1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "AllocationOrder.h" 17 #include "InterferenceCache.h" 18 #include "LiveDebugVariables.h" 19 #include "RegAllocBase.h" 20 #include "Spiller.h" 21 #include "SpillPlacement.h" 22 #include "SplitKit.h" 23 #include "VirtRegMap.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Function.h" 27 #include "llvm/PassAnalysisSupport.h" 28 #include "llvm/CodeGen/CalcSpillWeights.h" 29 #include "llvm/CodeGen/EdgeBundles.h" 30 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 31 #include "llvm/CodeGen/LiveRangeEdit.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/Timer.h" 45 46 #include <queue> 47 48 using namespace llvm; 49 50 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 51 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 52 STATISTIC(NumEvicted, "Number of interferences evicted"); 53 54 static cl::opt<SplitEditor::ComplementSpillMode> 55 SplitSpillMode("split-spill-mode", cl::Hidden, 56 cl::desc("Spill mode for splitting live ranges"), 57 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 58 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 59 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 60 clEnumValEnd), 61 cl::init(SplitEditor::SM_Partition)); 62 63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 64 createGreedyRegisterAllocator); 65 66 namespace { 67 class RAGreedy : public MachineFunctionPass, 68 public RegAllocBase, 69 private LiveRangeEdit::Delegate { 70 71 // context 72 MachineFunction *MF; 73 74 // analyses 75 SlotIndexes *Indexes; 76 LiveStacks *LS; 77 MachineDominatorTree *DomTree; 78 MachineLoopInfo *Loops; 79 EdgeBundles *Bundles; 80 SpillPlacement *SpillPlacer; 81 LiveDebugVariables *DebugVars; 82 83 // state 84 std::auto_ptr<Spiller> SpillerInstance; 85 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 86 unsigned NextCascade; 87 88 // Live ranges pass through a number of stages as we try to allocate them. 89 // Some of the stages may also create new live ranges: 90 // 91 // - Region splitting. 92 // - Per-block splitting. 93 // - Local splitting. 94 // - Spilling. 95 // 96 // Ranges produced by one of the stages skip the previous stages when they are 97 // dequeued. This improves performance because we can skip interference checks 98 // that are unlikely to give any results. It also guarantees that the live 99 // range splitting algorithm terminates, something that is otherwise hard to 100 // ensure. 101 enum LiveRangeStage { 102 /// Newly created live range that has never been queued. 103 RS_New, 104 105 /// Only attempt assignment and eviction. Then requeue as RS_Split. 106 RS_Assign, 107 108 /// Attempt live range splitting if assignment is impossible. 109 RS_Split, 110 111 /// Attempt more aggressive live range splitting that is guaranteed to make 112 /// progress. This is used for split products that may not be making 113 /// progress. 114 RS_Split2, 115 116 /// Live range will be spilled. No more splitting will be attempted. 117 RS_Spill, 118 119 /// There is nothing more we can do to this live range. Abort compilation 120 /// if it can't be assigned. 121 RS_Done 122 }; 123 124 static const char *const StageName[]; 125 126 // RegInfo - Keep additional information about each live range. 127 struct RegInfo { 128 LiveRangeStage Stage; 129 130 // Cascade - Eviction loop prevention. See canEvictInterference(). 131 unsigned Cascade; 132 133 RegInfo() : Stage(RS_New), Cascade(0) {} 134 }; 135 136 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 137 138 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 139 return ExtraRegInfo[VirtReg.reg].Stage; 140 } 141 142 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 143 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 144 ExtraRegInfo[VirtReg.reg].Stage = Stage; 145 } 146 147 template<typename Iterator> 148 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 149 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 150 for (;Begin != End; ++Begin) { 151 unsigned Reg = (*Begin)->reg; 152 if (ExtraRegInfo[Reg].Stage == RS_New) 153 ExtraRegInfo[Reg].Stage = NewStage; 154 } 155 } 156 157 /// Cost of evicting interference. 158 struct EvictionCost { 159 unsigned BrokenHints; ///< Total number of broken hints. 160 float MaxWeight; ///< Maximum spill weight evicted. 161 162 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 163 164 bool operator<(const EvictionCost &O) const { 165 if (BrokenHints != O.BrokenHints) 166 return BrokenHints < O.BrokenHints; 167 return MaxWeight < O.MaxWeight; 168 } 169 }; 170 171 // Register mask interference. The current VirtReg is checked for register 172 // mask interference on entry to selectOrSplit(). If there is no 173 // interference, UsableRegs is left empty. If there is interference, 174 // UsableRegs has a bit mask of registers that can be used without register 175 // mask interference. 176 BitVector UsableRegs; 177 178 /// clobberedByRegMask - Returns true if PhysReg is not directly usable 179 /// because of register mask clobbers. 180 bool clobberedByRegMask(unsigned PhysReg) const { 181 return !UsableRegs.empty() && !UsableRegs.test(PhysReg); 182 } 183 184 // splitting state. 185 std::auto_ptr<SplitAnalysis> SA; 186 std::auto_ptr<SplitEditor> SE; 187 188 /// Cached per-block interference maps 189 InterferenceCache IntfCache; 190 191 /// All basic blocks where the current register has uses. 192 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 193 194 /// Global live range splitting candidate info. 195 struct GlobalSplitCandidate { 196 // Register intended for assignment, or 0. 197 unsigned PhysReg; 198 199 // SplitKit interval index for this candidate. 200 unsigned IntvIdx; 201 202 // Interference for PhysReg. 203 InterferenceCache::Cursor Intf; 204 205 // Bundles where this candidate should be live. 206 BitVector LiveBundles; 207 SmallVector<unsigned, 8> ActiveBlocks; 208 209 void reset(InterferenceCache &Cache, unsigned Reg) { 210 PhysReg = Reg; 211 IntvIdx = 0; 212 Intf.setPhysReg(Cache, Reg); 213 LiveBundles.clear(); 214 ActiveBlocks.clear(); 215 } 216 217 // Set B[i] = C for every live bundle where B[i] was NoCand. 218 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 219 unsigned Count = 0; 220 for (int i = LiveBundles.find_first(); i >= 0; 221 i = LiveBundles.find_next(i)) 222 if (B[i] == NoCand) { 223 B[i] = C; 224 Count++; 225 } 226 return Count; 227 } 228 }; 229 230 /// Candidate info for for each PhysReg in AllocationOrder. 231 /// This vector never shrinks, but grows to the size of the largest register 232 /// class. 233 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 234 235 enum { NoCand = ~0u }; 236 237 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 238 /// NoCand which indicates the stack interval. 239 SmallVector<unsigned, 32> BundleCand; 240 241 public: 242 RAGreedy(); 243 244 /// Return the pass name. 245 virtual const char* getPassName() const { 246 return "Greedy Register Allocator"; 247 } 248 249 /// RAGreedy analysis usage. 250 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 251 virtual void releaseMemory(); 252 virtual Spiller &spiller() { return *SpillerInstance; } 253 virtual void enqueue(LiveInterval *LI); 254 virtual LiveInterval *dequeue(); 255 virtual unsigned selectOrSplit(LiveInterval&, 256 SmallVectorImpl<LiveInterval*>&); 257 258 /// Perform register allocation. 259 virtual bool runOnMachineFunction(MachineFunction &mf); 260 261 static char ID; 262 263 private: 264 bool LRE_CanEraseVirtReg(unsigned); 265 void LRE_WillShrinkVirtReg(unsigned); 266 void LRE_DidCloneVirtReg(unsigned, unsigned); 267 268 float calcSpillCost(); 269 bool addSplitConstraints(InterferenceCache::Cursor, float&); 270 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 271 void growRegion(GlobalSplitCandidate &Cand); 272 float calcGlobalSplitCost(GlobalSplitCandidate&); 273 bool calcCompactRegion(GlobalSplitCandidate&); 274 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 275 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 276 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 277 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 278 void evictInterference(LiveInterval&, unsigned, 279 SmallVectorImpl<LiveInterval*>&); 280 281 unsigned tryAssign(LiveInterval&, AllocationOrder&, 282 SmallVectorImpl<LiveInterval*>&); 283 unsigned tryEvict(LiveInterval&, AllocationOrder&, 284 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 285 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 286 SmallVectorImpl<LiveInterval*>&); 287 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 288 SmallVectorImpl<LiveInterval*>&); 289 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 290 SmallVectorImpl<LiveInterval*>&); 291 unsigned trySplit(LiveInterval&, AllocationOrder&, 292 SmallVectorImpl<LiveInterval*>&); 293 }; 294 } // end anonymous namespace 295 296 char RAGreedy::ID = 0; 297 298 #ifndef NDEBUG 299 const char *const RAGreedy::StageName[] = { 300 "RS_New", 301 "RS_Assign", 302 "RS_Split", 303 "RS_Split2", 304 "RS_Spill", 305 "RS_Done" 306 }; 307 #endif 308 309 // Hysteresis to use when comparing floats. 310 // This helps stabilize decisions based on float comparisons. 311 const float Hysteresis = 0.98f; 312 313 314 FunctionPass* llvm::createGreedyRegisterAllocator() { 315 return new RAGreedy(); 316 } 317 318 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 319 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 320 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 321 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 322 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 323 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 324 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 325 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 326 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 327 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 328 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 329 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 330 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 331 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 332 } 333 334 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 335 AU.setPreservesCFG(); 336 AU.addRequired<AliasAnalysis>(); 337 AU.addPreserved<AliasAnalysis>(); 338 AU.addRequired<LiveIntervals>(); 339 AU.addRequired<SlotIndexes>(); 340 AU.addPreserved<SlotIndexes>(); 341 AU.addRequired<LiveDebugVariables>(); 342 AU.addPreserved<LiveDebugVariables>(); 343 AU.addRequired<CalculateSpillWeights>(); 344 AU.addRequired<LiveStacks>(); 345 AU.addPreserved<LiveStacks>(); 346 AU.addRequired<MachineDominatorTree>(); 347 AU.addPreserved<MachineDominatorTree>(); 348 AU.addRequired<MachineLoopInfo>(); 349 AU.addPreserved<MachineLoopInfo>(); 350 AU.addRequired<VirtRegMap>(); 351 AU.addPreserved<VirtRegMap>(); 352 AU.addRequired<EdgeBundles>(); 353 AU.addRequired<SpillPlacement>(); 354 MachineFunctionPass::getAnalysisUsage(AU); 355 } 356 357 358 //===----------------------------------------------------------------------===// 359 // LiveRangeEdit delegate methods 360 //===----------------------------------------------------------------------===// 361 362 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 363 if (unsigned PhysReg = VRM->getPhys(VirtReg)) { 364 unassign(LIS->getInterval(VirtReg), PhysReg); 365 return true; 366 } 367 // Unassigned virtreg is probably in the priority queue. 368 // RegAllocBase will erase it after dequeueing. 369 return false; 370 } 371 372 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 373 unsigned PhysReg = VRM->getPhys(VirtReg); 374 if (!PhysReg) 375 return; 376 377 // Register is assigned, put it back on the queue for reassignment. 378 LiveInterval &LI = LIS->getInterval(VirtReg); 379 unassign(LI, PhysReg); 380 enqueue(&LI); 381 } 382 383 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 384 // Cloning a register we haven't even heard about yet? Just ignore it. 385 if (!ExtraRegInfo.inBounds(Old)) 386 return; 387 388 // LRE may clone a virtual register because dead code elimination causes it to 389 // be split into connected components. The new components are much smaller 390 // than the original, so they should get a new chance at being assigned. 391 // same stage as the parent. 392 ExtraRegInfo[Old].Stage = RS_Assign; 393 ExtraRegInfo.grow(New); 394 ExtraRegInfo[New] = ExtraRegInfo[Old]; 395 } 396 397 void RAGreedy::releaseMemory() { 398 SpillerInstance.reset(0); 399 ExtraRegInfo.clear(); 400 GlobalCand.clear(); 401 RegAllocBase::releaseMemory(); 402 } 403 404 void RAGreedy::enqueue(LiveInterval *LI) { 405 // Prioritize live ranges by size, assigning larger ranges first. 406 // The queue holds (size, reg) pairs. 407 const unsigned Size = LI->getSize(); 408 const unsigned Reg = LI->reg; 409 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 410 "Can only enqueue virtual registers"); 411 unsigned Prio; 412 413 ExtraRegInfo.grow(Reg); 414 if (ExtraRegInfo[Reg].Stage == RS_New) 415 ExtraRegInfo[Reg].Stage = RS_Assign; 416 417 if (ExtraRegInfo[Reg].Stage == RS_Split) { 418 // Unsplit ranges that couldn't be allocated immediately are deferred until 419 // everything else has been allocated. 420 Prio = Size; 421 } else { 422 // Everything is allocated in long->short order. Long ranges that don't fit 423 // should be spilled (or split) ASAP so they don't create interference. 424 Prio = (1u << 31) + Size; 425 426 // Boost ranges that have a physical register hint. 427 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) 428 Prio |= (1u << 30); 429 } 430 431 Queue.push(std::make_pair(Prio, ~Reg)); 432 } 433 434 LiveInterval *RAGreedy::dequeue() { 435 if (Queue.empty()) 436 return 0; 437 LiveInterval *LI = &LIS->getInterval(~Queue.top().second); 438 Queue.pop(); 439 return LI; 440 } 441 442 443 //===----------------------------------------------------------------------===// 444 // Direct Assignment 445 //===----------------------------------------------------------------------===// 446 447 /// tryAssign - Try to assign VirtReg to an available register. 448 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 449 AllocationOrder &Order, 450 SmallVectorImpl<LiveInterval*> &NewVRegs) { 451 Order.rewind(); 452 unsigned PhysReg; 453 while ((PhysReg = Order.next())) { 454 if (clobberedByRegMask(PhysReg)) 455 continue; 456 if (!checkPhysRegInterference(VirtReg, PhysReg)) 457 break; 458 } 459 if (!PhysReg || Order.isHint(PhysReg)) 460 return PhysReg; 461 462 // PhysReg is available, but there may be a better choice. 463 464 // If we missed a simple hint, try to cheaply evict interference from the 465 // preferred register. 466 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 467 if (Order.isHint(Hint) && !clobberedByRegMask(Hint)) { 468 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 469 EvictionCost MaxCost(1); 470 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 471 evictInterference(VirtReg, Hint, NewVRegs); 472 return Hint; 473 } 474 } 475 476 // Try to evict interference from a cheaper alternative. 477 unsigned Cost = TRI->getCostPerUse(PhysReg); 478 479 // Most registers have 0 additional cost. 480 if (!Cost) 481 return PhysReg; 482 483 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 484 << '\n'); 485 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 486 return CheapReg ? CheapReg : PhysReg; 487 } 488 489 490 //===----------------------------------------------------------------------===// 491 // Interference eviction 492 //===----------------------------------------------------------------------===// 493 494 /// shouldEvict - determine if A should evict the assigned live range B. The 495 /// eviction policy defined by this function together with the allocation order 496 /// defined by enqueue() decides which registers ultimately end up being split 497 /// and spilled. 498 /// 499 /// Cascade numbers are used to prevent infinite loops if this function is a 500 /// cyclic relation. 501 /// 502 /// @param A The live range to be assigned. 503 /// @param IsHint True when A is about to be assigned to its preferred 504 /// register. 505 /// @param B The live range to be evicted. 506 /// @param BreaksHint True when B is already assigned to its preferred register. 507 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 508 LiveInterval &B, bool BreaksHint) { 509 bool CanSplit = getStage(B) < RS_Spill; 510 511 // Be fairly aggressive about following hints as long as the evictee can be 512 // split. 513 if (CanSplit && IsHint && !BreaksHint) 514 return true; 515 516 return A.weight > B.weight; 517 } 518 519 /// canEvictInterference - Return true if all interferences between VirtReg and 520 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 521 /// 522 /// @param VirtReg Live range that is about to be assigned. 523 /// @param PhysReg Desired register for assignment. 524 /// @prarm IsHint True when PhysReg is VirtReg's preferred register. 525 /// @param MaxCost Only look for cheaper candidates and update with new cost 526 /// when returning true. 527 /// @returns True when interference can be evicted cheaper than MaxCost. 528 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 529 bool IsHint, EvictionCost &MaxCost) { 530 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 531 // involved in an eviction before. If a cascade number was assigned, deny 532 // evicting anything with the same or a newer cascade number. This prevents 533 // infinite eviction loops. 534 // 535 // This works out so a register without a cascade number is allowed to evict 536 // anything, and it can be evicted by anything. 537 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 538 if (!Cascade) 539 Cascade = NextCascade; 540 541 EvictionCost Cost; 542 for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 543 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 544 // If there is 10 or more interferences, chances are one is heavier. 545 if (Q.collectInterferingVRegs(10) >= 10) 546 return false; 547 548 // Check if any interfering live range is heavier than MaxWeight. 549 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 550 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 551 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) 552 return false; 553 // Never evict spill products. They cannot split or spill. 554 if (getStage(*Intf) == RS_Done) 555 return false; 556 // Once a live range becomes small enough, it is urgent that we find a 557 // register for it. This is indicated by an infinite spill weight. These 558 // urgent live ranges get to evict almost anything. 559 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); 560 // Only evict older cascades or live ranges without a cascade. 561 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 562 if (Cascade <= IntfCascade) { 563 if (!Urgent) 564 return false; 565 // We permit breaking cascades for urgent evictions. It should be the 566 // last resort, though, so make it really expensive. 567 Cost.BrokenHints += 10; 568 } 569 // Would this break a satisfied hint? 570 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 571 // Update eviction cost. 572 Cost.BrokenHints += BreaksHint; 573 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 574 // Abort if this would be too expensive. 575 if (!(Cost < MaxCost)) 576 return false; 577 // Finally, apply the eviction policy for non-urgent evictions. 578 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 579 return false; 580 } 581 } 582 MaxCost = Cost; 583 return true; 584 } 585 586 /// evictInterference - Evict any interferring registers that prevent VirtReg 587 /// from being assigned to Physreg. This assumes that canEvictInterference 588 /// returned true. 589 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 590 SmallVectorImpl<LiveInterval*> &NewVRegs) { 591 // Make sure that VirtReg has a cascade number, and assign that cascade 592 // number to every evicted register. These live ranges than then only be 593 // evicted by a newer cascade, preventing infinite loops. 594 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 595 if (!Cascade) 596 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 597 598 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 599 << " interference: Cascade " << Cascade << '\n'); 600 for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 601 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 602 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 603 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { 604 LiveInterval *Intf = Q.interferingVRegs()[i]; 605 unassign(*Intf, VRM->getPhys(Intf->reg)); 606 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 607 VirtReg.isSpillable() < Intf->isSpillable()) && 608 "Cannot decrease cascade number, illegal eviction"); 609 ExtraRegInfo[Intf->reg].Cascade = Cascade; 610 ++NumEvicted; 611 NewVRegs.push_back(Intf); 612 } 613 } 614 } 615 616 /// tryEvict - Try to evict all interferences for a physreg. 617 /// @param VirtReg Currently unassigned virtual register. 618 /// @param Order Physregs to try. 619 /// @return Physreg to assign VirtReg, or 0. 620 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 621 AllocationOrder &Order, 622 SmallVectorImpl<LiveInterval*> &NewVRegs, 623 unsigned CostPerUseLimit) { 624 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 625 626 // Keep track of the cheapest interference seen so far. 627 EvictionCost BestCost(~0u); 628 unsigned BestPhys = 0; 629 630 // When we are just looking for a reduced cost per use, don't break any 631 // hints, and only evict smaller spill weights. 632 if (CostPerUseLimit < ~0u) { 633 BestCost.BrokenHints = 0; 634 BestCost.MaxWeight = VirtReg.weight; 635 } 636 637 Order.rewind(); 638 while (unsigned PhysReg = Order.next()) { 639 if (clobberedByRegMask(PhysReg)) 640 continue; 641 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 642 continue; 643 // The first use of a callee-saved register in a function has cost 1. 644 // Don't start using a CSR when the CostPerUseLimit is low. 645 if (CostPerUseLimit == 1) 646 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 647 if (!MRI->isPhysRegUsed(CSR)) { 648 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 649 << PrintReg(CSR, TRI) << '\n'); 650 continue; 651 } 652 653 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 654 continue; 655 656 // Best so far. 657 BestPhys = PhysReg; 658 659 // Stop if the hint can be used. 660 if (Order.isHint(PhysReg)) 661 break; 662 } 663 664 if (!BestPhys) 665 return 0; 666 667 evictInterference(VirtReg, BestPhys, NewVRegs); 668 return BestPhys; 669 } 670 671 672 //===----------------------------------------------------------------------===// 673 // Region Splitting 674 //===----------------------------------------------------------------------===// 675 676 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 677 /// interference pattern in Physreg and its aliases. Add the constraints to 678 /// SpillPlacement and return the static cost of this split in Cost, assuming 679 /// that all preferences in SplitConstraints are met. 680 /// Return false if there are no bundles with positive bias. 681 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 682 float &Cost) { 683 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 684 685 // Reset interference dependent info. 686 SplitConstraints.resize(UseBlocks.size()); 687 float StaticCost = 0; 688 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 689 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 690 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 691 692 BC.Number = BI.MBB->getNumber(); 693 Intf.moveToBlock(BC.Number); 694 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 695 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 696 BC.ChangesValue = BI.FirstDef; 697 698 if (!Intf.hasInterference()) 699 continue; 700 701 // Number of spill code instructions to insert. 702 unsigned Ins = 0; 703 704 // Interference for the live-in value. 705 if (BI.LiveIn) { 706 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 707 BC.Entry = SpillPlacement::MustSpill, ++Ins; 708 else if (Intf.first() < BI.FirstInstr) 709 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 710 else if (Intf.first() < BI.LastInstr) 711 ++Ins; 712 } 713 714 // Interference for the live-out value. 715 if (BI.LiveOut) { 716 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 717 BC.Exit = SpillPlacement::MustSpill, ++Ins; 718 else if (Intf.last() > BI.LastInstr) 719 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 720 else if (Intf.last() > BI.FirstInstr) 721 ++Ins; 722 } 723 724 // Accumulate the total frequency of inserted spill code. 725 if (Ins) 726 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 727 } 728 Cost = StaticCost; 729 730 // Add constraints for use-blocks. Note that these are the only constraints 731 // that may add a positive bias, it is downhill from here. 732 SpillPlacer->addConstraints(SplitConstraints); 733 return SpillPlacer->scanActiveBundles(); 734 } 735 736 737 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 738 /// live-through blocks in Blocks. 739 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 740 ArrayRef<unsigned> Blocks) { 741 const unsigned GroupSize = 8; 742 SpillPlacement::BlockConstraint BCS[GroupSize]; 743 unsigned TBS[GroupSize]; 744 unsigned B = 0, T = 0; 745 746 for (unsigned i = 0; i != Blocks.size(); ++i) { 747 unsigned Number = Blocks[i]; 748 Intf.moveToBlock(Number); 749 750 if (!Intf.hasInterference()) { 751 assert(T < GroupSize && "Array overflow"); 752 TBS[T] = Number; 753 if (++T == GroupSize) { 754 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 755 T = 0; 756 } 757 continue; 758 } 759 760 assert(B < GroupSize && "Array overflow"); 761 BCS[B].Number = Number; 762 763 // Interference for the live-in value. 764 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 765 BCS[B].Entry = SpillPlacement::MustSpill; 766 else 767 BCS[B].Entry = SpillPlacement::PrefSpill; 768 769 // Interference for the live-out value. 770 if (Intf.last() >= SA->getLastSplitPoint(Number)) 771 BCS[B].Exit = SpillPlacement::MustSpill; 772 else 773 BCS[B].Exit = SpillPlacement::PrefSpill; 774 775 if (++B == GroupSize) { 776 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 777 SpillPlacer->addConstraints(Array); 778 B = 0; 779 } 780 } 781 782 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 783 SpillPlacer->addConstraints(Array); 784 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 785 } 786 787 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 788 // Keep track of through blocks that have not been added to SpillPlacer. 789 BitVector Todo = SA->getThroughBlocks(); 790 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 791 unsigned AddedTo = 0; 792 #ifndef NDEBUG 793 unsigned Visited = 0; 794 #endif 795 796 for (;;) { 797 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 798 // Find new through blocks in the periphery of PrefRegBundles. 799 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 800 unsigned Bundle = NewBundles[i]; 801 // Look at all blocks connected to Bundle in the full graph. 802 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 803 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 804 I != E; ++I) { 805 unsigned Block = *I; 806 if (!Todo.test(Block)) 807 continue; 808 Todo.reset(Block); 809 // This is a new through block. Add it to SpillPlacer later. 810 ActiveBlocks.push_back(Block); 811 #ifndef NDEBUG 812 ++Visited; 813 #endif 814 } 815 } 816 // Any new blocks to add? 817 if (ActiveBlocks.size() == AddedTo) 818 break; 819 820 // Compute through constraints from the interference, or assume that all 821 // through blocks prefer spilling when forming compact regions. 822 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 823 if (Cand.PhysReg) 824 addThroughConstraints(Cand.Intf, NewBlocks); 825 else 826 // Provide a strong negative bias on through blocks to prevent unwanted 827 // liveness on loop backedges. 828 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 829 AddedTo = ActiveBlocks.size(); 830 831 // Perhaps iterating can enable more bundles? 832 SpillPlacer->iterate(); 833 } 834 DEBUG(dbgs() << ", v=" << Visited); 835 } 836 837 /// calcCompactRegion - Compute the set of edge bundles that should be live 838 /// when splitting the current live range into compact regions. Compact 839 /// regions can be computed without looking at interference. They are the 840 /// regions formed by removing all the live-through blocks from the live range. 841 /// 842 /// Returns false if the current live range is already compact, or if the 843 /// compact regions would form single block regions anyway. 844 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 845 // Without any through blocks, the live range is already compact. 846 if (!SA->getNumThroughBlocks()) 847 return false; 848 849 // Compact regions don't correspond to any physreg. 850 Cand.reset(IntfCache, 0); 851 852 DEBUG(dbgs() << "Compact region bundles"); 853 854 // Use the spill placer to determine the live bundles. GrowRegion pretends 855 // that all the through blocks have interference when PhysReg is unset. 856 SpillPlacer->prepare(Cand.LiveBundles); 857 858 // The static split cost will be zero since Cand.Intf reports no interference. 859 float Cost; 860 if (!addSplitConstraints(Cand.Intf, Cost)) { 861 DEBUG(dbgs() << ", none.\n"); 862 return false; 863 } 864 865 growRegion(Cand); 866 SpillPlacer->finish(); 867 868 if (!Cand.LiveBundles.any()) { 869 DEBUG(dbgs() << ", none.\n"); 870 return false; 871 } 872 873 DEBUG({ 874 for (int i = Cand.LiveBundles.find_first(); i>=0; 875 i = Cand.LiveBundles.find_next(i)) 876 dbgs() << " EB#" << i; 877 dbgs() << ".\n"; 878 }); 879 return true; 880 } 881 882 /// calcSpillCost - Compute how expensive it would be to split the live range in 883 /// SA around all use blocks instead of forming bundle regions. 884 float RAGreedy::calcSpillCost() { 885 float Cost = 0; 886 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 887 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 888 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 889 unsigned Number = BI.MBB->getNumber(); 890 // We normally only need one spill instruction - a load or a store. 891 Cost += SpillPlacer->getBlockFrequency(Number); 892 893 // Unless the value is redefined in the block. 894 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 895 Cost += SpillPlacer->getBlockFrequency(Number); 896 } 897 return Cost; 898 } 899 900 /// calcGlobalSplitCost - Return the global split cost of following the split 901 /// pattern in LiveBundles. This cost should be added to the local cost of the 902 /// interference pattern in SplitConstraints. 903 /// 904 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 905 float GlobalCost = 0; 906 const BitVector &LiveBundles = Cand.LiveBundles; 907 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 908 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 909 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 910 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 911 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 912 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 913 unsigned Ins = 0; 914 915 if (BI.LiveIn) 916 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 917 if (BI.LiveOut) 918 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 919 if (Ins) 920 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 921 } 922 923 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 924 unsigned Number = Cand.ActiveBlocks[i]; 925 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 926 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 927 if (!RegIn && !RegOut) 928 continue; 929 if (RegIn && RegOut) { 930 // We need double spill code if this block has interference. 931 Cand.Intf.moveToBlock(Number); 932 if (Cand.Intf.hasInterference()) 933 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); 934 continue; 935 } 936 // live-in / stack-out or stack-in live-out. 937 GlobalCost += SpillPlacer->getBlockFrequency(Number); 938 } 939 return GlobalCost; 940 } 941 942 /// splitAroundRegion - Split the current live range around the regions 943 /// determined by BundleCand and GlobalCand. 944 /// 945 /// Before calling this function, GlobalCand and BundleCand must be initialized 946 /// so each bundle is assigned to a valid candidate, or NoCand for the 947 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 948 /// objects must be initialized for the current live range, and intervals 949 /// created for the used candidates. 950 /// 951 /// @param LREdit The LiveRangeEdit object handling the current split. 952 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 953 /// must appear in this list. 954 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 955 ArrayRef<unsigned> UsedCands) { 956 // These are the intervals created for new global ranges. We may create more 957 // intervals for local ranges. 958 const unsigned NumGlobalIntvs = LREdit.size(); 959 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 960 assert(NumGlobalIntvs && "No global intervals configured"); 961 962 // Isolate even single instructions when dealing with a proper sub-class. 963 // That guarantees register class inflation for the stack interval because it 964 // is all copies. 965 unsigned Reg = SA->getParent().reg; 966 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 967 968 // First handle all the blocks with uses. 969 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 970 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 971 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 972 unsigned Number = BI.MBB->getNumber(); 973 unsigned IntvIn = 0, IntvOut = 0; 974 SlotIndex IntfIn, IntfOut; 975 if (BI.LiveIn) { 976 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 977 if (CandIn != NoCand) { 978 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 979 IntvIn = Cand.IntvIdx; 980 Cand.Intf.moveToBlock(Number); 981 IntfIn = Cand.Intf.first(); 982 } 983 } 984 if (BI.LiveOut) { 985 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 986 if (CandOut != NoCand) { 987 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 988 IntvOut = Cand.IntvIdx; 989 Cand.Intf.moveToBlock(Number); 990 IntfOut = Cand.Intf.last(); 991 } 992 } 993 994 // Create separate intervals for isolated blocks with multiple uses. 995 if (!IntvIn && !IntvOut) { 996 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 997 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 998 SE->splitSingleBlock(BI); 999 continue; 1000 } 1001 1002 if (IntvIn && IntvOut) 1003 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1004 else if (IntvIn) 1005 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1006 else 1007 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1008 } 1009 1010 // Handle live-through blocks. The relevant live-through blocks are stored in 1011 // the ActiveBlocks list with each candidate. We need to filter out 1012 // duplicates. 1013 BitVector Todo = SA->getThroughBlocks(); 1014 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1015 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1016 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1017 unsigned Number = Blocks[i]; 1018 if (!Todo.test(Number)) 1019 continue; 1020 Todo.reset(Number); 1021 1022 unsigned IntvIn = 0, IntvOut = 0; 1023 SlotIndex IntfIn, IntfOut; 1024 1025 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1026 if (CandIn != NoCand) { 1027 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1028 IntvIn = Cand.IntvIdx; 1029 Cand.Intf.moveToBlock(Number); 1030 IntfIn = Cand.Intf.first(); 1031 } 1032 1033 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1034 if (CandOut != NoCand) { 1035 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1036 IntvOut = Cand.IntvIdx; 1037 Cand.Intf.moveToBlock(Number); 1038 IntfOut = Cand.Intf.last(); 1039 } 1040 if (!IntvIn && !IntvOut) 1041 continue; 1042 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1043 } 1044 } 1045 1046 ++NumGlobalSplits; 1047 1048 SmallVector<unsigned, 8> IntvMap; 1049 SE->finish(&IntvMap); 1050 DebugVars->splitRegister(Reg, LREdit.regs()); 1051 1052 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1053 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1054 1055 // Sort out the new intervals created by splitting. We get four kinds: 1056 // - Remainder intervals should not be split again. 1057 // - Candidate intervals can be assigned to Cand.PhysReg. 1058 // - Block-local splits are candidates for local splitting. 1059 // - DCE leftovers should go back on the queue. 1060 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1061 LiveInterval &Reg = *LREdit.get(i); 1062 1063 // Ignore old intervals from DCE. 1064 if (getStage(Reg) != RS_New) 1065 continue; 1066 1067 // Remainder interval. Don't try splitting again, spill if it doesn't 1068 // allocate. 1069 if (IntvMap[i] == 0) { 1070 setStage(Reg, RS_Spill); 1071 continue; 1072 } 1073 1074 // Global intervals. Allow repeated splitting as long as the number of live 1075 // blocks is strictly decreasing. 1076 if (IntvMap[i] < NumGlobalIntvs) { 1077 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1078 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1079 << " blocks as original.\n"); 1080 // Don't allow repeated splitting as a safe guard against looping. 1081 setStage(Reg, RS_Split2); 1082 } 1083 continue; 1084 } 1085 1086 // Other intervals are treated as new. This includes local intervals created 1087 // for blocks with multiple uses, and anything created by DCE. 1088 } 1089 1090 if (VerifyEnabled) 1091 MF->verify(this, "After splitting live range around region"); 1092 } 1093 1094 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1095 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1096 unsigned NumCands = 0; 1097 unsigned BestCand = NoCand; 1098 float BestCost; 1099 SmallVector<unsigned, 8> UsedCands; 1100 1101 // Check if we can split this live range around a compact region. 1102 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1103 if (HasCompact) { 1104 // Yes, keep GlobalCand[0] as the compact region candidate. 1105 NumCands = 1; 1106 BestCost = HUGE_VALF; 1107 } else { 1108 // No benefit from the compact region, our fallback will be per-block 1109 // splitting. Make sure we find a solution that is cheaper than spilling. 1110 BestCost = Hysteresis * calcSpillCost(); 1111 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1112 } 1113 1114 Order.rewind(); 1115 while (unsigned PhysReg = Order.next()) { 1116 // Discard bad candidates before we run out of interference cache cursors. 1117 // This will only affect register classes with a lot of registers (>32). 1118 if (NumCands == IntfCache.getMaxCursors()) { 1119 unsigned WorstCount = ~0u; 1120 unsigned Worst = 0; 1121 for (unsigned i = 0; i != NumCands; ++i) { 1122 if (i == BestCand || !GlobalCand[i].PhysReg) 1123 continue; 1124 unsigned Count = GlobalCand[i].LiveBundles.count(); 1125 if (Count < WorstCount) 1126 Worst = i, WorstCount = Count; 1127 } 1128 --NumCands; 1129 GlobalCand[Worst] = GlobalCand[NumCands]; 1130 if (BestCand == NumCands) 1131 BestCand = Worst; 1132 } 1133 1134 if (GlobalCand.size() <= NumCands) 1135 GlobalCand.resize(NumCands+1); 1136 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1137 Cand.reset(IntfCache, PhysReg); 1138 1139 SpillPlacer->prepare(Cand.LiveBundles); 1140 float Cost; 1141 if (!addSplitConstraints(Cand.Intf, Cost)) { 1142 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1143 continue; 1144 } 1145 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1146 if (Cost >= BestCost) { 1147 DEBUG({ 1148 if (BestCand == NoCand) 1149 dbgs() << " worse than no bundles\n"; 1150 else 1151 dbgs() << " worse than " 1152 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1153 }); 1154 continue; 1155 } 1156 growRegion(Cand); 1157 1158 SpillPlacer->finish(); 1159 1160 // No live bundles, defer to splitSingleBlocks(). 1161 if (!Cand.LiveBundles.any()) { 1162 DEBUG(dbgs() << " no bundles.\n"); 1163 continue; 1164 } 1165 1166 Cost += calcGlobalSplitCost(Cand); 1167 DEBUG({ 1168 dbgs() << ", total = " << Cost << " with bundles"; 1169 for (int i = Cand.LiveBundles.find_first(); i>=0; 1170 i = Cand.LiveBundles.find_next(i)) 1171 dbgs() << " EB#" << i; 1172 dbgs() << ".\n"; 1173 }); 1174 if (Cost < BestCost) { 1175 BestCand = NumCands; 1176 BestCost = Hysteresis * Cost; // Prevent rounding effects. 1177 } 1178 ++NumCands; 1179 } 1180 1181 // No solutions found, fall back to single block splitting. 1182 if (!HasCompact && BestCand == NoCand) 1183 return 0; 1184 1185 // Prepare split editor. 1186 LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1187 SE->reset(LREdit, SplitSpillMode); 1188 1189 // Assign all edge bundles to the preferred candidate, or NoCand. 1190 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1191 1192 // Assign bundles for the best candidate region. 1193 if (BestCand != NoCand) { 1194 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1195 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1196 UsedCands.push_back(BestCand); 1197 Cand.IntvIdx = SE->openIntv(); 1198 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1199 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1200 (void)B; 1201 } 1202 } 1203 1204 // Assign bundles for the compact region. 1205 if (HasCompact) { 1206 GlobalSplitCandidate &Cand = GlobalCand.front(); 1207 assert(!Cand.PhysReg && "Compact region has no physreg"); 1208 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1209 UsedCands.push_back(0); 1210 Cand.IntvIdx = SE->openIntv(); 1211 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1212 << Cand.IntvIdx << ".\n"); 1213 (void)B; 1214 } 1215 } 1216 1217 splitAroundRegion(LREdit, UsedCands); 1218 return 0; 1219 } 1220 1221 1222 //===----------------------------------------------------------------------===// 1223 // Per-Block Splitting 1224 //===----------------------------------------------------------------------===// 1225 1226 /// tryBlockSplit - Split a global live range around every block with uses. This 1227 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1228 /// they don't allocate. 1229 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1230 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1231 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1232 unsigned Reg = VirtReg.reg; 1233 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1234 LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1235 SE->reset(LREdit, SplitSpillMode); 1236 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1237 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1238 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1239 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1240 SE->splitSingleBlock(BI); 1241 } 1242 // No blocks were split. 1243 if (LREdit.empty()) 1244 return 0; 1245 1246 // We did split for some blocks. 1247 SmallVector<unsigned, 8> IntvMap; 1248 SE->finish(&IntvMap); 1249 1250 // Tell LiveDebugVariables about the new ranges. 1251 DebugVars->splitRegister(Reg, LREdit.regs()); 1252 1253 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1254 1255 // Sort out the new intervals created by splitting. The remainder interval 1256 // goes straight to spilling, the new local ranges get to stay RS_New. 1257 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1258 LiveInterval &LI = *LREdit.get(i); 1259 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1260 setStage(LI, RS_Spill); 1261 } 1262 1263 if (VerifyEnabled) 1264 MF->verify(this, "After splitting live range around basic blocks"); 1265 return 0; 1266 } 1267 1268 //===----------------------------------------------------------------------===// 1269 // Local Splitting 1270 //===----------------------------------------------------------------------===// 1271 1272 1273 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1274 /// in order to use PhysReg between two entries in SA->UseSlots. 1275 /// 1276 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1277 /// 1278 void RAGreedy::calcGapWeights(unsigned PhysReg, 1279 SmallVectorImpl<float> &GapWeight) { 1280 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1281 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1282 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1283 const unsigned NumGaps = Uses.size()-1; 1284 1285 // Start and end points for the interference check. 1286 SlotIndex StartIdx = 1287 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1288 SlotIndex StopIdx = 1289 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1290 1291 GapWeight.assign(NumGaps, 0.0f); 1292 1293 // Add interference from each overlapping register. 1294 for (const uint16_t *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { 1295 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) 1296 .checkInterference()) 1297 continue; 1298 1299 // We know that VirtReg is a continuous interval from FirstInstr to 1300 // LastInstr, so we don't need InterferenceQuery. 1301 // 1302 // Interference that overlaps an instruction is counted in both gaps 1303 // surrounding the instruction. The exception is interference before 1304 // StartIdx and after StopIdx. 1305 // 1306 LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx); 1307 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1308 // Skip the gaps before IntI. 1309 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1310 if (++Gap == NumGaps) 1311 break; 1312 if (Gap == NumGaps) 1313 break; 1314 1315 // Update the gaps covered by IntI. 1316 const float weight = IntI.value()->weight; 1317 for (; Gap != NumGaps; ++Gap) { 1318 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1319 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1320 break; 1321 } 1322 if (Gap == NumGaps) 1323 break; 1324 } 1325 } 1326 } 1327 1328 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1329 /// basic block. 1330 /// 1331 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1332 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1333 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1334 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1335 1336 // Note that it is possible to have an interval that is live-in or live-out 1337 // while only covering a single block - A phi-def can use undef values from 1338 // predecessors, and the block could be a single-block loop. 1339 // We don't bother doing anything clever about such a case, we simply assume 1340 // that the interval is continuous from FirstInstr to LastInstr. We should 1341 // make sure that we don't do anything illegal to such an interval, though. 1342 1343 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1344 if (Uses.size() <= 2) 1345 return 0; 1346 const unsigned NumGaps = Uses.size()-1; 1347 1348 DEBUG({ 1349 dbgs() << "tryLocalSplit: "; 1350 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1351 dbgs() << ' ' << Uses[i]; 1352 dbgs() << '\n'; 1353 }); 1354 1355 // If VirtReg is live across any register mask operands, compute a list of 1356 // gaps with register masks. 1357 SmallVector<unsigned, 8> RegMaskGaps; 1358 if (!UsableRegs.empty()) { 1359 // Get regmask slots for the whole block. 1360 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1361 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1362 // Constrain to VirtReg's live range. 1363 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1364 Uses.front().getRegSlot()) - RMS.begin(); 1365 unsigned re = RMS.size(); 1366 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1367 // Look for Uses[i] <= RMS <= Uses[i+1]. 1368 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1369 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1370 continue; 1371 // Skip a regmask on the same instruction as the last use. It doesn't 1372 // overlap the live range. 1373 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1374 break; 1375 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1376 RegMaskGaps.push_back(i); 1377 // Advance ri to the next gap. A regmask on one of the uses counts in 1378 // both gaps. 1379 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1380 ++ri; 1381 } 1382 DEBUG(dbgs() << '\n'); 1383 } 1384 1385 // Since we allow local split results to be split again, there is a risk of 1386 // creating infinite loops. It is tempting to require that the new live 1387 // ranges have less instructions than the original. That would guarantee 1388 // convergence, but it is too strict. A live range with 3 instructions can be 1389 // split 2+3 (including the COPY), and we want to allow that. 1390 // 1391 // Instead we use these rules: 1392 // 1393 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1394 // noop split, of course). 1395 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1396 // the new ranges must have fewer instructions than before the split. 1397 // 3. New ranges with the same number of instructions are marked RS_Split2, 1398 // smaller ranges are marked RS_New. 1399 // 1400 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1401 // excessive splitting and infinite loops. 1402 // 1403 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1404 1405 // Best split candidate. 1406 unsigned BestBefore = NumGaps; 1407 unsigned BestAfter = 0; 1408 float BestDiff = 0; 1409 1410 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); 1411 SmallVector<float, 8> GapWeight; 1412 1413 Order.rewind(); 1414 while (unsigned PhysReg = Order.next()) { 1415 // Keep track of the largest spill weight that would need to be evicted in 1416 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1417 calcGapWeights(PhysReg, GapWeight); 1418 1419 // Remove any gaps with regmask clobbers. 1420 if (clobberedByRegMask(PhysReg)) 1421 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1422 GapWeight[RegMaskGaps[i]] = HUGE_VALF; 1423 1424 // Try to find the best sequence of gaps to close. 1425 // The new spill weight must be larger than any gap interference. 1426 1427 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1428 unsigned SplitBefore = 0, SplitAfter = 1; 1429 1430 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1431 // It is the spill weight that needs to be evicted. 1432 float MaxGap = GapWeight[0]; 1433 1434 for (;;) { 1435 // Live before/after split? 1436 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1437 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1438 1439 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1440 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1441 << " i=" << MaxGap); 1442 1443 // Stop before the interval gets so big we wouldn't be making progress. 1444 if (!LiveBefore && !LiveAfter) { 1445 DEBUG(dbgs() << " all\n"); 1446 break; 1447 } 1448 // Should the interval be extended or shrunk? 1449 bool Shrink = true; 1450 1451 // How many gaps would the new range have? 1452 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1453 1454 // Legally, without causing looping? 1455 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1456 1457 if (Legal && MaxGap < HUGE_VALF) { 1458 // Estimate the new spill weight. Each instruction reads or writes the 1459 // register. Conservatively assume there are no read-modify-write 1460 // instructions. 1461 // 1462 // Try to guess the size of the new interval. 1463 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1464 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1465 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1466 // Would this split be possible to allocate? 1467 // Never allocate all gaps, we wouldn't be making progress. 1468 DEBUG(dbgs() << " w=" << EstWeight); 1469 if (EstWeight * Hysteresis >= MaxGap) { 1470 Shrink = false; 1471 float Diff = EstWeight - MaxGap; 1472 if (Diff > BestDiff) { 1473 DEBUG(dbgs() << " (best)"); 1474 BestDiff = Hysteresis * Diff; 1475 BestBefore = SplitBefore; 1476 BestAfter = SplitAfter; 1477 } 1478 } 1479 } 1480 1481 // Try to shrink. 1482 if (Shrink) { 1483 if (++SplitBefore < SplitAfter) { 1484 DEBUG(dbgs() << " shrink\n"); 1485 // Recompute the max when necessary. 1486 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1487 MaxGap = GapWeight[SplitBefore]; 1488 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1489 MaxGap = std::max(MaxGap, GapWeight[i]); 1490 } 1491 continue; 1492 } 1493 MaxGap = 0; 1494 } 1495 1496 // Try to extend the interval. 1497 if (SplitAfter >= NumGaps) { 1498 DEBUG(dbgs() << " end\n"); 1499 break; 1500 } 1501 1502 DEBUG(dbgs() << " extend\n"); 1503 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1504 } 1505 } 1506 1507 // Didn't find any candidates? 1508 if (BestBefore == NumGaps) 1509 return 0; 1510 1511 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1512 << '-' << Uses[BestAfter] << ", " << BestDiff 1513 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1514 1515 LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1516 SE->reset(LREdit); 1517 1518 SE->openIntv(); 1519 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1520 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1521 SE->useIntv(SegStart, SegStop); 1522 SmallVector<unsigned, 8> IntvMap; 1523 SE->finish(&IntvMap); 1524 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1525 1526 // If the new range has the same number of instructions as before, mark it as 1527 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1528 // leave the new intervals as RS_New so they can compete. 1529 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1530 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1531 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1532 if (NewGaps >= NumGaps) { 1533 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1534 assert(!ProgressRequired && "Didn't make progress when it was required."); 1535 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1536 if (IntvMap[i] == 1) { 1537 setStage(*LREdit.get(i), RS_Split2); 1538 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1539 } 1540 DEBUG(dbgs() << '\n'); 1541 } 1542 ++NumLocalSplits; 1543 1544 return 0; 1545 } 1546 1547 //===----------------------------------------------------------------------===// 1548 // Live Range Splitting 1549 //===----------------------------------------------------------------------===// 1550 1551 /// trySplit - Try to split VirtReg or one of its interferences, making it 1552 /// assignable. 1553 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1554 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1555 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1556 // Ranges must be Split2 or less. 1557 if (getStage(VirtReg) >= RS_Spill) 1558 return 0; 1559 1560 // Local intervals are handled separately. 1561 if (LIS->intervalIsInOneMBB(VirtReg)) { 1562 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1563 SA->analyze(&VirtReg); 1564 return tryLocalSplit(VirtReg, Order, NewVRegs); 1565 } 1566 1567 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1568 1569 SA->analyze(&VirtReg); 1570 1571 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1572 // coalescer. That may cause the range to become allocatable which means that 1573 // tryRegionSplit won't be making progress. This check should be replaced with 1574 // an assertion when the coalescer is fixed. 1575 if (SA->didRepairRange()) { 1576 // VirtReg has changed, so all cached queries are invalid. 1577 invalidateVirtRegs(); 1578 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1579 return PhysReg; 1580 } 1581 1582 // First try to split around a region spanning multiple blocks. RS_Split2 1583 // ranges already made dubious progress with region splitting, so they go 1584 // straight to single block splitting. 1585 if (getStage(VirtReg) < RS_Split2) { 1586 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1587 if (PhysReg || !NewVRegs.empty()) 1588 return PhysReg; 1589 } 1590 1591 // Then isolate blocks. 1592 return tryBlockSplit(VirtReg, Order, NewVRegs); 1593 } 1594 1595 1596 //===----------------------------------------------------------------------===// 1597 // Main Entry Point 1598 //===----------------------------------------------------------------------===// 1599 1600 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1601 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1602 // Check if VirtReg is live across any calls. 1603 UsableRegs.clear(); 1604 if (LIS->checkRegMaskInterference(VirtReg, UsableRegs)) 1605 DEBUG(dbgs() << "Live across regmasks.\n"); 1606 1607 // First try assigning a free register. 1608 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1609 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1610 return PhysReg; 1611 1612 LiveRangeStage Stage = getStage(VirtReg); 1613 DEBUG(dbgs() << StageName[Stage] 1614 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1615 1616 // Try to evict a less worthy live range, but only for ranges from the primary 1617 // queue. The RS_Split ranges already failed to do this, and they should not 1618 // get a second chance until they have been split. 1619 if (Stage != RS_Split) 1620 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1621 return PhysReg; 1622 1623 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1624 1625 // The first time we see a live range, don't try to split or spill. 1626 // Wait until the second time, when all smaller ranges have been allocated. 1627 // This gives a better picture of the interference to split around. 1628 if (Stage < RS_Split) { 1629 setStage(VirtReg, RS_Split); 1630 DEBUG(dbgs() << "wait for second round\n"); 1631 NewVRegs.push_back(&VirtReg); 1632 return 0; 1633 } 1634 1635 // If we couldn't allocate a register from spilling, there is probably some 1636 // invalid inline assembly. The base class wil report it. 1637 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1638 return ~0u; 1639 1640 // Try splitting VirtReg or interferences. 1641 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1642 if (PhysReg || !NewVRegs.empty()) 1643 return PhysReg; 1644 1645 // Finally spill VirtReg itself. 1646 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1647 LiveRangeEdit LRE(VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1648 spiller().spill(LRE); 1649 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1650 1651 if (VerifyEnabled) 1652 MF->verify(this, "After spilling"); 1653 1654 // The live virtual register requesting allocation was spilled, so tell 1655 // the caller not to allocate anything during this round. 1656 return 0; 1657 } 1658 1659 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1660 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1661 << "********** Function: " 1662 << ((Value*)mf.getFunction())->getName() << '\n'); 1663 1664 MF = &mf; 1665 if (VerifyEnabled) 1666 MF->verify(this, "Before greedy register allocator"); 1667 1668 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 1669 Indexes = &getAnalysis<SlotIndexes>(); 1670 DomTree = &getAnalysis<MachineDominatorTree>(); 1671 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1672 Loops = &getAnalysis<MachineLoopInfo>(); 1673 Bundles = &getAnalysis<EdgeBundles>(); 1674 SpillPlacer = &getAnalysis<SpillPlacement>(); 1675 DebugVars = &getAnalysis<LiveDebugVariables>(); 1676 1677 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1678 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); 1679 ExtraRegInfo.clear(); 1680 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1681 NextCascade = 1; 1682 IntfCache.init(MF, &getLiveUnion(0), Indexes, LIS, TRI); 1683 GlobalCand.resize(32); // This will grow as needed. 1684 1685 allocatePhysRegs(); 1686 addMBBLiveIns(MF); 1687 LIS->addKillFlags(); 1688 1689 // Run rewriter 1690 { 1691 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); 1692 VRM->rewrite(Indexes); 1693 } 1694 1695 // Write out new DBG_VALUE instructions. 1696 { 1697 NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled); 1698 DebugVars->emitDebugValues(VRM); 1699 } 1700 1701 // All machine operands and other references to virtual registers have been 1702 // replaced. Remove the virtual registers and release all the transient data. 1703 VRM->clearAllVirt(); 1704 MRI->clearVirtRegs(); 1705 releaseMemory(); 1706 1707 return true; 1708 } 1709