1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines BugReporter, a utility class for generating 11 // PathDiagnostics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/Analysis/CFG.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ParentMap.h" 23 #include "clang/AST/StmtObjC.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Analysis/ProgramPoint.h" 26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/OwningPtr.h" 32 #include "llvm/ADT/IntrusiveRefCntPtr.h" 33 #include <queue> 34 35 using namespace clang; 36 using namespace ento; 37 38 BugReporterVisitor::~BugReporterVisitor() {} 39 40 void BugReporterContext::anchor() {} 41 42 //===----------------------------------------------------------------------===// 43 // Helper routines for walking the ExplodedGraph and fetching statements. 44 //===----------------------------------------------------------------------===// 45 46 static inline const Stmt *GetStmt(const ProgramPoint &P) { 47 if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P)) 48 return SP->getStmt(); 49 else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) 50 return BE->getSrc()->getTerminator(); 51 52 return 0; 53 } 54 55 static inline const ExplodedNode* 56 GetPredecessorNode(const ExplodedNode *N) { 57 return N->pred_empty() ? NULL : *(N->pred_begin()); 58 } 59 60 static inline const ExplodedNode* 61 GetSuccessorNode(const ExplodedNode *N) { 62 return N->succ_empty() ? NULL : *(N->succ_begin()); 63 } 64 65 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 66 for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N)) 67 if (const Stmt *S = GetStmt(N->getLocation())) 68 return S; 69 70 return 0; 71 } 72 73 static const Stmt *GetNextStmt(const ExplodedNode *N) { 74 for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N)) 75 if (const Stmt *S = GetStmt(N->getLocation())) { 76 // Check if the statement is '?' or '&&'/'||'. These are "merges", 77 // not actual statement points. 78 switch (S->getStmtClass()) { 79 case Stmt::ChooseExprClass: 80 case Stmt::BinaryConditionalOperatorClass: continue; 81 case Stmt::ConditionalOperatorClass: continue; 82 case Stmt::BinaryOperatorClass: { 83 BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode(); 84 if (Op == BO_LAnd || Op == BO_LOr) 85 continue; 86 break; 87 } 88 default: 89 break; 90 } 91 return S; 92 } 93 94 return 0; 95 } 96 97 static inline const Stmt* 98 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 99 if (const Stmt *S = GetStmt(N->getLocation())) 100 return S; 101 102 return GetPreviousStmt(N); 103 } 104 105 static inline const Stmt* 106 GetCurrentOrNextStmt(const ExplodedNode *N) { 107 if (const Stmt *S = GetStmt(N->getLocation())) 108 return S; 109 110 return GetNextStmt(N); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Diagnostic cleanup. 115 //===----------------------------------------------------------------------===// 116 117 /// Recursively scan through a path and prune out calls and macros pieces 118 /// that aren't needed. Return true if afterwards the path contains 119 /// "interesting stuff" which means it should be pruned from the parent path. 120 static bool RemoveUneededCalls(PathPieces &pieces) { 121 bool containsSomethingInteresting = false; 122 const unsigned N = pieces.size(); 123 124 for (unsigned i = 0 ; i < N ; ++i) { 125 // Remove the front piece from the path. If it is still something we 126 // want to keep once we are done, we will push it back on the end. 127 IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front()); 128 pieces.pop_front(); 129 130 switch (piece->getKind()) { 131 case PathDiagnosticPiece::Call: { 132 PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece); 133 // Recursively clean out the subclass. Keep this call around if 134 // it contains any informative diagnostics. 135 if (!RemoveUneededCalls(call->path)) 136 continue; 137 containsSomethingInteresting = true; 138 break; 139 } 140 case PathDiagnosticPiece::Macro: { 141 PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece); 142 if (!RemoveUneededCalls(macro->subPieces)) 143 continue; 144 containsSomethingInteresting = true; 145 break; 146 } 147 case PathDiagnosticPiece::Event: { 148 PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece); 149 // We never throw away an event, but we do throw it away wholesale 150 // as part of a path if we throw the entire path away. 151 if (event->isPrunable()) 152 continue; 153 containsSomethingInteresting = true; 154 break; 155 } 156 case PathDiagnosticPiece::ControlFlow: 157 break; 158 } 159 160 pieces.push_back(piece); 161 } 162 163 return containsSomethingInteresting; 164 } 165 166 //===----------------------------------------------------------------------===// 167 // PathDiagnosticBuilder and its associated routines and helper objects. 168 //===----------------------------------------------------------------------===// 169 170 typedef llvm::DenseMap<const ExplodedNode*, 171 const ExplodedNode*> NodeBackMap; 172 173 namespace { 174 class NodeMapClosure : public BugReport::NodeResolver { 175 NodeBackMap& M; 176 public: 177 NodeMapClosure(NodeBackMap *m) : M(*m) {} 178 ~NodeMapClosure() {} 179 180 const ExplodedNode *getOriginalNode(const ExplodedNode *N) { 181 NodeBackMap::iterator I = M.find(N); 182 return I == M.end() ? 0 : I->second; 183 } 184 }; 185 186 class PathDiagnosticBuilder : public BugReporterContext { 187 BugReport *R; 188 PathDiagnosticConsumer *PDC; 189 OwningPtr<ParentMap> PM; 190 NodeMapClosure NMC; 191 public: 192 const LocationContext *LC; 193 194 PathDiagnosticBuilder(GRBugReporter &br, 195 BugReport *r, NodeBackMap *Backmap, 196 PathDiagnosticConsumer *pdc) 197 : BugReporterContext(br), 198 R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext()) 199 {} 200 201 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 202 203 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 204 const ExplodedNode *N); 205 206 BugReport *getBugReport() { return R; } 207 208 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 209 210 ParentMap& getParentMap() { return LC->getParentMap(); } 211 212 const Stmt *getParent(const Stmt *S) { 213 return getParentMap().getParent(S); 214 } 215 216 virtual NodeMapClosure& getNodeResolver() { return NMC; } 217 218 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 219 220 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 221 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; 222 } 223 224 bool supportsLogicalOpControlFlow() const { 225 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 226 } 227 }; 228 } // end anonymous namespace 229 230 PathDiagnosticLocation 231 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 232 if (const Stmt *S = GetNextStmt(N)) 233 return PathDiagnosticLocation(S, getSourceManager(), LC); 234 235 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 236 getSourceManager()); 237 } 238 239 PathDiagnosticLocation 240 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 241 const ExplodedNode *N) { 242 243 // Slow, but probably doesn't matter. 244 if (os.str().empty()) 245 os << ' '; 246 247 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 248 249 if (Loc.asStmt()) 250 os << "Execution continues on line " 251 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 252 << '.'; 253 else { 254 os << "Execution jumps to the end of the "; 255 const Decl *D = N->getLocationContext()->getDecl(); 256 if (isa<ObjCMethodDecl>(D)) 257 os << "method"; 258 else if (isa<FunctionDecl>(D)) 259 os << "function"; 260 else { 261 assert(isa<BlockDecl>(D)); 262 os << "anonymous block"; 263 } 264 os << '.'; 265 } 266 267 return Loc; 268 } 269 270 static bool IsNested(const Stmt *S, ParentMap &PM) { 271 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 272 return true; 273 274 const Stmt *Parent = PM.getParentIgnoreParens(S); 275 276 if (Parent) 277 switch (Parent->getStmtClass()) { 278 case Stmt::ForStmtClass: 279 case Stmt::DoStmtClass: 280 case Stmt::WhileStmtClass: 281 return true; 282 default: 283 break; 284 } 285 286 return false; 287 } 288 289 PathDiagnosticLocation 290 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 291 assert(S && "Null Stmt *passed to getEnclosingStmtLocation"); 292 ParentMap &P = getParentMap(); 293 SourceManager &SMgr = getSourceManager(); 294 295 while (IsNested(S, P)) { 296 const Stmt *Parent = P.getParentIgnoreParens(S); 297 298 if (!Parent) 299 break; 300 301 switch (Parent->getStmtClass()) { 302 case Stmt::BinaryOperatorClass: { 303 const BinaryOperator *B = cast<BinaryOperator>(Parent); 304 if (B->isLogicalOp()) 305 return PathDiagnosticLocation(S, SMgr, LC); 306 break; 307 } 308 case Stmt::CompoundStmtClass: 309 case Stmt::StmtExprClass: 310 return PathDiagnosticLocation(S, SMgr, LC); 311 case Stmt::ChooseExprClass: 312 // Similar to '?' if we are referring to condition, just have the edge 313 // point to the entire choose expression. 314 if (cast<ChooseExpr>(Parent)->getCond() == S) 315 return PathDiagnosticLocation(Parent, SMgr, LC); 316 else 317 return PathDiagnosticLocation(S, SMgr, LC); 318 case Stmt::BinaryConditionalOperatorClass: 319 case Stmt::ConditionalOperatorClass: 320 // For '?', if we are referring to condition, just have the edge point 321 // to the entire '?' expression. 322 if (cast<AbstractConditionalOperator>(Parent)->getCond() == S) 323 return PathDiagnosticLocation(Parent, SMgr, LC); 324 else 325 return PathDiagnosticLocation(S, SMgr, LC); 326 case Stmt::DoStmtClass: 327 return PathDiagnosticLocation(S, SMgr, LC); 328 case Stmt::ForStmtClass: 329 if (cast<ForStmt>(Parent)->getBody() == S) 330 return PathDiagnosticLocation(S, SMgr, LC); 331 break; 332 case Stmt::IfStmtClass: 333 if (cast<IfStmt>(Parent)->getCond() != S) 334 return PathDiagnosticLocation(S, SMgr, LC); 335 break; 336 case Stmt::ObjCForCollectionStmtClass: 337 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 338 return PathDiagnosticLocation(S, SMgr, LC); 339 break; 340 case Stmt::WhileStmtClass: 341 if (cast<WhileStmt>(Parent)->getCond() != S) 342 return PathDiagnosticLocation(S, SMgr, LC); 343 break; 344 default: 345 break; 346 } 347 348 S = Parent; 349 } 350 351 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 352 353 // Special case: DeclStmts can appear in for statement declarations, in which 354 // case the ForStmt is the context. 355 if (isa<DeclStmt>(S)) { 356 if (const Stmt *Parent = P.getParent(S)) { 357 switch (Parent->getStmtClass()) { 358 case Stmt::ForStmtClass: 359 case Stmt::ObjCForCollectionStmtClass: 360 return PathDiagnosticLocation(Parent, SMgr, LC); 361 default: 362 break; 363 } 364 } 365 } 366 else if (isa<BinaryOperator>(S)) { 367 // Special case: the binary operator represents the initialization 368 // code in a for statement (this can happen when the variable being 369 // initialized is an old variable. 370 if (const ForStmt *FS = 371 dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) { 372 if (FS->getInit() == S) 373 return PathDiagnosticLocation(FS, SMgr, LC); 374 } 375 } 376 377 return PathDiagnosticLocation(S, SMgr, LC); 378 } 379 380 //===----------------------------------------------------------------------===// 381 // "Minimal" path diagnostic generation algorithm. 382 //===----------------------------------------------------------------------===// 383 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair; 384 typedef SmallVector<StackDiagPair, 6> StackDiagVector; 385 386 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P, 387 StackDiagVector &CallStack) { 388 // If the piece contains a special message, add it to all the call 389 // pieces on the active stack. 390 if (PathDiagnosticEventPiece *ep = 391 dyn_cast<PathDiagnosticEventPiece>(P)) { 392 393 if (ep->hasCallStackHint()) 394 for (StackDiagVector::iterator I = CallStack.begin(), 395 E = CallStack.end(); I != E; ++I) { 396 PathDiagnosticCallPiece *CP = I->first; 397 const ExplodedNode *N = I->second; 398 std::string stackMsg = ep->getCallStackMessage(N); 399 400 // The last message on the path to final bug is the most important 401 // one. Since we traverse the path backwards, do not add the message 402 // if one has been previously added. 403 if (!CP->hasCallStackMessage()) 404 CP->setCallStackMessage(stackMsg); 405 } 406 } 407 } 408 409 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); 410 411 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD, 412 PathDiagnosticBuilder &PDB, 413 const ExplodedNode *N, 414 ArrayRef<BugReporterVisitor *> visitors) { 415 416 SourceManager& SMgr = PDB.getSourceManager(); 417 const LocationContext *LC = PDB.LC; 418 const ExplodedNode *NextNode = N->pred_empty() 419 ? NULL : *(N->pred_begin()); 420 421 StackDiagVector CallStack; 422 423 while (NextNode) { 424 N = NextNode; 425 PDB.LC = N->getLocationContext(); 426 NextNode = GetPredecessorNode(N); 427 428 ProgramPoint P = N->getLocation(); 429 430 if (const CallExit *CE = dyn_cast<CallExit>(&P)) { 431 PathDiagnosticCallPiece *C = 432 PathDiagnosticCallPiece::construct(N, *CE, SMgr); 433 PD.getActivePath().push_front(C); 434 PD.pushActivePath(&C->path); 435 CallStack.push_back(StackDiagPair(C, N)); 436 continue; 437 } 438 439 if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) { 440 PD.popActivePath(); 441 // The current active path should never be empty. Either we 442 // just added a bunch of stuff to the top-level path, or 443 // we have a previous CallExit. If the front of the active 444 // path is not a PathDiagnosticCallPiece, it means that the 445 // path terminated within a function call. We must then take the 446 // current contents of the active path and place it within 447 // a new PathDiagnosticCallPiece. 448 assert(!PD.getActivePath().empty()); 449 PathDiagnosticCallPiece *C = 450 dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); 451 if (!C) { 452 const Decl *Caller = CE->getLocationContext()->getDecl(); 453 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 454 } 455 C->setCallee(*CE, SMgr); 456 if (!CallStack.empty()) { 457 assert(CallStack.back().first == C); 458 CallStack.pop_back(); 459 } 460 continue; 461 } 462 463 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { 464 const CFGBlock *Src = BE->getSrc(); 465 const CFGBlock *Dst = BE->getDst(); 466 const Stmt *T = Src->getTerminator(); 467 468 if (!T) 469 continue; 470 471 PathDiagnosticLocation Start = 472 PathDiagnosticLocation::createBegin(T, SMgr, 473 N->getLocationContext()); 474 475 switch (T->getStmtClass()) { 476 default: 477 break; 478 479 case Stmt::GotoStmtClass: 480 case Stmt::IndirectGotoStmtClass: { 481 const Stmt *S = GetNextStmt(N); 482 483 if (!S) 484 continue; 485 486 std::string sbuf; 487 llvm::raw_string_ostream os(sbuf); 488 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 489 490 os << "Control jumps to line " 491 << End.asLocation().getExpansionLineNumber(); 492 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 493 os.str())); 494 break; 495 } 496 497 case Stmt::SwitchStmtClass: { 498 // Figure out what case arm we took. 499 std::string sbuf; 500 llvm::raw_string_ostream os(sbuf); 501 502 if (const Stmt *S = Dst->getLabel()) { 503 PathDiagnosticLocation End(S, SMgr, LC); 504 505 switch (S->getStmtClass()) { 506 default: 507 os << "No cases match in the switch statement. " 508 "Control jumps to line " 509 << End.asLocation().getExpansionLineNumber(); 510 break; 511 case Stmt::DefaultStmtClass: 512 os << "Control jumps to the 'default' case at line " 513 << End.asLocation().getExpansionLineNumber(); 514 break; 515 516 case Stmt::CaseStmtClass: { 517 os << "Control jumps to 'case "; 518 const CaseStmt *Case = cast<CaseStmt>(S); 519 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 520 521 // Determine if it is an enum. 522 bool GetRawInt = true; 523 524 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) { 525 // FIXME: Maybe this should be an assertion. Are there cases 526 // were it is not an EnumConstantDecl? 527 const EnumConstantDecl *D = 528 dyn_cast<EnumConstantDecl>(DR->getDecl()); 529 530 if (D) { 531 GetRawInt = false; 532 os << *D; 533 } 534 } 535 536 if (GetRawInt) 537 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 538 539 os << ":' at line " 540 << End.asLocation().getExpansionLineNumber(); 541 break; 542 } 543 } 544 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 545 os.str())); 546 } 547 else { 548 os << "'Default' branch taken. "; 549 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); 550 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 551 os.str())); 552 } 553 554 break; 555 } 556 557 case Stmt::BreakStmtClass: 558 case Stmt::ContinueStmtClass: { 559 std::string sbuf; 560 llvm::raw_string_ostream os(sbuf); 561 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 562 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 563 os.str())); 564 break; 565 } 566 567 // Determine control-flow for ternary '?'. 568 case Stmt::BinaryConditionalOperatorClass: 569 case Stmt::ConditionalOperatorClass: { 570 std::string sbuf; 571 llvm::raw_string_ostream os(sbuf); 572 os << "'?' condition is "; 573 574 if (*(Src->succ_begin()+1) == Dst) 575 os << "false"; 576 else 577 os << "true"; 578 579 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 580 581 if (const Stmt *S = End.asStmt()) 582 End = PDB.getEnclosingStmtLocation(S); 583 584 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 585 os.str())); 586 break; 587 } 588 589 // Determine control-flow for short-circuited '&&' and '||'. 590 case Stmt::BinaryOperatorClass: { 591 if (!PDB.supportsLogicalOpControlFlow()) 592 break; 593 594 const BinaryOperator *B = cast<BinaryOperator>(T); 595 std::string sbuf; 596 llvm::raw_string_ostream os(sbuf); 597 os << "Left side of '"; 598 599 if (B->getOpcode() == BO_LAnd) { 600 os << "&&" << "' is "; 601 602 if (*(Src->succ_begin()+1) == Dst) { 603 os << "false"; 604 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 605 PathDiagnosticLocation Start = 606 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 607 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 608 os.str())); 609 } 610 else { 611 os << "true"; 612 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 613 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 614 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 615 os.str())); 616 } 617 } 618 else { 619 assert(B->getOpcode() == BO_LOr); 620 os << "||" << "' is "; 621 622 if (*(Src->succ_begin()+1) == Dst) { 623 os << "false"; 624 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 625 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 626 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 627 os.str())); 628 } 629 else { 630 os << "true"; 631 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 632 PathDiagnosticLocation Start = 633 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 634 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 635 os.str())); 636 } 637 } 638 639 break; 640 } 641 642 case Stmt::DoStmtClass: { 643 if (*(Src->succ_begin()) == Dst) { 644 std::string sbuf; 645 llvm::raw_string_ostream os(sbuf); 646 647 os << "Loop condition is true. "; 648 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 649 650 if (const Stmt *S = End.asStmt()) 651 End = PDB.getEnclosingStmtLocation(S); 652 653 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 654 os.str())); 655 } 656 else { 657 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 658 659 if (const Stmt *S = End.asStmt()) 660 End = PDB.getEnclosingStmtLocation(S); 661 662 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 663 "Loop condition is false. Exiting loop")); 664 } 665 666 break; 667 } 668 669 case Stmt::WhileStmtClass: 670 case Stmt::ForStmtClass: { 671 if (*(Src->succ_begin()+1) == Dst) { 672 std::string sbuf; 673 llvm::raw_string_ostream os(sbuf); 674 675 os << "Loop condition is false. "; 676 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 677 if (const Stmt *S = End.asStmt()) 678 End = PDB.getEnclosingStmtLocation(S); 679 680 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 681 os.str())); 682 } 683 else { 684 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 685 if (const Stmt *S = End.asStmt()) 686 End = PDB.getEnclosingStmtLocation(S); 687 688 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 689 "Loop condition is true. Entering loop body")); 690 } 691 692 break; 693 } 694 695 case Stmt::IfStmtClass: { 696 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 697 698 if (const Stmt *S = End.asStmt()) 699 End = PDB.getEnclosingStmtLocation(S); 700 701 if (*(Src->succ_begin()+1) == Dst) 702 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 703 "Taking false branch")); 704 else 705 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End, 706 "Taking true branch")); 707 708 break; 709 } 710 } 711 } 712 713 if (NextNode) { 714 // Add diagnostic pieces from custom visitors. 715 BugReport *R = PDB.getBugReport(); 716 for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), 717 E = visitors.end(); 718 I != E; ++I) { 719 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { 720 PD.getActivePath().push_front(p); 721 updateStackPiecesWithMessage(p, CallStack); 722 } 723 } 724 } 725 } 726 727 // After constructing the full PathDiagnostic, do a pass over it to compact 728 // PathDiagnosticPieces that occur within a macro. 729 CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); 730 } 731 732 //===----------------------------------------------------------------------===// 733 // "Extensive" PathDiagnostic generation. 734 //===----------------------------------------------------------------------===// 735 736 static bool IsControlFlowExpr(const Stmt *S) { 737 const Expr *E = dyn_cast<Expr>(S); 738 739 if (!E) 740 return false; 741 742 E = E->IgnoreParenCasts(); 743 744 if (isa<AbstractConditionalOperator>(E)) 745 return true; 746 747 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) 748 if (B->isLogicalOp()) 749 return true; 750 751 return false; 752 } 753 754 namespace { 755 class ContextLocation : public PathDiagnosticLocation { 756 bool IsDead; 757 public: 758 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) 759 : PathDiagnosticLocation(L), IsDead(isdead) {} 760 761 void markDead() { IsDead = true; } 762 bool isDead() const { return IsDead; } 763 }; 764 765 class EdgeBuilder { 766 std::vector<ContextLocation> CLocs; 767 typedef std::vector<ContextLocation>::iterator iterator; 768 PathDiagnostic &PD; 769 PathDiagnosticBuilder &PDB; 770 PathDiagnosticLocation PrevLoc; 771 772 bool IsConsumedExpr(const PathDiagnosticLocation &L); 773 774 bool containsLocation(const PathDiagnosticLocation &Container, 775 const PathDiagnosticLocation &Containee); 776 777 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); 778 779 PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, 780 bool firstCharOnly = false) { 781 if (const Stmt *S = L.asStmt()) { 782 const Stmt *Original = S; 783 while (1) { 784 // Adjust the location for some expressions that are best referenced 785 // by one of their subexpressions. 786 switch (S->getStmtClass()) { 787 default: 788 break; 789 case Stmt::ParenExprClass: 790 case Stmt::GenericSelectionExprClass: 791 S = cast<Expr>(S)->IgnoreParens(); 792 firstCharOnly = true; 793 continue; 794 case Stmt::BinaryConditionalOperatorClass: 795 case Stmt::ConditionalOperatorClass: 796 S = cast<AbstractConditionalOperator>(S)->getCond(); 797 firstCharOnly = true; 798 continue; 799 case Stmt::ChooseExprClass: 800 S = cast<ChooseExpr>(S)->getCond(); 801 firstCharOnly = true; 802 continue; 803 case Stmt::BinaryOperatorClass: 804 S = cast<BinaryOperator>(S)->getLHS(); 805 firstCharOnly = true; 806 continue; 807 } 808 809 break; 810 } 811 812 if (S != Original) 813 L = PathDiagnosticLocation(S, L.getManager(), PDB.LC); 814 } 815 816 if (firstCharOnly) 817 L = PathDiagnosticLocation::createSingleLocation(L); 818 819 return L; 820 } 821 822 void popLocation() { 823 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { 824 // For contexts, we only one the first character as the range. 825 rawAddEdge(cleanUpLocation(CLocs.back(), true)); 826 } 827 CLocs.pop_back(); 828 } 829 830 public: 831 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) 832 : PD(pd), PDB(pdb) { 833 834 // If the PathDiagnostic already has pieces, add the enclosing statement 835 // of the first piece as a context as well. 836 if (!PD.path.empty()) { 837 PrevLoc = (*PD.path.begin())->getLocation(); 838 839 if (const Stmt *S = PrevLoc.asStmt()) 840 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 841 } 842 } 843 844 ~EdgeBuilder() { 845 while (!CLocs.empty()) popLocation(); 846 847 // Finally, add an initial edge from the start location of the first 848 // statement (if it doesn't already exist). 849 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( 850 PDB.LC, 851 PDB.getSourceManager()); 852 if (L.isValid()) 853 rawAddEdge(L); 854 } 855 856 void flushLocations() { 857 while (!CLocs.empty()) 858 popLocation(); 859 PrevLoc = PathDiagnosticLocation(); 860 } 861 862 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false); 863 864 void rawAddEdge(PathDiagnosticLocation NewLoc); 865 866 void addContext(const Stmt *S); 867 void addExtendedContext(const Stmt *S); 868 }; 869 } // end anonymous namespace 870 871 872 PathDiagnosticLocation 873 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { 874 if (const Stmt *S = L.asStmt()) { 875 if (IsControlFlowExpr(S)) 876 return L; 877 878 return PDB.getEnclosingStmtLocation(S); 879 } 880 881 return L; 882 } 883 884 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, 885 const PathDiagnosticLocation &Containee) { 886 887 if (Container == Containee) 888 return true; 889 890 if (Container.asDecl()) 891 return true; 892 893 if (const Stmt *S = Containee.asStmt()) 894 if (const Stmt *ContainerS = Container.asStmt()) { 895 while (S) { 896 if (S == ContainerS) 897 return true; 898 S = PDB.getParent(S); 899 } 900 return false; 901 } 902 903 // Less accurate: compare using source ranges. 904 SourceRange ContainerR = Container.asRange(); 905 SourceRange ContaineeR = Containee.asRange(); 906 907 SourceManager &SM = PDB.getSourceManager(); 908 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); 909 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); 910 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); 911 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); 912 913 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); 914 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); 915 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); 916 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); 917 918 assert(ContainerBegLine <= ContainerEndLine); 919 assert(ContaineeBegLine <= ContaineeEndLine); 920 921 return (ContainerBegLine <= ContaineeBegLine && 922 ContainerEndLine >= ContaineeEndLine && 923 (ContainerBegLine != ContaineeBegLine || 924 SM.getExpansionColumnNumber(ContainerRBeg) <= 925 SM.getExpansionColumnNumber(ContaineeRBeg)) && 926 (ContainerEndLine != ContaineeEndLine || 927 SM.getExpansionColumnNumber(ContainerREnd) >= 928 SM.getExpansionColumnNumber(ContaineeREnd))); 929 } 930 931 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { 932 if (!PrevLoc.isValid()) { 933 PrevLoc = NewLoc; 934 return; 935 } 936 937 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc); 938 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc); 939 940 if (NewLocClean.asLocation() == PrevLocClean.asLocation()) 941 return; 942 943 // FIXME: Ignore intra-macro edges for now. 944 if (NewLocClean.asLocation().getExpansionLoc() == 945 PrevLocClean.asLocation().getExpansionLoc()) 946 return; 947 948 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); 949 PrevLoc = NewLoc; 950 } 951 952 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) { 953 954 if (!alwaysAdd && NewLoc.asLocation().isMacroID()) 955 return; 956 957 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); 958 959 while (!CLocs.empty()) { 960 ContextLocation &TopContextLoc = CLocs.back(); 961 962 // Is the top location context the same as the one for the new location? 963 if (TopContextLoc == CLoc) { 964 if (alwaysAdd) { 965 if (IsConsumedExpr(TopContextLoc) && 966 !IsControlFlowExpr(TopContextLoc.asStmt())) 967 TopContextLoc.markDead(); 968 969 rawAddEdge(NewLoc); 970 } 971 972 return; 973 } 974 975 if (containsLocation(TopContextLoc, CLoc)) { 976 if (alwaysAdd) { 977 rawAddEdge(NewLoc); 978 979 if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) { 980 CLocs.push_back(ContextLocation(CLoc, true)); 981 return; 982 } 983 } 984 985 CLocs.push_back(CLoc); 986 return; 987 } 988 989 // Context does not contain the location. Flush it. 990 popLocation(); 991 } 992 993 // If we reach here, there is no enclosing context. Just add the edge. 994 rawAddEdge(NewLoc); 995 } 996 997 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { 998 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) 999 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); 1000 1001 return false; 1002 } 1003 1004 void EdgeBuilder::addExtendedContext(const Stmt *S) { 1005 if (!S) 1006 return; 1007 1008 const Stmt *Parent = PDB.getParent(S); 1009 while (Parent) { 1010 if (isa<CompoundStmt>(Parent)) 1011 Parent = PDB.getParent(Parent); 1012 else 1013 break; 1014 } 1015 1016 if (Parent) { 1017 switch (Parent->getStmtClass()) { 1018 case Stmt::DoStmtClass: 1019 case Stmt::ObjCAtSynchronizedStmtClass: 1020 addContext(Parent); 1021 default: 1022 break; 1023 } 1024 } 1025 1026 addContext(S); 1027 } 1028 1029 void EdgeBuilder::addContext(const Stmt *S) { 1030 if (!S) 1031 return; 1032 1033 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); 1034 1035 while (!CLocs.empty()) { 1036 const PathDiagnosticLocation &TopContextLoc = CLocs.back(); 1037 1038 // Is the top location context the same as the one for the new location? 1039 if (TopContextLoc == L) 1040 return; 1041 1042 if (containsLocation(TopContextLoc, L)) { 1043 CLocs.push_back(L); 1044 return; 1045 } 1046 1047 // Context does not contain the location. Flush it. 1048 popLocation(); 1049 } 1050 1051 CLocs.push_back(L); 1052 } 1053 1054 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD, 1055 PathDiagnosticBuilder &PDB, 1056 const ExplodedNode *N, 1057 ArrayRef<BugReporterVisitor *> visitors) { 1058 EdgeBuilder EB(PD, PDB); 1059 const SourceManager& SM = PDB.getSourceManager(); 1060 StackDiagVector CallStack; 1061 1062 const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); 1063 while (NextNode) { 1064 N = NextNode; 1065 NextNode = GetPredecessorNode(N); 1066 ProgramPoint P = N->getLocation(); 1067 1068 do { 1069 if (const CallExit *CE = dyn_cast<CallExit>(&P)) { 1070 const StackFrameContext *LCtx = 1071 CE->getLocationContext()->getCurrentStackFrame(); 1072 PathDiagnosticLocation Loc(LCtx->getCallSite(), 1073 PDB.getSourceManager(), 1074 LCtx); 1075 EB.addEdge(Loc, true); 1076 EB.flushLocations(); 1077 PathDiagnosticCallPiece *C = 1078 PathDiagnosticCallPiece::construct(N, *CE, SM); 1079 PD.getActivePath().push_front(C); 1080 PD.pushActivePath(&C->path); 1081 CallStack.push_back(StackDiagPair(C, N)); 1082 break; 1083 } 1084 1085 // Pop the call hierarchy if we are done walking the contents 1086 // of a function call. 1087 if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) { 1088 // Add an edge to the start of the function. 1089 const Decl *D = CE->getCalleeContext()->getDecl(); 1090 PathDiagnosticLocation pos = 1091 PathDiagnosticLocation::createBegin(D, SM); 1092 EB.addEdge(pos); 1093 1094 // Flush all locations, and pop the active path. 1095 EB.flushLocations(); 1096 PD.popActivePath(); 1097 assert(!PD.getActivePath().empty()); 1098 PDB.LC = N->getLocationContext(); 1099 1100 // The current active path should never be empty. Either we 1101 // just added a bunch of stuff to the top-level path, or 1102 // we have a previous CallExit. If the front of the active 1103 // path is not a PathDiagnosticCallPiece, it means that the 1104 // path terminated within a function call. We must then take the 1105 // current contents of the active path and place it within 1106 // a new PathDiagnosticCallPiece. 1107 PathDiagnosticCallPiece *C = 1108 dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); 1109 if (!C) { 1110 const Decl * Caller = CE->getLocationContext()->getDecl(); 1111 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1112 } 1113 C->setCallee(*CE, SM); 1114 EB.addContext(CE->getCallExpr()); 1115 1116 if (!CallStack.empty()) { 1117 assert(CallStack.back().first == C); 1118 CallStack.pop_back(); 1119 } 1120 break; 1121 } 1122 1123 // Note that is important that we update the LocationContext 1124 // after looking at CallExits. CallExit basically adds an 1125 // edge in the *caller*, so we don't want to update the LocationContext 1126 // too soon. 1127 PDB.LC = N->getLocationContext(); 1128 1129 // Block edges. 1130 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { 1131 const CFGBlock &Blk = *BE->getSrc(); 1132 const Stmt *Term = Blk.getTerminator(); 1133 1134 // Are we jumping to the head of a loop? Add a special diagnostic. 1135 if (const Stmt *Loop = BE->getDst()->getLoopTarget()) { 1136 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1137 const CompoundStmt *CS = NULL; 1138 1139 if (!Term) { 1140 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1141 CS = dyn_cast<CompoundStmt>(FS->getBody()); 1142 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1143 CS = dyn_cast<CompoundStmt>(WS->getBody()); 1144 } 1145 1146 PathDiagnosticEventPiece *p = 1147 new PathDiagnosticEventPiece(L, 1148 "Looping back to the head of the loop"); 1149 p->setPrunable(true); 1150 1151 EB.addEdge(p->getLocation(), true); 1152 PD.getActivePath().push_front(p); 1153 1154 if (CS) { 1155 PathDiagnosticLocation BL = 1156 PathDiagnosticLocation::createEndBrace(CS, SM); 1157 EB.addEdge(BL); 1158 } 1159 } 1160 1161 if (Term) 1162 EB.addContext(Term); 1163 1164 break; 1165 } 1166 1167 if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) { 1168 if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) { 1169 const Stmt *stmt = S->getStmt(); 1170 if (IsControlFlowExpr(stmt)) { 1171 // Add the proper context for '&&', '||', and '?'. 1172 EB.addContext(stmt); 1173 } 1174 else 1175 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); 1176 } 1177 1178 break; 1179 } 1180 1181 1182 } while (0); 1183 1184 if (!NextNode) 1185 continue; 1186 1187 // Add pieces from custom visitors. 1188 BugReport *R = PDB.getBugReport(); 1189 for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(), 1190 E = visitors.end(); 1191 I != E; ++I) { 1192 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { 1193 const PathDiagnosticLocation &Loc = p->getLocation(); 1194 EB.addEdge(Loc, true); 1195 PD.getActivePath().push_front(p); 1196 updateStackPiecesWithMessage(p, CallStack); 1197 1198 if (const Stmt *S = Loc.asStmt()) 1199 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1200 } 1201 } 1202 } 1203 } 1204 1205 //===----------------------------------------------------------------------===// 1206 // Methods for BugType and subclasses. 1207 //===----------------------------------------------------------------------===// 1208 BugType::~BugType() { } 1209 1210 void BugType::FlushReports(BugReporter &BR) {} 1211 1212 void BuiltinBug::anchor() {} 1213 1214 //===----------------------------------------------------------------------===// 1215 // Methods for BugReport and subclasses. 1216 //===----------------------------------------------------------------------===// 1217 1218 void BugReport::NodeResolver::anchor() {} 1219 1220 void BugReport::addVisitor(BugReporterVisitor* visitor) { 1221 if (!visitor) 1222 return; 1223 1224 llvm::FoldingSetNodeID ID; 1225 visitor->Profile(ID); 1226 void *InsertPos; 1227 1228 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 1229 delete visitor; 1230 return; 1231 } 1232 1233 CallbacksSet.InsertNode(visitor, InsertPos); 1234 Callbacks.push_back(visitor); 1235 ++ConfigurationChangeToken; 1236 } 1237 1238 BugReport::~BugReport() { 1239 for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) { 1240 delete *I; 1241 } 1242 } 1243 1244 const Decl *BugReport::getDeclWithIssue() const { 1245 if (DeclWithIssue) 1246 return DeclWithIssue; 1247 1248 const ExplodedNode *N = getErrorNode(); 1249 if (!N) 1250 return 0; 1251 1252 const LocationContext *LC = N->getLocationContext(); 1253 return LC->getCurrentStackFrame()->getDecl(); 1254 } 1255 1256 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 1257 hash.AddPointer(&BT); 1258 hash.AddString(Description); 1259 if (UniqueingLocation.isValid()) { 1260 UniqueingLocation.Profile(hash); 1261 } else if (Location.isValid()) { 1262 Location.Profile(hash); 1263 } else { 1264 assert(ErrorNode); 1265 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 1266 } 1267 1268 for (SmallVectorImpl<SourceRange>::const_iterator I = 1269 Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1270 const SourceRange range = *I; 1271 if (!range.isValid()) 1272 continue; 1273 hash.AddInteger(range.getBegin().getRawEncoding()); 1274 hash.AddInteger(range.getEnd().getRawEncoding()); 1275 } 1276 } 1277 1278 void BugReport::markInteresting(SymbolRef sym) { 1279 if (!sym) 1280 return; 1281 1282 // If the symbol wasn't already in our set, note a configuration change. 1283 if (interestingSymbols.insert(sym).second) 1284 ++ConfigurationChangeToken; 1285 1286 if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym)) 1287 interestingRegions.insert(meta->getRegion()); 1288 } 1289 1290 void BugReport::markInteresting(const MemRegion *R) { 1291 if (!R) 1292 return; 1293 1294 // If the base region wasn't already in our set, note a configuration change. 1295 R = R->getBaseRegion(); 1296 if (interestingRegions.insert(R).second) 1297 ++ConfigurationChangeToken; 1298 1299 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 1300 interestingSymbols.insert(SR->getSymbol()); 1301 } 1302 1303 void BugReport::markInteresting(SVal V) { 1304 markInteresting(V.getAsRegion()); 1305 markInteresting(V.getAsSymbol()); 1306 } 1307 1308 bool BugReport::isInteresting(SVal V) const { 1309 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); 1310 } 1311 1312 bool BugReport::isInteresting(SymbolRef sym) const { 1313 if (!sym) 1314 return false; 1315 // We don't currently consider metadata symbols to be interesting 1316 // even if we know their region is interesting. Is that correct behavior? 1317 return interestingSymbols.count(sym); 1318 } 1319 1320 bool BugReport::isInteresting(const MemRegion *R) const { 1321 if (!R) 1322 return false; 1323 R = R->getBaseRegion(); 1324 bool b = interestingRegions.count(R); 1325 if (b) 1326 return true; 1327 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 1328 return interestingSymbols.count(SR->getSymbol()); 1329 return false; 1330 } 1331 1332 1333 const Stmt *BugReport::getStmt() const { 1334 if (!ErrorNode) 1335 return 0; 1336 1337 ProgramPoint ProgP = ErrorNode->getLocation(); 1338 const Stmt *S = NULL; 1339 1340 if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) { 1341 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 1342 if (BE->getBlock() == &Exit) 1343 S = GetPreviousStmt(ErrorNode); 1344 } 1345 if (!S) 1346 S = GetStmt(ProgP); 1347 1348 return S; 1349 } 1350 1351 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator> 1352 BugReport::getRanges() { 1353 // If no custom ranges, add the range of the statement corresponding to 1354 // the error node. 1355 if (Ranges.empty()) { 1356 if (const Expr *E = dyn_cast_or_null<Expr>(getStmt())) 1357 addRange(E->getSourceRange()); 1358 else 1359 return std::make_pair(ranges_iterator(), ranges_iterator()); 1360 } 1361 1362 // User-specified absence of range info. 1363 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 1364 return std::make_pair(ranges_iterator(), ranges_iterator()); 1365 1366 return std::make_pair(Ranges.begin(), Ranges.end()); 1367 } 1368 1369 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 1370 if (ErrorNode) { 1371 assert(!Location.isValid() && 1372 "Either Location or ErrorNode should be specified but not both."); 1373 1374 if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) { 1375 const LocationContext *LC = ErrorNode->getLocationContext(); 1376 1377 // For member expressions, return the location of the '.' or '->'. 1378 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) 1379 return PathDiagnosticLocation::createMemberLoc(ME, SM); 1380 // For binary operators, return the location of the operator. 1381 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S)) 1382 return PathDiagnosticLocation::createOperatorLoc(B, SM); 1383 1384 return PathDiagnosticLocation::createBegin(S, SM, LC); 1385 } 1386 } else { 1387 assert(Location.isValid()); 1388 return Location; 1389 } 1390 1391 return PathDiagnosticLocation(); 1392 } 1393 1394 //===----------------------------------------------------------------------===// 1395 // Methods for BugReporter and subclasses. 1396 //===----------------------------------------------------------------------===// 1397 1398 BugReportEquivClass::~BugReportEquivClass() { } 1399 GRBugReporter::~GRBugReporter() { } 1400 BugReporterData::~BugReporterData() {} 1401 1402 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 1403 1404 ProgramStateManager& 1405 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 1406 1407 BugReporter::~BugReporter() { 1408 FlushReports(); 1409 1410 // Free the bug reports we are tracking. 1411 typedef std::vector<BugReportEquivClass *> ContTy; 1412 for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); 1413 I != E; ++I) { 1414 delete *I; 1415 } 1416 } 1417 1418 void BugReporter::FlushReports() { 1419 if (BugTypes.isEmpty()) 1420 return; 1421 1422 // First flush the warnings for each BugType. This may end up creating new 1423 // warnings and new BugTypes. 1424 // FIXME: Only NSErrorChecker needs BugType's FlushReports. 1425 // Turn NSErrorChecker into a proper checker and remove this. 1426 SmallVector<const BugType*, 16> bugTypes; 1427 for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) 1428 bugTypes.push_back(*I); 1429 for (SmallVector<const BugType*, 16>::iterator 1430 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) 1431 const_cast<BugType*>(*I)->FlushReports(*this); 1432 1433 typedef llvm::FoldingSet<BugReportEquivClass> SetTy; 1434 for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){ 1435 BugReportEquivClass& EQ = *EI; 1436 FlushReport(EQ); 1437 } 1438 1439 // BugReporter owns and deletes only BugTypes created implicitly through 1440 // EmitBasicReport. 1441 // FIXME: There are leaks from checkers that assume that the BugTypes they 1442 // create will be destroyed by the BugReporter. 1443 for (llvm::StringMap<BugType*>::iterator 1444 I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I) 1445 delete I->second; 1446 1447 // Remove all references to the BugType objects. 1448 BugTypes = F.getEmptySet(); 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // PathDiagnostics generation. 1453 //===----------------------------------------------------------------------===// 1454 1455 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, 1456 std::pair<ExplodedNode*, unsigned> > 1457 MakeReportGraph(const ExplodedGraph* G, 1458 SmallVectorImpl<const ExplodedNode*> &nodes) { 1459 1460 // Create the trimmed graph. It will contain the shortest paths from the 1461 // error nodes to the root. In the new graph we should only have one 1462 // error node unless there are two or more error nodes with the same minimum 1463 // path length. 1464 ExplodedGraph* GTrim; 1465 InterExplodedGraphMap* NMap; 1466 1467 llvm::DenseMap<const void*, const void*> InverseMap; 1468 llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(), 1469 &InverseMap); 1470 1471 // Create owning pointers for GTrim and NMap just to ensure that they are 1472 // released when this function exists. 1473 OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim); 1474 OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap); 1475 1476 // Find the (first) error node in the trimmed graph. We just need to consult 1477 // the node map (NMap) which maps from nodes in the original graph to nodes 1478 // in the new graph. 1479 1480 std::queue<const ExplodedNode*> WS; 1481 typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy; 1482 IndexMapTy IndexMap; 1483 1484 for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) { 1485 const ExplodedNode *originalNode = nodes[nodeIndex]; 1486 if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) { 1487 WS.push(N); 1488 IndexMap[originalNode] = nodeIndex; 1489 } 1490 } 1491 1492 assert(!WS.empty() && "No error node found in the trimmed graph."); 1493 1494 // Create a new (third!) graph with a single path. This is the graph 1495 // that will be returned to the caller. 1496 ExplodedGraph *GNew = new ExplodedGraph(); 1497 1498 // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS 1499 // to the root node, and then construct a new graph that contains only 1500 // a single path. 1501 llvm::DenseMap<const void*,unsigned> Visited; 1502 1503 unsigned cnt = 0; 1504 const ExplodedNode *Root = 0; 1505 1506 while (!WS.empty()) { 1507 const ExplodedNode *Node = WS.front(); 1508 WS.pop(); 1509 1510 if (Visited.find(Node) != Visited.end()) 1511 continue; 1512 1513 Visited[Node] = cnt++; 1514 1515 if (Node->pred_empty()) { 1516 Root = Node; 1517 break; 1518 } 1519 1520 for (ExplodedNode::const_pred_iterator I=Node->pred_begin(), 1521 E=Node->pred_end(); I!=E; ++I) 1522 WS.push(*I); 1523 } 1524 1525 assert(Root); 1526 1527 // Now walk from the root down the BFS path, always taking the successor 1528 // with the lowest number. 1529 ExplodedNode *Last = 0, *First = 0; 1530 NodeBackMap *BM = new NodeBackMap(); 1531 unsigned NodeIndex = 0; 1532 1533 for ( const ExplodedNode *N = Root ;;) { 1534 // Lookup the number associated with the current node. 1535 llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N); 1536 assert(I != Visited.end()); 1537 1538 // Create the equivalent node in the new graph with the same state 1539 // and location. 1540 ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState()); 1541 1542 // Store the mapping to the original node. 1543 llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N); 1544 assert(IMitr != InverseMap.end() && "No mapping to original node."); 1545 (*BM)[NewN] = (const ExplodedNode*) IMitr->second; 1546 1547 // Link up the new node with the previous node. 1548 if (Last) 1549 NewN->addPredecessor(Last, *GNew); 1550 1551 Last = NewN; 1552 1553 // Are we at the final node? 1554 IndexMapTy::iterator IMI = 1555 IndexMap.find((const ExplodedNode*)(IMitr->second)); 1556 if (IMI != IndexMap.end()) { 1557 First = NewN; 1558 NodeIndex = IMI->second; 1559 break; 1560 } 1561 1562 // Find the next successor node. We choose the node that is marked 1563 // with the lowest DFS number. 1564 ExplodedNode::const_succ_iterator SI = N->succ_begin(); 1565 ExplodedNode::const_succ_iterator SE = N->succ_end(); 1566 N = 0; 1567 1568 for (unsigned MinVal = 0; SI != SE; ++SI) { 1569 1570 I = Visited.find(*SI); 1571 1572 if (I == Visited.end()) 1573 continue; 1574 1575 if (!N || I->second < MinVal) { 1576 N = *SI; 1577 MinVal = I->second; 1578 } 1579 } 1580 1581 assert(N); 1582 } 1583 1584 assert(First); 1585 1586 return std::make_pair(std::make_pair(GNew, BM), 1587 std::make_pair(First, NodeIndex)); 1588 } 1589 1590 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object 1591 /// and collapses PathDiagosticPieces that are expanded by macros. 1592 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) { 1593 typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>, 1594 SourceLocation> > MacroStackTy; 1595 1596 typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> > 1597 PiecesTy; 1598 1599 MacroStackTy MacroStack; 1600 PiecesTy Pieces; 1601 1602 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 1603 I!=E; ++I) { 1604 1605 PathDiagnosticPiece *piece = I->getPtr(); 1606 1607 // Recursively compact calls. 1608 if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){ 1609 CompactPathDiagnostic(call->path, SM); 1610 } 1611 1612 // Get the location of the PathDiagnosticPiece. 1613 const FullSourceLoc Loc = piece->getLocation().asLocation(); 1614 1615 // Determine the instantiation location, which is the location we group 1616 // related PathDiagnosticPieces. 1617 SourceLocation InstantiationLoc = Loc.isMacroID() ? 1618 SM.getExpansionLoc(Loc) : 1619 SourceLocation(); 1620 1621 if (Loc.isFileID()) { 1622 MacroStack.clear(); 1623 Pieces.push_back(piece); 1624 continue; 1625 } 1626 1627 assert(Loc.isMacroID()); 1628 1629 // Is the PathDiagnosticPiece within the same macro group? 1630 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 1631 MacroStack.back().first->subPieces.push_back(piece); 1632 continue; 1633 } 1634 1635 // We aren't in the same group. Are we descending into a new macro 1636 // or are part of an old one? 1637 IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup; 1638 1639 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 1640 SM.getExpansionLoc(Loc) : 1641 SourceLocation(); 1642 1643 // Walk the entire macro stack. 1644 while (!MacroStack.empty()) { 1645 if (InstantiationLoc == MacroStack.back().second) { 1646 MacroGroup = MacroStack.back().first; 1647 break; 1648 } 1649 1650 if (ParentInstantiationLoc == MacroStack.back().second) { 1651 MacroGroup = MacroStack.back().first; 1652 break; 1653 } 1654 1655 MacroStack.pop_back(); 1656 } 1657 1658 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 1659 // Create a new macro group and add it to the stack. 1660 PathDiagnosticMacroPiece *NewGroup = 1661 new PathDiagnosticMacroPiece( 1662 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 1663 1664 if (MacroGroup) 1665 MacroGroup->subPieces.push_back(NewGroup); 1666 else { 1667 assert(InstantiationLoc.isFileID()); 1668 Pieces.push_back(NewGroup); 1669 } 1670 1671 MacroGroup = NewGroup; 1672 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 1673 } 1674 1675 // Finally, add the PathDiagnosticPiece to the group. 1676 MacroGroup->subPieces.push_back(piece); 1677 } 1678 1679 // Now take the pieces and construct a new PathDiagnostic. 1680 path.clear(); 1681 1682 for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) 1683 path.push_back(*I); 1684 } 1685 1686 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD, 1687 SmallVectorImpl<BugReport *> &bugReports) { 1688 1689 assert(!bugReports.empty()); 1690 SmallVector<const ExplodedNode *, 10> errorNodes; 1691 for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(), 1692 E = bugReports.end(); I != E; ++I) { 1693 errorNodes.push_back((*I)->getErrorNode()); 1694 } 1695 1696 // Construct a new graph that contains only a single path from the error 1697 // node to a root. 1698 const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, 1699 std::pair<ExplodedNode*, unsigned> >& 1700 GPair = MakeReportGraph(&getGraph(), errorNodes); 1701 1702 // Find the BugReport with the original location. 1703 assert(GPair.second.second < bugReports.size()); 1704 BugReport *R = bugReports[GPair.second.second]; 1705 assert(R && "No original report found for sliced graph."); 1706 1707 OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first); 1708 OwningPtr<NodeBackMap> BackMap(GPair.first.second); 1709 const ExplodedNode *N = GPair.second.first; 1710 1711 // Start building the path diagnostic... 1712 PathDiagnosticBuilder PDB(*this, R, BackMap.get(), 1713 getPathDiagnosticConsumer()); 1714 1715 // Register additional node visitors. 1716 R->addVisitor(new NilReceiverBRVisitor()); 1717 R->addVisitor(new ConditionBRVisitor()); 1718 1719 BugReport::VisitorList visitors; 1720 unsigned originalReportConfigToken, finalReportConfigToken; 1721 1722 // While generating diagnostics, it's possible the visitors will decide 1723 // new symbols and regions are interesting, or add other visitors based on 1724 // the information they find. If they do, we need to regenerate the path 1725 // based on our new report configuration. 1726 do { 1727 // Get a clean copy of all the visitors. 1728 for (BugReport::visitor_iterator I = R->visitor_begin(), 1729 E = R->visitor_end(); I != E; ++I) 1730 visitors.push_back((*I)->clone()); 1731 1732 // Clear out the active path from any previous work. 1733 PD.getActivePath().clear(); 1734 originalReportConfigToken = R->getConfigurationChangeToken(); 1735 1736 // Generate the very last diagnostic piece - the piece is visible before 1737 // the trace is expanded. 1738 PathDiagnosticPiece *LastPiece = 0; 1739 for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end(); 1740 I != E; ++I) { 1741 if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) { 1742 assert (!LastPiece && 1743 "There can only be one final piece in a diagnostic."); 1744 LastPiece = Piece; 1745 } 1746 } 1747 if (!LastPiece) 1748 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); 1749 if (LastPiece) 1750 PD.getActivePath().push_back(LastPiece); 1751 else 1752 return; 1753 1754 switch (PDB.getGenerationScheme()) { 1755 case PathDiagnosticConsumer::Extensive: 1756 GenerateExtensivePathDiagnostic(PD, PDB, N, visitors); 1757 break; 1758 case PathDiagnosticConsumer::Minimal: 1759 GenerateMinimalPathDiagnostic(PD, PDB, N, visitors); 1760 break; 1761 } 1762 1763 // Clean up the visitors we used. 1764 llvm::DeleteContainerPointers(visitors); 1765 1766 // Did anything change while generating this path? 1767 finalReportConfigToken = R->getConfigurationChangeToken(); 1768 } while(finalReportConfigToken != originalReportConfigToken); 1769 1770 // Finally, prune the diagnostic path of uninteresting stuff. 1771 bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces()); 1772 assert(hasSomethingInteresting); 1773 (void) hasSomethingInteresting; 1774 } 1775 1776 void BugReporter::Register(BugType *BT) { 1777 BugTypes = F.add(BugTypes, BT); 1778 } 1779 1780 void BugReporter::EmitReport(BugReport* R) { 1781 // Compute the bug report's hash to determine its equivalence class. 1782 llvm::FoldingSetNodeID ID; 1783 R->Profile(ID); 1784 1785 // Lookup the equivance class. If there isn't one, create it. 1786 BugType& BT = R->getBugType(); 1787 Register(&BT); 1788 void *InsertPos; 1789 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 1790 1791 if (!EQ) { 1792 EQ = new BugReportEquivClass(R); 1793 EQClasses.InsertNode(EQ, InsertPos); 1794 EQClassesVector.push_back(EQ); 1795 } 1796 else 1797 EQ->AddReport(R); 1798 } 1799 1800 1801 //===----------------------------------------------------------------------===// 1802 // Emitting reports in equivalence classes. 1803 //===----------------------------------------------------------------------===// 1804 1805 namespace { 1806 struct FRIEC_WLItem { 1807 const ExplodedNode *N; 1808 ExplodedNode::const_succ_iterator I, E; 1809 1810 FRIEC_WLItem(const ExplodedNode *n) 1811 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 1812 }; 1813 } 1814 1815 static BugReport * 1816 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 1817 SmallVectorImpl<BugReport*> &bugReports) { 1818 1819 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 1820 assert(I != E); 1821 BugType& BT = I->getBugType(); 1822 1823 // If we don't need to suppress any of the nodes because they are 1824 // post-dominated by a sink, simply add all the nodes in the equivalence class 1825 // to 'Nodes'. Any of the reports will serve as a "representative" report. 1826 if (!BT.isSuppressOnSink()) { 1827 BugReport *R = I; 1828 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { 1829 const ExplodedNode *N = I->getErrorNode(); 1830 if (N) { 1831 R = I; 1832 bugReports.push_back(R); 1833 } 1834 } 1835 return R; 1836 } 1837 1838 // For bug reports that should be suppressed when all paths are post-dominated 1839 // by a sink node, iterate through the reports in the equivalence class 1840 // until we find one that isn't post-dominated (if one exists). We use a 1841 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 1842 // this as a recursive function, but we don't want to risk blowing out the 1843 // stack for very long paths. 1844 BugReport *exampleReport = 0; 1845 1846 for (; I != E; ++I) { 1847 const ExplodedNode *errorNode = I->getErrorNode(); 1848 1849 if (!errorNode) 1850 continue; 1851 if (errorNode->isSink()) { 1852 llvm_unreachable( 1853 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 1854 } 1855 // No successors? By definition this nodes isn't post-dominated by a sink. 1856 if (errorNode->succ_empty()) { 1857 bugReports.push_back(I); 1858 if (!exampleReport) 1859 exampleReport = I; 1860 continue; 1861 } 1862 1863 // At this point we know that 'N' is not a sink and it has at least one 1864 // successor. Use a DFS worklist to find a non-sink end-of-path node. 1865 typedef FRIEC_WLItem WLItem; 1866 typedef SmallVector<WLItem, 10> DFSWorkList; 1867 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 1868 1869 DFSWorkList WL; 1870 WL.push_back(errorNode); 1871 Visited[errorNode] = 1; 1872 1873 while (!WL.empty()) { 1874 WLItem &WI = WL.back(); 1875 assert(!WI.N->succ_empty()); 1876 1877 for (; WI.I != WI.E; ++WI.I) { 1878 const ExplodedNode *Succ = *WI.I; 1879 // End-of-path node? 1880 if (Succ->succ_empty()) { 1881 // If we found an end-of-path node that is not a sink. 1882 if (!Succ->isSink()) { 1883 bugReports.push_back(I); 1884 if (!exampleReport) 1885 exampleReport = I; 1886 WL.clear(); 1887 break; 1888 } 1889 // Found a sink? Continue on to the next successor. 1890 continue; 1891 } 1892 // Mark the successor as visited. If it hasn't been explored, 1893 // enqueue it to the DFS worklist. 1894 unsigned &mark = Visited[Succ]; 1895 if (!mark) { 1896 mark = 1; 1897 WL.push_back(Succ); 1898 break; 1899 } 1900 } 1901 1902 // The worklist may have been cleared at this point. First 1903 // check if it is empty before checking the last item. 1904 if (!WL.empty() && &WL.back() == &WI) 1905 WL.pop_back(); 1906 } 1907 } 1908 1909 // ExampleReport will be NULL if all the nodes in the equivalence class 1910 // were post-dominated by sinks. 1911 return exampleReport; 1912 } 1913 1914 //===----------------------------------------------------------------------===// 1915 // DiagnosticCache. This is a hack to cache analyzer diagnostics. It 1916 // uses global state, which eventually should go elsewhere. 1917 //===----------------------------------------------------------------------===// 1918 namespace { 1919 class DiagCacheItem : public llvm::FoldingSetNode { 1920 llvm::FoldingSetNodeID ID; 1921 public: 1922 DiagCacheItem(BugReport *R, PathDiagnostic *PD) { 1923 R->Profile(ID); 1924 PD->Profile(ID); 1925 } 1926 1927 void Profile(llvm::FoldingSetNodeID &id) { 1928 id = ID; 1929 } 1930 1931 llvm::FoldingSetNodeID &getID() { return ID; } 1932 }; 1933 } 1934 1935 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) { 1936 // FIXME: Eventually this diagnostic cache should reside in something 1937 // like AnalysisManager instead of being a static variable. This is 1938 // really unsafe in the long term. 1939 typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache; 1940 static DiagnosticCache DC; 1941 1942 void *InsertPos; 1943 DiagCacheItem *Item = new DiagCacheItem(R, PD); 1944 1945 if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) { 1946 delete Item; 1947 return true; 1948 } 1949 1950 DC.InsertNode(Item, InsertPos); 1951 return false; 1952 } 1953 1954 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 1955 SmallVector<BugReport*, 10> bugReports; 1956 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); 1957 if (!exampleReport) 1958 return; 1959 1960 PathDiagnosticConsumer* PD = getPathDiagnosticConsumer(); 1961 1962 // FIXME: Make sure we use the 'R' for the path that was actually used. 1963 // Probably doesn't make a difference in practice. 1964 BugType& BT = exampleReport->getBugType(); 1965 1966 OwningPtr<PathDiagnostic> 1967 D(new PathDiagnostic(exampleReport->getDeclWithIssue(), 1968 exampleReport->getBugType().getName(), 1969 !PD || PD->useVerboseDescription() 1970 ? exampleReport->getDescription() 1971 : exampleReport->getShortDescription(), 1972 BT.getCategory())); 1973 1974 if (!bugReports.empty()) 1975 GeneratePathDiagnostic(*D.get(), bugReports); 1976 1977 // Get the meta data. 1978 const BugReport::ExtraTextList &Meta = 1979 exampleReport->getExtraText(); 1980 for (BugReport::ExtraTextList::const_iterator i = Meta.begin(), 1981 e = Meta.end(); i != e; ++i) { 1982 D->addMeta(*i); 1983 } 1984 1985 // Emit a summary diagnostic to the regular Diagnostics engine. 1986 BugReport::ranges_iterator Beg, End; 1987 llvm::tie(Beg, End) = exampleReport->getRanges(); 1988 DiagnosticsEngine &Diag = getDiagnostic(); 1989 1990 if (!IsCachedDiagnostic(exampleReport, D.get())) { 1991 // Search the description for '%', as that will be interpretted as a 1992 // format character by FormatDiagnostics. 1993 StringRef desc = exampleReport->getShortDescription(); 1994 1995 SmallString<512> TmpStr; 1996 llvm::raw_svector_ostream Out(TmpStr); 1997 for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I) { 1998 if (*I == '%') 1999 Out << "%%"; 2000 else 2001 Out << *I; 2002 } 2003 2004 Out.flush(); 2005 unsigned ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr); 2006 2007 DiagnosticBuilder diagBuilder = Diag.Report( 2008 exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag); 2009 for (BugReport::ranges_iterator I = Beg; I != End; ++I) 2010 diagBuilder << *I; 2011 } 2012 2013 // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer. 2014 if (!PD) 2015 return; 2016 2017 if (D->path.empty()) { 2018 PathDiagnosticPiece *piece = new PathDiagnosticEventPiece( 2019 exampleReport->getLocation(getSourceManager()), 2020 exampleReport->getDescription()); 2021 for ( ; Beg != End; ++Beg) 2022 piece->addRange(*Beg); 2023 2024 D->getActivePath().push_back(piece); 2025 } 2026 2027 PD->HandlePathDiagnostic(D.take()); 2028 } 2029 2030 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 2031 StringRef name, 2032 StringRef category, 2033 StringRef str, PathDiagnosticLocation Loc, 2034 SourceRange* RBeg, unsigned NumRanges) { 2035 2036 // 'BT' is owned by BugReporter. 2037 BugType *BT = getBugTypeForName(name, category); 2038 BugReport *R = new BugReport(*BT, str, Loc); 2039 R->setDeclWithIssue(DeclWithIssue); 2040 for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); 2041 EmitReport(R); 2042 } 2043 2044 BugType *BugReporter::getBugTypeForName(StringRef name, 2045 StringRef category) { 2046 SmallString<136> fullDesc; 2047 llvm::raw_svector_ostream(fullDesc) << name << ":" << category; 2048 llvm::StringMapEntry<BugType *> & 2049 entry = StrBugTypes.GetOrCreateValue(fullDesc); 2050 BugType *BT = entry.getValue(); 2051 if (!BT) { 2052 BT = new BugType(name, category); 2053 entry.setValue(BT); 2054 } 2055 return BT; 2056 } 2057