1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. 106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(), 108 ABI.getMangleContext()); 109 110 // If debug info or coverage generation is enabled, create the CGDebugInfo 111 // object. 112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 113 CodeGenOpts.EmitGcovNotes) 114 DebugInfo = new CGDebugInfo(*this); 115 116 Block.GlobalUniqueCount = 0; 117 118 if (C.getLangOpts().ObjCAutoRefCount) 119 ARCData = new ARCEntrypoints(); 120 RRData = new RREntrypoints(); 121 } 122 123 CodeGenModule::~CodeGenModule() { 124 delete ObjCRuntime; 125 delete OpenCLRuntime; 126 delete CUDARuntime; 127 delete TheTargetCodeGenInfo; 128 delete &ABI; 129 delete TBAA; 130 delete DebugInfo; 131 delete ARCData; 132 delete RRData; 133 } 134 135 void CodeGenModule::createObjCRuntime() { 136 if (!LangOpts.NeXTRuntime) 137 ObjCRuntime = CreateGNUObjCRuntime(*this); 138 else 139 ObjCRuntime = CreateMacObjCRuntime(*this); 140 } 141 142 void CodeGenModule::createOpenCLRuntime() { 143 OpenCLRuntime = new CGOpenCLRuntime(*this); 144 } 145 146 void CodeGenModule::createCUDARuntime() { 147 CUDARuntime = CreateNVCUDARuntime(*this); 148 } 149 150 void CodeGenModule::Release() { 151 EmitDeferred(); 152 EmitCXXGlobalInitFunc(); 153 EmitCXXGlobalDtorFunc(); 154 if (ObjCRuntime) 155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 156 AddGlobalCtor(ObjCInitFunction); 157 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 158 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 159 EmitGlobalAnnotations(); 160 EmitLLVMUsed(); 161 162 SimplifyPersonality(); 163 164 if (getCodeGenOpts().EmitDeclMetadata) 165 EmitDeclMetadata(); 166 167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 168 EmitCoverageFile(); 169 170 if (DebugInfo) 171 DebugInfo->finalize(); 172 } 173 174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 175 // Make sure that this type is translated. 176 Types.UpdateCompletedType(TD); 177 } 178 179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 180 if (!TBAA) 181 return 0; 182 return TBAA->getTBAAInfo(QTy); 183 } 184 185 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 186 if (!TBAA) 187 return 0; 188 return TBAA->getTBAAInfoForVTablePtr(); 189 } 190 191 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 192 llvm::MDNode *TBAAInfo) { 193 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 194 } 195 196 bool CodeGenModule::isTargetDarwin() const { 197 return getContext().getTargetInfo().getTriple().isOSDarwin(); 198 } 199 200 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 201 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 202 getDiags().Report(Context.getFullLoc(loc), diagID); 203 } 204 205 /// ErrorUnsupported - Print out an error that codegen doesn't support the 206 /// specified stmt yet. 207 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 208 bool OmitOnError) { 209 if (OmitOnError && getDiags().hasErrorOccurred()) 210 return; 211 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 212 "cannot compile this %0 yet"); 213 std::string Msg = Type; 214 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 215 << Msg << S->getSourceRange(); 216 } 217 218 /// ErrorUnsupported - Print out an error that codegen doesn't support the 219 /// specified decl yet. 220 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 221 bool OmitOnError) { 222 if (OmitOnError && getDiags().hasErrorOccurred()) 223 return; 224 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 225 "cannot compile this %0 yet"); 226 std::string Msg = Type; 227 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 228 } 229 230 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 231 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 232 } 233 234 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 235 const NamedDecl *D) const { 236 // Internal definitions always have default visibility. 237 if (GV->hasLocalLinkage()) { 238 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 239 return; 240 } 241 242 // Set visibility for definitions. 243 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 244 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 245 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 246 } 247 248 /// Set the symbol visibility of type information (vtable and RTTI) 249 /// associated with the given type. 250 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 251 const CXXRecordDecl *RD, 252 TypeVisibilityKind TVK) const { 253 setGlobalVisibility(GV, RD); 254 255 if (!CodeGenOpts.HiddenWeakVTables) 256 return; 257 258 // We never want to drop the visibility for RTTI names. 259 if (TVK == TVK_ForRTTIName) 260 return; 261 262 // We want to drop the visibility to hidden for weak type symbols. 263 // This isn't possible if there might be unresolved references 264 // elsewhere that rely on this symbol being visible. 265 266 // This should be kept roughly in sync with setThunkVisibility 267 // in CGVTables.cpp. 268 269 // Preconditions. 270 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 271 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 272 return; 273 274 // Don't override an explicit visibility attribute. 275 if (RD->getExplicitVisibility()) 276 return; 277 278 switch (RD->getTemplateSpecializationKind()) { 279 // We have to disable the optimization if this is an EI definition 280 // because there might be EI declarations in other shared objects. 281 case TSK_ExplicitInstantiationDefinition: 282 case TSK_ExplicitInstantiationDeclaration: 283 return; 284 285 // Every use of a non-template class's type information has to emit it. 286 case TSK_Undeclared: 287 break; 288 289 // In theory, implicit instantiations can ignore the possibility of 290 // an explicit instantiation declaration because there necessarily 291 // must be an EI definition somewhere with default visibility. In 292 // practice, it's possible to have an explicit instantiation for 293 // an arbitrary template class, and linkers aren't necessarily able 294 // to deal with mixed-visibility symbols. 295 case TSK_ExplicitSpecialization: 296 case TSK_ImplicitInstantiation: 297 if (!CodeGenOpts.HiddenWeakTemplateVTables) 298 return; 299 break; 300 } 301 302 // If there's a key function, there may be translation units 303 // that don't have the key function's definition. But ignore 304 // this if we're emitting RTTI under -fno-rtti. 305 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 306 if (Context.getKeyFunction(RD)) 307 return; 308 } 309 310 // Otherwise, drop the visibility to hidden. 311 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 312 GV->setUnnamedAddr(true); 313 } 314 315 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 316 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 317 318 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 319 if (!Str.empty()) 320 return Str; 321 322 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 323 IdentifierInfo *II = ND->getIdentifier(); 324 assert(II && "Attempt to mangle unnamed decl."); 325 326 Str = II->getName(); 327 return Str; 328 } 329 330 SmallString<256> Buffer; 331 llvm::raw_svector_ostream Out(Buffer); 332 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 333 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 334 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 335 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 336 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 337 getCXXABI().getMangleContext().mangleBlock(BD, Out); 338 else 339 getCXXABI().getMangleContext().mangleName(ND, Out); 340 341 // Allocate space for the mangled name. 342 Out.flush(); 343 size_t Length = Buffer.size(); 344 char *Name = MangledNamesAllocator.Allocate<char>(Length); 345 std::copy(Buffer.begin(), Buffer.end(), Name); 346 347 Str = StringRef(Name, Length); 348 349 return Str; 350 } 351 352 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 353 const BlockDecl *BD) { 354 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 355 const Decl *D = GD.getDecl(); 356 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 357 if (D == 0) 358 MangleCtx.mangleGlobalBlock(BD, Out); 359 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 360 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 361 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 362 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 363 else 364 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 365 } 366 367 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 368 return getModule().getNamedValue(Name); 369 } 370 371 /// AddGlobalCtor - Add a function to the list that will be called before 372 /// main() runs. 373 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 374 // FIXME: Type coercion of void()* types. 375 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 376 } 377 378 /// AddGlobalDtor - Add a function to the list that will be called 379 /// when the module is unloaded. 380 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 381 // FIXME: Type coercion of void()* types. 382 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 383 } 384 385 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 386 // Ctor function type is void()*. 387 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 388 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 389 390 // Get the type of a ctor entry, { i32, void ()* }. 391 llvm::StructType *CtorStructTy = 392 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 393 394 // Construct the constructor and destructor arrays. 395 SmallVector<llvm::Constant*, 8> Ctors; 396 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 397 llvm::Constant *S[] = { 398 llvm::ConstantInt::get(Int32Ty, I->second, false), 399 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 400 }; 401 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 402 } 403 404 if (!Ctors.empty()) { 405 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 406 new llvm::GlobalVariable(TheModule, AT, false, 407 llvm::GlobalValue::AppendingLinkage, 408 llvm::ConstantArray::get(AT, Ctors), 409 GlobalName); 410 } 411 } 412 413 llvm::GlobalValue::LinkageTypes 414 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 415 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 416 417 if (Linkage == GVA_Internal) 418 return llvm::Function::InternalLinkage; 419 420 if (D->hasAttr<DLLExportAttr>()) 421 return llvm::Function::DLLExportLinkage; 422 423 if (D->hasAttr<WeakAttr>()) 424 return llvm::Function::WeakAnyLinkage; 425 426 // In C99 mode, 'inline' functions are guaranteed to have a strong 427 // definition somewhere else, so we can use available_externally linkage. 428 if (Linkage == GVA_C99Inline) 429 return llvm::Function::AvailableExternallyLinkage; 430 431 // Note that Apple's kernel linker doesn't support symbol 432 // coalescing, so we need to avoid linkonce and weak linkages there. 433 // Normally, this means we just map to internal, but for explicit 434 // instantiations we'll map to external. 435 436 // In C++, the compiler has to emit a definition in every translation unit 437 // that references the function. We should use linkonce_odr because 438 // a) if all references in this translation unit are optimized away, we 439 // don't need to codegen it. b) if the function persists, it needs to be 440 // merged with other definitions. c) C++ has the ODR, so we know the 441 // definition is dependable. 442 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 443 return !Context.getLangOpts().AppleKext 444 ? llvm::Function::LinkOnceODRLinkage 445 : llvm::Function::InternalLinkage; 446 447 // An explicit instantiation of a template has weak linkage, since 448 // explicit instantiations can occur in multiple translation units 449 // and must all be equivalent. However, we are not allowed to 450 // throw away these explicit instantiations. 451 if (Linkage == GVA_ExplicitTemplateInstantiation) 452 return !Context.getLangOpts().AppleKext 453 ? llvm::Function::WeakODRLinkage 454 : llvm::Function::ExternalLinkage; 455 456 // Otherwise, we have strong external linkage. 457 assert(Linkage == GVA_StrongExternal); 458 return llvm::Function::ExternalLinkage; 459 } 460 461 462 /// SetFunctionDefinitionAttributes - Set attributes for a global. 463 /// 464 /// FIXME: This is currently only done for aliases and functions, but not for 465 /// variables (these details are set in EmitGlobalVarDefinition for variables). 466 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 467 llvm::GlobalValue *GV) { 468 SetCommonAttributes(D, GV); 469 } 470 471 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 472 const CGFunctionInfo &Info, 473 llvm::Function *F) { 474 unsigned CallingConv; 475 AttributeListType AttributeList; 476 ConstructAttributeList(Info, D, AttributeList, CallingConv); 477 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 478 AttributeList.size())); 479 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 480 } 481 482 /// Determines whether the language options require us to model 483 /// unwind exceptions. We treat -fexceptions as mandating this 484 /// except under the fragile ObjC ABI with only ObjC exceptions 485 /// enabled. This means, for example, that C with -fexceptions 486 /// enables this. 487 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 488 // If exceptions are completely disabled, obviously this is false. 489 if (!LangOpts.Exceptions) return false; 490 491 // If C++ exceptions are enabled, this is true. 492 if (LangOpts.CXXExceptions) return true; 493 494 // If ObjC exceptions are enabled, this depends on the ABI. 495 if (LangOpts.ObjCExceptions) { 496 if (!LangOpts.ObjCNonFragileABI) return false; 497 } 498 499 return true; 500 } 501 502 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 503 llvm::Function *F) { 504 if (CodeGenOpts.UnwindTables) 505 F->setHasUWTable(); 506 507 if (!hasUnwindExceptions(LangOpts)) 508 F->addFnAttr(llvm::Attribute::NoUnwind); 509 510 if (D->hasAttr<NakedAttr>()) { 511 // Naked implies noinline: we should not be inlining such functions. 512 F->addFnAttr(llvm::Attribute::Naked); 513 F->addFnAttr(llvm::Attribute::NoInline); 514 } 515 516 if (D->hasAttr<NoInlineAttr>()) 517 F->addFnAttr(llvm::Attribute::NoInline); 518 519 // (noinline wins over always_inline, and we can't specify both in IR) 520 if (D->hasAttr<AlwaysInlineAttr>() && 521 !F->hasFnAttr(llvm::Attribute::NoInline)) 522 F->addFnAttr(llvm::Attribute::AlwaysInline); 523 524 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 525 F->setUnnamedAddr(true); 526 527 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 528 F->addFnAttr(llvm::Attribute::StackProtect); 529 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 530 F->addFnAttr(llvm::Attribute::StackProtectReq); 531 532 if (LangOpts.AddressSanitizer) { 533 // When AddressSanitizer is enabled, set AddressSafety attribute 534 // unless __attribute__((no_address_safety_analysis)) is used. 535 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 536 F->addFnAttr(llvm::Attribute::AddressSafety); 537 } 538 539 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 540 if (alignment) 541 F->setAlignment(alignment); 542 543 // C++ ABI requires 2-byte alignment for member functions. 544 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 545 F->setAlignment(2); 546 } 547 548 void CodeGenModule::SetCommonAttributes(const Decl *D, 549 llvm::GlobalValue *GV) { 550 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 551 setGlobalVisibility(GV, ND); 552 else 553 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 554 555 if (D->hasAttr<UsedAttr>()) 556 AddUsedGlobal(GV); 557 558 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 559 GV->setSection(SA->getName()); 560 561 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 562 } 563 564 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 565 llvm::Function *F, 566 const CGFunctionInfo &FI) { 567 SetLLVMFunctionAttributes(D, FI, F); 568 SetLLVMFunctionAttributesForDefinition(D, F); 569 570 F->setLinkage(llvm::Function::InternalLinkage); 571 572 SetCommonAttributes(D, F); 573 } 574 575 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 576 llvm::Function *F, 577 bool IsIncompleteFunction) { 578 if (unsigned IID = F->getIntrinsicID()) { 579 // If this is an intrinsic function, set the function's attributes 580 // to the intrinsic's attributes. 581 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 582 return; 583 } 584 585 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 586 587 if (!IsIncompleteFunction) 588 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 589 590 // Only a few attributes are set on declarations; these may later be 591 // overridden by a definition. 592 593 if (FD->hasAttr<DLLImportAttr>()) { 594 F->setLinkage(llvm::Function::DLLImportLinkage); 595 } else if (FD->hasAttr<WeakAttr>() || 596 FD->isWeakImported()) { 597 // "extern_weak" is overloaded in LLVM; we probably should have 598 // separate linkage types for this. 599 F->setLinkage(llvm::Function::ExternalWeakLinkage); 600 } else { 601 F->setLinkage(llvm::Function::ExternalLinkage); 602 603 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 604 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 605 F->setVisibility(GetLLVMVisibility(LV.visibility())); 606 } 607 } 608 609 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 610 F->setSection(SA->getName()); 611 } 612 613 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 614 assert(!GV->isDeclaration() && 615 "Only globals with definition can force usage."); 616 LLVMUsed.push_back(GV); 617 } 618 619 void CodeGenModule::EmitLLVMUsed() { 620 // Don't create llvm.used if there is no need. 621 if (LLVMUsed.empty()) 622 return; 623 624 // Convert LLVMUsed to what ConstantArray needs. 625 SmallVector<llvm::Constant*, 8> UsedArray; 626 UsedArray.resize(LLVMUsed.size()); 627 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 628 UsedArray[i] = 629 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 630 Int8PtrTy); 631 } 632 633 if (UsedArray.empty()) 634 return; 635 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 636 637 llvm::GlobalVariable *GV = 638 new llvm::GlobalVariable(getModule(), ATy, false, 639 llvm::GlobalValue::AppendingLinkage, 640 llvm::ConstantArray::get(ATy, UsedArray), 641 "llvm.used"); 642 643 GV->setSection("llvm.metadata"); 644 } 645 646 void CodeGenModule::EmitDeferred() { 647 // Emit code for any potentially referenced deferred decls. Since a 648 // previously unused static decl may become used during the generation of code 649 // for a static function, iterate until no changes are made. 650 651 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 652 if (!DeferredVTables.empty()) { 653 const CXXRecordDecl *RD = DeferredVTables.back(); 654 DeferredVTables.pop_back(); 655 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 656 continue; 657 } 658 659 GlobalDecl D = DeferredDeclsToEmit.back(); 660 DeferredDeclsToEmit.pop_back(); 661 662 // Check to see if we've already emitted this. This is necessary 663 // for a couple of reasons: first, decls can end up in the 664 // deferred-decls queue multiple times, and second, decls can end 665 // up with definitions in unusual ways (e.g. by an extern inline 666 // function acquiring a strong function redefinition). Just 667 // ignore these cases. 668 // 669 // TODO: That said, looking this up multiple times is very wasteful. 670 StringRef Name = getMangledName(D); 671 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 672 assert(CGRef && "Deferred decl wasn't referenced?"); 673 674 if (!CGRef->isDeclaration()) 675 continue; 676 677 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 678 // purposes an alias counts as a definition. 679 if (isa<llvm::GlobalAlias>(CGRef)) 680 continue; 681 682 // Otherwise, emit the definition and move on to the next one. 683 EmitGlobalDefinition(D); 684 } 685 } 686 687 void CodeGenModule::EmitGlobalAnnotations() { 688 if (Annotations.empty()) 689 return; 690 691 // Create a new global variable for the ConstantStruct in the Module. 692 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 693 Annotations[0]->getType(), Annotations.size()), Annotations); 694 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 695 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 696 "llvm.global.annotations"); 697 gv->setSection(AnnotationSection); 698 } 699 700 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 701 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 702 if (i != AnnotationStrings.end()) 703 return i->second; 704 705 // Not found yet, create a new global. 706 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 707 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 708 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 709 gv->setSection(AnnotationSection); 710 gv->setUnnamedAddr(true); 711 AnnotationStrings[Str] = gv; 712 return gv; 713 } 714 715 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 716 SourceManager &SM = getContext().getSourceManager(); 717 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 718 if (PLoc.isValid()) 719 return EmitAnnotationString(PLoc.getFilename()); 720 return EmitAnnotationString(SM.getBufferName(Loc)); 721 } 722 723 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 724 SourceManager &SM = getContext().getSourceManager(); 725 PresumedLoc PLoc = SM.getPresumedLoc(L); 726 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 727 SM.getExpansionLineNumber(L); 728 return llvm::ConstantInt::get(Int32Ty, LineNo); 729 } 730 731 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 732 const AnnotateAttr *AA, 733 SourceLocation L) { 734 // Get the globals for file name, annotation, and the line number. 735 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 736 *UnitGV = EmitAnnotationUnit(L), 737 *LineNoCst = EmitAnnotationLineNo(L); 738 739 // Create the ConstantStruct for the global annotation. 740 llvm::Constant *Fields[4] = { 741 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 742 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 743 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 744 LineNoCst 745 }; 746 return llvm::ConstantStruct::getAnon(Fields); 747 } 748 749 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 750 llvm::GlobalValue *GV) { 751 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 752 // Get the struct elements for these annotations. 753 for (specific_attr_iterator<AnnotateAttr> 754 ai = D->specific_attr_begin<AnnotateAttr>(), 755 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 756 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 757 } 758 759 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 760 // Never defer when EmitAllDecls is specified. 761 if (LangOpts.EmitAllDecls) 762 return false; 763 764 return !getContext().DeclMustBeEmitted(Global); 765 } 766 767 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 768 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 769 assert(AA && "No alias?"); 770 771 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 772 773 // See if there is already something with the target's name in the module. 774 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 775 776 llvm::Constant *Aliasee; 777 if (isa<llvm::FunctionType>(DeclTy)) 778 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 779 /*ForVTable=*/false); 780 else 781 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 782 llvm::PointerType::getUnqual(DeclTy), 0); 783 if (!Entry) { 784 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 785 F->setLinkage(llvm::Function::ExternalWeakLinkage); 786 WeakRefReferences.insert(F); 787 } 788 789 return Aliasee; 790 } 791 792 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 793 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 794 795 // Weak references don't produce any output by themselves. 796 if (Global->hasAttr<WeakRefAttr>()) 797 return; 798 799 // If this is an alias definition (which otherwise looks like a declaration) 800 // emit it now. 801 if (Global->hasAttr<AliasAttr>()) 802 return EmitAliasDefinition(GD); 803 804 // If this is CUDA, be selective about which declarations we emit. 805 if (LangOpts.CUDA) { 806 if (CodeGenOpts.CUDAIsDevice) { 807 if (!Global->hasAttr<CUDADeviceAttr>() && 808 !Global->hasAttr<CUDAGlobalAttr>() && 809 !Global->hasAttr<CUDAConstantAttr>() && 810 !Global->hasAttr<CUDASharedAttr>()) 811 return; 812 } else { 813 if (!Global->hasAttr<CUDAHostAttr>() && ( 814 Global->hasAttr<CUDADeviceAttr>() || 815 Global->hasAttr<CUDAConstantAttr>() || 816 Global->hasAttr<CUDASharedAttr>())) 817 return; 818 } 819 } 820 821 // Ignore declarations, they will be emitted on their first use. 822 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 823 // Forward declarations are emitted lazily on first use. 824 if (!FD->doesThisDeclarationHaveABody()) { 825 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 826 return; 827 828 const FunctionDecl *InlineDefinition = 0; 829 FD->getBody(InlineDefinition); 830 831 StringRef MangledName = getMangledName(GD); 832 DeferredDecls.erase(MangledName); 833 EmitGlobalDefinition(InlineDefinition); 834 return; 835 } 836 } else { 837 const VarDecl *VD = cast<VarDecl>(Global); 838 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 839 840 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 841 return; 842 } 843 844 // Defer code generation when possible if this is a static definition, inline 845 // function etc. These we only want to emit if they are used. 846 if (!MayDeferGeneration(Global)) { 847 // Emit the definition if it can't be deferred. 848 EmitGlobalDefinition(GD); 849 return; 850 } 851 852 // If we're deferring emission of a C++ variable with an 853 // initializer, remember the order in which it appeared in the file. 854 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 855 cast<VarDecl>(Global)->hasInit()) { 856 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 857 CXXGlobalInits.push_back(0); 858 } 859 860 // If the value has already been used, add it directly to the 861 // DeferredDeclsToEmit list. 862 StringRef MangledName = getMangledName(GD); 863 if (GetGlobalValue(MangledName)) 864 DeferredDeclsToEmit.push_back(GD); 865 else { 866 // Otherwise, remember that we saw a deferred decl with this name. The 867 // first use of the mangled name will cause it to move into 868 // DeferredDeclsToEmit. 869 DeferredDecls[MangledName] = GD; 870 } 871 } 872 873 namespace { 874 struct FunctionIsDirectlyRecursive : 875 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 876 const StringRef Name; 877 const Builtin::Context &BI; 878 bool Result; 879 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 880 Name(N), BI(C), Result(false) { 881 } 882 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 883 884 bool TraverseCallExpr(CallExpr *E) { 885 const FunctionDecl *FD = E->getDirectCallee(); 886 if (!FD) 887 return true; 888 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 889 if (Attr && Name == Attr->getLabel()) { 890 Result = true; 891 return false; 892 } 893 unsigned BuiltinID = FD->getBuiltinID(); 894 if (!BuiltinID) 895 return true; 896 StringRef BuiltinName = BI.GetName(BuiltinID); 897 if (BuiltinName.startswith("__builtin_") && 898 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 899 Result = true; 900 return false; 901 } 902 return true; 903 } 904 }; 905 } 906 907 // isTriviallyRecursive - Check if this function calls another 908 // decl that, because of the asm attribute or the other decl being a builtin, 909 // ends up pointing to itself. 910 bool 911 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 912 StringRef Name; 913 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 914 // asm labels are a special kind of mangling we have to support. 915 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 916 if (!Attr) 917 return false; 918 Name = Attr->getLabel(); 919 } else { 920 Name = FD->getName(); 921 } 922 923 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 924 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 925 return Walker.Result; 926 } 927 928 bool 929 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 930 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 931 return true; 932 if (CodeGenOpts.OptimizationLevel == 0 && 933 !F->hasAttr<AlwaysInlineAttr>()) 934 return false; 935 // PR9614. Avoid cases where the source code is lying to us. An available 936 // externally function should have an equivalent function somewhere else, 937 // but a function that calls itself is clearly not equivalent to the real 938 // implementation. 939 // This happens in glibc's btowc and in some configure checks. 940 return !isTriviallyRecursive(F); 941 } 942 943 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 944 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 945 946 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 947 Context.getSourceManager(), 948 "Generating code for declaration"); 949 950 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 951 // At -O0, don't generate IR for functions with available_externally 952 // linkage. 953 if (!shouldEmitFunction(Function)) 954 return; 955 956 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 957 // Make sure to emit the definition(s) before we emit the thunks. 958 // This is necessary for the generation of certain thunks. 959 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 960 EmitCXXConstructor(CD, GD.getCtorType()); 961 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 962 EmitCXXDestructor(DD, GD.getDtorType()); 963 else 964 EmitGlobalFunctionDefinition(GD); 965 966 if (Method->isVirtual()) 967 getVTables().EmitThunks(GD); 968 969 return; 970 } 971 972 return EmitGlobalFunctionDefinition(GD); 973 } 974 975 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 976 return EmitGlobalVarDefinition(VD); 977 978 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 979 } 980 981 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 982 /// module, create and return an llvm Function with the specified type. If there 983 /// is something in the module with the specified name, return it potentially 984 /// bitcasted to the right type. 985 /// 986 /// If D is non-null, it specifies a decl that correspond to this. This is used 987 /// to set the attributes on the function when it is first created. 988 llvm::Constant * 989 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 990 llvm::Type *Ty, 991 GlobalDecl D, bool ForVTable, 992 llvm::Attributes ExtraAttrs) { 993 // Lookup the entry, lazily creating it if necessary. 994 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 995 if (Entry) { 996 if (WeakRefReferences.count(Entry)) { 997 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 998 if (FD && !FD->hasAttr<WeakAttr>()) 999 Entry->setLinkage(llvm::Function::ExternalLinkage); 1000 1001 WeakRefReferences.erase(Entry); 1002 } 1003 1004 if (Entry->getType()->getElementType() == Ty) 1005 return Entry; 1006 1007 // Make sure the result is of the correct type. 1008 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1009 } 1010 1011 // This function doesn't have a complete type (for example, the return 1012 // type is an incomplete struct). Use a fake type instead, and make 1013 // sure not to try to set attributes. 1014 bool IsIncompleteFunction = false; 1015 1016 llvm::FunctionType *FTy; 1017 if (isa<llvm::FunctionType>(Ty)) { 1018 FTy = cast<llvm::FunctionType>(Ty); 1019 } else { 1020 FTy = llvm::FunctionType::get(VoidTy, false); 1021 IsIncompleteFunction = true; 1022 } 1023 1024 llvm::Function *F = llvm::Function::Create(FTy, 1025 llvm::Function::ExternalLinkage, 1026 MangledName, &getModule()); 1027 assert(F->getName() == MangledName && "name was uniqued!"); 1028 if (D.getDecl()) 1029 SetFunctionAttributes(D, F, IsIncompleteFunction); 1030 if (ExtraAttrs != llvm::Attribute::None) 1031 F->addFnAttr(ExtraAttrs); 1032 1033 // This is the first use or definition of a mangled name. If there is a 1034 // deferred decl with this name, remember that we need to emit it at the end 1035 // of the file. 1036 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1037 if (DDI != DeferredDecls.end()) { 1038 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1039 // list, and remove it from DeferredDecls (since we don't need it anymore). 1040 DeferredDeclsToEmit.push_back(DDI->second); 1041 DeferredDecls.erase(DDI); 1042 1043 // Otherwise, there are cases we have to worry about where we're 1044 // using a declaration for which we must emit a definition but where 1045 // we might not find a top-level definition: 1046 // - member functions defined inline in their classes 1047 // - friend functions defined inline in some class 1048 // - special member functions with implicit definitions 1049 // If we ever change our AST traversal to walk into class methods, 1050 // this will be unnecessary. 1051 // 1052 // We also don't emit a definition for a function if it's going to be an entry 1053 // in a vtable, unless it's already marked as used. 1054 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1055 // Look for a declaration that's lexically in a record. 1056 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1057 do { 1058 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1059 if (FD->isImplicit() && !ForVTable) { 1060 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1061 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1062 break; 1063 } else if (FD->doesThisDeclarationHaveABody()) { 1064 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1065 break; 1066 } 1067 } 1068 FD = FD->getPreviousDecl(); 1069 } while (FD); 1070 } 1071 1072 // Make sure the result is of the requested type. 1073 if (!IsIncompleteFunction) { 1074 assert(F->getType()->getElementType() == Ty); 1075 return F; 1076 } 1077 1078 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1079 return llvm::ConstantExpr::getBitCast(F, PTy); 1080 } 1081 1082 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1083 /// non-null, then this function will use the specified type if it has to 1084 /// create it (this occurs when we see a definition of the function). 1085 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1086 llvm::Type *Ty, 1087 bool ForVTable) { 1088 // If there was no specific requested type, just convert it now. 1089 if (!Ty) 1090 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1091 1092 StringRef MangledName = getMangledName(GD); 1093 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1094 } 1095 1096 /// CreateRuntimeFunction - Create a new runtime function with the specified 1097 /// type and name. 1098 llvm::Constant * 1099 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1100 StringRef Name, 1101 llvm::Attributes ExtraAttrs) { 1102 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1103 ExtraAttrs); 1104 } 1105 1106 /// isTypeConstant - Determine whether an object of this type can be emitted 1107 /// as a constant. 1108 /// 1109 /// If ExcludeCtor is true, the duration when the object's constructor runs 1110 /// will not be considered. The caller will need to verify that the object is 1111 /// not written to during its construction. 1112 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1113 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1114 return false; 1115 1116 if (Context.getLangOpts().CPlusPlus) { 1117 if (const CXXRecordDecl *Record 1118 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1119 return ExcludeCtor && !Record->hasMutableFields() && 1120 Record->hasTrivialDestructor(); 1121 } 1122 1123 return true; 1124 } 1125 1126 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1127 /// create and return an llvm GlobalVariable with the specified type. If there 1128 /// is something in the module with the specified name, return it potentially 1129 /// bitcasted to the right type. 1130 /// 1131 /// If D is non-null, it specifies a decl that correspond to this. This is used 1132 /// to set the attributes on the global when it is first created. 1133 llvm::Constant * 1134 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1135 llvm::PointerType *Ty, 1136 const VarDecl *D, 1137 bool UnnamedAddr) { 1138 // Lookup the entry, lazily creating it if necessary. 1139 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1140 if (Entry) { 1141 if (WeakRefReferences.count(Entry)) { 1142 if (D && !D->hasAttr<WeakAttr>()) 1143 Entry->setLinkage(llvm::Function::ExternalLinkage); 1144 1145 WeakRefReferences.erase(Entry); 1146 } 1147 1148 if (UnnamedAddr) 1149 Entry->setUnnamedAddr(true); 1150 1151 if (Entry->getType() == Ty) 1152 return Entry; 1153 1154 // Make sure the result is of the correct type. 1155 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1156 } 1157 1158 // This is the first use or definition of a mangled name. If there is a 1159 // deferred decl with this name, remember that we need to emit it at the end 1160 // of the file. 1161 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1162 if (DDI != DeferredDecls.end()) { 1163 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1164 // list, and remove it from DeferredDecls (since we don't need it anymore). 1165 DeferredDeclsToEmit.push_back(DDI->second); 1166 DeferredDecls.erase(DDI); 1167 } 1168 1169 llvm::GlobalVariable *GV = 1170 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1171 llvm::GlobalValue::ExternalLinkage, 1172 0, MangledName, 0, 1173 false, Ty->getAddressSpace()); 1174 1175 // Handle things which are present even on external declarations. 1176 if (D) { 1177 // FIXME: This code is overly simple and should be merged with other global 1178 // handling. 1179 GV->setConstant(isTypeConstant(D->getType(), false)); 1180 1181 // Set linkage and visibility in case we never see a definition. 1182 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1183 if (LV.linkage() != ExternalLinkage) { 1184 // Don't set internal linkage on declarations. 1185 } else { 1186 if (D->hasAttr<DLLImportAttr>()) 1187 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1188 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1189 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1190 1191 // Set visibility on a declaration only if it's explicit. 1192 if (LV.visibilityExplicit()) 1193 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1194 } 1195 1196 GV->setThreadLocal(D->isThreadSpecified()); 1197 } 1198 1199 return GV; 1200 } 1201 1202 1203 llvm::GlobalVariable * 1204 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1205 llvm::Type *Ty, 1206 llvm::GlobalValue::LinkageTypes Linkage) { 1207 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1208 llvm::GlobalVariable *OldGV = 0; 1209 1210 1211 if (GV) { 1212 // Check if the variable has the right type. 1213 if (GV->getType()->getElementType() == Ty) 1214 return GV; 1215 1216 // Because C++ name mangling, the only way we can end up with an already 1217 // existing global with the same name is if it has been declared extern "C". 1218 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1219 OldGV = GV; 1220 } 1221 1222 // Create a new variable. 1223 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1224 Linkage, 0, Name); 1225 1226 if (OldGV) { 1227 // Replace occurrences of the old variable if needed. 1228 GV->takeName(OldGV); 1229 1230 if (!OldGV->use_empty()) { 1231 llvm::Constant *NewPtrForOldDecl = 1232 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1233 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1234 } 1235 1236 OldGV->eraseFromParent(); 1237 } 1238 1239 return GV; 1240 } 1241 1242 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1243 /// given global variable. If Ty is non-null and if the global doesn't exist, 1244 /// then it will be created with the specified type instead of whatever the 1245 /// normal requested type would be. 1246 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1247 llvm::Type *Ty) { 1248 assert(D->hasGlobalStorage() && "Not a global variable"); 1249 QualType ASTTy = D->getType(); 1250 if (Ty == 0) 1251 Ty = getTypes().ConvertTypeForMem(ASTTy); 1252 1253 llvm::PointerType *PTy = 1254 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1255 1256 StringRef MangledName = getMangledName(D); 1257 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1258 } 1259 1260 /// CreateRuntimeVariable - Create a new runtime global variable with the 1261 /// specified type and name. 1262 llvm::Constant * 1263 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1264 StringRef Name) { 1265 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1266 true); 1267 } 1268 1269 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1270 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1271 1272 if (MayDeferGeneration(D)) { 1273 // If we have not seen a reference to this variable yet, place it 1274 // into the deferred declarations table to be emitted if needed 1275 // later. 1276 StringRef MangledName = getMangledName(D); 1277 if (!GetGlobalValue(MangledName)) { 1278 DeferredDecls[MangledName] = D; 1279 return; 1280 } 1281 } 1282 1283 // The tentative definition is the only definition. 1284 EmitGlobalVarDefinition(D); 1285 } 1286 1287 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1288 if (DefinitionRequired) 1289 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1290 } 1291 1292 llvm::GlobalVariable::LinkageTypes 1293 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1294 if (RD->getLinkage() != ExternalLinkage) 1295 return llvm::GlobalVariable::InternalLinkage; 1296 1297 if (const CXXMethodDecl *KeyFunction 1298 = RD->getASTContext().getKeyFunction(RD)) { 1299 // If this class has a key function, use that to determine the linkage of 1300 // the vtable. 1301 const FunctionDecl *Def = 0; 1302 if (KeyFunction->hasBody(Def)) 1303 KeyFunction = cast<CXXMethodDecl>(Def); 1304 1305 switch (KeyFunction->getTemplateSpecializationKind()) { 1306 case TSK_Undeclared: 1307 case TSK_ExplicitSpecialization: 1308 // When compiling with optimizations turned on, we emit all vtables, 1309 // even if the key function is not defined in the current translation 1310 // unit. If this is the case, use available_externally linkage. 1311 if (!Def && CodeGenOpts.OptimizationLevel) 1312 return llvm::GlobalVariable::AvailableExternallyLinkage; 1313 1314 if (KeyFunction->isInlined()) 1315 return !Context.getLangOpts().AppleKext ? 1316 llvm::GlobalVariable::LinkOnceODRLinkage : 1317 llvm::Function::InternalLinkage; 1318 1319 return llvm::GlobalVariable::ExternalLinkage; 1320 1321 case TSK_ImplicitInstantiation: 1322 return !Context.getLangOpts().AppleKext ? 1323 llvm::GlobalVariable::LinkOnceODRLinkage : 1324 llvm::Function::InternalLinkage; 1325 1326 case TSK_ExplicitInstantiationDefinition: 1327 return !Context.getLangOpts().AppleKext ? 1328 llvm::GlobalVariable::WeakODRLinkage : 1329 llvm::Function::InternalLinkage; 1330 1331 case TSK_ExplicitInstantiationDeclaration: 1332 // FIXME: Use available_externally linkage. However, this currently 1333 // breaks LLVM's build due to undefined symbols. 1334 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1335 return !Context.getLangOpts().AppleKext ? 1336 llvm::GlobalVariable::LinkOnceODRLinkage : 1337 llvm::Function::InternalLinkage; 1338 } 1339 } 1340 1341 if (Context.getLangOpts().AppleKext) 1342 return llvm::Function::InternalLinkage; 1343 1344 switch (RD->getTemplateSpecializationKind()) { 1345 case TSK_Undeclared: 1346 case TSK_ExplicitSpecialization: 1347 case TSK_ImplicitInstantiation: 1348 // FIXME: Use available_externally linkage. However, this currently 1349 // breaks LLVM's build due to undefined symbols. 1350 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1351 case TSK_ExplicitInstantiationDeclaration: 1352 return llvm::GlobalVariable::LinkOnceODRLinkage; 1353 1354 case TSK_ExplicitInstantiationDefinition: 1355 return llvm::GlobalVariable::WeakODRLinkage; 1356 } 1357 1358 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1359 } 1360 1361 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1362 return Context.toCharUnitsFromBits( 1363 TheTargetData.getTypeStoreSizeInBits(Ty)); 1364 } 1365 1366 llvm::Constant * 1367 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1368 const Expr *rawInit) { 1369 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1370 if (const ExprWithCleanups *withCleanups = 1371 dyn_cast<ExprWithCleanups>(rawInit)) { 1372 cleanups = withCleanups->getObjects(); 1373 rawInit = withCleanups->getSubExpr(); 1374 } 1375 1376 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1377 if (!init || !init->initializesStdInitializerList() || 1378 init->getNumInits() == 0) 1379 return 0; 1380 1381 ASTContext &ctx = getContext(); 1382 unsigned numInits = init->getNumInits(); 1383 // FIXME: This check is here because we would otherwise silently miscompile 1384 // nested global std::initializer_lists. Better would be to have a real 1385 // implementation. 1386 for (unsigned i = 0; i < numInits; ++i) { 1387 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1388 if (inner && inner->initializesStdInitializerList()) { 1389 ErrorUnsupported(inner, "nested global std::initializer_list"); 1390 return 0; 1391 } 1392 } 1393 1394 // Synthesize a fake VarDecl for the array and initialize that. 1395 QualType elementType = init->getInit(0)->getType(); 1396 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1397 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1398 ArrayType::Normal, 0); 1399 1400 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1401 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1402 arrayType, D->getLocation()); 1403 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1404 D->getDeclContext()), 1405 D->getLocStart(), D->getLocation(), 1406 name, arrayType, sourceInfo, 1407 SC_Static, SC_Static); 1408 1409 // Now clone the InitListExpr to initialize the array instead. 1410 // Incredible hack: we want to use the existing InitListExpr here, so we need 1411 // to tell it that it no longer initializes a std::initializer_list. 1412 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1413 const_cast<InitListExpr*>(init)->getInits(), 1414 init->getNumInits(), 1415 init->getRBraceLoc()); 1416 arrayInit->setType(arrayType); 1417 1418 if (!cleanups.empty()) 1419 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1420 1421 backingArray->setInit(arrayInit); 1422 1423 // Emit the definition of the array. 1424 EmitGlobalVarDefinition(backingArray); 1425 1426 // Inspect the initializer list to validate it and determine its type. 1427 // FIXME: doing this every time is probably inefficient; caching would be nice 1428 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1429 RecordDecl::field_iterator field = record->field_begin(); 1430 if (field == record->field_end()) { 1431 ErrorUnsupported(D, "weird std::initializer_list"); 1432 return 0; 1433 } 1434 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1435 // Start pointer. 1436 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1437 ErrorUnsupported(D, "weird std::initializer_list"); 1438 return 0; 1439 } 1440 ++field; 1441 if (field == record->field_end()) { 1442 ErrorUnsupported(D, "weird std::initializer_list"); 1443 return 0; 1444 } 1445 bool isStartEnd = false; 1446 if (ctx.hasSameType(field->getType(), elementPtr)) { 1447 // End pointer. 1448 isStartEnd = true; 1449 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1450 ErrorUnsupported(D, "weird std::initializer_list"); 1451 return 0; 1452 } 1453 1454 // Now build an APValue representing the std::initializer_list. 1455 APValue initListValue(APValue::UninitStruct(), 0, 2); 1456 APValue &startField = initListValue.getStructField(0); 1457 APValue::LValuePathEntry startOffsetPathEntry; 1458 startOffsetPathEntry.ArrayIndex = 0; 1459 startField = APValue(APValue::LValueBase(backingArray), 1460 CharUnits::fromQuantity(0), 1461 llvm::makeArrayRef(startOffsetPathEntry), 1462 /*IsOnePastTheEnd=*/false, 0); 1463 1464 if (isStartEnd) { 1465 APValue &endField = initListValue.getStructField(1); 1466 APValue::LValuePathEntry endOffsetPathEntry; 1467 endOffsetPathEntry.ArrayIndex = numInits; 1468 endField = APValue(APValue::LValueBase(backingArray), 1469 ctx.getTypeSizeInChars(elementType) * numInits, 1470 llvm::makeArrayRef(endOffsetPathEntry), 1471 /*IsOnePastTheEnd=*/true, 0); 1472 } else { 1473 APValue &sizeField = initListValue.getStructField(1); 1474 sizeField = APValue(llvm::APSInt(numElements)); 1475 } 1476 1477 // Emit the constant for the initializer_list. 1478 llvm::Constant *llvmInit = 1479 EmitConstantValueForMemory(initListValue, D->getType()); 1480 assert(llvmInit && "failed to initialize as constant"); 1481 return llvmInit; 1482 } 1483 1484 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1485 llvm::Constant *Init = 0; 1486 QualType ASTTy = D->getType(); 1487 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1488 bool NeedsGlobalCtor = false; 1489 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1490 1491 const VarDecl *InitDecl; 1492 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1493 1494 if (!InitExpr) { 1495 // This is a tentative definition; tentative definitions are 1496 // implicitly initialized with { 0 }. 1497 // 1498 // Note that tentative definitions are only emitted at the end of 1499 // a translation unit, so they should never have incomplete 1500 // type. In addition, EmitTentativeDefinition makes sure that we 1501 // never attempt to emit a tentative definition if a real one 1502 // exists. A use may still exists, however, so we still may need 1503 // to do a RAUW. 1504 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1505 Init = EmitNullConstant(D->getType()); 1506 } else { 1507 // If this is a std::initializer_list, emit the special initializer. 1508 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1509 // An empty init list will perform zero-initialization, which happens 1510 // to be exactly what we want. 1511 // FIXME: It does so in a global constructor, which is *not* what we 1512 // want. 1513 1514 if (!Init) 1515 Init = EmitConstantInit(*InitDecl); 1516 if (!Init) { 1517 QualType T = InitExpr->getType(); 1518 if (D->getType()->isReferenceType()) 1519 T = D->getType(); 1520 1521 if (getLangOpts().CPlusPlus) { 1522 Init = EmitNullConstant(T); 1523 NeedsGlobalCtor = true; 1524 } else { 1525 ErrorUnsupported(D, "static initializer"); 1526 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1527 } 1528 } else { 1529 // We don't need an initializer, so remove the entry for the delayed 1530 // initializer position (just in case this entry was delayed) if we 1531 // also don't need to register a destructor. 1532 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1533 DelayedCXXInitPosition.erase(D); 1534 } 1535 } 1536 1537 llvm::Type* InitType = Init->getType(); 1538 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1539 1540 // Strip off a bitcast if we got one back. 1541 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1542 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1543 // all zero index gep. 1544 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1545 Entry = CE->getOperand(0); 1546 } 1547 1548 // Entry is now either a Function or GlobalVariable. 1549 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1550 1551 // We have a definition after a declaration with the wrong type. 1552 // We must make a new GlobalVariable* and update everything that used OldGV 1553 // (a declaration or tentative definition) with the new GlobalVariable* 1554 // (which will be a definition). 1555 // 1556 // This happens if there is a prototype for a global (e.g. 1557 // "extern int x[];") and then a definition of a different type (e.g. 1558 // "int x[10];"). This also happens when an initializer has a different type 1559 // from the type of the global (this happens with unions). 1560 if (GV == 0 || 1561 GV->getType()->getElementType() != InitType || 1562 GV->getType()->getAddressSpace() != 1563 getContext().getTargetAddressSpace(ASTTy)) { 1564 1565 // Move the old entry aside so that we'll create a new one. 1566 Entry->setName(StringRef()); 1567 1568 // Make a new global with the correct type, this is now guaranteed to work. 1569 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1570 1571 // Replace all uses of the old global with the new global 1572 llvm::Constant *NewPtrForOldDecl = 1573 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1574 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1575 1576 // Erase the old global, since it is no longer used. 1577 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1578 } 1579 1580 if (D->hasAttr<AnnotateAttr>()) 1581 AddGlobalAnnotations(D, GV); 1582 1583 GV->setInitializer(Init); 1584 1585 // If it is safe to mark the global 'constant', do so now. 1586 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1587 isTypeConstant(D->getType(), true)); 1588 1589 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1590 1591 // Set the llvm linkage type as appropriate. 1592 llvm::GlobalValue::LinkageTypes Linkage = 1593 GetLLVMLinkageVarDefinition(D, GV); 1594 GV->setLinkage(Linkage); 1595 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1596 // common vars aren't constant even if declared const. 1597 GV->setConstant(false); 1598 1599 SetCommonAttributes(D, GV); 1600 1601 // Emit the initializer function if necessary. 1602 if (NeedsGlobalCtor || NeedsGlobalDtor) 1603 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1604 1605 // Emit global variable debug information. 1606 if (CGDebugInfo *DI = getModuleDebugInfo()) 1607 DI->EmitGlobalVariable(GV, D); 1608 } 1609 1610 llvm::GlobalValue::LinkageTypes 1611 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1612 llvm::GlobalVariable *GV) { 1613 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1614 if (Linkage == GVA_Internal) 1615 return llvm::Function::InternalLinkage; 1616 else if (D->hasAttr<DLLImportAttr>()) 1617 return llvm::Function::DLLImportLinkage; 1618 else if (D->hasAttr<DLLExportAttr>()) 1619 return llvm::Function::DLLExportLinkage; 1620 else if (D->hasAttr<WeakAttr>()) { 1621 if (GV->isConstant()) 1622 return llvm::GlobalVariable::WeakODRLinkage; 1623 else 1624 return llvm::GlobalVariable::WeakAnyLinkage; 1625 } else if (Linkage == GVA_TemplateInstantiation || 1626 Linkage == GVA_ExplicitTemplateInstantiation) 1627 return llvm::GlobalVariable::WeakODRLinkage; 1628 else if (!getLangOpts().CPlusPlus && 1629 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1630 D->getAttr<CommonAttr>()) && 1631 !D->hasExternalStorage() && !D->getInit() && 1632 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1633 !D->getAttr<WeakImportAttr>()) { 1634 // Thread local vars aren't considered common linkage. 1635 return llvm::GlobalVariable::CommonLinkage; 1636 } 1637 return llvm::GlobalVariable::ExternalLinkage; 1638 } 1639 1640 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1641 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1642 /// existing call uses of the old function in the module, this adjusts them to 1643 /// call the new function directly. 1644 /// 1645 /// This is not just a cleanup: the always_inline pass requires direct calls to 1646 /// functions to be able to inline them. If there is a bitcast in the way, it 1647 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1648 /// run at -O0. 1649 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1650 llvm::Function *NewFn) { 1651 // If we're redefining a global as a function, don't transform it. 1652 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1653 if (OldFn == 0) return; 1654 1655 llvm::Type *NewRetTy = NewFn->getReturnType(); 1656 SmallVector<llvm::Value*, 4> ArgList; 1657 1658 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1659 UI != E; ) { 1660 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1661 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1662 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1663 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1664 llvm::CallSite CS(CI); 1665 if (!CI || !CS.isCallee(I)) continue; 1666 1667 // If the return types don't match exactly, and if the call isn't dead, then 1668 // we can't transform this call. 1669 if (CI->getType() != NewRetTy && !CI->use_empty()) 1670 continue; 1671 1672 // Get the attribute list. 1673 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1674 llvm::AttrListPtr AttrList = CI->getAttributes(); 1675 1676 // Get any return attributes. 1677 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1678 1679 // Add the return attributes. 1680 if (RAttrs) 1681 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1682 1683 // If the function was passed too few arguments, don't transform. If extra 1684 // arguments were passed, we silently drop them. If any of the types 1685 // mismatch, we don't transform. 1686 unsigned ArgNo = 0; 1687 bool DontTransform = false; 1688 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1689 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1690 if (CS.arg_size() == ArgNo || 1691 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1692 DontTransform = true; 1693 break; 1694 } 1695 1696 // Add any parameter attributes. 1697 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1698 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1699 } 1700 if (DontTransform) 1701 continue; 1702 1703 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1704 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1705 1706 // Okay, we can transform this. Create the new call instruction and copy 1707 // over the required information. 1708 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1709 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1710 ArgList.clear(); 1711 if (!NewCall->getType()->isVoidTy()) 1712 NewCall->takeName(CI); 1713 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1714 AttrVec.end())); 1715 NewCall->setCallingConv(CI->getCallingConv()); 1716 1717 // Finally, remove the old call, replacing any uses with the new one. 1718 if (!CI->use_empty()) 1719 CI->replaceAllUsesWith(NewCall); 1720 1721 // Copy debug location attached to CI. 1722 if (!CI->getDebugLoc().isUnknown()) 1723 NewCall->setDebugLoc(CI->getDebugLoc()); 1724 CI->eraseFromParent(); 1725 } 1726 } 1727 1728 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1729 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1730 // If we have a definition, this might be a deferred decl. If the 1731 // instantiation is explicit, make sure we emit it at the end. 1732 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1733 GetAddrOfGlobalVar(VD); 1734 } 1735 1736 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1737 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1738 1739 // Compute the function info and LLVM type. 1740 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1741 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1742 1743 // Get or create the prototype for the function. 1744 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1745 1746 // Strip off a bitcast if we got one back. 1747 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1748 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1749 Entry = CE->getOperand(0); 1750 } 1751 1752 1753 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1754 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1755 1756 // If the types mismatch then we have to rewrite the definition. 1757 assert(OldFn->isDeclaration() && 1758 "Shouldn't replace non-declaration"); 1759 1760 // F is the Function* for the one with the wrong type, we must make a new 1761 // Function* and update everything that used F (a declaration) with the new 1762 // Function* (which will be a definition). 1763 // 1764 // This happens if there is a prototype for a function 1765 // (e.g. "int f()") and then a definition of a different type 1766 // (e.g. "int f(int x)"). Move the old function aside so that it 1767 // doesn't interfere with GetAddrOfFunction. 1768 OldFn->setName(StringRef()); 1769 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1770 1771 // If this is an implementation of a function without a prototype, try to 1772 // replace any existing uses of the function (which may be calls) with uses 1773 // of the new function 1774 if (D->getType()->isFunctionNoProtoType()) { 1775 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1776 OldFn->removeDeadConstantUsers(); 1777 } 1778 1779 // Replace uses of F with the Function we will endow with a body. 1780 if (!Entry->use_empty()) { 1781 llvm::Constant *NewPtrForOldDecl = 1782 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1783 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1784 } 1785 1786 // Ok, delete the old function now, which is dead. 1787 OldFn->eraseFromParent(); 1788 1789 Entry = NewFn; 1790 } 1791 1792 // We need to set linkage and visibility on the function before 1793 // generating code for it because various parts of IR generation 1794 // want to propagate this information down (e.g. to local static 1795 // declarations). 1796 llvm::Function *Fn = cast<llvm::Function>(Entry); 1797 setFunctionLinkage(D, Fn); 1798 1799 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1800 setGlobalVisibility(Fn, D); 1801 1802 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1803 1804 SetFunctionDefinitionAttributes(D, Fn); 1805 SetLLVMFunctionAttributesForDefinition(D, Fn); 1806 1807 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1808 AddGlobalCtor(Fn, CA->getPriority()); 1809 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1810 AddGlobalDtor(Fn, DA->getPriority()); 1811 if (D->hasAttr<AnnotateAttr>()) 1812 AddGlobalAnnotations(D, Fn); 1813 } 1814 1815 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1816 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1817 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1818 assert(AA && "Not an alias?"); 1819 1820 StringRef MangledName = getMangledName(GD); 1821 1822 // If there is a definition in the module, then it wins over the alias. 1823 // This is dubious, but allow it to be safe. Just ignore the alias. 1824 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1825 if (Entry && !Entry->isDeclaration()) 1826 return; 1827 1828 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1829 1830 // Create a reference to the named value. This ensures that it is emitted 1831 // if a deferred decl. 1832 llvm::Constant *Aliasee; 1833 if (isa<llvm::FunctionType>(DeclTy)) 1834 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1835 /*ForVTable=*/false); 1836 else 1837 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1838 llvm::PointerType::getUnqual(DeclTy), 0); 1839 1840 // Create the new alias itself, but don't set a name yet. 1841 llvm::GlobalValue *GA = 1842 new llvm::GlobalAlias(Aliasee->getType(), 1843 llvm::Function::ExternalLinkage, 1844 "", Aliasee, &getModule()); 1845 1846 if (Entry) { 1847 assert(Entry->isDeclaration()); 1848 1849 // If there is a declaration in the module, then we had an extern followed 1850 // by the alias, as in: 1851 // extern int test6(); 1852 // ... 1853 // int test6() __attribute__((alias("test7"))); 1854 // 1855 // Remove it and replace uses of it with the alias. 1856 GA->takeName(Entry); 1857 1858 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1859 Entry->getType())); 1860 Entry->eraseFromParent(); 1861 } else { 1862 GA->setName(MangledName); 1863 } 1864 1865 // Set attributes which are particular to an alias; this is a 1866 // specialization of the attributes which may be set on a global 1867 // variable/function. 1868 if (D->hasAttr<DLLExportAttr>()) { 1869 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1870 // The dllexport attribute is ignored for undefined symbols. 1871 if (FD->hasBody()) 1872 GA->setLinkage(llvm::Function::DLLExportLinkage); 1873 } else { 1874 GA->setLinkage(llvm::Function::DLLExportLinkage); 1875 } 1876 } else if (D->hasAttr<WeakAttr>() || 1877 D->hasAttr<WeakRefAttr>() || 1878 D->isWeakImported()) { 1879 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1880 } 1881 1882 SetCommonAttributes(D, GA); 1883 } 1884 1885 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1886 ArrayRef<llvm::Type*> Tys) { 1887 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1888 Tys); 1889 } 1890 1891 static llvm::StringMapEntry<llvm::Constant*> & 1892 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1893 const StringLiteral *Literal, 1894 bool TargetIsLSB, 1895 bool &IsUTF16, 1896 unsigned &StringLength) { 1897 StringRef String = Literal->getString(); 1898 unsigned NumBytes = String.size(); 1899 1900 // Check for simple case. 1901 if (!Literal->containsNonAsciiOrNull()) { 1902 StringLength = NumBytes; 1903 return Map.GetOrCreateValue(String); 1904 } 1905 1906 // Otherwise, convert the UTF8 literals into a string of shorts. 1907 IsUTF16 = true; 1908 1909 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1910 const UTF8 *FromPtr = (UTF8 *)String.data(); 1911 UTF16 *ToPtr = &ToBuf[0]; 1912 1913 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1914 &ToPtr, ToPtr + NumBytes, 1915 strictConversion); 1916 1917 // ConvertUTF8toUTF16 returns the length in ToPtr. 1918 StringLength = ToPtr - &ToBuf[0]; 1919 1920 // Add an explicit null. 1921 *ToPtr = 0; 1922 return Map. 1923 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1924 (StringLength + 1) * 2)); 1925 } 1926 1927 static llvm::StringMapEntry<llvm::Constant*> & 1928 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1929 const StringLiteral *Literal, 1930 unsigned &StringLength) { 1931 StringRef String = Literal->getString(); 1932 StringLength = String.size(); 1933 return Map.GetOrCreateValue(String); 1934 } 1935 1936 llvm::Constant * 1937 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1938 unsigned StringLength = 0; 1939 bool isUTF16 = false; 1940 llvm::StringMapEntry<llvm::Constant*> &Entry = 1941 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1942 getTargetData().isLittleEndian(), 1943 isUTF16, StringLength); 1944 1945 if (llvm::Constant *C = Entry.getValue()) 1946 return C; 1947 1948 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1949 llvm::Constant *Zeros[] = { Zero, Zero }; 1950 1951 // If we don't already have it, get __CFConstantStringClassReference. 1952 if (!CFConstantStringClassRef) { 1953 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1954 Ty = llvm::ArrayType::get(Ty, 0); 1955 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1956 "__CFConstantStringClassReference"); 1957 // Decay array -> ptr 1958 CFConstantStringClassRef = 1959 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1960 } 1961 1962 QualType CFTy = getContext().getCFConstantStringType(); 1963 1964 llvm::StructType *STy = 1965 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1966 1967 llvm::Constant *Fields[4]; 1968 1969 // Class pointer. 1970 Fields[0] = CFConstantStringClassRef; 1971 1972 // Flags. 1973 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1974 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1975 llvm::ConstantInt::get(Ty, 0x07C8); 1976 1977 // String pointer. 1978 llvm::Constant *C = 0; 1979 if (isUTF16) { 1980 ArrayRef<uint16_t> Arr = 1981 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 1982 Entry.getKey().size() / 2); 1983 C = llvm::ConstantDataArray::get(VMContext, Arr); 1984 } else { 1985 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 1986 } 1987 1988 llvm::GlobalValue::LinkageTypes Linkage; 1989 if (isUTF16) 1990 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1991 Linkage = llvm::GlobalValue::InternalLinkage; 1992 else 1993 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1994 // when using private linkage. It is not clear if this is a bug in ld 1995 // or a reasonable new restriction. 1996 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1997 1998 // Note: -fwritable-strings doesn't make the backing store strings of 1999 // CFStrings writable. (See <rdar://problem/10657500>) 2000 llvm::GlobalVariable *GV = 2001 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2002 Linkage, C, ".str"); 2003 GV->setUnnamedAddr(true); 2004 if (isUTF16) { 2005 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2006 GV->setAlignment(Align.getQuantity()); 2007 } else { 2008 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2009 GV->setAlignment(Align.getQuantity()); 2010 } 2011 2012 // String. 2013 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2014 2015 if (isUTF16) 2016 // Cast the UTF16 string to the correct type. 2017 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2018 2019 // String length. 2020 Ty = getTypes().ConvertType(getContext().LongTy); 2021 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2022 2023 // The struct. 2024 C = llvm::ConstantStruct::get(STy, Fields); 2025 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2026 llvm::GlobalVariable::PrivateLinkage, C, 2027 "_unnamed_cfstring_"); 2028 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2029 GV->setSection(Sect); 2030 Entry.setValue(GV); 2031 2032 return GV; 2033 } 2034 2035 static RecordDecl * 2036 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2037 DeclContext *DC, IdentifierInfo *Id) { 2038 SourceLocation Loc; 2039 if (Ctx.getLangOpts().CPlusPlus) 2040 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2041 else 2042 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2043 } 2044 2045 llvm::Constant * 2046 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2047 unsigned StringLength = 0; 2048 llvm::StringMapEntry<llvm::Constant*> &Entry = 2049 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2050 2051 if (llvm::Constant *C = Entry.getValue()) 2052 return C; 2053 2054 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2055 llvm::Constant *Zeros[] = { Zero, Zero }; 2056 2057 // If we don't already have it, get _NSConstantStringClassReference. 2058 if (!ConstantStringClassRef) { 2059 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2060 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2061 llvm::Constant *GV; 2062 if (LangOpts.ObjCNonFragileABI) { 2063 std::string str = 2064 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2065 : "OBJC_CLASS_$_" + StringClass; 2066 GV = getObjCRuntime().GetClassGlobal(str); 2067 // Make sure the result is of the correct type. 2068 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2069 ConstantStringClassRef = 2070 llvm::ConstantExpr::getBitCast(GV, PTy); 2071 } else { 2072 std::string str = 2073 StringClass.empty() ? "_NSConstantStringClassReference" 2074 : "_" + StringClass + "ClassReference"; 2075 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2076 GV = CreateRuntimeVariable(PTy, str); 2077 // Decay array -> ptr 2078 ConstantStringClassRef = 2079 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2080 } 2081 } 2082 2083 if (!NSConstantStringType) { 2084 // Construct the type for a constant NSString. 2085 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2086 Context.getTranslationUnitDecl(), 2087 &Context.Idents.get("__builtin_NSString")); 2088 D->startDefinition(); 2089 2090 QualType FieldTypes[3]; 2091 2092 // const int *isa; 2093 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2094 // const char *str; 2095 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2096 // unsigned int length; 2097 FieldTypes[2] = Context.UnsignedIntTy; 2098 2099 // Create fields 2100 for (unsigned i = 0; i < 3; ++i) { 2101 FieldDecl *Field = FieldDecl::Create(Context, D, 2102 SourceLocation(), 2103 SourceLocation(), 0, 2104 FieldTypes[i], /*TInfo=*/0, 2105 /*BitWidth=*/0, 2106 /*Mutable=*/false, 2107 /*HasInit=*/false); 2108 Field->setAccess(AS_public); 2109 D->addDecl(Field); 2110 } 2111 2112 D->completeDefinition(); 2113 QualType NSTy = Context.getTagDeclType(D); 2114 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2115 } 2116 2117 llvm::Constant *Fields[3]; 2118 2119 // Class pointer. 2120 Fields[0] = ConstantStringClassRef; 2121 2122 // String pointer. 2123 llvm::Constant *C = 2124 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2125 2126 llvm::GlobalValue::LinkageTypes Linkage; 2127 bool isConstant; 2128 Linkage = llvm::GlobalValue::PrivateLinkage; 2129 isConstant = !LangOpts.WritableStrings; 2130 2131 llvm::GlobalVariable *GV = 2132 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2133 ".str"); 2134 GV->setUnnamedAddr(true); 2135 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2136 GV->setAlignment(Align.getQuantity()); 2137 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2138 2139 // String length. 2140 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2141 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2142 2143 // The struct. 2144 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2145 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2146 llvm::GlobalVariable::PrivateLinkage, C, 2147 "_unnamed_nsstring_"); 2148 // FIXME. Fix section. 2149 if (const char *Sect = 2150 LangOpts.ObjCNonFragileABI 2151 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2152 : getContext().getTargetInfo().getNSStringSection()) 2153 GV->setSection(Sect); 2154 Entry.setValue(GV); 2155 2156 return GV; 2157 } 2158 2159 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2160 if (ObjCFastEnumerationStateType.isNull()) { 2161 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2162 Context.getTranslationUnitDecl(), 2163 &Context.Idents.get("__objcFastEnumerationState")); 2164 D->startDefinition(); 2165 2166 QualType FieldTypes[] = { 2167 Context.UnsignedLongTy, 2168 Context.getPointerType(Context.getObjCIdType()), 2169 Context.getPointerType(Context.UnsignedLongTy), 2170 Context.getConstantArrayType(Context.UnsignedLongTy, 2171 llvm::APInt(32, 5), ArrayType::Normal, 0) 2172 }; 2173 2174 for (size_t i = 0; i < 4; ++i) { 2175 FieldDecl *Field = FieldDecl::Create(Context, 2176 D, 2177 SourceLocation(), 2178 SourceLocation(), 0, 2179 FieldTypes[i], /*TInfo=*/0, 2180 /*BitWidth=*/0, 2181 /*Mutable=*/false, 2182 /*HasInit=*/false); 2183 Field->setAccess(AS_public); 2184 D->addDecl(Field); 2185 } 2186 2187 D->completeDefinition(); 2188 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2189 } 2190 2191 return ObjCFastEnumerationStateType; 2192 } 2193 2194 llvm::Constant * 2195 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2196 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2197 2198 // Don't emit it as the address of the string, emit the string data itself 2199 // as an inline array. 2200 if (E->getCharByteWidth() == 1) { 2201 SmallString<64> Str(E->getString()); 2202 2203 // Resize the string to the right size, which is indicated by its type. 2204 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2205 Str.resize(CAT->getSize().getZExtValue()); 2206 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2207 } 2208 2209 llvm::ArrayType *AType = 2210 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2211 llvm::Type *ElemTy = AType->getElementType(); 2212 unsigned NumElements = AType->getNumElements(); 2213 2214 // Wide strings have either 2-byte or 4-byte elements. 2215 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2216 SmallVector<uint16_t, 32> Elements; 2217 Elements.reserve(NumElements); 2218 2219 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2220 Elements.push_back(E->getCodeUnit(i)); 2221 Elements.resize(NumElements); 2222 return llvm::ConstantDataArray::get(VMContext, Elements); 2223 } 2224 2225 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2226 SmallVector<uint32_t, 32> Elements; 2227 Elements.reserve(NumElements); 2228 2229 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2230 Elements.push_back(E->getCodeUnit(i)); 2231 Elements.resize(NumElements); 2232 return llvm::ConstantDataArray::get(VMContext, Elements); 2233 } 2234 2235 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2236 /// constant array for the given string literal. 2237 llvm::Constant * 2238 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2239 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2240 if (S->isAscii() || S->isUTF8()) { 2241 SmallString<64> Str(S->getString()); 2242 2243 // Resize the string to the right size, which is indicated by its type. 2244 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2245 Str.resize(CAT->getSize().getZExtValue()); 2246 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2247 } 2248 2249 // FIXME: the following does not memoize wide strings. 2250 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2251 llvm::GlobalVariable *GV = 2252 new llvm::GlobalVariable(getModule(),C->getType(), 2253 !LangOpts.WritableStrings, 2254 llvm::GlobalValue::PrivateLinkage, 2255 C,".str"); 2256 2257 GV->setAlignment(Align.getQuantity()); 2258 GV->setUnnamedAddr(true); 2259 return GV; 2260 } 2261 2262 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2263 /// array for the given ObjCEncodeExpr node. 2264 llvm::Constant * 2265 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2266 std::string Str; 2267 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2268 2269 return GetAddrOfConstantCString(Str); 2270 } 2271 2272 2273 /// GenerateWritableString -- Creates storage for a string literal. 2274 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2275 bool constant, 2276 CodeGenModule &CGM, 2277 const char *GlobalName, 2278 unsigned Alignment) { 2279 // Create Constant for this string literal. Don't add a '\0'. 2280 llvm::Constant *C = 2281 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2282 2283 // Create a global variable for this string 2284 llvm::GlobalVariable *GV = 2285 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2286 llvm::GlobalValue::PrivateLinkage, 2287 C, GlobalName); 2288 GV->setAlignment(Alignment); 2289 GV->setUnnamedAddr(true); 2290 return GV; 2291 } 2292 2293 /// GetAddrOfConstantString - Returns a pointer to a character array 2294 /// containing the literal. This contents are exactly that of the 2295 /// given string, i.e. it will not be null terminated automatically; 2296 /// see GetAddrOfConstantCString. Note that whether the result is 2297 /// actually a pointer to an LLVM constant depends on 2298 /// Feature.WriteableStrings. 2299 /// 2300 /// The result has pointer to array type. 2301 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2302 const char *GlobalName, 2303 unsigned Alignment) { 2304 // Get the default prefix if a name wasn't specified. 2305 if (!GlobalName) 2306 GlobalName = ".str"; 2307 2308 // Don't share any string literals if strings aren't constant. 2309 if (LangOpts.WritableStrings) 2310 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2311 2312 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2313 ConstantStringMap.GetOrCreateValue(Str); 2314 2315 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2316 if (Alignment > GV->getAlignment()) { 2317 GV->setAlignment(Alignment); 2318 } 2319 return GV; 2320 } 2321 2322 // Create a global variable for this. 2323 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2324 Alignment); 2325 Entry.setValue(GV); 2326 return GV; 2327 } 2328 2329 /// GetAddrOfConstantCString - Returns a pointer to a character 2330 /// array containing the literal and a terminating '\0' 2331 /// character. The result has pointer to array type. 2332 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2333 const char *GlobalName, 2334 unsigned Alignment) { 2335 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2336 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2337 } 2338 2339 /// EmitObjCPropertyImplementations - Emit information for synthesized 2340 /// properties for an implementation. 2341 void CodeGenModule::EmitObjCPropertyImplementations(const 2342 ObjCImplementationDecl *D) { 2343 for (ObjCImplementationDecl::propimpl_iterator 2344 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2345 ObjCPropertyImplDecl *PID = *i; 2346 2347 // Dynamic is just for type-checking. 2348 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2349 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2350 2351 // Determine which methods need to be implemented, some may have 2352 // been overridden. Note that ::isSynthesized is not the method 2353 // we want, that just indicates if the decl came from a 2354 // property. What we want to know is if the method is defined in 2355 // this implementation. 2356 if (!D->getInstanceMethod(PD->getGetterName())) 2357 CodeGenFunction(*this).GenerateObjCGetter( 2358 const_cast<ObjCImplementationDecl *>(D), PID); 2359 if (!PD->isReadOnly() && 2360 !D->getInstanceMethod(PD->getSetterName())) 2361 CodeGenFunction(*this).GenerateObjCSetter( 2362 const_cast<ObjCImplementationDecl *>(D), PID); 2363 } 2364 } 2365 } 2366 2367 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2368 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2369 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2370 ivar; ivar = ivar->getNextIvar()) 2371 if (ivar->getType().isDestructedType()) 2372 return true; 2373 2374 return false; 2375 } 2376 2377 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2378 /// for an implementation. 2379 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2380 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2381 if (needsDestructMethod(D)) { 2382 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2383 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2384 ObjCMethodDecl *DTORMethod = 2385 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2386 cxxSelector, getContext().VoidTy, 0, D, 2387 /*isInstance=*/true, /*isVariadic=*/false, 2388 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2389 /*isDefined=*/false, ObjCMethodDecl::Required); 2390 D->addInstanceMethod(DTORMethod); 2391 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2392 D->setHasCXXStructors(true); 2393 } 2394 2395 // If the implementation doesn't have any ivar initializers, we don't need 2396 // a .cxx_construct. 2397 if (D->getNumIvarInitializers() == 0) 2398 return; 2399 2400 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2401 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2402 // The constructor returns 'self'. 2403 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2404 D->getLocation(), 2405 D->getLocation(), 2406 cxxSelector, 2407 getContext().getObjCIdType(), 0, 2408 D, /*isInstance=*/true, 2409 /*isVariadic=*/false, 2410 /*isSynthesized=*/true, 2411 /*isImplicitlyDeclared=*/true, 2412 /*isDefined=*/false, 2413 ObjCMethodDecl::Required); 2414 D->addInstanceMethod(CTORMethod); 2415 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2416 D->setHasCXXStructors(true); 2417 } 2418 2419 /// EmitNamespace - Emit all declarations in a namespace. 2420 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2421 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2422 I != E; ++I) 2423 EmitTopLevelDecl(*I); 2424 } 2425 2426 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2427 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2428 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2429 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2430 ErrorUnsupported(LSD, "linkage spec"); 2431 return; 2432 } 2433 2434 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2435 I != E; ++I) 2436 EmitTopLevelDecl(*I); 2437 } 2438 2439 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2440 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2441 // If an error has occurred, stop code generation, but continue 2442 // parsing and semantic analysis (to ensure all warnings and errors 2443 // are emitted). 2444 if (Diags.hasErrorOccurred()) 2445 return; 2446 2447 // Ignore dependent declarations. 2448 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2449 return; 2450 2451 switch (D->getKind()) { 2452 case Decl::CXXConversion: 2453 case Decl::CXXMethod: 2454 case Decl::Function: 2455 // Skip function templates 2456 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2457 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2458 return; 2459 2460 EmitGlobal(cast<FunctionDecl>(D)); 2461 break; 2462 2463 case Decl::Var: 2464 EmitGlobal(cast<VarDecl>(D)); 2465 break; 2466 2467 // Indirect fields from global anonymous structs and unions can be 2468 // ignored; only the actual variable requires IR gen support. 2469 case Decl::IndirectField: 2470 break; 2471 2472 // C++ Decls 2473 case Decl::Namespace: 2474 EmitNamespace(cast<NamespaceDecl>(D)); 2475 break; 2476 // No code generation needed. 2477 case Decl::UsingShadow: 2478 case Decl::Using: 2479 case Decl::UsingDirective: 2480 case Decl::ClassTemplate: 2481 case Decl::FunctionTemplate: 2482 case Decl::TypeAliasTemplate: 2483 case Decl::NamespaceAlias: 2484 case Decl::Block: 2485 case Decl::Import: 2486 break; 2487 case Decl::CXXConstructor: 2488 // Skip function templates 2489 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2490 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2491 return; 2492 2493 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2494 break; 2495 case Decl::CXXDestructor: 2496 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2497 return; 2498 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2499 break; 2500 2501 case Decl::StaticAssert: 2502 // Nothing to do. 2503 break; 2504 2505 // Objective-C Decls 2506 2507 // Forward declarations, no (immediate) code generation. 2508 case Decl::ObjCInterface: 2509 break; 2510 2511 case Decl::ObjCCategory: { 2512 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2513 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2514 Context.ResetObjCLayout(CD->getClassInterface()); 2515 break; 2516 } 2517 2518 case Decl::ObjCProtocol: { 2519 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2520 if (Proto->isThisDeclarationADefinition()) 2521 ObjCRuntime->GenerateProtocol(Proto); 2522 break; 2523 } 2524 2525 case Decl::ObjCCategoryImpl: 2526 // Categories have properties but don't support synthesize so we 2527 // can ignore them here. 2528 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2529 break; 2530 2531 case Decl::ObjCImplementation: { 2532 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2533 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2534 Context.ResetObjCLayout(OMD->getClassInterface()); 2535 EmitObjCPropertyImplementations(OMD); 2536 EmitObjCIvarInitializations(OMD); 2537 ObjCRuntime->GenerateClass(OMD); 2538 // Emit global variable debug information. 2539 if (CGDebugInfo *DI = getModuleDebugInfo()) 2540 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2541 OMD->getLocation()); 2542 2543 break; 2544 } 2545 case Decl::ObjCMethod: { 2546 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2547 // If this is not a prototype, emit the body. 2548 if (OMD->getBody()) 2549 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2550 break; 2551 } 2552 case Decl::ObjCCompatibleAlias: 2553 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2554 break; 2555 2556 case Decl::LinkageSpec: 2557 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2558 break; 2559 2560 case Decl::FileScopeAsm: { 2561 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2562 StringRef AsmString = AD->getAsmString()->getString(); 2563 2564 const std::string &S = getModule().getModuleInlineAsm(); 2565 if (S.empty()) 2566 getModule().setModuleInlineAsm(AsmString); 2567 else if (*--S.end() == '\n') 2568 getModule().setModuleInlineAsm(S + AsmString.str()); 2569 else 2570 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2571 break; 2572 } 2573 2574 default: 2575 // Make sure we handled everything we should, every other kind is a 2576 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2577 // function. Need to recode Decl::Kind to do that easily. 2578 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2579 } 2580 } 2581 2582 /// Turns the given pointer into a constant. 2583 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2584 const void *Ptr) { 2585 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2586 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2587 return llvm::ConstantInt::get(i64, PtrInt); 2588 } 2589 2590 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2591 llvm::NamedMDNode *&GlobalMetadata, 2592 GlobalDecl D, 2593 llvm::GlobalValue *Addr) { 2594 if (!GlobalMetadata) 2595 GlobalMetadata = 2596 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2597 2598 // TODO: should we report variant information for ctors/dtors? 2599 llvm::Value *Ops[] = { 2600 Addr, 2601 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2602 }; 2603 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2604 } 2605 2606 /// Emits metadata nodes associating all the global values in the 2607 /// current module with the Decls they came from. This is useful for 2608 /// projects using IR gen as a subroutine. 2609 /// 2610 /// Since there's currently no way to associate an MDNode directly 2611 /// with an llvm::GlobalValue, we create a global named metadata 2612 /// with the name 'clang.global.decl.ptrs'. 2613 void CodeGenModule::EmitDeclMetadata() { 2614 llvm::NamedMDNode *GlobalMetadata = 0; 2615 2616 // StaticLocalDeclMap 2617 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2618 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2619 I != E; ++I) { 2620 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2621 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2622 } 2623 } 2624 2625 /// Emits metadata nodes for all the local variables in the current 2626 /// function. 2627 void CodeGenFunction::EmitDeclMetadata() { 2628 if (LocalDeclMap.empty()) return; 2629 2630 llvm::LLVMContext &Context = getLLVMContext(); 2631 2632 // Find the unique metadata ID for this name. 2633 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2634 2635 llvm::NamedMDNode *GlobalMetadata = 0; 2636 2637 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2638 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2639 const Decl *D = I->first; 2640 llvm::Value *Addr = I->second; 2641 2642 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2643 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2644 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2645 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2646 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2647 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2648 } 2649 } 2650 } 2651 2652 void CodeGenModule::EmitCoverageFile() { 2653 if (!getCodeGenOpts().CoverageFile.empty()) { 2654 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2655 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2656 llvm::LLVMContext &Ctx = TheModule.getContext(); 2657 llvm::MDString *CoverageFile = 2658 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2659 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2660 llvm::MDNode *CU = CUNode->getOperand(i); 2661 llvm::Value *node[] = { CoverageFile, CU }; 2662 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2663 GCov->addOperand(N); 2664 } 2665 } 2666 } 2667 } 2668