVT::i16:
   1421       if (isSExtLd)
   1422         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
   1423       else
   1424         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
   1425       break;
   1426     case MVT::i8:
   1427     case MVT::i1:
   1428       if (isSExtLd)
   1429         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
   1430       else
   1431         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
   1432       break;
   1433     default:
   1434       return NULL;
   1435     }
   1436     Match = true;
   1437   }
   1438 
   1439   if (Match) {
   1440     SDValue Chain = LD->getChain();
   1441     SDValue Base = LD->getBasePtr();
   1442     SDValue Ops[]= { Base, Offset, getAL(CurDAG),
   1443                      CurDAG->getRegister(0, MVT::i32), Chain };
   1444     return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
   1445                                   MVT::Other, Ops, 5);
   1446   }
   1447 
   1448   return NULL;
   1449 }
   1450 
   1451 /// PairSRegs - Form a D register from a pair of S registers.
   1452 ///
   1453 SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) {
   1454   DebugLoc dl = V0.getNode()->getDebugLoc();
   1455   SDValue RegClass =
   1456     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
   1457   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1458   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1459   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1460   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1461 }
   1462 
   1463 /// PairDRegs - Form a quad register from a pair of D registers.
   1464 ///
   1465 SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
   1466   DebugLoc dl = V0.getNode()->getDebugLoc();
   1467   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
   1468   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1469   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1470   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1471   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1472 }
   1473 
   1474 /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
   1475 ///
   1476 SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
   1477   DebugLoc dl = V0.getNode()->getDebugLoc();
   1478   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1479   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1480   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1481   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1482   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1483 }
   1484 
   1485 /// QuadSRegs - Form 4 consecutive S registers.
   1486 ///
   1487 SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1,
   1488                                    SDValue V2, SDValue V3) {
   1489   DebugLoc dl = V0.getNode()->getDebugLoc();
   1490   SDValue RegClass =
   1491     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
   1492   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1493   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1494   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
   1495   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
   1496   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1497                                     V2, SubReg2, V3, SubReg3 };
   1498   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1499 }
   1500 
   1501 /// QuadDRegs - Form 4 consecutive D registers.
   1502 ///
   1503 SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
   1504                                    SDValue V2, SDValue V3) {
   1505   DebugLoc dl = V0.getNode()->getDebugLoc();
   1506   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1507   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1508   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1509   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
   1510   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
   1511   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1512                                     V2, SubReg2, V3, SubReg3 };
   1513   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1514 }
   1515 
   1516 /// QuadQRegs - Form 4 consecutive Q registers.
   1517 ///
   1518 SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
   1519                                    SDValue V2, SDValue V3) {
   1520   DebugLoc dl = V0.getNode()->getDebugLoc();
   1521   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
   1522   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1523   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1524   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
   1525   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
   1526   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1527                                     V2, SubReg2, V3, SubReg3 };
   1528   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1529 }
   1530 
   1531 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
   1532 /// of a NEON VLD or VST instruction.  The supported values depend on the
   1533 /// number of registers being loaded.
   1534 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
   1535                                        bool is64BitVector) {
   1536   unsigned NumRegs = NumVecs;
   1537   if (!is64BitVector && NumVecs < 3)
   1538     NumRegs *= 2;
   1539 
   1540   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1541   if (Alignment >= 32 && NumRegs == 4)
   1542     Alignment = 32;
   1543   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
   1544     Alignment = 16;
   1545   else if (Alignment >= 8)
   1546     Alignment = 8;
   1547   else
   1548     Alignment = 0;
   1549 
   1550   return CurDAG->getTargetConstant(Alignment, MVT::i32);
   1551 }
   1552 
   1553 // Get the register stride update opcode of a VLD/VST instruction that
   1554 // is otherwise equivalent to the given fixed stride updating instruction.
   1555 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
   1556   switch (Opc) {
   1557   default: break;
   1558   case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
   1559   case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
   1560   case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
   1561   case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
   1562   case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
   1563   case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
   1564   case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
   1565   case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
   1566 
   1567   case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
   1568   case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
   1569   case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
   1570   case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
   1571   case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
   1572   case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
   1573   case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
   1574   case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
   1575   case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
   1576   case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
   1577 
   1578   case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
   1579   case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
   1580   case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
   1581   case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
   1582   case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
   1583   case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
   1584 
   1585   case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
   1586   case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
   1587   case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
   1588   case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
   1589   case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
   1590   case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
   1591 
   1592   case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
   1593   case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
   1594   case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
   1595   }
   1596   return Opc; // If not one we handle, return it unchanged.
   1597 }
   1598 
   1599 SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
   1600                                    unsigned *DOpcodes, unsigned *QOpcodes0,
   1601                                    unsigned *QOpcodes1) {
   1602   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
   1603   DebugLoc dl = N->getDebugLoc();
   1604 
   1605   SDValue MemAddr, Align;
   1606   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1607   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1608     return NULL;
   1609 
   1610   SDValue Chain = N->getOperand(0);
   1611   EVT VT = N->getValueType(0);
   1612   bool is64BitVector = VT.is64BitVector();
   1613   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1614 
   1615   unsigned OpcodeIndex;
   1616   switch (VT.getSimpleVT().SimpleTy) {
   1617   default: llvm_unreachable("unhandled vld type");
   1618     // Double-register operations:
   1619   case MVT::v8i8:  OpcodeIndex = 0; break;
   1620   case MVT::v4i16: OpcodeIndex = 1; break;
   1621   case MVT::v2f32:
   1622   case MVT::v2i32: OpcodeIndex = 2; break;
   1623   case MVT::v1i64: OpcodeIndex = 3; break;
   1624     // Quad-register operations:
   1625   case MVT::v16i8: OpcodeIndex = 0; break;
   1626   case MVT::v8i16: OpcodeIndex = 1; break;
   1627   case MVT::v4f32:
   1628   case MVT::v4i32: OpcodeIndex = 2; break;
   1629   case MVT::v2i64: OpcodeIndex = 3;
   1630     assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
   1631     break;
   1632   }
   1633 
   1634   EVT ResTy;
   1635   if (NumVecs == 1)
   1636     ResTy = VT;
   1637   else {
   1638     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1639     if (!is64BitVector)
   1640       ResTyElts *= 2;
   1641     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
   1642   }
   1643   std::vector<EVT> ResTys;
   1644   ResTys.push_back(ResTy);
   1645   if (isUpdating)
   1646     ResTys.push_back(MVT::i32);
   1647   ResTys.push_back(MVT::Other);
   1648 
   1649   SDValue Pred = getAL(CurDAG);
   1650   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1651   SDNode *VLd;
   1652   SmallVector<SDValue, 7> Ops;
   1653 
   1654   // Double registers and VLD1/VLD2 quad registers are directly supported.
   1655   if (is64BitVector || NumVecs <= 2) {
   1656     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1657                     QOpcodes0[OpcodeIndex]);
   1658     Ops.push_back(MemAddr);
   1659     Ops.push_back(Align);
   1660     if (isUpdating) {
   1661       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1662       // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
   1663       // case entirely when the rest are updated to that form, too.
   1664       if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
   1665         Opc = getVLDSTRegisterUpdateOpcode(Opc);
   1666       // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
   1667       // check for that explicitly too. Horribly hacky, but temporary.
   1668       if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
   1669           !isa<ConstantSDNode>(Inc.getNode()))
   1670         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1671     }
   1672     Ops.push_back(Pred);
   1673     Ops.push_back(Reg0);
   1674     Ops.push_back(Chain);
   1675     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   1676 
   1677   } else {
   1678     // Otherwise, quad registers are loaded with two separate instructions,
   1679     // where one loads the even registers and the other loads the odd registers.
   1680     EVT AddrTy = MemAddr.getValueType();
   1681 
   1682     // Load the even subregs.  This is always an updating load, so that it
   1683     // provides the address to the second load for the odd subregs.
   1684     SDValue ImplDef =
   1685       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
   1686     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
   1687     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1688                                           ResTy, AddrTy, MVT::Other, OpsA, 7);
   1689     Chain = SDValue(VLdA, 2);
   1690 
   1691     // Load the odd subregs.
   1692     Ops.push_back(SDValue(VLdA, 1));
   1693     Ops.push_back(Align);
   1694     if (isUpdating) {
   1695       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1696       assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1697              "only constant post-increment update allowed for VLD3/4");
   1698       (void)Inc;
   1699       Ops.push_back(Reg0);
   1700     }
   1701     Ops.push_back(SDValue(VLdA, 0));
   1702     Ops.push_back(Pred);
   1703     Ops.push_back(Reg0);
   1704     Ops.push_back(Chain);
   1705     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
   1706                                  Ops.data(), Ops.size());
   1707   }
   1708 
   1709   // Transfer memoperands.
   1710   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1711   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1712   cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
   1713 
   1714   if (NumVecs == 1)
   1715     return VLd;
   1716 
   1717   // Extract out the subregisters.
   1718   SDValue SuperReg = SDValue(VLd, 0);
   1719   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   1720          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   1721   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
   1722   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   1723     ReplaceUses(SDValue(N, Vec),
   1724                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   1725   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
   1726   if (isUpdating)
   1727     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
   1728   return NULL;
   1729 }
   1730 
   1731 SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
   1732                                    unsigned *DOpcodes, unsigned *QOpcodes0,
   1733                                    unsigned *QOpcodes1) {
   1734   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
   1735   DebugLoc dl = N->getDebugLoc();
   1736 
   1737   SDValue MemAddr, Align;
   1738   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1739   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   1740   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1741     return NULL;
   1742 
   1743   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1744   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1745 
   1746   SDValue Chain = N->getOperand(0);
   1747   EVT VT = N->getOperand(Vec0Idx).getValueType();
   1748   bool is64BitVector = VT.is64BitVector();
   1749   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1750 
   1751   unsigned OpcodeIndex;
   1752   switch (VT.getSimpleVT().SimpleTy) {
   1753   default: llvm_unreachable("unhandled vst type");
   1754     // Double-register operations:
   1755   case MVT::v8i8:  OpcodeIndex = 0; break;
   1756   case MVT::v4i16: OpcodeIndex = 1; break;
   1757   case MVT::v2f32:
   1758   case MVT::v2i32: OpcodeIndex = 2; break;
   1759   case MVT::v1i64: OpcodeIndex = 3; break;
   1760     // Quad-register operations:
   1761   case MVT::v16i8: OpcodeIndex = 0; break;
   1762   case MVT::v8i16: OpcodeIndex = 1; break;
   1763   case MVT::v4f32:
   1764   case MVT::v4i32: OpcodeIndex = 2; break;
   1765   case MVT::v2i64: OpcodeIndex = 3;
   1766     assert(NumVecs == 1 && "v2i64 type only supported for VST1");
   1767     break;
   1768   }
   1769 
   1770   std::vector<EVT> ResTys;
   1771   if (isUpdating)
   1772     ResTys.push_back(MVT::i32);
   1773   ResTys.push_back(MVT::Other);
   1774 
   1775   SDValue Pred = getAL(CurDAG);
   1776   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1777   SmallVector<SDValue, 7> Ops;
   1778 
   1779   // Double registers and VST1/VST2 quad registers are directly supported.
   1780   if (is64BitVector || NumVecs <= 2) {
   1781     SDValue SrcReg;
   1782     if (NumVecs == 1) {
   1783       SrcReg = N->getOperand(Vec0Idx);
   1784     } else if (is64BitVector) {
   1785       // Form a REG_SEQUENCE to force register allocation.
   1786       SDValue V0 = N->getOperand(Vec0Idx + 0);
   1787       SDValue V1 = N->getOperand(Vec0Idx + 1);
   1788       if (NumVecs == 2)
   1789         SrcReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
   1790       else {
   1791         SDValue V2 = N->getOperand(Vec0Idx + 2);
   1792         // If it's a vst3, form a quad D-register and leave the last part as
   1793         // an undef.
   1794         SDValue V3 = (NumVecs == 3)
   1795           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
   1796           : N->getOperand(Vec0Idx + 3);
   1797         SrcReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   1798       }
   1799     } else {
   1800       // Form a QQ register.
   1801       SDValue Q0 = N->getOperand(Vec0Idx);
   1802       SDValue Q1 = N->getOperand(Vec0Idx + 1);
   1803       SrcReg = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
   1804     }
   1805 
   1806     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1807                     QOpcodes0[OpcodeIndex]);
   1808     Ops.push_back(MemAddr);
   1809     Ops.push_back(Align);
   1810     if (isUpdating) {
   1811       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1812       // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
   1813       // case entirely when the rest are updated to that form, too.
   1814       if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
   1815         Opc = getVLDSTRegisterUpdateOpcode(Opc);
   1816       // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
   1817       // check for that explicitly too. Horribly hacky, but temporary.
   1818       if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
   1819           !isa<ConstantSDNode>(Inc.getNode()))
   1820         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1821     }
   1822     Ops.push_back(SrcReg);
   1823     Ops.push_back(Pred);
   1824     Ops.push_back(Reg0);
   1825     Ops.push_back(Chain);
   1826     SDNode *VSt =
   1827       CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   1828 
   1829     // Transfer memoperands.
   1830     cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
   1831 
   1832     return VSt;
   1833   }
   1834 
   1835   // Otherwise, quad registers are stored with two separate instructions,
   1836   // where one stores the even registers and the other stores the odd registers.
   1837 
   1838   // Form the QQQQ REG_SEQUENCE.
   1839   SDValue V0 = N->getOperand(Vec0Idx + 0);
   1840   SDValue V1 = N->getOperand(Vec0Idx + 1);
   1841   SDValue V2 = N->getOperand(Vec0Idx + 2);
   1842   SDValue V3 = (NumVecs == 3)
   1843     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   1844     : N->getOperand(Vec0Idx + 3);
   1845   SDValue RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
   1846 
   1847   // Store the even D registers.  This is always an updating store, so that it
   1848   // provides the address to the second store for the odd subregs.
   1849   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
   1850   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1851                                         MemAddr.getValueType(),
   1852                                         MVT::Other, OpsA, 7);
   1853   cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
   1854   Chain = SDValue(VStA, 1);
   1855 
   1856   // Store the odd D registers.
   1857   Ops.push_back(SDValue(VStA, 0));
   1858   Ops.push_back(Align);
   1859   if (isUpdating) {
   1860     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1861     assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1862            "only constant post-increment update allowed for VST3/4");
   1863     (void)Inc;
   1864     Ops.push_back(Reg0);
   1865   }
   1866   Ops.push_back(RegSeq);
   1867   Ops.push_back(Pred);
   1868   Ops.push_back(Reg0);
   1869   Ops.push_back(Chain);
   1870   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
   1871                                         Ops.data(), Ops.size());
   1872   cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
   1873   return VStB;
   1874 }
   1875 
   1876 SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
   1877                                          bool isUpdating, unsigned NumVecs,
   1878                                          unsigned *DOpcodes,
   1879                                          unsigned *QOpcodes) {
   1880   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
   1881   DebugLoc dl = N->getDebugLoc();
   1882 
   1883   SDValue MemAddr, Align;
   1884   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1885   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   1886   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1887     return NULL;
   1888 
   1889   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1890   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1891 
   1892   SDValue Chain = N->getOperand(0);
   1893   unsigned Lane =
   1894     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
   1895   EVT VT = N->getOperand(Vec0Idx).getValueType();
   1896   bool is64BitVector = VT.is64BitVector();
   1897 
   1898   unsigned Alignment = 0;
   1899   if (NumVecs != 3) {
   1900     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1901     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   1902     if (Alignment > NumBytes)
   1903       Alignment = NumBytes;
   1904     if (Alignment < 8 && Alignment < NumBytes)
   1905       Alignment = 0;
   1906     // Alignment must be a power of two; make sure of that.
   1907     Alignment = (Alignment & -Alignment);
   1908     if (Alignment == 1)
   1909       Alignment = 0;
   1910   }
   1911   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   1912 
   1913   unsigned OpcodeIndex;
   1914   switch (VT.getSimpleVT().SimpleTy) {
   1915   default: llvm_unreachable("unhandled vld/vst lane type");
   1916     // Double-register operations:
   1917   case MVT::v8i8:  OpcodeIndex = 0; break;
   1918   case MVT::v4i16: OpcodeIndex = 1; break;
   1919   case MVT::v2f32:
   1920   case MVT::v2i32: OpcodeIndex = 2; break;
   1921     // Quad-register operations:
   1922   case MVT::v8i16: OpcodeIndex = 0; break;
   1923   case MVT::v4f32:
   1924   case MVT::v4i32: OpcodeIndex = 1; break;
   1925   }
   1926 
   1927   std::vector<EVT> ResTys;
   1928   if (IsLoad) {
   1929     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1930     if (!is64BitVector)
   1931       ResTyElts *= 2;
   1932     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
   1933                                       MVT::i64, ResTyElts));
   1934   }
   1935   if (isUpdating)
   1936     ResTys.push_back(MVT::i32);
   1937   ResTys.push_back(MVT::Other);
   1938 
   1939   SDValue Pred = getAL(CurDAG);
   1940   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1941 
   1942   SmallVector<SDValue, 8> Ops;
   1943   Ops.push_back(MemAddr);
   1944   Ops.push_back(Align);
   1945   if (isUpdating) {
   1946     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1947     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1948   }
   1949 
   1950   SDValue SuperReg;
   1951   SDValue V0 = N->getOperand(Vec0Idx + 0);
   1952   SDValue V1 = N->getOperand(Vec0Idx + 1);
   1953   if (NumVecs == 2) {
   1954     if (is64BitVector)
   1955       SuperReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
   1956     else
   1957       SuperReg = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
   1958   } else {
   1959     SDValue V2 = N->getOperand(Vec0Idx + 2);
   1960     SDValue V3 = (NumVecs == 3)
   1961       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   1962       : N->getOperand(Vec0Idx + 3);
   1963     if (is64BitVector)
   1964       SuperReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   1965     else
   1966       SuperReg = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
   1967   }
   1968   Ops.push_back(SuperReg);
   1969   Ops.push_back(getI32Imm(Lane));
   1970   Ops.push_back(Pred);
   1971   Ops.push_back(Reg0);
   1972   Ops.push_back(Chain);
   1973 
   1974   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1975                                   QOpcodes[OpcodeIndex]);
   1976   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys,
   1977                                          Ops.data(), Ops.size());
   1978   cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
   1979   if (!IsLoad)
   1980     return VLdLn;
   1981 
   1982   // Extract the subregisters.
   1983   SuperReg = SDValue(VLdLn, 0);
   1984   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   1985          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   1986   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
   1987   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   1988     ReplaceUses(SDValue(N, Vec),
   1989                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   1990   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
   1991   if (isUpdating)
   1992     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
   1993   return NULL;
   1994 }
   1995 
   1996 SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
   1997                                       unsigned NumVecs, unsigned *Opcodes) {
   1998   assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
   1999   DebugLoc dl = N->getDebugLoc();
   2000 
   2001   SDValue MemAddr, Align;
   2002   if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
   2003     return NULL;
   2004 
   2005   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2006   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   2007 
   2008   SDValue Chain = N->getOperand(0);
   2009   EVT VT = N->getValueType(0);
   2010 
   2011   unsigned Alignment = 0;
   2012   if (NumVecs != 3) {
   2013     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   2014     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   2015     if (Alignment > NumBytes)
   2016       Alignment = NumBytes;
   2017     if (Alignment < 8 && Alignment < NumBytes)
   2018       Alignment = 0;
   2019     // Alignment must be a power of two; make sure of that.
   2020     Alignment = (Alignment & -Alignment);
   2021     if (Alignment == 1)
   2022       Alignment = 0;
   2023   }
   2024   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   2025 
   2026   unsigned OpcodeIndex;
   2027   switch (VT.getSimpleVT().SimpleTy) {
   2028   default: llvm_unreachable("unhandled vld-dup type");
   2029   case MVT::v8i8:  OpcodeIndex = 0; break;
   2030   case MVT::v4i16: OpcodeIndex = 1; break;
   2031   case MVT::v2f32:
   2032   case MVT::v2i32: OpcodeIndex = 2; break;
   2033   }
   2034 
   2035   SDValue Pred = getAL(CurDAG);
   2036   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2037   SDValue SuperReg;
   2038   unsigned Opc = Opcodes[OpcodeIndex];
   2039   SmallVector<SDValue, 6> Ops;
   2040   Ops.push_back(MemAddr);
   2041   Ops.push_back(Align);
   2042   if (isUpdating) {
   2043     // fixed-stride update instructions don't have an explicit writeback
   2044     // operand. It's implicit in the opcode itself.
   2045     SDValue Inc = N->getOperand(2);
   2046     if (!isa<ConstantSDNode>(Inc.getNode()))
   2047       Ops.push_back(Inc);
   2048     // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
   2049     else if (NumVecs > 2)
   2050       Ops.push_back(Reg0);
   2051   }
   2052   Ops.push_back(Pred);
   2053   Ops.push_back(Reg0);
   2054   Ops.push_back(Chain);
   2055 
   2056   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   2057   std::vector<EVT> ResTys;
   2058   ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
   2059   if (isUpdating)
   2060     ResTys.push_back(MVT::i32);
   2061   ResTys.push_back(MVT::Other);
   2062   SDNode *VLdDup =
   2063     CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   2064   cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
   2065   SuperReg = SDValue(VLdDup, 0);
   2066 
   2067   // Extract the subregisters.
   2068   assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
   2069   unsigned SubIdx = ARM::dsub_0;
   2070   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   2071     ReplaceUses(SDValue(N, Vec),
   2072                 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
   2073   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
   2074   if (isUpdating)
   2075     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
   2076   return NULL;
   2077 }
   2078 
   2079 SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
   2080                                     unsigned Opc) {
   2081   assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
   2082   DebugLoc dl = N->getDebugLoc();
   2083   EVT VT = N->getValueType(0);
   2084   unsigned FirstTblReg = IsExt ? 2 : 1;
   2085 
   2086   // Form a REG_SEQUENCE to force register allocation.
   2087   SDValue RegSeq;
   2088   SDValue V0 = N->getOperand(FirstTblReg + 0);
   2089   SDValue V1 = N->getOperand(FirstTblReg + 1);
   2090   if (NumVecs == 2)
   2091     RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
   2092   else {
   2093     SDValue V2 = N->getOperand(FirstTblReg + 2);
   2094     // If it's a vtbl3, form a quad D-register and leave the last part as
   2095     // an undef.
   2096     SDValue V3 = (NumVecs == 3)
   2097       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   2098       : N->getOperand(FirstTblReg + 3);
   2099     RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   2100   }
   2101 
   2102   SmallVector<SDValue, 6> Ops;
   2103   if (IsExt)
   2104     Ops.push_back(N->getOperand(1));
   2105   Ops.push_back(RegSeq);
   2106   Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
   2107   Ops.push_back(getAL(CurDAG)); // predicate
   2108   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
   2109   return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
   2110 }
   2111 
   2112 SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
   2113                                                      bool isSigned) {
   2114   if (!Subtarget->hasV6T2Ops())
   2115     return NULL;
   2116 
   2117   unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
   2118     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
   2119 
   2120 
   2121   // For unsigned extracts, check for a shift right and mask
   2122   unsigned And_imm = 0;
   2123   if (N->getOpcode() == ISD::AND) {
   2124     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
   2125 
   2126       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
   2127       if (And_imm & (And_imm + 1))
   2128         return NULL;
   2129 
   2130       unsigned Srl_imm = 0;
   2131       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
   2132                                 Srl_imm)) {
   2133         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2134 
   2135         // Note: The width operand is encoded as width-1.
   2136         unsigned Width = CountTrailingOnes_32(And_imm) - 1;
   2137         unsigned LSB = Srl_imm;
   2138         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2139         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2140                           CurDAG->getTargetConstant(LSB, MVT::i32),
   2141                           CurDAG->getTargetConstant(Width, MVT::i32),
   2142           getAL(CurDAG), Reg0 };
   2143         return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2144       }
   2145     }
   2146     return NULL;
   2147   }
   2148 
   2149   // Otherwise, we're looking for a shift of a shift
   2150   unsigned Shl_imm = 0;
   2151   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
   2152     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
   2153     unsigned Srl_imm = 0;
   2154     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
   2155       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2156       // Note: The width operand is encoded as width-1.
   2157       unsigned Width = 32 - Srl_imm - 1;
   2158       int LSB = Srl_imm - Shl_imm;
   2159       if (LSB < 0)
   2160         return NULL;
   2161       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2162       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2163                         CurDAG->getTargetConstant(LSB, MVT::i32),
   2164                         CurDAG->getTargetConstant(Width, MVT::i32),
   2165                         getAL(CurDAG), Reg0 };
   2166       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2167     }
   2168   }
   2169   return NULL;
   2170 }
   2171 
   2172 SDNode *ARMDAGToDAGISel::
   2173 SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2174                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2175   SDValue CPTmp0;
   2176   SDValue CPTmp1;
   2177   if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
   2178     unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
   2179     unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
   2180     unsigned Opc = 0;
   2181     switch (SOShOp) {
   2182     case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
   2183     case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
   2184     case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
   2185     case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
   2186     default:
   2187       llvm_unreachable("Unknown so_reg opcode!");
   2188     }
   2189     SDValue SOShImm =
   2190       CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
   2191     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2192     SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
   2193     return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
   2194   }
   2195   return 0;
   2196 }
   2197 
   2198 SDNode *ARMDAGToDAGISel::
   2199 SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2200                      ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2201   SDValue CPTmp0;
   2202   SDValue CPTmp1;
   2203   SDValue CPTmp2;
   2204   if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
   2205     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2206     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
   2207     return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
   2208   }
   2209 
   2210   if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
   2211     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2212     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
   2213     return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
   2214   }
   2215   return 0;
   2216 }
   2217 
   2218 SDNode *ARMDAGToDAGISel::
   2219 SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2220                   ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2221   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2222   if (!T)
   2223     return 0;
   2224 
   2225   unsigned Opc = 0;
   2226   unsigned TrueImm = T->getZExtValue();
   2227   if (is_t2_so_imm(TrueImm)) {
   2228     Opc = ARM::t2MOVCCi;
   2229   } else if (TrueImm <= 0xffff) {
   2230     Opc = ARM::t2MOVCCi16;
   2231   } else if (is_t2_so_imm_not(TrueImm)) {
   2232     TrueImm = ~TrueImm;
   2233     Opc = ARM::t2MVNCCi;
   2234   } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
   2235     // Large immediate.
   2236     Opc = ARM::t2MOVCCi32imm;
   2237   }
   2238 
   2239   if (Opc) {
   2240     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2241     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2242     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2243     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2244   }
   2245 
   2246   return 0;
   2247 }
   2248 
   2249 SDNode *ARMDAGToDAGISel::
   2250 SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2251                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2252   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2253   if (!T)
   2254     return 0;
   2255 
   2256   unsigned Opc = 0;
   2257   unsigned TrueImm = T->getZExtValue();
   2258   bool isSoImm = is_so_imm(TrueImm);
   2259   if (isSoImm) {
   2260     Opc = ARM::MOVCCi;
   2261   } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
   2262     Opc = ARM::MOVCCi16;
   2263   } else if (is_so_imm_not(TrueImm)) {
   2264     TrueImm = ~TrueImm;
   2265     Opc = ARM::MVNCCi;
   2266   } else if (TrueVal.getNode()->hasOneUse() &&
   2267              (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
   2268     // Large immediate.
   2269     Opc = ARM::MOVCCi32imm;
   2270   }
   2271 
   2272   if (Opc) {
   2273     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2274     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2275     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2276     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2277   }
   2278 
   2279   return 0;
   2280 }
   2281 
   2282 SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
   2283   EVT VT = N->getValueType(0);
   2284   SDValue FalseVal = N->getOperand(0);
   2285   SDValue TrueVal  = N->getOperand(1);
   2286   SDValue CC = N->getOperand(2);
   2287   SDValue CCR = N->getOperand(3);
   2288   SDValue InFlag = N->getOperand(4);
   2289   assert(CC.getOpcode() == ISD::Constant);
   2290   assert(CCR.getOpcode() == ISD::Register);
   2291   ARMCC::CondCodes CCVal =
   2292     (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
   2293 
   2294   if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
   2295     // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2296     // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2297     // Pattern complexity = 18  cost = 1  size = 0
   2298     if (Subtarget->isThumb()) {
   2299       SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
   2300                                         CCVal, CCR, InFlag);
   2301       if (!Res)
   2302         Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
   2303                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2304       if (Res)
   2305         return Res;
   2306     } else {
   2307       SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
   2308                                          CCVal, CCR, InFlag);
   2309       if (!Res)
   2310         Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
   2311                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2312       if (Res)
   2313         return Res;
   2314     }
   2315 
   2316     // Pattern: (ARMcmov:i32 GPR:i32:$false,
   2317     //             (imm:i32)<<P:Pred_so_imm>>:$true,
   2318     //             (imm:i32):$cc)
   2319     // Emits: (MOVCCi:i32 GPR:i32:$false,
   2320     //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
   2321     // Pattern complexity = 10  cost = 1  size = 0
   2322     if (Subtarget->isThumb()) {
   2323       SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
   2324                                         CCVal, CCR, InFlag);
   2325       if (!Res)
   2326         Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
   2327                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2328       if (Res)
   2329         return Res;
   2330     } else {
   2331       SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
   2332                                          CCVal, CCR, InFlag);
   2333       if (!Res)
   2334         Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
   2335                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2336       if (Res)
   2337         return Res;
   2338     }
   2339   }
   2340 
   2341   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2342   // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2343   // Pattern complexity = 6  cost = 1  size = 0
   2344   //
   2345   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2346   // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2347   // Pattern complexity = 6  cost = 11  size = 0
   2348   //
   2349   // Also VMOVScc and VMOVDcc.
   2350   SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2351   SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
   2352   unsigned Opc = 0;
   2353   switch (VT.getSimpleVT().SimpleTy) {
   2354   default: llvm_unreachable("Illegal conditional move type!");
   2355   case MVT::i32:
   2356     Opc = Subtarget->isThumb()
   2357       ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
   2358       : ARM::MOVCCr;
   2359     break;
   2360   case MVT::f32:
   2361     Opc = ARM::VMOVScc;
   2362     break;
   2363   case MVT::f64:
   2364     Opc = ARM::VMOVDcc;
   2365     break;
   2366   }
   2367   return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
   2368 }
   2369 
   2370 SDNode *ARMDAGToDAGISel::SelectConditionalOp(SDNode *N) {
   2371   SDValue FalseVal = N->getOperand(0);
   2372   SDValue TrueVal  = N->getOperand(1);
   2373   ARMCC::CondCodes CCVal =
   2374     (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   2375   SDValue CCR = N->getOperand(3);
   2376   assert(CCR.getOpcode() == ISD::Register);
   2377   SDValue InFlag = N->getOperand(4);
   2378   SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2379   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2380 
   2381   if (Subtarget->isThumb()) {
   2382     SDValue CPTmp0;
   2383     SDValue CPTmp1;
   2384     if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
   2385       unsigned Opc;
   2386       switch (N->getOpcode()) {
   2387       default: llvm_unreachable("Unexpected node");
   2388       case ARMISD::CAND: Opc = ARM::t2ANDCCrs; break;
   2389       case ARMISD::COR:  Opc = ARM::t2ORRCCrs; break;
   2390       case ARMISD::CXOR: Opc = ARM::t2EORCCrs; break;
   2391       }
   2392       SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CC, CCR, Reg0, InFlag };
   2393       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 7);
   2394     }
   2395 
   2396     ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2397     if (T) {
   2398       unsigned TrueImm = T->getZExtValue();
   2399       if (is_t2_so_imm(TrueImm)) {
   2400         unsigned Opc;
   2401         switch (N->getOpcode()) {
   2402         default: llvm_unreachable("Unexpected node");
   2403         case ARMISD::CAND: Opc = ARM::t2ANDCCri; break;
   2404         case ARMISD::COR:  Opc = ARM::t2ORRCCri; break;
   2405         case ARMISD::CXOR: Opc = ARM::t2EORCCri; break;
   2406         }
   2407         SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2408         SDValue Ops[] = { FalseVal, True, CC, CCR, Reg0, InFlag };
   2409         return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 6);
   2410       }
   2411     }
   2412 
   2413     unsigned Opc;
   2414     switch (N->getOpcode()) {
   2415     default: llvm_unreachable("Unexpected node");
   2416     case ARMISD::CAND: Opc = ARM::t2ANDCCrr; break;
   2417     case ARMISD::COR:  Opc = ARM::t2ORRCCrr; break;
   2418     case ARMISD::CXOR: Opc = ARM::t2EORCCrr; break;
   2419     }
   2420     SDValue Ops[] = { FalseVal, TrueVal, CC, CCR, Reg0, InFlag };
   2421     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 6);
   2422   }
   2423 
   2424   SDValue CPTmp0;
   2425   SDValue CPTmp1;
   2426   SDValue CPTmp2;
   2427   if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
   2428     unsigned Opc;
   2429     switch (N->getOpcode()) {
   2430     default: llvm_unreachable("Unexpected node");
   2431     case ARMISD::CAND: Opc = ARM::ANDCCrsi; break;
   2432     case ARMISD::COR:  Opc = ARM::ORRCCrsi; break;
   2433     case ARMISD::CXOR: Opc = ARM::EORCCrsi; break;
   2434     }
   2435     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, Reg0, InFlag };
   2436     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 7);
   2437   }
   2438 
   2439   if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
   2440     unsigned Opc;
   2441     switch (N->getOpcode()) {
   2442     default: llvm_unreachable("Unexpected node");
   2443     case ARMISD::CAND: Opc = ARM::ANDCCrsr; break;
   2444     case ARMISD::COR:  Opc = ARM::ORRCCrsr; break;
   2445     case ARMISD::CXOR: Opc = ARM::EORCCrsr; break;
   2446     }
   2447     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, Reg0, InFlag };
   2448     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 8);
   2449   }
   2450 
   2451   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2452   if (T) {
   2453     unsigned TrueImm = T->getZExtValue();
   2454     if (is_so_imm(TrueImm)) {
   2455       unsigned Opc;
   2456       switch (N->getOpcode()) {
   2457       default: llvm_unreachable("Unexpected node");
   2458       case ARMISD::CAND: Opc = ARM::ANDCCri; break;
   2459       case ARMISD::COR:  Opc = ARM::ORRCCri; break;
   2460       case ARMISD::CXOR: Opc = ARM::EORCCri; break;
   2461       }
   2462       SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2463       SDValue Ops[] = { FalseVal, True, CC, CCR, Reg0, InFlag };
   2464       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 6);
   2465     }
   2466   }
   2467 
   2468   unsigned Opc;
   2469   switch (N->getOpcode()) {
   2470   default: llvm_unreachable("Unexpected node");
   2471   case ARMISD::CAND: Opc = ARM::ANDCCrr; break;
   2472   case ARMISD::COR:  Opc = ARM::ORRCCrr; break;
   2473   case ARMISD::CXOR: Opc = ARM::EORCCrr; break;
   2474   }
   2475   SDValue Ops[] = { FalseVal, TrueVal, CC, CCR, Reg0, InFlag };
   2476   return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 6);
   2477 }
   2478 
   2479 /// Target-specific DAG combining for ISD::XOR.
   2480 /// Target-independent combining lowers SELECT_CC nodes of the form
   2481 /// select_cc setg[ge] X,  0,  X, -X
   2482 /// select_cc setgt    X, -1,  X, -X
   2483 /// select_cc setl[te] X,  0, -X,  X
   2484 /// select_cc setlt    X,  1, -X,  X
   2485 /// which represent Integer ABS into:
   2486 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
   2487 /// ARM instruction selection detects the latter and matches it to
   2488 /// ARM::ABS or ARM::t2ABS machine node.
   2489 SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
   2490   SDValue XORSrc0 = N->getOperand(0);
   2491   SDValue XORSrc1 = N->getOperand(1);
   2492   EVT VT = N->getValueType(0);
   2493 
   2494   if (DisableARMIntABS)
   2495     return NULL;
   2496 
   2497   if (Subtarget->isThumb1Only())
   2498     return NULL;
   2499 
   2500   if (XORSrc0.getOpcode() != ISD::ADD ||
   2501     XORSrc1.getOpcode() != ISD::SRA)
   2502     return NULL;
   2503 
   2504   SDValue ADDSrc0 = XORSrc0.getOperand(0);
   2505   SDValue ADDSrc1 = XORSrc0.getOperand(1);
   2506   SDValue SRASrc0 = XORSrc1.getOperand(0);
   2507   SDValue SRASrc1 = XORSrc1.getOperand(1);
   2508   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
   2509   EVT XType = SRASrc0.getValueType();
   2510   unsigned Size = XType.getSizeInBits() - 1;
   2511 
   2512   if (ADDSrc1 == XORSrc1  &&
   2513       ADDSrc0 == SRASrc0 &&
   2514       XType.isInteger() &&
   2515       SRAConstant != NULL &&
   2516       Size == SRAConstant->getZExtValue()) {
   2517 
   2518     unsigned Opcode = ARM::ABS;
   2519     if (Subtarget->isThumb2())
   2520       Opcode = ARM::t2ABS;
   2521 
   2522     return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
   2523   }
   2524 
   2525   return NULL;
   2526 }
   2527 
   2528 SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
   2529   // The only time a CONCAT_VECTORS operation can have legal types is when
   2530   // two 64-bit vectors are concatenated to a 128-bit vector.
   2531   EVT VT = N->getValueType(0);
   2532   if (!VT.is128BitVector() || N->getNumOperands() != 2)
   2533     llvm_unreachable("unexpected CONCAT_VECTORS");
   2534   return PairDRegs(VT, N->getOperand(0), N->getOperand(1));
   2535 }
   2536 
   2537 SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   2538   SmallVector<SDValue, 6> Ops;
   2539   Ops.push_back(Node->getOperand(1)); // Ptr
   2540   Ops.push_back(Node->getOperand(2)); // Low part of Val1
   2541   Ops.push_back(Node->getOperand(3)); // High part of Val1
   2542   if (Opc == ARM::ATOMCMPXCHG6432) {
   2543     Ops.push_back(Node->getOperand(4)); // Low part of Val2
   2544     Ops.push_back(Node->getOperand(5)); // High part of Val2
   2545   }
   2546   Ops.push_back(Node->getOperand(0)); // Chain
   2547   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2548   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   2549   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   2550                                            MVT::i32, MVT::i32, MVT::Other,
   2551                                            Ops.data() ,Ops.size());
   2552   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   2553   return ResNode;
   2554 }
   2555 
   2556 SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
   2557   DebugLoc dl = N->getDebugLoc();
   2558 
   2559   if (N->isMachineOpcode())
   2560     return NULL;   // Already selected.
   2561 
   2562   switch (N->getOpcode()) {
   2563   default: break;
   2564   case ISD::XOR: {
   2565     // Select special operations if XOR node forms integer ABS pattern
   2566     SDNode *ResNode = SelectABSOp(N);
   2567     if (ResNode)
   2568       return ResNode;
   2569     // Other cases are autogenerated.
   2570     break;
   2571   }
   2572   case ISD::Constant: {
   2573     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
   2574     bool UseCP = true;
   2575     if (Subtarget->hasThumb2())
   2576       // Thumb2-aware targets have the MOVT instruction, so all immediates can
   2577       // be done with MOV + MOVT, at worst.
   2578       UseCP = 0;
   2579     else {
   2580       if (Subtarget->isThumb()) {
   2581         UseCP = (Val > 255 &&                          // MOV
   2582                  ~Val > 255 &&                         // MOV + MVN
   2583                  !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
   2584       } else
   2585         UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
   2586                  ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
   2587                  !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
   2588     }
   2589 
   2590     if (UseCP) {
   2591       SDValue CPIdx =
   2592         CurDAG->getTargetConstantPool(ConstantInt::get(
   2593                                   Type::getInt32Ty(*CurDAG->getContext()), Val),
   2594                                       TLI.getPointerTy());
   2595 
   2596       SDNode *ResNode;
   2597       if (Subtarget->isThumb1Only()) {
   2598         SDValue Pred = getAL(CurDAG);
   2599         SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2600         SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
   2601         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
   2602                                          Ops, 4);
   2603       } else {
   2604         SDValue Ops[] = {
   2605           CPIdx,
   2606           CurDAG->getTargetConstant(0, MVT::i32),
   2607           getAL(CurDAG),
   2608           CurDAG->getRegister(0, MVT::i32),
   2609           CurDAG->getEntryNode()
   2610         };
   2611         ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
   2612                                        Ops, 5);
   2613       }
   2614       ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
   2615       return NULL;
   2616     }
   2617 
   2618     // Other cases are autogenerated.
   2619     break;
   2620   }
   2621   case ISD::FrameIndex: {
   2622     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
   2623     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   2624     SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   2625     if (Subtarget->isThumb1Only()) {
   2626       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2627                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2628       return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
   2629     } else {
   2630       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
   2631                       ARM::t2ADDri : ARM::ADDri);
   2632       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2633                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2634                         CurDAG->getRegister(0, MVT::i32) };
   2635       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2636     }
   2637   }
   2638   case ISD::SRL:
   2639     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2640       return I;
   2641     break;
   2642   case ISD::SRA:
   2643     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
   2644       return I;
   2645     break;
   2646   case ISD::MUL:
   2647     if (Subtarget->isThumb1Only())
   2648       break;
   2649     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
   2650       unsigned RHSV = C->getZExtValue();
   2651       if (!RHSV) break;
   2652       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
   2653         unsigned ShImm = Log2_32(RHSV-1);
   2654         if (ShImm >= 32)
   2655           break;
   2656         SDValue V = N->getOperand(0);
   2657         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2658         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2659         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2660         if (Subtarget->isThumb()) {
   2661           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2662           return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
   2663         } else {
   2664           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2665           return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
   2666         }
   2667       }
   2668       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
   2669         unsigned ShImm = Log2_32(RHSV+1);
   2670         if (ShImm >= 32)
   2671           break;
   2672         SDValue V = N->getOperand(0);
   2673         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2674         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2675         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2676         if (Subtarget->isThumb()) {
   2677           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2678           return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
   2679         } else {
   2680           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2681           return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
   2682         }
   2683       }
   2684     }
   2685     break;
   2686   case ISD::AND: {
   2687     // Check for unsigned bitfield extract
   2688     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2689       return I;
   2690 
   2691     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
   2692     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
   2693     // are entirely contributed by c2 and lower 16-bits are entirely contributed
   2694     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
   2695     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
   2696     EVT VT = N->getValueType(0);
   2697     if (VT != MVT::i32)
   2698       break;
   2699     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
   2700       ? ARM::t2MOVTi16
   2701       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
   2702     if (!Opc)
   2703       break;
   2704     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
   2705     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   2706     if (!N1C)
   2707       break;
   2708     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
   2709       SDValue N2 = N0.getOperand(1);
   2710       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
   2711       if (!N2C)
   2712         break;
   2713       unsigned N1CVal = N1C->getZExtValue();
   2714       unsigned N2CVal = N2C->getZExtValue();
   2715       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
   2716           (N1CVal & 0xffffU) == 0xffffU &&
   2717           (N2CVal & 0xffffU) == 0x0U) {
   2718         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
   2719                                                   MVT::i32);
   2720         SDValue Ops[] = { N0.getOperand(0), Imm16,
   2721                           getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2722         return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
   2723       }
   2724     }
   2725     break;
   2726   }
   2727   case ARMISD::VMOVRRD:
   2728     return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
   2729                                   N->getOperand(0), getAL(CurDAG),
   2730                                   CurDAG->getRegister(0, MVT::i32));
   2731   case ISD::UMUL_LOHI: {
   2732     if (Subtarget->isThumb1Only())
   2733       break;
   2734     if (Subtarget->isThumb()) {
   2735       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2736                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2737                         CurDAG->getRegister(0, MVT::i32) };
   2738       return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
   2739     } else {
   2740       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2741                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2742                         CurDAG->getRegister(0, MVT::i32) };
   2743       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2744                                     ARM::UMULL : ARM::UMULLv5,
   2745                                     dl, MVT::i32, MVT::i32, Ops, 5);
   2746     }
   2747   }
   2748   case ISD::SMUL_LOHI: {
   2749     if (Subtarget->isThumb1Only())
   2750       break;
   2751     if (Subtarget->isThumb()) {
   2752       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2753                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2754       return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
   2755     } else {
   2756       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2757                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2758                         CurDAG->getRegister(0, MVT::i32) };
   2759       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2760                                     ARM::SMULL : ARM::SMULLv5,
   2761                                     dl, MVT::i32, MVT::i32, Ops, 5);
   2762     }
   2763   }
   2764   case ISD::LOAD: {
   2765     SDNode *ResNode = 0;
   2766     if (Subtarget->isThumb() && Subtarget->hasThumb2())
   2767       ResNode = SelectT2IndexedLoad(N);
   2768     else
   2769       ResNode = SelectARMIndexedLoad(N);
   2770     if (ResNode)
   2771       return ResNode;
   2772     // Other cases are autogenerated.
   2773     break;
   2774   }
   2775   case ARMISD::BRCOND: {
   2776     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2777     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2778     // Pattern complexity = 6  cost = 1  size = 0
   2779 
   2780     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2781     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
   2782     // Pattern complexity = 6  cost = 1  size = 0
   2783 
   2784     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2785     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2786     // Pattern complexity = 6  cost = 1  size = 0
   2787 
   2788     unsigned Opc = Subtarget->isThumb() ?
   2789       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
   2790     SDValue Chain = N->getOperand(0);
   2791     SDValue N1 = N->getOperand(1);
   2792     SDValue N2 = N->getOperand(2);
   2793     SDValue N3 = N->getOperand(3);
   2794     SDValue InFlag = N->getOperand(4);
   2795     assert(N1.getOpcode() == ISD::BasicBlock);
   2796     assert(N2.getOpcode() == ISD::Constant);
   2797     assert(N3.getOpcode() == ISD::Register);
   2798 
   2799     SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
   2800                                cast<ConstantSDNode>(N2)->getZExtValue()),
   2801                                MVT::i32);
   2802     SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
   2803     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
   2804                                              MVT::Glue, Ops, 5);
   2805     Chain = SDValue(ResNode, 0);
   2806     if (N->getNumValues() == 2) {
   2807       InFlag = SDValue(ResNode, 1);
   2808       ReplaceUses(SDValue(N, 1), InFlag);
   2809     }
   2810     ReplaceUses(SDValue(N, 0),
   2811                 SDValue(Chain.getNode(), Chain.getResNo()));
   2812     return NULL;
   2813   }
   2814   case ARMISD::CMOV:
   2815     return SelectCMOVOp(N);
   2816   case ARMISD::CAND:
   2817   case ARMISD::COR:
   2818   case ARMISD::CXOR:
   2819     return SelectConditionalOp(N);
   2820   case ARMISD::VZIP: {
   2821     unsigned Opc = 0;
   2822     EVT VT = N->getValueType(0);
   2823     switch (VT.getSimpleVT().SimpleTy) {
   2824     default: return NULL;
   2825     case MVT::v8i8:  Opc = ARM::VZIPd8; break;
   2826     case MVT::v4i16: Opc = ARM::VZIPd16; break;
   2827     case MVT::v2f32:
   2828     // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
   2829     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2830     case MVT::v16i8: Opc = ARM::VZIPq8; break;
   2831     case MVT::v8i16: Opc = ARM::VZIPq16; break;
   2832     case MVT::v4f32:
   2833     case MVT::v4i32: Opc = ARM::VZIPq32; break;
   2834     }
   2835     SDValue Pred = getAL(CurDAG);
   2836     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2837     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2838     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2839   }
   2840   case ARMISD::VUZP: {
   2841     unsigned Opc = 0;
   2842     EVT VT = N->getValueType(0);
   2843     switch (VT.getSimpleVT().SimpleTy) {
   2844     default: return NULL;
   2845     case MVT::v8i8:  Opc = ARM::VUZPd8; break;
   2846     case MVT::v4i16: Opc = ARM::VUZPd16; break;
   2847     case MVT::v2f32:
   2848     // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
   2849     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2850     case MVT::v16i8: Opc = ARM::VUZPq8; break;
   2851     case MVT::v8i16: Opc = ARM::VUZPq16; break;
   2852     case MVT::v4f32:
   2853     case MVT::v4i32: Opc = ARM::VUZPq32; break;
   2854     }
   2855     SDValue Pred = getAL(CurDAG);
   2856     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2857     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2858     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2859   }
   2860   case ARMISD::VTRN: {
   2861     unsigned Opc = 0;
   2862     EVT VT = N->getValueType(0);
   2863     switch (VT.getSimpleVT().SimpleTy) {
   2864     default: return NULL;
   2865     case MVT::v8i8:  Opc = ARM::VTRNd8; break;
   2866     case MVT::v4i16: Opc = ARM::VTRNd16; break;
   2867     case MVT::v2f32:
   2868     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2869     case MVT::v16i8: Opc = ARM::VTRNq8; break;
   2870     case MVT::v8i16: Opc = ARM::VTRNq16; break;
   2871     case MVT::v4f32:
   2872     case MVT::v4i32: Opc = ARM::VTRNq32; break;
   2873     }
   2874     SDValue Pred = getAL(CurDAG);
   2875     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2876     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2877     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2878   }
   2879   case ARMISD::BUILD_VECTOR: {
   2880     EVT VecVT = N->getValueType(0);
   2881     EVT EltVT = VecVT.getVectorElementType();
   2882     unsigned NumElts = VecVT.getVectorNumElements();
   2883     if (EltVT == MVT::f64) {
   2884       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
   2885       return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1));
   2886     }
   2887     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
   2888     if (NumElts == 2)
   2889       return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1));
   2890     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
   2891     return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1),
   2892                      N->getOperand(2), N->getOperand(3));
   2893   }
   2894 
   2895   case ARMISD::VLD2DUP: {
   2896     unsigned Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
   2897                            ARM::VLD2DUPd32 };
   2898     return SelectVLDDup(N, false, 2, Opcodes);
   2899   }
   2900 
   2901   case ARMISD::VLD3DUP: {
   2902     unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd16Pseudo,
   2903                            ARM::VLD3DUPd32Pseudo };
   2904     return SelectVLDDup(N, false, 3, Opcodes);
   2905   }
   2906 
   2907   case ARMISD::VLD4DUP: {
   2908     unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd16Pseudo,
   2909                            ARM::VLD4DUPd32Pseudo };
   2910     return SelectVLDDup(N, false, 4, Opcodes);
   2911   }
   2912 
   2913   case ARMISD::VLD2DUP_UPD: {
   2914     unsigned Opcodes[] = { ARM::VLD2DUPd8wb_fixed, ARM::VLD2DUPd16wb_fixed,
   2915                            ARM::VLD2DUPd32wb_fixed };
   2916     return SelectVLDDup(N, true, 2, Opcodes);
   2917   }
   2918 
   2919   case ARMISD::VLD3DUP_UPD: {
   2920     unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd16Pseudo_UPD,
   2921                            ARM::VLD3DUPd32Pseudo_UPD };
   2922     return SelectVLDDup(N, true, 3, Opcodes);
   2923   }
   2924 
   2925   case ARMISD::VLD4DUP_UPD: {
   2926     unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd16Pseudo_UPD,
   2927                            ARM::VLD4DUPd32Pseudo_UPD };
   2928     return SelectVLDDup(N, true, 4, Opcodes);
   2929   }
   2930 
   2931   case ARMISD::VLD1_UPD: {
   2932     unsigned DOpcodes[] = { ARM::VLD1d8wb_fixed, ARM::VLD1d16wb_fixed,
   2933                             ARM::VLD1d32wb_fixed, ARM::VLD1d64wb_fixed };
   2934     unsigned QOpcodes[] = { ARM::VLD1q8wb_fixed,
   2935                             ARM::VLD1q16wb_fixed,
   2936                             ARM::VLD1q32wb_fixed,
   2937                             ARM::VLD1q64wb_fixed };
   2938     return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
   2939   }
   2940 
   2941   case ARMISD::VLD2_UPD: {
   2942     unsigned DOpcodes[] = { ARM::VLD2d8wb_fixed,
   2943                             ARM::VLD2d16wb_fixed,
   2944                             ARM::VLD2d32wb_fixed,
   2945                             ARM::VLD1q64wb_fixed};
   2946     unsigned QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
   2947                             ARM::VLD2q16PseudoWB_fixed,
   2948                             ARM::VLD2q32PseudoWB_fixed };
   2949     return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
   2950   }
   2951 
   2952   case ARMISD::VLD3_UPD: {
   2953     unsigned DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d16Pseudo_UPD,
   2954                             ARM::VLD3d32Pseudo_UPD, ARM::VLD1q64wb_fixed};
   2955     unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   2956                              ARM::VLD3q16Pseudo_UPD,
   2957                              ARM::VLD3q32Pseudo_UPD };
   2958     unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
   2959                              ARM::VLD3q16oddPseudo_UPD,
   2960                              ARM::VLD3q32oddPseudo_UPD };
   2961     return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   2962   }
   2963 
   2964   case ARMISD::VLD4_UPD: {
   2965     unsigned DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD,
   2966                             ARM::VLD4d32Pseudo_UPD, ARM::VLD1q64wb_fixed};
   2967     unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   2968                              ARM::VLD4q16Pseudo_UPD,
   2969                              ARM::VLD4q32Pseudo_UPD };
   2970     unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
   2971                              ARM::VLD4q16oddPseudo_UPD,
   2972                              ARM::VLD4q32oddPseudo_UPD };
   2973     return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   2974   }
   2975 
   2976   case ARMISD::VLD2LN_UPD: {
   2977     unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd16Pseudo_UPD,
   2978                             ARM::VLD2LNd32Pseudo_UPD };
   2979     unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
   2980                             ARM::VLD2LNq32Pseudo_UPD };
   2981     return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
   2982   }
   2983 
   2984   case ARMISD::VLD3LN_UPD: {
   2985     unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd16Pseudo_UPD,
   2986                             ARM::VLD3LNd32Pseudo_UPD };
   2987     unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
   2988                             ARM::VLD3LNq32Pseudo_UPD };
   2989     return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
   2990   }
   2991 
   2992   case ARMISD::VLD4LN_UPD: {
   2993     unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd16Pseudo_UPD,
   2994                             ARM::VLD4LNd32Pseudo_UPD };
   2995     unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
   2996                             ARM::VLD4LNq32Pseudo_UPD };
   2997     return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
   2998   }
   2999 
   3000   case ARMISD::VST1_UPD: {
   3001     unsigned DOpcodes[] = { ARM::VST1d8wb_fixed, ARM::VST1d16wb_fixed,
   3002                             ARM::VST1d32wb_fixed, ARM::VST1d64wb_fixed };
   3003     unsigned QOpcodes[] = { ARM::VST1q8wb_fixed,
   3004                             ARM::VST1q16wb_fixed,
   3005                             ARM::VST1q32wb_fixed,
   3006                             ARM::VST1q64wb_fixed };
   3007     return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
   3008   }
   3009 
   3010   case ARMISD::VST2_UPD: {
   3011     unsigned DOpcodes[] = { ARM::VST2d8wb_fixed,
   3012                             ARM::VST2d16wb_fixed,
   3013                             ARM::VST2d32wb_fixed,
   3014                             ARM::VST1q64wb_fixed};
   3015     unsigned QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
   3016                             ARM::VST2q16PseudoWB_fixed,
   3017                             ARM::VST2q32PseudoWB_fixed };
   3018     return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
   3019   }
   3020 
   3021   case ARMISD::VST3_UPD: {
   3022     unsigned DOpcodes[] = { ARM::VST3d8Pseudo_UPD, ARM::VST3d16Pseudo_UPD,
   3023                             ARM::VST3d32Pseudo_UPD,ARM::VST1d64TPseudoWB_fixed};
   3024     unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   3025                              ARM::VST3q16Pseudo_UPD,
   3026                              ARM::VST3q32Pseudo_UPD };
   3027     unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
   3028                              ARM::VST3q16oddPseudo_UPD,
   3029                              ARM::VST3q32oddPseudo_UPD };
   3030     return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3031   }
   3032 
   3033   case ARMISD::VST4_UPD: {
   3034     unsigned DOpcodes[] = { ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD,
   3035                             ARM::VST4d32Pseudo_UPD,ARM::VST1d64QPseudoWB_fixed};
   3036     unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   3037                              ARM::VST4q16Pseudo_UPD,
   3038                              ARM::VST4q32Pseudo_UPD };
   3039     unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
   3040                              ARM::VST4q16oddPseudo_UPD,
   3041                              ARM::VST4q32oddPseudo_UPD };
   3042     return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3043   }
   3044 
   3045   case ARMISD::VST2LN_UPD: {
   3046     unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd16Pseudo_UPD,
   3047                             ARM::VST2LNd32Pseudo_UPD };
   3048     unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
   3049                             ARM::VST2LNq32Pseudo_UPD };
   3050     return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
   3051   }
   3052 
   3053   case ARMISD::VST3LN_UPD: {
   3054     unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd16Pseudo_UPD,
   3055                             ARM::VST3LNd32Pseudo_UPD };
   3056     unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
   3057                             ARM::VST3LNq32Pseudo_UPD };
   3058     return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
   3059   }
   3060 
   3061   case ARMISD::VST4LN_UPD: {
   3062     unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd16Pseudo_UPD,
   3063                             ARM::VST4LNd32Pseudo_UPD };
   3064     unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
   3065                             ARM::VST4LNq32Pseudo_UPD };
   3066     return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
   3067   }
   3068 
   3069   case ISD::INTRINSIC_VOID:
   3070   case ISD::INTRINSIC_W_CHAIN: {
   3071     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   3072     switch (IntNo) {
   3073     default:
   3074       break;
   3075 
   3076     case Intrinsic::arm_ldrexd: {
   3077       SDValue MemAddr = N->getOperand(2);
   3078       DebugLoc dl = N->getDebugLoc();
   3079       SDValue Chain = N->getOperand(0);
   3080 
   3081       unsigned NewOpc = ARM::LDREXD;
   3082       if (Subtarget->isThumb() && Subtarget->hasThumb2())
   3083         NewOpc = ARM::t2LDREXD;
   3084 
   3085       // arm_ldrexd returns a i64 value in {i32, i32}
   3086       std::vector<EVT> ResTys;
   3087       ResTys.push_back(MVT::i32);
   3088       ResTys.push_back(MVT::i32);
   3089       ResTys.push_back(MVT::Other);
   3090 
   3091       // place arguments in the right order
   3092       SmallVector<SDValue, 7> Ops;
   3093       Ops.push_back(MemAddr);
   3094       Ops.push_back(getAL(CurDAG));
   3095       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   3096       Ops.push_back(Chain);
   3097       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
   3098                                           Ops.size());
   3099       // Transfer memoperands.
   3100       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   3101       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   3102       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
   3103 
   3104       // Until there's support for specifing explicit register constraints
   3105       // like the use of even/odd register pair, hardcode ldrexd to always
   3106       // use the pair [R0, R1] to hold the load result.
   3107       Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R0,
   3108                                    SDValue(Ld, 0), SDValue(0,0));
   3109       Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R1,
   3110                                    SDValue(Ld, 1), Chain.getValue(1));
   3111 
   3112       // Remap uses.
   3113       SDValue Glue = Chain.getValue(1);
   3114       if (!SDValue(N, 0).use_empty()) {
   3115         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   3116                                                 ARM::R0, MVT::i32, Glue);
   3117         Glue = Result.getValue(2);
   3118         ReplaceUses(SDValue(N, 0), Result);
   3119       }
   3120       if (!SDValue(N, 1).use_empty()) {
   3121         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   3122                                                 ARM::R1, MVT::i32, Glue);
   3123         Glue = Result.getValue(2);
   3124         ReplaceUses(SDValue(N, 1), Result);
   3125       }
   3126 
   3127       ReplaceUses(SDValue(N, 2), SDValue(Ld, 2));
   3128       return NULL;
   3129     }
   3130 
   3131     case Intrinsic::arm_strexd: {
   3132       DebugLoc dl = N->getDebugLoc();
   3133       SDValue Chain = N->getOperand(0);
   3134       SDValue Val0 = N->getOperand(2);
   3135       SDValue Val1 = N->getOperand(3);
   3136       SDValue MemAddr = N->getOperand(4);
   3137 
   3138       // Until there's support for specifing explicit register constraints
   3139       // like the use of even/odd register pair, hardcode strexd to always
   3140       // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored.
   3141       Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R2, Val0,
   3142                                    SDValue(0, 0));
   3143       Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R3, Val1, Chain.getValue(1));
   3144 
   3145       SDValue Glue = Chain.getValue(1);
   3146       Val0 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   3147                                     ARM::R2, MVT::i32, Glue);
   3148       Glue = Val0.getValue(1);
   3149       Val1 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   3150                                     ARM::R3, MVT::i32, Glue);
   3151 
   3152       // Store exclusive double return a i32 value which is the return status
   3153       // of the issued store.
   3154       std::vector<EVT> ResTys;
   3155       ResTys.push_back(MVT::i32);
   3156       ResTys.push_back(MVT::Other);
   3157 
   3158       // place arguments in the right order
   3159       SmallVector<SDValue, 7> Ops;
   3160       Ops.push_back(Val0);
   3161       Ops.push_back(Val1);
   3162       Ops.push_back(MemAddr);
   3163       Ops.push_back(getAL(CurDAG));
   3164       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   3165       Ops.push_back(Chain);
   3166 
   3167       unsigned NewOpc = ARM::STREXD;
   3168       if (Subtarget->isThumb() && Subtarget->hasThumb2())
   3169         NewOpc = ARM::t2STREXD;
   3170 
   3171       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
   3172                                           Ops.size());
   3173       // Transfer memoperands.
   3174       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   3175       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   3176       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   3177 
   3178       return St;
   3179     }
   3180 
   3181     case Intrinsic::arm_neon_vld1: {
   3182       unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
   3183                               ARM::VLD1d32, ARM::VLD1d64 };
   3184       unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
   3185                               ARM::VLD1q32, ARM::VLD1q64};
   3186       return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
   3187     }
   3188 
   3189     case Intrinsic::arm_neon_vld2: {
   3190       unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
   3191                               ARM::VLD2d32, ARM::VLD1q64 };
   3192       unsigned QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
   3193                               ARM::VLD2q32Pseudo };
   3194       return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
   3195     }
   3196 
   3197     case Intrinsic::arm_neon_vld3: {
   3198       unsigned DOpcodes[] = { ARM::VLD3d8Pseudo, ARM::VLD3d16Pseudo,
   3199                               ARM::VLD3d32Pseudo, ARM::VLD1d64TPseudo };
   3200       unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   3201                                ARM::VLD3q16Pseudo_UPD,
   3202                                ARM::VLD3q32Pseudo_UPD };
   3203       unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo,
   3204                                ARM::VLD3q16oddPseudo,
   3205                                ARM::VLD3q32oddPseudo };
   3206       return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3207     }
   3208 
   3209     case Intrinsic::arm_neon_vld4: {
   3210       unsigned DOpcodes[] = { ARM::VLD4d8Pseudo, ARM::VLD4d16Pseudo,
   3211                               ARM::VLD4d32Pseudo, ARM::VLD1d64QPseudo };
   3212       unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   3213                                ARM::VLD4q16Pseudo_UPD,
   3214                                ARM::VLD4q32Pseudo_UPD };
   3215       unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo,
   3216                                ARM::VLD4q16oddPseudo,
   3217                                ARM::VLD4q32oddPseudo };
   3218       return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3219     }
   3220 
   3221     case Intrinsic::arm_neon_vld2lane: {
   3222       unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd16Pseudo,
   3223                               ARM::VLD2LNd32Pseudo };
   3224       unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq32Pseudo };
   3225       return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
   3226     }
   3227 
   3228     case Intrinsic::arm_neon_vld3lane: {
   3229       unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd16Pseudo,
   3230                               ARM::VLD3LNd32Pseudo };
   3231       unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq32Pseudo };
   3232       return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
   3233     }
   3234 
   3235     case Intrinsic::arm_neon_vld4lane: {
   3236       unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd16Pseudo,
   3237                               ARM::VLD4LNd32Pseudo };
   3238       unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq32Pseudo };
   3239       return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
   3240     }
   3241 
   3242     case Intrinsic::arm_neon_vst1: {
   3243       unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
   3244                               ARM::VST1d32, ARM::VST1d64 };
   3245       unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
   3246                               ARM::VST1q32, ARM::VST1q64 };
   3247       return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
   3248     }
   3249 
   3250     case Intrinsic::arm_neon_vst2: {
   3251       unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
   3252                               ARM::VST2d32, ARM::VST1q64 };
   3253       unsigned QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
   3254                               ARM::VST2q32Pseudo };
   3255       return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
   3256     }
   3257 
   3258     case Intrinsic::arm_neon_vst3: {
   3259       unsigned DOpcodes[] = { ARM::VST3d8Pseudo, ARM::VST3d16Pseudo,
   3260                               ARM::VST3d32Pseudo, ARM::VST1d64TPseudo };
   3261       unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   3262                                ARM::VST3q16Pseudo_UPD,
   3263                                ARM::VST3q32Pseudo_UPD };
   3264       unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo,
   3265                                ARM::VST3q16oddPseudo,
   3266                                ARM::VST3q32oddPseudo };
   3267       return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3268     }
   3269 
   3270     case Intrinsic::arm_neon_vst4: {
   3271       unsigned DOpcodes[] = { ARM::VST4d8Pseudo, ARM::VST4d16Pseudo,
   3272                               ARM::VST4d32Pseudo, ARM::VST1d64QPseudo };
   3273       unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   3274                                ARM::VST4q16Pseudo_UPD,
   3275                                ARM::VST4q32Pseudo_UPD };
   3276       unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo,
   3277                                ARM::VST4q16oddPseudo,
   3278                                ARM::VST4q32oddPseudo };
   3279       return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3280     }
   3281 
   3282     case Intrinsic::arm_neon_vst2lane: {
   3283       unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo, ARM::VST2LNd16Pseudo,
   3284                               ARM::VST2LNd32Pseudo };
   3285       unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo, ARM::VST2LNq32Pseudo };
   3286       return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
   3287     }
   3288 
   3289     case Intrinsic::arm_neon_vst3lane: {
   3290       unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo, ARM::VST3LNd16Pseudo,
   3291                               ARM::VST3LNd32Pseudo };
   3292       unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo, ARM::VST3LNq32Pseudo };
   3293       return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
   3294     }
   3295 
   3296     case Intrinsic::arm_neon_vst4lane: {
   3297       unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo, ARM::VST4LNd16Pseudo,
   3298                               ARM::VST4LNd32Pseudo };
   3299       unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo, ARM::VST4LNq32Pseudo };
   3300       return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
   3301     }
   3302     }
   3303     break;
   3304   }
   3305 
   3306   case ISD::INTRINSIC_WO_CHAIN: {
   3307     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   3308     switch (IntNo) {
   3309     default:
   3310       break;
   3311 
   3312     case Intrinsic::arm_neon_vtbl2:
   3313       return SelectVTBL(N, false, 2, ARM::VTBL2);
   3314     case Intrinsic::arm_neon_vtbl3:
   3315       return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
   3316     case Intrinsic::arm_neon_vtbl4:
   3317       return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
   3318 
   3319     case Intrinsic::arm_neon_vtbx2:
   3320       return SelectVTBL(N, true, 2, ARM::VTBX2);
   3321     case Intrinsic::arm_neon_vtbx3:
   3322       return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
   3323     case Intrinsic::arm_neon_vtbx4:
   3324       return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
   3325     }
   3326     break;
   3327   }
   3328 
   3329   case ARMISD::VTBL1: {
   3330     DebugLoc dl = N->getDebugLoc();
   3331     EVT VT = N->getValueType(0);
   3332     SmallVector<SDValue, 6> Ops;
   3333 
   3334     Ops.push_back(N->getOperand(0));
   3335     Ops.push_back(N->getOperand(1));
   3336     Ops.push_back(getAL(CurDAG));                    // Predicate
   3337     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3338     return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size());
   3339   }
   3340   case ARMISD::VTBL2: {
   3341     DebugLoc dl = N->getDebugLoc();
   3342     EVT VT = N->getValueType(0);
   3343 
   3344     // Form a REG_SEQUENCE to force register allocation.
   3345     SDValue V0 = N->getOperand(0);
   3346     SDValue V1 = N->getOperand(1);
   3347     SDValue RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
   3348 
   3349     SmallVector<SDValue, 6> Ops;
   3350     Ops.push_back(RegSeq);
   3351     Ops.push_back(N->getOperand(2));
   3352     Ops.push_back(getAL(CurDAG));                    // Predicate
   3353     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3354     return CurDAG->getMachineNode(ARM::VTBL2, dl, VT,
   3355                                   Ops.data(), Ops.size());
   3356   }
   3357 
   3358   case ISD::CONCAT_VECTORS:
   3359     return SelectConcatVector(N);
   3360 
   3361   case ARMISD::ATOMOR64_DAG:
   3362     return SelectAtomic64(N, ARM::ATOMOR6432);
   3363   case ARMISD::ATOMXOR64_DAG:
   3364     return SelectAtomic64(N, ARM::ATOMXOR6432);
   3365   case ARMISD::ATOMADD64_DAG:
   3366     return SelectAtomic64(N, ARM::ATOMADD6432);
   3367   case ARMISD::ATOMSUB64_DAG:
   3368     return SelectAtomic64(N, ARM::ATOMSUB6432);
   3369   case ARMISD::ATOMNAND64_DAG:
   3370     return SelectAtomic64(N, ARM::ATOMNAND6432);
   3371   case ARMISD::ATOMAND64_DAG:
   3372     return SelectAtomic64(N, ARM::ATOMAND6432);
   3373   case ARMISD::ATOMSWAP64_DAG:
   3374     return SelectAtomic64(N, ARM::ATOMSWAP6432);
   3375   case ARMISD::ATOMCMPXCHG64_DAG:
   3376     return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
   3377   }
   3378 
   3379   return SelectCode(N);
   3380 }
   3381 
   3382 bool ARMDAGToDAGISel::
   3383 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   3384                              std::vector<SDValue> &OutOps) {
   3385   assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
   3386   // Require the address to be in a register.  That is safe for all ARM
   3387   // variants and it is hard to do anything much smarter without knowing
   3388   // how the operand is used.
   3389   OutOps.push_back(Op);
   3390   return false;
   3391 }
   3392 
   3393 /// createARMISelDag - This pass converts a legalized DAG into a
   3394 /// ARM-specific DAG, ready for instruction scheduling.
   3395 ///
   3396 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
   3397                                      CodeGenOpt::Level OptLevel) {
   3398   return new ARMDAGToDAGISel(TM, OptLevel);
   3399 }
   3400