Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGCUDARuntime.h"
     17 #include "CGCXXABI.h"
     18 #include "CGDebugInfo.h"
     19 #include "clang/Basic/TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/Support/MDBuilder.h"
     27 #include "llvm/Target/TargetData.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
     32   : CodeGenTypeCache(cgm), CGM(cgm),
     33     Target(CGM.getContext().getTargetInfo()),
     34     Builder(cgm.getModule().getContext()),
     35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
     36     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
     37     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
     38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
     39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
     40     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
     41     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
     42     TerminateHandler(0), TrapBB(0) {
     43 
     44   CatchUndefined = getContext().getLangOpts().CatchUndefined;
     45   CGM.getCXXABI().getMangleContext().startNewFunction();
     46 }
     47 
     48 CodeGenFunction::~CodeGenFunction() {
     49   // If there are any unclaimed block infos, go ahead and destroy them
     50   // now.  This can happen if IR-gen gets clever and skips evaluating
     51   // something.
     52   if (FirstBlockInfo)
     53     destroyBlockInfos(FirstBlockInfo);
     54 }
     55 
     56 
     57 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     58   return CGM.getTypes().ConvertTypeForMem(T);
     59 }
     60 
     61 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     62   return CGM.getTypes().ConvertType(T);
     63 }
     64 
     65 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
     66   switch (type.getCanonicalType()->getTypeClass()) {
     67 #define TYPE(name, parent)
     68 #define ABSTRACT_TYPE(name, parent)
     69 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     70 #define DEPENDENT_TYPE(name, parent) case Type::name:
     71 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     72 #include "clang/AST/TypeNodes.def"
     73     llvm_unreachable("non-canonical or dependent type in IR-generation");
     74 
     75   case Type::Builtin:
     76   case Type::Pointer:
     77   case Type::BlockPointer:
     78   case Type::LValueReference:
     79   case Type::RValueReference:
     80   case Type::MemberPointer:
     81   case Type::Vector:
     82   case Type::ExtVector:
     83   case Type::FunctionProto:
     84   case Type::FunctionNoProto:
     85   case Type::Enum:
     86   case Type::ObjCObjectPointer:
     87     return false;
     88 
     89   // Complexes, arrays, records, and Objective-C objects.
     90   case Type::Complex:
     91   case Type::ConstantArray:
     92   case Type::IncompleteArray:
     93   case Type::VariableArray:
     94   case Type::Record:
     95   case Type::ObjCObject:
     96   case Type::ObjCInterface:
     97     return true;
     98 
     99   // In IRGen, atomic types are just the underlying type
    100   case Type::Atomic:
    101     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
    102   }
    103   llvm_unreachable("unknown type kind!");
    104 }
    105 
    106 void CodeGenFunction::EmitReturnBlock() {
    107   // For cleanliness, we try to avoid emitting the return block for
    108   // simple cases.
    109   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    110 
    111   if (CurBB) {
    112     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    113 
    114     // We have a valid insert point, reuse it if it is empty or there are no
    115     // explicit jumps to the return block.
    116     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    117       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    118       delete ReturnBlock.getBlock();
    119     } else
    120       EmitBlock(ReturnBlock.getBlock());
    121     return;
    122   }
    123 
    124   // Otherwise, if the return block is the target of a single direct
    125   // branch then we can just put the code in that block instead. This
    126   // cleans up functions which started with a unified return block.
    127   if (ReturnBlock.getBlock()->hasOneUse()) {
    128     llvm::BranchInst *BI =
    129       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
    130     if (BI && BI->isUnconditional() &&
    131         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    132       // Reset insertion point, including debug location, and delete the branch.
    133       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
    134       Builder.SetInsertPoint(BI->getParent());
    135       BI->eraseFromParent();
    136       delete ReturnBlock.getBlock();
    137       return;
    138     }
    139   }
    140 
    141   // FIXME: We are at an unreachable point, there is no reason to emit the block
    142   // unless it has uses. However, we still need a place to put the debug
    143   // region.end for now.
    144 
    145   EmitBlock(ReturnBlock.getBlock());
    146 }
    147 
    148 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    149   if (!BB) return;
    150   if (!BB->use_empty())
    151     return CGF.CurFn->getBasicBlockList().push_back(BB);
    152   delete BB;
    153 }
    154 
    155 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    156   assert(BreakContinueStack.empty() &&
    157          "mismatched push/pop in break/continue stack!");
    158 
    159   // Pop any cleanups that might have been associated with the
    160   // parameters.  Do this in whatever block we're currently in; it's
    161   // important to do this before we enter the return block or return
    162   // edges will be *really* confused.
    163   if (EHStack.stable_begin() != PrologueCleanupDepth)
    164     PopCleanupBlocks(PrologueCleanupDepth);
    165 
    166   // Emit function epilog (to return).
    167   EmitReturnBlock();
    168 
    169   if (ShouldInstrumentFunction())
    170     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    171 
    172   // Emit debug descriptor for function end.
    173   if (CGDebugInfo *DI = getDebugInfo()) {
    174     DI->setLocation(EndLoc);
    175     DI->EmitFunctionEnd(Builder);
    176   }
    177 
    178   EmitFunctionEpilog(*CurFnInfo);
    179   EmitEndEHSpec(CurCodeDecl);
    180 
    181   assert(EHStack.empty() &&
    182          "did not remove all scopes from cleanup stack!");
    183 
    184   // If someone did an indirect goto, emit the indirect goto block at the end of
    185   // the function.
    186   if (IndirectBranch) {
    187     EmitBlock(IndirectBranch->getParent());
    188     Builder.ClearInsertionPoint();
    189   }
    190 
    191   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    192   llvm::Instruction *Ptr = AllocaInsertPt;
    193   AllocaInsertPt = 0;
    194   Ptr->eraseFromParent();
    195 
    196   // If someone took the address of a label but never did an indirect goto, we
    197   // made a zero entry PHI node, which is illegal, zap it now.
    198   if (IndirectBranch) {
    199     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    200     if (PN->getNumIncomingValues() == 0) {
    201       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    202       PN->eraseFromParent();
    203     }
    204   }
    205 
    206   EmitIfUsed(*this, EHResumeBlock);
    207   EmitIfUsed(*this, TerminateLandingPad);
    208   EmitIfUsed(*this, TerminateHandler);
    209   EmitIfUsed(*this, UnreachableBlock);
    210 
    211   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    212     EmitDeclMetadata();
    213 }
    214 
    215 /// ShouldInstrumentFunction - Return true if the current function should be
    216 /// instrumented with __cyg_profile_func_* calls
    217 bool CodeGenFunction::ShouldInstrumentFunction() {
    218   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    219     return false;
    220   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    221     return false;
    222   return true;
    223 }
    224 
    225 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    226 /// instrumentation function with the current function and the call site, if
    227 /// function instrumentation is enabled.
    228 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    229   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    230   llvm::PointerType *PointerTy = Int8PtrTy;
    231   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    232   llvm::FunctionType *FunctionTy =
    233     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    234 
    235   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    236   llvm::CallInst *CallSite = Builder.CreateCall(
    237     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    238     llvm::ConstantInt::get(Int32Ty, 0),
    239     "callsite");
    240 
    241   Builder.CreateCall2(F,
    242                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    243                       CallSite);
    244 }
    245 
    246 void CodeGenFunction::EmitMCountInstrumentation() {
    247   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    248 
    249   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
    250                                                        Target.getMCountName());
    251   Builder.CreateCall(MCountFn);
    252 }
    253 
    254 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
    255                                     llvm::Function *Fn,
    256                                     const CGFunctionInfo &FnInfo,
    257                                     const FunctionArgList &Args,
    258                                     SourceLocation StartLoc) {
    259   const Decl *D = GD.getDecl();
    260 
    261   DidCallStackSave = false;
    262   CurCodeDecl = CurFuncDecl = D;
    263   FnRetTy = RetTy;
    264   CurFn = Fn;
    265   CurFnInfo = &FnInfo;
    266   assert(CurFn->isDeclaration() && "Function already has body?");
    267 
    268   // Pass inline keyword to optimizer if it appears explicitly on any
    269   // declaration.
    270   if (!CGM.getCodeGenOpts().NoInline)
    271     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    272       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
    273              RE = FD->redecls_end(); RI != RE; ++RI)
    274         if (RI->isInlineSpecified()) {
    275           Fn->addFnAttr(llvm::Attribute::InlineHint);
    276           break;
    277         }
    278 
    279   if (getContext().getLangOpts().OpenCL) {
    280     // Add metadata for a kernel function.
    281     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    282       if (FD->hasAttr<OpenCLKernelAttr>()) {
    283         llvm::LLVMContext &Context = getLLVMContext();
    284         llvm::NamedMDNode *OpenCLMetadata =
    285           CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    286 
    287         llvm::Value *Op = Fn;
    288         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
    289       }
    290   }
    291 
    292   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    293 
    294   // Create a marker to make it easy to insert allocas into the entryblock
    295   // later.  Don't create this with the builder, because we don't want it
    296   // folded.
    297   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    298   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    299   if (Builder.isNamePreserving())
    300     AllocaInsertPt->setName("allocapt");
    301 
    302   ReturnBlock = getJumpDestInCurrentScope("return");
    303 
    304   Builder.SetInsertPoint(EntryBB);
    305 
    306   // Emit subprogram debug descriptor.
    307   if (CGDebugInfo *DI = getDebugInfo()) {
    308     unsigned NumArgs = 0;
    309     QualType *ArgsArray = new QualType[Args.size()];
    310     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    311 	 i != e; ++i) {
    312       ArgsArray[NumArgs++] = (*i)->getType();
    313     }
    314 
    315     QualType FnType =
    316       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
    317                                    FunctionProtoType::ExtProtoInfo());
    318 
    319     delete[] ArgsArray;
    320 
    321     DI->setLocation(StartLoc);
    322     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
    323   }
    324 
    325   if (ShouldInstrumentFunction())
    326     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    327 
    328   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    329     EmitMCountInstrumentation();
    330 
    331   if (RetTy->isVoidType()) {
    332     // Void type; nothing to return.
    333     ReturnValue = 0;
    334   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    335              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
    336     // Indirect aggregate return; emit returned value directly into sret slot.
    337     // This reduces code size, and affects correctness in C++.
    338     ReturnValue = CurFn->arg_begin();
    339   } else {
    340     ReturnValue = CreateIRTemp(RetTy, "retval");
    341 
    342     // Tell the epilog emitter to autorelease the result.  We do this
    343     // now so that various specialized functions can suppress it
    344     // during their IR-generation.
    345     if (getLangOpts().ObjCAutoRefCount &&
    346         !CurFnInfo->isReturnsRetained() &&
    347         RetTy->isObjCRetainableType())
    348       AutoreleaseResult = true;
    349   }
    350 
    351   EmitStartEHSpec(CurCodeDecl);
    352 
    353   PrologueCleanupDepth = EHStack.stable_begin();
    354   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    355 
    356   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    357     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    358     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    359     if (MD->getParent()->isLambda() &&
    360         MD->getOverloadedOperator() == OO_Call) {
    361       // We're in a lambda; figure out the captures.
    362       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    363                                         LambdaThisCaptureField);
    364       if (LambdaThisCaptureField) {
    365         // If this lambda captures this, load it.
    366         QualType LambdaTagType =
    367             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
    368         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
    369                                                      LambdaTagType);
    370         LValue ThisLValue = EmitLValueForField(LambdaLV,
    371                                                LambdaThisCaptureField);
    372         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
    373       }
    374     } else {
    375       // Not in a lambda; just use 'this' from the method.
    376       // FIXME: Should we generate a new load for each use of 'this'?  The
    377       // fast register allocator would be happier...
    378       CXXThisValue = CXXABIThisValue;
    379     }
    380   }
    381 
    382   // If any of the arguments have a variably modified type, make sure to
    383   // emit the type size.
    384   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    385        i != e; ++i) {
    386     QualType Ty = (*i)->getType();
    387 
    388     if (Ty->isVariablyModifiedType())
    389       EmitVariablyModifiedType(Ty);
    390   }
    391   // Emit a location at the end of the prologue.
    392   if (CGDebugInfo *DI = getDebugInfo())
    393     DI->EmitLocation(Builder, StartLoc);
    394 }
    395 
    396 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
    397   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
    398   assert(FD->getBody());
    399   EmitStmt(FD->getBody());
    400 }
    401 
    402 /// Tries to mark the given function nounwind based on the
    403 /// non-existence of any throwing calls within it.  We believe this is
    404 /// lightweight enough to do at -O0.
    405 static void TryMarkNoThrow(llvm::Function *F) {
    406   // LLVM treats 'nounwind' on a function as part of the type, so we
    407   // can't do this on functions that can be overwritten.
    408   if (F->mayBeOverridden()) return;
    409 
    410   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    411     for (llvm::BasicBlock::iterator
    412            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    413       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    414         if (!Call->doesNotThrow())
    415           return;
    416       } else if (isa<llvm::ResumeInst>(&*BI)) {
    417         return;
    418       }
    419   F->setDoesNotThrow(true);
    420 }
    421 
    422 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    423                                    const CGFunctionInfo &FnInfo) {
    424   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    425 
    426   // Check if we should generate debug info for this function.
    427   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
    428     DebugInfo = CGM.getModuleDebugInfo();
    429 
    430   FunctionArgList Args;
    431   QualType ResTy = FD->getResultType();
    432 
    433   CurGD = GD;
    434   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
    435     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
    436 
    437   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    438     Args.push_back(FD->getParamDecl(i));
    439 
    440   SourceRange BodyRange;
    441   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    442 
    443   // Emit the standard function prologue.
    444   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
    445 
    446   // Generate the body of the function.
    447   if (isa<CXXDestructorDecl>(FD))
    448     EmitDestructorBody(Args);
    449   else if (isa<CXXConstructorDecl>(FD))
    450     EmitConstructorBody(Args);
    451   else if (getContext().getLangOpts().CUDA &&
    452            !CGM.getCodeGenOpts().CUDAIsDevice &&
    453            FD->hasAttr<CUDAGlobalAttr>())
    454     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    455   else if (isa<CXXConversionDecl>(FD) &&
    456            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    457     // The lambda conversion to block pointer is special; the semantics can't be
    458     // expressed in the AST, so IRGen needs to special-case it.
    459     EmitLambdaToBlockPointerBody(Args);
    460   } else if (isa<CXXMethodDecl>(FD) &&
    461              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    462     // The lambda "__invoke" function is special, because it forwards or
    463     // clones the body of the function call operator (but is actually static).
    464     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    465   }
    466   else
    467     EmitFunctionBody(Args);
    468 
    469   // Emit the standard function epilogue.
    470   FinishFunction(BodyRange.getEnd());
    471 
    472   // If we haven't marked the function nothrow through other means, do
    473   // a quick pass now to see if we can.
    474   if (!CurFn->doesNotThrow())
    475     TryMarkNoThrow(CurFn);
    476 }
    477 
    478 /// ContainsLabel - Return true if the statement contains a label in it.  If
    479 /// this statement is not executed normally, it not containing a label means
    480 /// that we can just remove the code.
    481 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    482   // Null statement, not a label!
    483   if (S == 0) return false;
    484 
    485   // If this is a label, we have to emit the code, consider something like:
    486   // if (0) {  ...  foo:  bar(); }  goto foo;
    487   //
    488   // TODO: If anyone cared, we could track __label__'s, since we know that you
    489   // can't jump to one from outside their declared region.
    490   if (isa<LabelStmt>(S))
    491     return true;
    492 
    493   // If this is a case/default statement, and we haven't seen a switch, we have
    494   // to emit the code.
    495   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    496     return true;
    497 
    498   // If this is a switch statement, we want to ignore cases below it.
    499   if (isa<SwitchStmt>(S))
    500     IgnoreCaseStmts = true;
    501 
    502   // Scan subexpressions for verboten labels.
    503   for (Stmt::const_child_range I = S->children(); I; ++I)
    504     if (ContainsLabel(*I, IgnoreCaseStmts))
    505       return true;
    506 
    507   return false;
    508 }
    509 
    510 /// containsBreak - Return true if the statement contains a break out of it.
    511 /// If the statement (recursively) contains a switch or loop with a break
    512 /// inside of it, this is fine.
    513 bool CodeGenFunction::containsBreak(const Stmt *S) {
    514   // Null statement, not a label!
    515   if (S == 0) return false;
    516 
    517   // If this is a switch or loop that defines its own break scope, then we can
    518   // include it and anything inside of it.
    519   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    520       isa<ForStmt>(S))
    521     return false;
    522 
    523   if (isa<BreakStmt>(S))
    524     return true;
    525 
    526   // Scan subexpressions for verboten breaks.
    527   for (Stmt::const_child_range I = S->children(); I; ++I)
    528     if (containsBreak(*I))
    529       return true;
    530 
    531   return false;
    532 }
    533 
    534 
    535 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    536 /// to a constant, or if it does but contains a label, return false.  If it
    537 /// constant folds return true and set the boolean result in Result.
    538 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    539                                                    bool &ResultBool) {
    540   llvm::APInt ResultInt;
    541   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    542     return false;
    543 
    544   ResultBool = ResultInt.getBoolValue();
    545   return true;
    546 }
    547 
    548 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    549 /// to a constant, or if it does but contains a label, return false.  If it
    550 /// constant folds return true and set the folded value.
    551 bool CodeGenFunction::
    552 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
    553   // FIXME: Rename and handle conversion of other evaluatable things
    554   // to bool.
    555   llvm::APSInt Int;
    556   if (!Cond->EvaluateAsInt(Int, getContext()))
    557     return false;  // Not foldable, not integer or not fully evaluatable.
    558 
    559   if (CodeGenFunction::ContainsLabel(Cond))
    560     return false;  // Contains a label.
    561 
    562   ResultInt = Int;
    563   return true;
    564 }
    565 
    566 
    567 
    568 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    569 /// statement) to the specified blocks.  Based on the condition, this might try
    570 /// to simplify the codegen of the conditional based on the branch.
    571 ///
    572 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    573                                            llvm::BasicBlock *TrueBlock,
    574                                            llvm::BasicBlock *FalseBlock) {
    575   Cond = Cond->IgnoreParens();
    576 
    577   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    578     // Handle X && Y in a condition.
    579     if (CondBOp->getOpcode() == BO_LAnd) {
    580       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    581       // folded if the case was simple enough.
    582       bool ConstantBool = false;
    583       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    584           ConstantBool) {
    585         // br(1 && X) -> br(X).
    586         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    587       }
    588 
    589       // If we have "X && 1", simplify the code to use an uncond branch.
    590       // "X && 0" would have been constant folded to 0.
    591       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    592           ConstantBool) {
    593         // br(X && 1) -> br(X).
    594         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    595       }
    596 
    597       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    598       // want to jump to the FalseBlock.
    599       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    600 
    601       ConditionalEvaluation eval(*this);
    602       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
    603       EmitBlock(LHSTrue);
    604 
    605       // Any temporaries created here are conditional.
    606       eval.begin(*this);
    607       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    608       eval.end(*this);
    609 
    610       return;
    611     }
    612 
    613     if (CondBOp->getOpcode() == BO_LOr) {
    614       // If we have "0 || X", simplify the code.  "1 || X" would have constant
    615       // folded if the case was simple enough.
    616       bool ConstantBool = false;
    617       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    618           !ConstantBool) {
    619         // br(0 || X) -> br(X).
    620         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    621       }
    622 
    623       // If we have "X || 0", simplify the code to use an uncond branch.
    624       // "X || 1" would have been constant folded to 1.
    625       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    626           !ConstantBool) {
    627         // br(X || 0) -> br(X).
    628         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    629       }
    630 
    631       // Emit the LHS as a conditional.  If the LHS conditional is true, we
    632       // want to jump to the TrueBlock.
    633       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
    634 
    635       ConditionalEvaluation eval(*this);
    636       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
    637       EmitBlock(LHSFalse);
    638 
    639       // Any temporaries created here are conditional.
    640       eval.begin(*this);
    641       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    642       eval.end(*this);
    643 
    644       return;
    645     }
    646   }
    647 
    648   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    649     // br(!x, t, f) -> br(x, f, t)
    650     if (CondUOp->getOpcode() == UO_LNot)
    651       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
    652   }
    653 
    654   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    655     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    656     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    657     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
    658 
    659     ConditionalEvaluation cond(*this);
    660     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
    661 
    662     cond.begin(*this);
    663     EmitBlock(LHSBlock);
    664     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
    665     cond.end(*this);
    666 
    667     cond.begin(*this);
    668     EmitBlock(RHSBlock);
    669     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
    670     cond.end(*this);
    671 
    672     return;
    673   }
    674 
    675   // Emit the code with the fully general case.
    676   llvm::Value *CondV = EvaluateExprAsBool(Cond);
    677   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
    678 }
    679 
    680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    681 /// specified stmt yet.
    682 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
    683                                        bool OmitOnError) {
    684   CGM.ErrorUnsupported(S, Type, OmitOnError);
    685 }
    686 
    687 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
    688 /// variable-length array whose elements have a non-zero bit-pattern.
    689 ///
    690 /// \param src - a char* pointing to the bit-pattern for a single
    691 /// base element of the array
    692 /// \param sizeInChars - the total size of the VLA, in chars
    693 /// \param align - the total alignment of the VLA
    694 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
    695                                llvm::Value *dest, llvm::Value *src,
    696                                llvm::Value *sizeInChars) {
    697   std::pair<CharUnits,CharUnits> baseSizeAndAlign
    698     = CGF.getContext().getTypeInfoInChars(baseType);
    699 
    700   CGBuilderTy &Builder = CGF.Builder;
    701 
    702   llvm::Value *baseSizeInChars
    703     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
    704 
    705   llvm::Type *i8p = Builder.getInt8PtrTy();
    706 
    707   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
    708   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
    709 
    710   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
    711   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
    712   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
    713 
    714   // Make a loop over the VLA.  C99 guarantees that the VLA element
    715   // count must be nonzero.
    716   CGF.EmitBlock(loopBB);
    717 
    718   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
    719   cur->addIncoming(begin, originBB);
    720 
    721   // memcpy the individual element bit-pattern.
    722   Builder.CreateMemCpy(cur, src, baseSizeInChars,
    723                        baseSizeAndAlign.second.getQuantity(),
    724                        /*volatile*/ false);
    725 
    726   // Go to the next element.
    727   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
    728 
    729   // Leave if that's the end of the VLA.
    730   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
    731   Builder.CreateCondBr(done, contBB, loopBB);
    732   cur->addIncoming(next, loopBB);
    733 
    734   CGF.EmitBlock(contBB);
    735 }
    736 
    737 void
    738 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
    739   // Ignore empty classes in C++.
    740   if (getContext().getLangOpts().CPlusPlus) {
    741     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    742       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
    743         return;
    744     }
    745   }
    746 
    747   // Cast the dest ptr to the appropriate i8 pointer type.
    748   unsigned DestAS =
    749     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
    750   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
    751   if (DestPtr->getType() != BP)
    752     DestPtr = Builder.CreateBitCast(DestPtr, BP);
    753 
    754   // Get size and alignment info for this aggregate.
    755   std::pair<CharUnits, CharUnits> TypeInfo =
    756     getContext().getTypeInfoInChars(Ty);
    757   CharUnits Size = TypeInfo.first;
    758   CharUnits Align = TypeInfo.second;
    759 
    760   llvm::Value *SizeVal;
    761   const VariableArrayType *vla;
    762 
    763   // Don't bother emitting a zero-byte memset.
    764   if (Size.isZero()) {
    765     // But note that getTypeInfo returns 0 for a VLA.
    766     if (const VariableArrayType *vlaType =
    767           dyn_cast_or_null<VariableArrayType>(
    768                                           getContext().getAsArrayType(Ty))) {
    769       QualType eltType;
    770       llvm::Value *numElts;
    771       llvm::tie(numElts, eltType) = getVLASize(vlaType);
    772 
    773       SizeVal = numElts;
    774       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
    775       if (!eltSize.isOne())
    776         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
    777       vla = vlaType;
    778     } else {
    779       return;
    780     }
    781   } else {
    782     SizeVal = CGM.getSize(Size);
    783     vla = 0;
    784   }
    785 
    786   // If the type contains a pointer to data member we can't memset it to zero.
    787   // Instead, create a null constant and copy it to the destination.
    788   // TODO: there are other patterns besides zero that we can usefully memset,
    789   // like -1, which happens to be the pattern used by member-pointers.
    790   if (!CGM.getTypes().isZeroInitializable(Ty)) {
    791     // For a VLA, emit a single element, then splat that over the VLA.
    792     if (vla) Ty = getContext().getBaseElementType(vla);
    793 
    794     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
    795 
    796     llvm::GlobalVariable *NullVariable =
    797       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
    798                                /*isConstant=*/true,
    799                                llvm::GlobalVariable::PrivateLinkage,
    800                                NullConstant, Twine());
    801     llvm::Value *SrcPtr =
    802       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
    803 
    804     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
    805 
    806     // Get and call the appropriate llvm.memcpy overload.
    807     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
    808     return;
    809   }
    810 
    811   // Otherwise, just memset the whole thing to zero.  This is legal
    812   // because in LLVM, all default initializers (other than the ones we just
    813   // handled above) are guaranteed to have a bit pattern of all zeros.
    814   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
    815                        Align.getQuantity(), false);
    816 }
    817 
    818 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
    819   // Make sure that there is a block for the indirect goto.
    820   if (IndirectBranch == 0)
    821     GetIndirectGotoBlock();
    822 
    823   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
    824 
    825   // Make sure the indirect branch includes all of the address-taken blocks.
    826   IndirectBranch->addDestination(BB);
    827   return llvm::BlockAddress::get(CurFn, BB);
    828 }
    829 
    830 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
    831   // If we already made the indirect branch for indirect goto, return its block.
    832   if (IndirectBranch) return IndirectBranch->getParent();
    833 
    834   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
    835 
    836   // Create the PHI node that indirect gotos will add entries to.
    837   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
    838                                               "indirect.goto.dest");
    839 
    840   // Create the indirect branch instruction.
    841   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
    842   return IndirectBranch->getParent();
    843 }
    844 
    845 /// Computes the length of an array in elements, as well as the base
    846 /// element type and a properly-typed first element pointer.
    847 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
    848                                               QualType &baseType,
    849                                               llvm::Value *&addr) {
    850   const ArrayType *arrayType = origArrayType;
    851 
    852   // If it's a VLA, we have to load the stored size.  Note that
    853   // this is the size of the VLA in bytes, not its size in elements.
    854   llvm::Value *numVLAElements = 0;
    855   if (isa<VariableArrayType>(arrayType)) {
    856     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
    857 
    858     // Walk into all VLAs.  This doesn't require changes to addr,
    859     // which has type T* where T is the first non-VLA element type.
    860     do {
    861       QualType elementType = arrayType->getElementType();
    862       arrayType = getContext().getAsArrayType(elementType);
    863 
    864       // If we only have VLA components, 'addr' requires no adjustment.
    865       if (!arrayType) {
    866         baseType = elementType;
    867         return numVLAElements;
    868       }
    869     } while (isa<VariableArrayType>(arrayType));
    870 
    871     // We get out here only if we find a constant array type
    872     // inside the VLA.
    873   }
    874 
    875   // We have some number of constant-length arrays, so addr should
    876   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
    877   // down to the first element of addr.
    878   SmallVector<llvm::Value*, 8> gepIndices;
    879 
    880   // GEP down to the array type.
    881   llvm::ConstantInt *zero = Builder.getInt32(0);
    882   gepIndices.push_back(zero);
    883 
    884   // It's more efficient to calculate the count from the LLVM
    885   // constant-length arrays than to re-evaluate the array bounds.
    886   uint64_t countFromCLAs = 1;
    887 
    888   llvm::ArrayType *llvmArrayType =
    889     cast<llvm::ArrayType>(
    890       cast<llvm::PointerType>(addr->getType())->getElementType());
    891   while (true) {
    892     assert(isa<ConstantArrayType>(arrayType));
    893     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
    894              == llvmArrayType->getNumElements());
    895 
    896     gepIndices.push_back(zero);
    897     countFromCLAs *= llvmArrayType->getNumElements();
    898 
    899     llvmArrayType =
    900       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
    901     if (!llvmArrayType) break;
    902 
    903     arrayType = getContext().getAsArrayType(arrayType->getElementType());
    904     assert(arrayType && "LLVM and Clang types are out-of-synch");
    905   }
    906 
    907   baseType = arrayType->getElementType();
    908 
    909   // Create the actual GEP.
    910   addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
    911 
    912   llvm::Value *numElements
    913     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
    914 
    915   // If we had any VLA dimensions, factor them in.
    916   if (numVLAElements)
    917     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
    918 
    919   return numElements;
    920 }
    921 
    922 std::pair<llvm::Value*, QualType>
    923 CodeGenFunction::getVLASize(QualType type) {
    924   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
    925   assert(vla && "type was not a variable array type!");
    926   return getVLASize(vla);
    927 }
    928 
    929 std::pair<llvm::Value*, QualType>
    930 CodeGenFunction::getVLASize(const VariableArrayType *type) {
    931   // The number of elements so far; always size_t.
    932   llvm::Value *numElements = 0;
    933 
    934   QualType elementType;
    935   do {
    936     elementType = type->getElementType();
    937     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
    938     assert(vlaSize && "no size for VLA!");
    939     assert(vlaSize->getType() == SizeTy);
    940 
    941     if (!numElements) {
    942       numElements = vlaSize;
    943     } else {
    944       // It's undefined behavior if this wraps around, so mark it that way.
    945       numElements = Builder.CreateNUWMul(numElements, vlaSize);
    946     }
    947   } while ((type = getContext().getAsVariableArrayType(elementType)));
    948 
    949   return std::pair<llvm::Value*,QualType>(numElements, elementType);
    950 }
    951 
    952 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
    953   assert(type->isVariablyModifiedType() &&
    954          "Must pass variably modified type to EmitVLASizes!");
    955 
    956   EnsureInsertPoint();
    957 
    958   // We're going to walk down into the type and look for VLA
    959   // expressions.
    960   do {
    961     assert(type->isVariablyModifiedType());
    962 
    963     const Type *ty = type.getTypePtr();
    964     switch (ty->getTypeClass()) {
    965 
    966 #define TYPE(Class, Base)
    967 #define ABSTRACT_TYPE(Class, Base)
    968 #define NON_CANONICAL_TYPE(Class, Base)
    969 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    970 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
    971 #include "clang/AST/TypeNodes.def"
    972       llvm_unreachable("unexpected dependent type!");
    973 
    974     // These types are never variably-modified.
    975     case Type::Builtin:
    976     case Type::Complex:
    977     case Type::Vector:
    978     case Type::ExtVector:
    979     case Type::Record:
    980     case Type::Enum:
    981     case Type::Elaborated:
    982     case Type::TemplateSpecialization:
    983     case Type::ObjCObject:
    984     case Type::ObjCInterface:
    985     case Type::ObjCObjectPointer:
    986       llvm_unreachable("type class is never variably-modified!");
    987 
    988     case Type::Pointer:
    989       type = cast<PointerType>(ty)->getPointeeType();
    990       break;
    991 
    992     case Type::BlockPointer:
    993       type = cast<BlockPointerType>(ty)->getPointeeType();
    994       break;
    995 
    996     case Type::LValueReference:
    997     case Type::RValueReference:
    998       type = cast<ReferenceType>(ty)->getPointeeType();
    999       break;
   1000 
   1001     case Type::MemberPointer:
   1002       type = cast<MemberPointerType>(ty)->getPointeeType();
   1003       break;
   1004 
   1005     case Type::ConstantArray:
   1006     case Type::IncompleteArray:
   1007       // Losing element qualification here is fine.
   1008       type = cast<ArrayType>(ty)->getElementType();
   1009       break;
   1010 
   1011     case Type::VariableArray: {
   1012       // Losing element qualification here is fine.
   1013       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1014 
   1015       // Unknown size indication requires no size computation.
   1016       // Otherwise, evaluate and record it.
   1017       if (const Expr *size = vat->getSizeExpr()) {
   1018         // It's possible that we might have emitted this already,
   1019         // e.g. with a typedef and a pointer to it.
   1020         llvm::Value *&entry = VLASizeMap[size];
   1021         if (!entry) {
   1022           // Always zexting here would be wrong if it weren't
   1023           // undefined behavior to have a negative bound.
   1024           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
   1025                                         /*signed*/ false);
   1026         }
   1027       }
   1028       type = vat->getElementType();
   1029       break;
   1030     }
   1031 
   1032     case Type::FunctionProto:
   1033     case Type::FunctionNoProto:
   1034       type = cast<FunctionType>(ty)->getResultType();
   1035       break;
   1036 
   1037     case Type::Paren:
   1038     case Type::TypeOf:
   1039     case Type::UnaryTransform:
   1040     case Type::Attributed:
   1041     case Type::SubstTemplateTypeParm:
   1042       // Keep walking after single level desugaring.
   1043       type = type.getSingleStepDesugaredType(getContext());
   1044       break;
   1045 
   1046     case Type::Typedef:
   1047     case Type::Decltype:
   1048     case Type::Auto:
   1049       // Stop walking: nothing to do.
   1050       return;
   1051 
   1052     case Type::TypeOfExpr:
   1053       // Stop walking: emit typeof expression.
   1054       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1055       return;
   1056 
   1057     case Type::Atomic:
   1058       type = cast<AtomicType>(ty)->getValueType();
   1059       break;
   1060     }
   1061   } while (type->isVariablyModifiedType());
   1062 }
   1063 
   1064 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1065   if (getContext().getBuiltinVaListType()->isArrayType())
   1066     return EmitScalarExpr(E);
   1067   return EmitLValue(E).getAddress();
   1068 }
   1069 
   1070 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1071                                               llvm::Constant *Init) {
   1072   assert (Init && "Invalid DeclRefExpr initializer!");
   1073   if (CGDebugInfo *Dbg = getDebugInfo())
   1074     Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1075 }
   1076 
   1077 CodeGenFunction::PeepholeProtection
   1078 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1079   // At the moment, the only aggressive peephole we do in IR gen
   1080   // is trunc(zext) folding, but if we add more, we can easily
   1081   // extend this protection.
   1082 
   1083   if (!rvalue.isScalar()) return PeepholeProtection();
   1084   llvm::Value *value = rvalue.getScalarVal();
   1085   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1086 
   1087   // Just make an extra bitcast.
   1088   assert(HaveInsertPoint());
   1089   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1090                                                   Builder.GetInsertBlock());
   1091 
   1092   PeepholeProtection protection;
   1093   protection.Inst = inst;
   1094   return protection;
   1095 }
   1096 
   1097 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1098   if (!protection.Inst) return;
   1099 
   1100   // In theory, we could try to duplicate the peepholes now, but whatever.
   1101   protection.Inst->eraseFromParent();
   1102 }
   1103 
   1104 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1105                                                  llvm::Value *AnnotatedVal,
   1106                                                  llvm::StringRef AnnotationStr,
   1107                                                  SourceLocation Location) {
   1108   llvm::Value *Args[4] = {
   1109     AnnotatedVal,
   1110     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1111     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1112     CGM.EmitAnnotationLineNo(Location)
   1113   };
   1114   return Builder.CreateCall(AnnotationFn, Args);
   1115 }
   1116 
   1117 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1118   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1119   // FIXME We create a new bitcast for every annotation because that's what
   1120   // llvm-gcc was doing.
   1121   for (specific_attr_iterator<AnnotateAttr>
   1122        ai = D->specific_attr_begin<AnnotateAttr>(),
   1123        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
   1124     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1125                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1126                        (*ai)->getAnnotation(), D->getLocation());
   1127 }
   1128 
   1129 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1130                                                    llvm::Value *V) {
   1131   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1132   llvm::Type *VTy = V->getType();
   1133   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1134                                     CGM.Int8PtrTy);
   1135 
   1136   for (specific_attr_iterator<AnnotateAttr>
   1137        ai = D->specific_attr_begin<AnnotateAttr>(),
   1138        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
   1139     // FIXME Always emit the cast inst so we can differentiate between
   1140     // annotation on the first field of a struct and annotation on the struct
   1141     // itself.
   1142     if (VTy != CGM.Int8PtrTy)
   1143       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1144     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
   1145     V = Builder.CreateBitCast(V, VTy);
   1146   }
   1147 
   1148   return V;
   1149 }
   1150