Home | History | Annotate | Download | only in CodeGen
      1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CriticalAntiDepBreaker class, which
     11 // implements register anti-dependence breaking along a blocks
     12 // critical path during post-RA scheduler.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "post-RA-sched"
     17 #include "CriticalAntiDepBreaker.h"
     18 #include "llvm/CodeGen/MachineBasicBlock.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/Target/TargetMachine.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "llvm/Target/TargetRegisterInfo.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 
     27 using namespace llvm;
     28 
     29 CriticalAntiDepBreaker::
     30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
     31   AntiDepBreaker(), MF(MFi),
     32   MRI(MF.getRegInfo()),
     33   TII(MF.getTarget().getInstrInfo()),
     34   TRI(MF.getTarget().getRegisterInfo()),
     35   RegClassInfo(RCI),
     36   Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
     37   KillIndices(TRI->getNumRegs(), 0),
     38   DefIndices(TRI->getNumRegs(), 0),
     39   KeepRegs(TRI->getNumRegs(), false) {}
     40 
     41 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
     42 }
     43 
     44 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
     45   const unsigned BBSize = BB->size();
     46   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
     47     // Clear out the register class data.
     48     Classes[i] = static_cast<const TargetRegisterClass *>(0);
     49 
     50     // Initialize the indices to indicate that no registers are live.
     51     KillIndices[i] = ~0u;
     52     DefIndices[i] = BBSize;
     53   }
     54 
     55   // Clear "do not change" set.
     56   KeepRegs.reset();
     57 
     58   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
     59 
     60   // Determine the live-out physregs for this block.
     61   if (IsReturnBlock) {
     62     // In a return block, examine the function live-out regs.
     63     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
     64          E = MRI.liveout_end(); I != E; ++I) {
     65       unsigned Reg = *I;
     66       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     67       KillIndices[Reg] = BBSize;
     68       DefIndices[Reg] = ~0u;
     69 
     70       // Repeat, for all aliases.
     71       for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
     72         unsigned AliasReg = *Alias;
     73         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
     74         KillIndices[AliasReg] = BBSize;
     75         DefIndices[AliasReg] = ~0u;
     76       }
     77     }
     78   }
     79 
     80   // In a non-return block, examine the live-in regs of all successors.
     81   // Note a return block can have successors if the return instruction is
     82   // predicated.
     83   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
     84          SE = BB->succ_end(); SI != SE; ++SI)
     85     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
     86            E = (*SI)->livein_end(); I != E; ++I) {
     87       unsigned Reg = *I;
     88       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     89       KillIndices[Reg] = BBSize;
     90       DefIndices[Reg] = ~0u;
     91 
     92       // Repeat, for all aliases.
     93       for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
     94         unsigned AliasReg = *Alias;
     95         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
     96         KillIndices[AliasReg] = BBSize;
     97         DefIndices[AliasReg] = ~0u;
     98       }
     99     }
    100 
    101   // Mark live-out callee-saved registers. In a return block this is
    102   // all callee-saved registers. In non-return this is any
    103   // callee-saved register that is not saved in the prolog.
    104   const MachineFrameInfo *MFI = MF.getFrameInfo();
    105   BitVector Pristine = MFI->getPristineRegs(BB);
    106   for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
    107     unsigned Reg = *I;
    108     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
    109     Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    110     KillIndices[Reg] = BBSize;
    111     DefIndices[Reg] = ~0u;
    112 
    113     // Repeat, for all aliases.
    114     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    115       unsigned AliasReg = *Alias;
    116       Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    117       KillIndices[AliasReg] = BBSize;
    118       DefIndices[AliasReg] = ~0u;
    119     }
    120   }
    121 }
    122 
    123 void CriticalAntiDepBreaker::FinishBlock() {
    124   RegRefs.clear();
    125   KeepRegs.reset();
    126 }
    127 
    128 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
    129                                      unsigned InsertPosIndex) {
    130   if (MI->isDebugValue())
    131     return;
    132   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
    133 
    134   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    135     if (KillIndices[Reg] != ~0u) {
    136       // If Reg is currently live, then mark that it can't be renamed as
    137       // we don't know the extent of its live-range anymore (now that it
    138       // has been scheduled).
    139       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    140       KillIndices[Reg] = Count;
    141     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
    142       // Any register which was defined within the previous scheduling region
    143       // may have been rescheduled and its lifetime may overlap with registers
    144       // in ways not reflected in our current liveness state. For each such
    145       // register, adjust the liveness state to be conservatively correct.
    146       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    147 
    148       // Move the def index to the end of the previous region, to reflect
    149       // that the def could theoretically have been scheduled at the end.
    150       DefIndices[Reg] = InsertPosIndex;
    151     }
    152   }
    153 
    154   PrescanInstruction(MI);
    155   ScanInstruction(MI, Count);
    156 }
    157 
    158 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    159 /// critical path.
    160 static const SDep *CriticalPathStep(const SUnit *SU) {
    161   const SDep *Next = 0;
    162   unsigned NextDepth = 0;
    163   // Find the predecessor edge with the greatest depth.
    164   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    165        P != PE; ++P) {
    166     const SUnit *PredSU = P->getSUnit();
    167     unsigned PredLatency = P->getLatency();
    168     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    169     // In the case of a latency tie, prefer an anti-dependency edge over
    170     // other types of edges.
    171     if (NextDepth < PredTotalLatency ||
    172         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    173       NextDepth = PredTotalLatency;
    174       Next = &*P;
    175     }
    176   }
    177   return Next;
    178 }
    179 
    180 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
    181   // It's not safe to change register allocation for source operands of
    182   // that have special allocation requirements. Also assume all registers
    183   // used in a call must not be changed (ABI).
    184   // FIXME: The issue with predicated instruction is more complex. We are being
    185   // conservative here because the kill markers cannot be trusted after
    186   // if-conversion:
    187   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    188   // ...
    189   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    190   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    191   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    192   //
    193   // The first R6 kill is not really a kill since it's killed by a predicated
    194   // instruction which may not be executed. The second R6 def may or may not
    195   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    196   // changed.
    197   bool Special = MI->isCall() ||
    198     MI->hasExtraSrcRegAllocReq() ||
    199     TII->isPredicated(MI);
    200 
    201   // Scan the register operands for this instruction and update
    202   // Classes and RegRefs.
    203   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    204     MachineOperand &MO = MI->getOperand(i);
    205     if (!MO.isReg()) continue;
    206     unsigned Reg = MO.getReg();
    207     if (Reg == 0) continue;
    208     const TargetRegisterClass *NewRC = 0;
    209 
    210     if (i < MI->getDesc().getNumOperands())
    211       NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
    212 
    213     // For now, only allow the register to be changed if its register
    214     // class is consistent across all uses.
    215     if (!Classes[Reg] && NewRC)
    216       Classes[Reg] = NewRC;
    217     else if (!NewRC || Classes[Reg] != NewRC)
    218       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    219 
    220     // Now check for aliases.
    221     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    222       // If an alias of the reg is used during the live range, give up.
    223       // Note that this allows us to skip checking if AntiDepReg
    224       // overlaps with any of the aliases, among other things.
    225       unsigned AliasReg = *Alias;
    226       if (Classes[AliasReg]) {
    227         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    228         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    229       }
    230     }
    231 
    232     // If we're still willing to consider this register, note the reference.
    233     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
    234       RegRefs.insert(std::make_pair(Reg, &MO));
    235 
    236     if (MO.isUse() && Special) {
    237       if (!KeepRegs.test(Reg)) {
    238         KeepRegs.set(Reg);
    239         for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
    240              *Subreg; ++Subreg)
    241           KeepRegs.set(*Subreg);
    242       }
    243     }
    244   }
    245 }
    246 
    247 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
    248                                              unsigned Count) {
    249   // Update liveness.
    250   // Proceding upwards, registers that are defed but not used in this
    251   // instruction are now dead.
    252 
    253   if (!TII->isPredicated(MI)) {
    254     // Predicated defs are modeled as read + write, i.e. similar to two
    255     // address updates.
    256     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    257       MachineOperand &MO = MI->getOperand(i);
    258 
    259       if (MO.isRegMask())
    260         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    261           if (MO.clobbersPhysReg(i)) {
    262             DefIndices[i] = Count;
    263             KillIndices[i] = ~0u;
    264             KeepRegs.reset(i);
    265             Classes[i] = 0;
    266             RegRefs.erase(i);
    267           }
    268 
    269       if (!MO.isReg()) continue;
    270       unsigned Reg = MO.getReg();
    271       if (Reg == 0) continue;
    272       if (!MO.isDef()) continue;
    273       // Ignore two-addr defs.
    274       if (MI->isRegTiedToUseOperand(i)) continue;
    275 
    276       DefIndices[Reg] = Count;
    277       KillIndices[Reg] = ~0u;
    278       assert(((KillIndices[Reg] == ~0u) !=
    279               (DefIndices[Reg] == ~0u)) &&
    280              "Kill and Def maps aren't consistent for Reg!");
    281       KeepRegs.reset(Reg);
    282       Classes[Reg] = 0;
    283       RegRefs.erase(Reg);
    284       // Repeat, for all subregs.
    285       for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
    286            *Subreg; ++Subreg) {
    287         unsigned SubregReg = *Subreg;
    288         DefIndices[SubregReg] = Count;
    289         KillIndices[SubregReg] = ~0u;
    290         KeepRegs.reset(SubregReg);
    291         Classes[SubregReg] = 0;
    292         RegRefs.erase(SubregReg);
    293       }
    294       // Conservatively mark super-registers as unusable.
    295       for (const uint16_t *Super = TRI->getSuperRegisters(Reg);
    296            *Super; ++Super) {
    297         unsigned SuperReg = *Super;
    298         Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    299       }
    300     }
    301   }
    302   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    303     MachineOperand &MO = MI->getOperand(i);
    304     if (!MO.isReg()) continue;
    305     unsigned Reg = MO.getReg();
    306     if (Reg == 0) continue;
    307     if (!MO.isUse()) continue;
    308 
    309     const TargetRegisterClass *NewRC = 0;
    310     if (i < MI->getDesc().getNumOperands())
    311       NewRC = TII->getRegClass(MI->getDesc(), i, TRI);
    312 
    313     // For now, only allow the register to be changed if its register
    314     // class is consistent across all uses.
    315     if (!Classes[Reg] && NewRC)
    316       Classes[Reg] = NewRC;
    317     else if (!NewRC || Classes[Reg] != NewRC)
    318       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    319 
    320     RegRefs.insert(std::make_pair(Reg, &MO));
    321 
    322     // It wasn't previously live but now it is, this is a kill.
    323     if (KillIndices[Reg] == ~0u) {
    324       KillIndices[Reg] = Count;
    325       DefIndices[Reg] = ~0u;
    326           assert(((KillIndices[Reg] == ~0u) !=
    327                   (DefIndices[Reg] == ~0u)) &&
    328                "Kill and Def maps aren't consistent for Reg!");
    329     }
    330     // Repeat, for all aliases.
    331     for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    332       unsigned AliasReg = *Alias;
    333       if (KillIndices[AliasReg] == ~0u) {
    334         KillIndices[AliasReg] = Count;
    335         DefIndices[AliasReg] = ~0u;
    336       }
    337     }
    338   }
    339 }
    340 
    341 // Check all machine operands that reference the antidependent register and must
    342 // be replaced by NewReg. Return true if any of their parent instructions may
    343 // clobber the new register.
    344 //
    345 // Note: AntiDepReg may be referenced by a two-address instruction such that
    346 // it's use operand is tied to a def operand. We guard against the case in which
    347 // the two-address instruction also defines NewReg, as may happen with
    348 // pre/postincrement loads. In this case, both the use and def operands are in
    349 // RegRefs because the def is inserted by PrescanInstruction and not erased
    350 // during ScanInstruction. So checking for an instructions with definitions of
    351 // both NewReg and AntiDepReg covers it.
    352 bool
    353 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
    354                                                 RegRefIter RegRefEnd,
    355                                                 unsigned NewReg)
    356 {
    357   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    358     MachineOperand *RefOper = I->second;
    359 
    360     // Don't allow the instruction defining AntiDepReg to earlyclobber its
    361     // operands, in case they may be assigned to NewReg. In this case antidep
    362     // breaking must fail, but it's too rare to bother optimizing.
    363     if (RefOper->isDef() && RefOper->isEarlyClobber())
    364       return true;
    365 
    366     // Handle cases in which this instructions defines NewReg.
    367     MachineInstr *MI = RefOper->getParent();
    368     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    369       const MachineOperand &CheckOper = MI->getOperand(i);
    370 
    371       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
    372         return true;
    373 
    374       if (!CheckOper.isReg() || !CheckOper.isDef() ||
    375           CheckOper.getReg() != NewReg)
    376         continue;
    377 
    378       // Don't allow the instruction to define NewReg and AntiDepReg.
    379       // When AntiDepReg is renamed it will be an illegal op.
    380       if (RefOper->isDef())
    381         return true;
    382 
    383       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
    384       // NewReg
    385       if (CheckOper.isEarlyClobber())
    386         return true;
    387 
    388       // Don't allow inline asm to define NewReg at all. Who know what it's
    389       // doing with it.
    390       if (MI->isInlineAsm())
    391         return true;
    392     }
    393   }
    394   return false;
    395 }
    396 
    397 unsigned
    398 CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
    399                                                  RegRefIter RegRefEnd,
    400                                                  unsigned AntiDepReg,
    401                                                  unsigned LastNewReg,
    402                                                  const TargetRegisterClass *RC)
    403 {
    404   ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
    405   for (unsigned i = 0; i != Order.size(); ++i) {
    406     unsigned NewReg = Order[i];
    407     // Don't replace a register with itself.
    408     if (NewReg == AntiDepReg) continue;
    409     // Don't replace a register with one that was recently used to repair
    410     // an anti-dependence with this AntiDepReg, because that would
    411     // re-introduce that anti-dependence.
    412     if (NewReg == LastNewReg) continue;
    413     // If any instructions that define AntiDepReg also define the NewReg, it's
    414     // not suitable.  For example, Instruction with multiple definitions can
    415     // result in this condition.
    416     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    417     // If NewReg is dead and NewReg's most recent def is not before
    418     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    419     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
    420            && "Kill and Def maps aren't consistent for AntiDepReg!");
    421     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
    422            && "Kill and Def maps aren't consistent for NewReg!");
    423     if (KillIndices[NewReg] != ~0u ||
    424         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
    425         KillIndices[AntiDepReg] > DefIndices[NewReg])
    426       continue;
    427     return NewReg;
    428   }
    429 
    430   // No registers are free and available!
    431   return 0;
    432 }
    433 
    434 unsigned CriticalAntiDepBreaker::
    435 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
    436                       MachineBasicBlock::iterator Begin,
    437                       MachineBasicBlock::iterator End,
    438                       unsigned InsertPosIndex,
    439                       DbgValueVector &DbgValues) {
    440   // The code below assumes that there is at least one instruction,
    441   // so just duck out immediately if the block is empty.
    442   if (SUnits.empty()) return 0;
    443 
    444   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
    445   // This is used for updating debug information.
    446   //
    447   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
    448   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
    449 
    450   // Find the node at the bottom of the critical path.
    451   const SUnit *Max = 0;
    452   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    453     const SUnit *SU = &SUnits[i];
    454     MISUnitMap[SU->getInstr()] = SU;
    455     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
    456       Max = SU;
    457   }
    458 
    459 #ifndef NDEBUG
    460   {
    461     DEBUG(dbgs() << "Critical path has total latency "
    462           << (Max->getDepth() + Max->Latency) << "\n");
    463     DEBUG(dbgs() << "Available regs:");
    464     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    465       if (KillIndices[Reg] == ~0u)
    466         DEBUG(dbgs() << " " << TRI->getName(Reg));
    467     }
    468     DEBUG(dbgs() << '\n');
    469   }
    470 #endif
    471 
    472   // Track progress along the critical path through the SUnit graph as we walk
    473   // the instructions.
    474   const SUnit *CriticalPathSU = Max;
    475   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
    476 
    477   // Consider this pattern:
    478   //   A = ...
    479   //   ... = A
    480   //   A = ...
    481   //   ... = A
    482   //   A = ...
    483   //   ... = A
    484   //   A = ...
    485   //   ... = A
    486   // There are three anti-dependencies here, and without special care,
    487   // we'd break all of them using the same register:
    488   //   A = ...
    489   //   ... = A
    490   //   B = ...
    491   //   ... = B
    492   //   B = ...
    493   //   ... = B
    494   //   B = ...
    495   //   ... = B
    496   // because at each anti-dependence, B is the first register that
    497   // isn't A which is free.  This re-introduces anti-dependencies
    498   // at all but one of the original anti-dependencies that we were
    499   // trying to break.  To avoid this, keep track of the most recent
    500   // register that each register was replaced with, avoid
    501   // using it to repair an anti-dependence on the same register.
    502   // This lets us produce this:
    503   //   A = ...
    504   //   ... = A
    505   //   B = ...
    506   //   ... = B
    507   //   C = ...
    508   //   ... = C
    509   //   B = ...
    510   //   ... = B
    511   // This still has an anti-dependence on B, but at least it isn't on the
    512   // original critical path.
    513   //
    514   // TODO: If we tracked more than one register here, we could potentially
    515   // fix that remaining critical edge too. This is a little more involved,
    516   // because unlike the most recent register, less recent registers should
    517   // still be considered, though only if no other registers are available.
    518   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
    519 
    520   // Attempt to break anti-dependence edges on the critical path. Walk the
    521   // instructions from the bottom up, tracking information about liveness
    522   // as we go to help determine which registers are available.
    523   unsigned Broken = 0;
    524   unsigned Count = InsertPosIndex - 1;
    525   for (MachineBasicBlock::iterator I = End, E = Begin;
    526        I != E; --Count) {
    527     MachineInstr *MI = --I;
    528     if (MI->isDebugValue())
    529       continue;
    530 
    531     // Check if this instruction has a dependence on the critical path that
    532     // is an anti-dependence that we may be able to break. If it is, set
    533     // AntiDepReg to the non-zero register associated with the anti-dependence.
    534     //
    535     // We limit our attention to the critical path as a heuristic to avoid
    536     // breaking anti-dependence edges that aren't going to significantly
    537     // impact the overall schedule. There are a limited number of registers
    538     // and we want to save them for the important edges.
    539     //
    540     // TODO: Instructions with multiple defs could have multiple
    541     // anti-dependencies. The current code here only knows how to break one
    542     // edge per instruction. Note that we'd have to be able to break all of
    543     // the anti-dependencies in an instruction in order to be effective.
    544     unsigned AntiDepReg = 0;
    545     if (MI == CriticalPathMI) {
    546       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
    547         const SUnit *NextSU = Edge->getSUnit();
    548 
    549         // Only consider anti-dependence edges.
    550         if (Edge->getKind() == SDep::Anti) {
    551           AntiDepReg = Edge->getReg();
    552           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    553           if (!RegClassInfo.isAllocatable(AntiDepReg))
    554             // Don't break anti-dependencies on non-allocatable registers.
    555             AntiDepReg = 0;
    556           else if (KeepRegs.test(AntiDepReg))
    557             // Don't break anti-dependencies if an use down below requires
    558             // this exact register.
    559             AntiDepReg = 0;
    560           else {
    561             // If the SUnit has other dependencies on the SUnit that it
    562             // anti-depends on, don't bother breaking the anti-dependency
    563             // since those edges would prevent such units from being
    564             // scheduled past each other regardless.
    565             //
    566             // Also, if there are dependencies on other SUnits with the
    567             // same register as the anti-dependency, don't attempt to
    568             // break it.
    569             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
    570                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
    571               if (P->getSUnit() == NextSU ?
    572                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    573                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    574                 AntiDepReg = 0;
    575                 break;
    576               }
    577           }
    578         }
    579         CriticalPathSU = NextSU;
    580         CriticalPathMI = CriticalPathSU->getInstr();
    581       } else {
    582         // We've reached the end of the critical path.
    583         CriticalPathSU = 0;
    584         CriticalPathMI = 0;
    585       }
    586     }
    587 
    588     PrescanInstruction(MI);
    589 
    590     // If MI's defs have a special allocation requirement, don't allow
    591     // any def registers to be changed. Also assume all registers
    592     // defined in a call must not be changed (ABI).
    593     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
    594         TII->isPredicated(MI))
    595       // If this instruction's defs have special allocation requirement, don't
    596       // break this anti-dependency.
    597       AntiDepReg = 0;
    598     else if (AntiDepReg) {
    599       // If this instruction has a use of AntiDepReg, breaking it
    600       // is invalid.
    601       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    602         MachineOperand &MO = MI->getOperand(i);
    603         if (!MO.isReg()) continue;
    604         unsigned Reg = MO.getReg();
    605         if (Reg == 0) continue;
    606         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
    607           AntiDepReg = 0;
    608           break;
    609         }
    610       }
    611     }
    612 
    613     // Determine AntiDepReg's register class, if it is live and is
    614     // consistently used within a single class.
    615     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
    616     assert((AntiDepReg == 0 || RC != NULL) &&
    617            "Register should be live if it's causing an anti-dependence!");
    618     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
    619       AntiDepReg = 0;
    620 
    621     // Look for a suitable register to use to break the anti-depenence.
    622     //
    623     // TODO: Instead of picking the first free register, consider which might
    624     // be the best.
    625     if (AntiDepReg != 0) {
    626       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
    627                 std::multimap<unsigned, MachineOperand *>::iterator>
    628         Range = RegRefs.equal_range(AntiDepReg);
    629       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
    630                                                      AntiDepReg,
    631                                                      LastNewReg[AntiDepReg],
    632                                                      RC)) {
    633         DEBUG(dbgs() << "Breaking anti-dependence edge on "
    634               << TRI->getName(AntiDepReg)
    635               << " with " << RegRefs.count(AntiDepReg) << " references"
    636               << " using " << TRI->getName(NewReg) << "!\n");
    637 
    638         // Update the references to the old register to refer to the new
    639         // register.
    640         for (std::multimap<unsigned, MachineOperand *>::iterator
    641              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    642           Q->second->setReg(NewReg);
    643           // If the SU for the instruction being updated has debug information
    644           // related to the anti-dependency register, make sure to update that
    645           // as well.
    646           const SUnit *SU = MISUnitMap[Q->second->getParent()];
    647           if (!SU) continue;
    648           for (DbgValueVector::iterator DVI = DbgValues.begin(),
    649                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
    650             if (DVI->second == Q->second->getParent())
    651               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
    652         }
    653 
    654         // We just went back in time and modified history; the
    655         // liveness information for the anti-dependence reg is now
    656         // inconsistent. Set the state as if it were dead.
    657         Classes[NewReg] = Classes[AntiDepReg];
    658         DefIndices[NewReg] = DefIndices[AntiDepReg];
    659         KillIndices[NewReg] = KillIndices[AntiDepReg];
    660         assert(((KillIndices[NewReg] == ~0u) !=
    661                 (DefIndices[NewReg] == ~0u)) &&
    662              "Kill and Def maps aren't consistent for NewReg!");
    663 
    664         Classes[AntiDepReg] = 0;
    665         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
    666         KillIndices[AntiDepReg] = ~0u;
    667         assert(((KillIndices[AntiDepReg] == ~0u) !=
    668                 (DefIndices[AntiDepReg] == ~0u)) &&
    669              "Kill and Def maps aren't consistent for AntiDepReg!");
    670 
    671         RegRefs.erase(AntiDepReg);
    672         LastNewReg[AntiDepReg] = NewReg;
    673         ++Broken;
    674       }
    675     }
    676 
    677     ScanInstruction(MI, Count);
    678   }
    679 
    680   return Broken;
    681 }
    682