Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RAGreedy function pass for register allocation in
     11 // optimized builds.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "AllocationOrder.h"
     17 #include "InterferenceCache.h"
     18 #include "LiveDebugVariables.h"
     19 #include "RegAllocBase.h"
     20 #include "Spiller.h"
     21 #include "SpillPlacement.h"
     22 #include "SplitKit.h"
     23 #include "VirtRegMap.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/PassAnalysisSupport.h"
     28 #include "llvm/CodeGen/CalcSpillWeights.h"
     29 #include "llvm/CodeGen/EdgeBundles.h"
     30 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     31 #include "llvm/CodeGen/LiveRangeEdit.h"
     32 #include "llvm/CodeGen/LiveStackAnalysis.h"
     33 #include "llvm/CodeGen/MachineDominators.h"
     34 #include "llvm/CodeGen/MachineFunctionPass.h"
     35 #include "llvm/CodeGen/MachineLoopInfo.h"
     36 #include "llvm/CodeGen/MachineRegisterInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/CodeGen/RegAllocRegistry.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Support/Timer.h"
     45 
     46 #include <queue>
     47 
     48 using namespace llvm;
     49 
     50 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
     51 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
     52 STATISTIC(NumEvicted,      "Number of interferences evicted");
     53 
     54 static cl::opt<SplitEditor::ComplementSpillMode>
     55 SplitSpillMode("split-spill-mode", cl::Hidden,
     56   cl::desc("Spill mode for splitting live ranges"),
     57   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
     58              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
     59              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
     60              clEnumValEnd),
     61   cl::init(SplitEditor::SM_Partition));
     62 
     63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
     64                                        createGreedyRegisterAllocator);
     65 
     66 namespace {
     67 class RAGreedy : public MachineFunctionPass,
     68                  public RegAllocBase,
     69                  private LiveRangeEdit::Delegate {
     70 
     71   // context
     72   MachineFunction *MF;
     73 
     74   // analyses
     75   SlotIndexes *Indexes;
     76   LiveStacks *LS;
     77   MachineDominatorTree *DomTree;
     78   MachineLoopInfo *Loops;
     79   EdgeBundles *Bundles;
     80   SpillPlacement *SpillPlacer;
     81   LiveDebugVariables *DebugVars;
     82 
     83   // state
     84   std::auto_ptr<Spiller> SpillerInstance;
     85   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
     86   unsigned NextCascade;
     87 
     88   // Live ranges pass through a number of stages as we try to allocate them.
     89   // Some of the stages may also create new live ranges:
     90   //
     91   // - Region splitting.
     92   // - Per-block splitting.
     93   // - Local splitting.
     94   // - Spilling.
     95   //
     96   // Ranges produced by one of the stages skip the previous stages when they are
     97   // dequeued. This improves performance because we can skip interference checks
     98   // that are unlikely to give any results. It also guarantees that the live
     99   // range splitting algorithm terminates, something that is otherwise hard to
    100   // ensure.
    101   enum LiveRangeStage {
    102     /// Newly created live range that has never been queued.
    103     RS_New,
    104 
    105     /// Only attempt assignment and eviction. Then requeue as RS_Split.
    106     RS_Assign,
    107 
    108     /// Attempt live range splitting if assignment is impossible.
    109     RS_Split,
    110 
    111     /// Attempt more aggressive live range splitting that is guaranteed to make
    112     /// progress.  This is used for split products that may not be making
    113     /// progress.
    114     RS_Split2,
    115 
    116     /// Live range will be spilled.  No more splitting will be attempted.
    117     RS_Spill,
    118 
    119     /// There is nothing more we can do to this live range.  Abort compilation
    120     /// if it can't be assigned.
    121     RS_Done
    122   };
    123 
    124   static const char *const StageName[];
    125 
    126   // RegInfo - Keep additional information about each live range.
    127   struct RegInfo {
    128     LiveRangeStage Stage;
    129 
    130     // Cascade - Eviction loop prevention. See canEvictInterference().
    131     unsigned Cascade;
    132 
    133     RegInfo() : Stage(RS_New), Cascade(0) {}
    134   };
    135 
    136   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
    137 
    138   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    139     return ExtraRegInfo[VirtReg.reg].Stage;
    140   }
    141 
    142   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    143     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    144     ExtraRegInfo[VirtReg.reg].Stage = Stage;
    145   }
    146 
    147   template<typename Iterator>
    148   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    149     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    150     for (;Begin != End; ++Begin) {
    151       unsigned Reg = (*Begin)->reg;
    152       if (ExtraRegInfo[Reg].Stage == RS_New)
    153         ExtraRegInfo[Reg].Stage = NewStage;
    154     }
    155   }
    156 
    157   /// Cost of evicting interference.
    158   struct EvictionCost {
    159     unsigned BrokenHints; ///< Total number of broken hints.
    160     float MaxWeight;      ///< Maximum spill weight evicted.
    161 
    162     EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
    163 
    164     bool operator<(const EvictionCost &O) const {
    165       if (BrokenHints != O.BrokenHints)
    166         return BrokenHints < O.BrokenHints;
    167       return MaxWeight < O.MaxWeight;
    168     }
    169   };
    170 
    171   // Register mask interference. The current VirtReg is checked for register
    172   // mask interference on entry to selectOrSplit().  If there is no
    173   // interference, UsableRegs is left empty.  If there is interference,
    174   // UsableRegs has a bit mask of registers that can be used without register
    175   // mask interference.
    176   BitVector UsableRegs;
    177 
    178   /// clobberedByRegMask - Returns true if PhysReg is not directly usable
    179   /// because of register mask clobbers.
    180   bool clobberedByRegMask(unsigned PhysReg) const {
    181     return !UsableRegs.empty() && !UsableRegs.test(PhysReg);
    182   }
    183 
    184   // splitting state.
    185   std::auto_ptr<SplitAnalysis> SA;
    186   std::auto_ptr<SplitEditor> SE;
    187 
    188   /// Cached per-block interference maps
    189   InterferenceCache IntfCache;
    190 
    191   /// All basic blocks where the current register has uses.
    192   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
    193 
    194   /// Global live range splitting candidate info.
    195   struct GlobalSplitCandidate {
    196     // Register intended for assignment, or 0.
    197     unsigned PhysReg;
    198 
    199     // SplitKit interval index for this candidate.
    200     unsigned IntvIdx;
    201 
    202     // Interference for PhysReg.
    203     InterferenceCache::Cursor Intf;
    204 
    205     // Bundles where this candidate should be live.
    206     BitVector LiveBundles;
    207     SmallVector<unsigned, 8> ActiveBlocks;
    208 
    209     void reset(InterferenceCache &Cache, unsigned Reg) {
    210       PhysReg = Reg;
    211       IntvIdx = 0;
    212       Intf.setPhysReg(Cache, Reg);
    213       LiveBundles.clear();
    214       ActiveBlocks.clear();
    215     }
    216 
    217     // Set B[i] = C for every live bundle where B[i] was NoCand.
    218     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
    219       unsigned Count = 0;
    220       for (int i = LiveBundles.find_first(); i >= 0;
    221            i = LiveBundles.find_next(i))
    222         if (B[i] == NoCand) {
    223           B[i] = C;
    224           Count++;
    225         }
    226       return Count;
    227     }
    228   };
    229 
    230   /// Candidate info for for each PhysReg in AllocationOrder.
    231   /// This vector never shrinks, but grows to the size of the largest register
    232   /// class.
    233   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
    234 
    235   enum { NoCand = ~0u };
    236 
    237   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
    238   /// NoCand which indicates the stack interval.
    239   SmallVector<unsigned, 32> BundleCand;
    240 
    241 public:
    242   RAGreedy();
    243 
    244   /// Return the pass name.
    245   virtual const char* getPassName() const {
    246     return "Greedy Register Allocator";
    247   }
    248 
    249   /// RAGreedy analysis usage.
    250   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    251   virtual void releaseMemory();
    252   virtual Spiller &spiller() { return *SpillerInstance; }
    253   virtual void enqueue(LiveInterval *LI);
    254   virtual LiveInterval *dequeue();
    255   virtual unsigned selectOrSplit(LiveInterval&,
    256                                  SmallVectorImpl<LiveInterval*>&);
    257 
    258   /// Perform register allocation.
    259   virtual bool runOnMachineFunction(MachineFunction &mf);
    260 
    261   static char ID;
    262 
    263 private:
    264   bool LRE_CanEraseVirtReg(unsigned);
    265   void LRE_WillShrinkVirtReg(unsigned);
    266   void LRE_DidCloneVirtReg(unsigned, unsigned);
    267 
    268   float calcSpillCost();
    269   bool addSplitConstraints(InterferenceCache::Cursor, float&);
    270   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
    271   void growRegion(GlobalSplitCandidate &Cand);
    272   float calcGlobalSplitCost(GlobalSplitCandidate&);
    273   bool calcCompactRegion(GlobalSplitCandidate&);
    274   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
    275   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
    276   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
    277   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
    278   void evictInterference(LiveInterval&, unsigned,
    279                          SmallVectorImpl<LiveInterval*>&);
    280 
    281   unsigned tryAssign(LiveInterval&, AllocationOrder&,
    282                      SmallVectorImpl<LiveInterval*>&);
    283   unsigned tryEvict(LiveInterval&, AllocationOrder&,
    284                     SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
    285   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
    286                           SmallVectorImpl<LiveInterval*>&);
    287   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
    288                          SmallVectorImpl<LiveInterval*>&);
    289   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    290     SmallVectorImpl<LiveInterval*>&);
    291   unsigned trySplit(LiveInterval&, AllocationOrder&,
    292                     SmallVectorImpl<LiveInterval*>&);
    293 };
    294 } // end anonymous namespace
    295 
    296 char RAGreedy::ID = 0;
    297 
    298 #ifndef NDEBUG
    299 const char *const RAGreedy::StageName[] = {
    300     "RS_New",
    301     "RS_Assign",
    302     "RS_Split",
    303     "RS_Split2",
    304     "RS_Spill",
    305     "RS_Done"
    306 };
    307 #endif
    308 
    309 // Hysteresis to use when comparing floats.
    310 // This helps stabilize decisions based on float comparisons.
    311 const float Hysteresis = 0.98f;
    312 
    313 
    314 FunctionPass* llvm::createGreedyRegisterAllocator() {
    315   return new RAGreedy();
    316 }
    317 
    318 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
    319   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    320   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    321   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    322   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    323   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    324   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    325   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    326   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    327   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    328   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    329   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    330   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
    331   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
    332 }
    333 
    334 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
    335   AU.setPreservesCFG();
    336   AU.addRequired<AliasAnalysis>();
    337   AU.addPreserved<AliasAnalysis>();
    338   AU.addRequired<LiveIntervals>();
    339   AU.addRequired<SlotIndexes>();
    340   AU.addPreserved<SlotIndexes>();
    341   AU.addRequired<LiveDebugVariables>();
    342   AU.addPreserved<LiveDebugVariables>();
    343   AU.addRequired<CalculateSpillWeights>();
    344   AU.addRequired<LiveStacks>();
    345   AU.addPreserved<LiveStacks>();
    346   AU.addRequired<MachineDominatorTree>();
    347   AU.addPreserved<MachineDominatorTree>();
    348   AU.addRequired<MachineLoopInfo>();
    349   AU.addPreserved<MachineLoopInfo>();
    350   AU.addRequired<VirtRegMap>();
    351   AU.addPreserved<VirtRegMap>();
    352   AU.addRequired<EdgeBundles>();
    353   AU.addRequired<SpillPlacement>();
    354   MachineFunctionPass::getAnalysisUsage(AU);
    355 }
    356 
    357 
    358 //===----------------------------------------------------------------------===//
    359 //                     LiveRangeEdit delegate methods
    360 //===----------------------------------------------------------------------===//
    361 
    362 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
    363   if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
    364     unassign(LIS->getInterval(VirtReg), PhysReg);
    365     return true;
    366   }
    367   // Unassigned virtreg is probably in the priority queue.
    368   // RegAllocBase will erase it after dequeueing.
    369   return false;
    370 }
    371 
    372 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
    373   unsigned PhysReg = VRM->getPhys(VirtReg);
    374   if (!PhysReg)
    375     return;
    376 
    377   // Register is assigned, put it back on the queue for reassignment.
    378   LiveInterval &LI = LIS->getInterval(VirtReg);
    379   unassign(LI, PhysReg);
    380   enqueue(&LI);
    381 }
    382 
    383 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
    384   // Cloning a register we haven't even heard about yet?  Just ignore it.
    385   if (!ExtraRegInfo.inBounds(Old))
    386     return;
    387 
    388   // LRE may clone a virtual register because dead code elimination causes it to
    389   // be split into connected components. The new components are much smaller
    390   // than the original, so they should get a new chance at being assigned.
    391   // same stage as the parent.
    392   ExtraRegInfo[Old].Stage = RS_Assign;
    393   ExtraRegInfo.grow(New);
    394   ExtraRegInfo[New] = ExtraRegInfo[Old];
    395 }
    396 
    397 void RAGreedy::releaseMemory() {
    398   SpillerInstance.reset(0);
    399   ExtraRegInfo.clear();
    400   GlobalCand.clear();
    401   RegAllocBase::releaseMemory();
    402 }
    403 
    404 void RAGreedy::enqueue(LiveInterval *LI) {
    405   // Prioritize live ranges by size, assigning larger ranges first.
    406   // The queue holds (size, reg) pairs.
    407   const unsigned Size = LI->getSize();
    408   const unsigned Reg = LI->reg;
    409   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    410          "Can only enqueue virtual registers");
    411   unsigned Prio;
    412 
    413   ExtraRegInfo.grow(Reg);
    414   if (ExtraRegInfo[Reg].Stage == RS_New)
    415     ExtraRegInfo[Reg].Stage = RS_Assign;
    416 
    417   if (ExtraRegInfo[Reg].Stage == RS_Split) {
    418     // Unsplit ranges that couldn't be allocated immediately are deferred until
    419     // everything else has been allocated.
    420     Prio = Size;
    421   } else {
    422     // Everything is allocated in long->short order. Long ranges that don't fit
    423     // should be spilled (or split) ASAP so they don't create interference.
    424     Prio = (1u << 31) + Size;
    425 
    426     // Boost ranges that have a physical register hint.
    427     if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
    428       Prio |= (1u << 30);
    429   }
    430 
    431   Queue.push(std::make_pair(Prio, ~Reg));
    432 }
    433 
    434 LiveInterval *RAGreedy::dequeue() {
    435   if (Queue.empty())
    436     return 0;
    437   LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
    438   Queue.pop();
    439   return LI;
    440 }
    441 
    442 
    443 //===----------------------------------------------------------------------===//
    444 //                            Direct Assignment
    445 //===----------------------------------------------------------------------===//
    446 
    447 /// tryAssign - Try to assign VirtReg to an available register.
    448 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
    449                              AllocationOrder &Order,
    450                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
    451   Order.rewind();
    452   unsigned PhysReg;
    453   while ((PhysReg = Order.next())) {
    454     if (clobberedByRegMask(PhysReg))
    455       continue;
    456     if (!checkPhysRegInterference(VirtReg, PhysReg))
    457       break;
    458   }
    459   if (!PhysReg || Order.isHint(PhysReg))
    460     return PhysReg;
    461 
    462   // PhysReg is available, but there may be a better choice.
    463 
    464   // If we missed a simple hint, try to cheaply evict interference from the
    465   // preferred register.
    466   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    467     if (Order.isHint(Hint) && !clobberedByRegMask(Hint)) {
    468       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
    469       EvictionCost MaxCost(1);
    470       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
    471         evictInterference(VirtReg, Hint, NewVRegs);
    472         return Hint;
    473       }
    474     }
    475 
    476   // Try to evict interference from a cheaper alternative.
    477   unsigned Cost = TRI->getCostPerUse(PhysReg);
    478 
    479   // Most registers have 0 additional cost.
    480   if (!Cost)
    481     return PhysReg;
    482 
    483   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
    484                << '\n');
    485   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
    486   return CheapReg ? CheapReg : PhysReg;
    487 }
    488 
    489 
    490 //===----------------------------------------------------------------------===//
    491 //                         Interference eviction
    492 //===----------------------------------------------------------------------===//
    493 
    494 /// shouldEvict - determine if A should evict the assigned live range B. The
    495 /// eviction policy defined by this function together with the allocation order
    496 /// defined by enqueue() decides which registers ultimately end up being split
    497 /// and spilled.
    498 ///
    499 /// Cascade numbers are used to prevent infinite loops if this function is a
    500 /// cyclic relation.
    501 ///
    502 /// @param A          The live range to be assigned.
    503 /// @param IsHint     True when A is about to be assigned to its preferred
    504 ///                   register.
    505 /// @param B          The live range to be evicted.
    506 /// @param BreaksHint True when B is already assigned to its preferred register.
    507 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
    508                            LiveInterval &B, bool BreaksHint) {
    509   bool CanSplit = getStage(B) < RS_Spill;
    510 
    511   // Be fairly aggressive about following hints as long as the evictee can be
    512   // split.
    513   if (CanSplit && IsHint && !BreaksHint)
    514     return true;
    515 
    516   return A.weight > B.weight;
    517 }
    518 
    519 /// canEvictInterference - Return true if all interferences between VirtReg and
    520 /// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
    521 ///
    522 /// @param VirtReg Live range that is about to be assigned.
    523 /// @param PhysReg Desired register for assignment.
    524 /// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
    525 /// @param MaxCost Only look for cheaper candidates and update with new cost
    526 ///                when returning true.
    527 /// @returns True when interference can be evicted cheaper than MaxCost.
    528 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    529                                     bool IsHint, EvictionCost &MaxCost) {
    530   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
    531   // involved in an eviction before. If a cascade number was assigned, deny
    532   // evicting anything with the same or a newer cascade number. This prevents
    533   // infinite eviction loops.
    534   //
    535   // This works out so a register without a cascade number is allowed to evict
    536   // anything, and it can be evicted by anything.
    537   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    538   if (!Cascade)
    539     Cascade = NextCascade;
    540 
    541   EvictionCost Cost;
    542   for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    543     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    544     // If there is 10 or more interferences, chances are one is heavier.
    545     if (Q.collectInterferingVRegs(10) >= 10)
    546       return false;
    547 
    548     // Check if any interfering live range is heavier than MaxWeight.
    549     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
    550       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
    551       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
    552         return false;
    553       // Never evict spill products. They cannot split or spill.
    554       if (getStage(*Intf) == RS_Done)
    555         return false;
    556       // Once a live range becomes small enough, it is urgent that we find a
    557       // register for it. This is indicated by an infinite spill weight. These
    558       // urgent live ranges get to evict almost anything.
    559       bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
    560       // Only evict older cascades or live ranges without a cascade.
    561       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
    562       if (Cascade <= IntfCascade) {
    563         if (!Urgent)
    564           return false;
    565         // We permit breaking cascades for urgent evictions. It should be the
    566         // last resort, though, so make it really expensive.
    567         Cost.BrokenHints += 10;
    568       }
    569       // Would this break a satisfied hint?
    570       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
    571       // Update eviction cost.
    572       Cost.BrokenHints += BreaksHint;
    573       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
    574       // Abort if this would be too expensive.
    575       if (!(Cost < MaxCost))
    576         return false;
    577       // Finally, apply the eviction policy for non-urgent evictions.
    578       if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
    579         return false;
    580     }
    581   }
    582   MaxCost = Cost;
    583   return true;
    584 }
    585 
    586 /// evictInterference - Evict any interferring registers that prevent VirtReg
    587 /// from being assigned to Physreg. This assumes that canEvictInterference
    588 /// returned true.
    589 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    590                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
    591   // Make sure that VirtReg has a cascade number, and assign that cascade
    592   // number to every evicted register. These live ranges than then only be
    593   // evicted by a newer cascade, preventing infinite loops.
    594   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    595   if (!Cascade)
    596     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
    597 
    598   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
    599                << " interference: Cascade " << Cascade << '\n');
    600   for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    601     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    602     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    603     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
    604       LiveInterval *Intf = Q.interferingVRegs()[i];
    605       unassign(*Intf, VRM->getPhys(Intf->reg));
    606       assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
    607               VirtReg.isSpillable() < Intf->isSpillable()) &&
    608              "Cannot decrease cascade number, illegal eviction");
    609       ExtraRegInfo[Intf->reg].Cascade = Cascade;
    610       ++NumEvicted;
    611       NewVRegs.push_back(Intf);
    612     }
    613   }
    614 }
    615 
    616 /// tryEvict - Try to evict all interferences for a physreg.
    617 /// @param  VirtReg Currently unassigned virtual register.
    618 /// @param  Order   Physregs to try.
    619 /// @return         Physreg to assign VirtReg, or 0.
    620 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
    621                             AllocationOrder &Order,
    622                             SmallVectorImpl<LiveInterval*> &NewVRegs,
    623                             unsigned CostPerUseLimit) {
    624   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
    625 
    626   // Keep track of the cheapest interference seen so far.
    627   EvictionCost BestCost(~0u);
    628   unsigned BestPhys = 0;
    629 
    630   // When we are just looking for a reduced cost per use, don't break any
    631   // hints, and only evict smaller spill weights.
    632   if (CostPerUseLimit < ~0u) {
    633     BestCost.BrokenHints = 0;
    634     BestCost.MaxWeight = VirtReg.weight;
    635   }
    636 
    637   Order.rewind();
    638   while (unsigned PhysReg = Order.next()) {
    639     if (clobberedByRegMask(PhysReg))
    640       continue;
    641     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
    642       continue;
    643     // The first use of a callee-saved register in a function has cost 1.
    644     // Don't start using a CSR when the CostPerUseLimit is low.
    645     if (CostPerUseLimit == 1)
    646      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
    647        if (!MRI->isPhysRegUsed(CSR)) {
    648          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
    649                       << PrintReg(CSR, TRI) << '\n');
    650          continue;
    651        }
    652 
    653     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
    654       continue;
    655 
    656     // Best so far.
    657     BestPhys = PhysReg;
    658 
    659     // Stop if the hint can be used.
    660     if (Order.isHint(PhysReg))
    661       break;
    662   }
    663 
    664   if (!BestPhys)
    665     return 0;
    666 
    667   evictInterference(VirtReg, BestPhys, NewVRegs);
    668   return BestPhys;
    669 }
    670 
    671 
    672 //===----------------------------------------------------------------------===//
    673 //                              Region Splitting
    674 //===----------------------------------------------------------------------===//
    675 
    676 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
    677 /// interference pattern in Physreg and its aliases. Add the constraints to
    678 /// SpillPlacement and return the static cost of this split in Cost, assuming
    679 /// that all preferences in SplitConstraints are met.
    680 /// Return false if there are no bundles with positive bias.
    681 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
    682                                    float &Cost) {
    683   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    684 
    685   // Reset interference dependent info.
    686   SplitConstraints.resize(UseBlocks.size());
    687   float StaticCost = 0;
    688   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    689     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    690     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    691 
    692     BC.Number = BI.MBB->getNumber();
    693     Intf.moveToBlock(BC.Number);
    694     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    695     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    696     BC.ChangesValue = BI.FirstDef;
    697 
    698     if (!Intf.hasInterference())
    699       continue;
    700 
    701     // Number of spill code instructions to insert.
    702     unsigned Ins = 0;
    703 
    704     // Interference for the live-in value.
    705     if (BI.LiveIn) {
    706       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
    707         BC.Entry = SpillPlacement::MustSpill, ++Ins;
    708       else if (Intf.first() < BI.FirstInstr)
    709         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
    710       else if (Intf.first() < BI.LastInstr)
    711         ++Ins;
    712     }
    713 
    714     // Interference for the live-out value.
    715     if (BI.LiveOut) {
    716       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
    717         BC.Exit = SpillPlacement::MustSpill, ++Ins;
    718       else if (Intf.last() > BI.LastInstr)
    719         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
    720       else if (Intf.last() > BI.FirstInstr)
    721         ++Ins;
    722     }
    723 
    724     // Accumulate the total frequency of inserted spill code.
    725     if (Ins)
    726       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    727   }
    728   Cost = StaticCost;
    729 
    730   // Add constraints for use-blocks. Note that these are the only constraints
    731   // that may add a positive bias, it is downhill from here.
    732   SpillPlacer->addConstraints(SplitConstraints);
    733   return SpillPlacer->scanActiveBundles();
    734 }
    735 
    736 
    737 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
    738 /// live-through blocks in Blocks.
    739 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
    740                                      ArrayRef<unsigned> Blocks) {
    741   const unsigned GroupSize = 8;
    742   SpillPlacement::BlockConstraint BCS[GroupSize];
    743   unsigned TBS[GroupSize];
    744   unsigned B = 0, T = 0;
    745 
    746   for (unsigned i = 0; i != Blocks.size(); ++i) {
    747     unsigned Number = Blocks[i];
    748     Intf.moveToBlock(Number);
    749 
    750     if (!Intf.hasInterference()) {
    751       assert(T < GroupSize && "Array overflow");
    752       TBS[T] = Number;
    753       if (++T == GroupSize) {
    754         SpillPlacer->addLinks(makeArrayRef(TBS, T));
    755         T = 0;
    756       }
    757       continue;
    758     }
    759 
    760     assert(B < GroupSize && "Array overflow");
    761     BCS[B].Number = Number;
    762 
    763     // Interference for the live-in value.
    764     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
    765       BCS[B].Entry = SpillPlacement::MustSpill;
    766     else
    767       BCS[B].Entry = SpillPlacement::PrefSpill;
    768 
    769     // Interference for the live-out value.
    770     if (Intf.last() >= SA->getLastSplitPoint(Number))
    771       BCS[B].Exit = SpillPlacement::MustSpill;
    772     else
    773       BCS[B].Exit = SpillPlacement::PrefSpill;
    774 
    775     if (++B == GroupSize) {
    776       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    777       SpillPlacer->addConstraints(Array);
    778       B = 0;
    779     }
    780   }
    781 
    782   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    783   SpillPlacer->addConstraints(Array);
    784   SpillPlacer->addLinks(makeArrayRef(TBS, T));
    785 }
    786 
    787 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
    788   // Keep track of through blocks that have not been added to SpillPlacer.
    789   BitVector Todo = SA->getThroughBlocks();
    790   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
    791   unsigned AddedTo = 0;
    792 #ifndef NDEBUG
    793   unsigned Visited = 0;
    794 #endif
    795 
    796   for (;;) {
    797     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    798     // Find new through blocks in the periphery of PrefRegBundles.
    799     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
    800       unsigned Bundle = NewBundles[i];
    801       // Look at all blocks connected to Bundle in the full graph.
    802       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
    803       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    804            I != E; ++I) {
    805         unsigned Block = *I;
    806         if (!Todo.test(Block))
    807           continue;
    808         Todo.reset(Block);
    809         // This is a new through block. Add it to SpillPlacer later.
    810         ActiveBlocks.push_back(Block);
    811 #ifndef NDEBUG
    812         ++Visited;
    813 #endif
    814       }
    815     }
    816     // Any new blocks to add?
    817     if (ActiveBlocks.size() == AddedTo)
    818       break;
    819 
    820     // Compute through constraints from the interference, or assume that all
    821     // through blocks prefer spilling when forming compact regions.
    822     ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
    823     if (Cand.PhysReg)
    824       addThroughConstraints(Cand.Intf, NewBlocks);
    825     else
    826       // Provide a strong negative bias on through blocks to prevent unwanted
    827       // liveness on loop backedges.
    828       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
    829     AddedTo = ActiveBlocks.size();
    830 
    831     // Perhaps iterating can enable more bundles?
    832     SpillPlacer->iterate();
    833   }
    834   DEBUG(dbgs() << ", v=" << Visited);
    835 }
    836 
    837 /// calcCompactRegion - Compute the set of edge bundles that should be live
    838 /// when splitting the current live range into compact regions.  Compact
    839 /// regions can be computed without looking at interference.  They are the
    840 /// regions formed by removing all the live-through blocks from the live range.
    841 ///
    842 /// Returns false if the current live range is already compact, or if the
    843 /// compact regions would form single block regions anyway.
    844 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
    845   // Without any through blocks, the live range is already compact.
    846   if (!SA->getNumThroughBlocks())
    847     return false;
    848 
    849   // Compact regions don't correspond to any physreg.
    850   Cand.reset(IntfCache, 0);
    851 
    852   DEBUG(dbgs() << "Compact region bundles");
    853 
    854   // Use the spill placer to determine the live bundles. GrowRegion pretends
    855   // that all the through blocks have interference when PhysReg is unset.
    856   SpillPlacer->prepare(Cand.LiveBundles);
    857 
    858   // The static split cost will be zero since Cand.Intf reports no interference.
    859   float Cost;
    860   if (!addSplitConstraints(Cand.Intf, Cost)) {
    861     DEBUG(dbgs() << ", none.\n");
    862     return false;
    863   }
    864 
    865   growRegion(Cand);
    866   SpillPlacer->finish();
    867 
    868   if (!Cand.LiveBundles.any()) {
    869     DEBUG(dbgs() << ", none.\n");
    870     return false;
    871   }
    872 
    873   DEBUG({
    874     for (int i = Cand.LiveBundles.find_first(); i>=0;
    875          i = Cand.LiveBundles.find_next(i))
    876     dbgs() << " EB#" << i;
    877     dbgs() << ".\n";
    878   });
    879   return true;
    880 }
    881 
    882 /// calcSpillCost - Compute how expensive it would be to split the live range in
    883 /// SA around all use blocks instead of forming bundle regions.
    884 float RAGreedy::calcSpillCost() {
    885   float Cost = 0;
    886   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    887   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    888     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    889     unsigned Number = BI.MBB->getNumber();
    890     // We normally only need one spill instruction - a load or a store.
    891     Cost += SpillPlacer->getBlockFrequency(Number);
    892 
    893     // Unless the value is redefined in the block.
    894     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
    895       Cost += SpillPlacer->getBlockFrequency(Number);
    896   }
    897   return Cost;
    898 }
    899 
    900 /// calcGlobalSplitCost - Return the global split cost of following the split
    901 /// pattern in LiveBundles. This cost should be added to the local cost of the
    902 /// interference pattern in SplitConstraints.
    903 ///
    904 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
    905   float GlobalCost = 0;
    906   const BitVector &LiveBundles = Cand.LiveBundles;
    907   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    908   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    909     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    910     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    911     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    912     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    913     unsigned Ins = 0;
    914 
    915     if (BI.LiveIn)
    916       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    917     if (BI.LiveOut)
    918       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    919     if (Ins)
    920       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    921   }
    922 
    923   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    924     unsigned Number = Cand.ActiveBlocks[i];
    925     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    926     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    927     if (!RegIn && !RegOut)
    928       continue;
    929     if (RegIn && RegOut) {
    930       // We need double spill code if this block has interference.
    931       Cand.Intf.moveToBlock(Number);
    932       if (Cand.Intf.hasInterference())
    933         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
    934       continue;
    935     }
    936     // live-in / stack-out or stack-in live-out.
    937     GlobalCost += SpillPlacer->getBlockFrequency(Number);
    938   }
    939   return GlobalCost;
    940 }
    941 
    942 /// splitAroundRegion - Split the current live range around the regions
    943 /// determined by BundleCand and GlobalCand.
    944 ///
    945 /// Before calling this function, GlobalCand and BundleCand must be initialized
    946 /// so each bundle is assigned to a valid candidate, or NoCand for the
    947 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
    948 /// objects must be initialized for the current live range, and intervals
    949 /// created for the used candidates.
    950 ///
    951 /// @param LREdit    The LiveRangeEdit object handling the current split.
    952 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
    953 ///                  must appear in this list.
    954 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
    955                                  ArrayRef<unsigned> UsedCands) {
    956   // These are the intervals created for new global ranges. We may create more
    957   // intervals for local ranges.
    958   const unsigned NumGlobalIntvs = LREdit.size();
    959   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
    960   assert(NumGlobalIntvs && "No global intervals configured");
    961 
    962   // Isolate even single instructions when dealing with a proper sub-class.
    963   // That guarantees register class inflation for the stack interval because it
    964   // is all copies.
    965   unsigned Reg = SA->getParent().reg;
    966   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
    967 
    968   // First handle all the blocks with uses.
    969   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    970   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    971     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    972     unsigned Number = BI.MBB->getNumber();
    973     unsigned IntvIn = 0, IntvOut = 0;
    974     SlotIndex IntfIn, IntfOut;
    975     if (BI.LiveIn) {
    976       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
    977       if (CandIn != NoCand) {
    978         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
    979         IntvIn = Cand.IntvIdx;
    980         Cand.Intf.moveToBlock(Number);
    981         IntfIn = Cand.Intf.first();
    982       }
    983     }
    984     if (BI.LiveOut) {
    985       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
    986       if (CandOut != NoCand) {
    987         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
    988         IntvOut = Cand.IntvIdx;
    989         Cand.Intf.moveToBlock(Number);
    990         IntfOut = Cand.Intf.last();
    991       }
    992     }
    993 
    994     // Create separate intervals for isolated blocks with multiple uses.
    995     if (!IntvIn && !IntvOut) {
    996       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
    997       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
    998         SE->splitSingleBlock(BI);
    999       continue;
   1000     }
   1001 
   1002     if (IntvIn && IntvOut)
   1003       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1004     else if (IntvIn)
   1005       SE->splitRegInBlock(BI, IntvIn, IntfIn);
   1006     else
   1007       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
   1008   }
   1009 
   1010   // Handle live-through blocks. The relevant live-through blocks are stored in
   1011   // the ActiveBlocks list with each candidate. We need to filter out
   1012   // duplicates.
   1013   BitVector Todo = SA->getThroughBlocks();
   1014   for (unsigned c = 0; c != UsedCands.size(); ++c) {
   1015     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
   1016     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
   1017       unsigned Number = Blocks[i];
   1018       if (!Todo.test(Number))
   1019         continue;
   1020       Todo.reset(Number);
   1021 
   1022       unsigned IntvIn = 0, IntvOut = 0;
   1023       SlotIndex IntfIn, IntfOut;
   1024 
   1025       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
   1026       if (CandIn != NoCand) {
   1027         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
   1028         IntvIn = Cand.IntvIdx;
   1029         Cand.Intf.moveToBlock(Number);
   1030         IntfIn = Cand.Intf.first();
   1031       }
   1032 
   1033       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1034       if (CandOut != NoCand) {
   1035         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1036         IntvOut = Cand.IntvIdx;
   1037         Cand.Intf.moveToBlock(Number);
   1038         IntfOut = Cand.Intf.last();
   1039       }
   1040       if (!IntvIn && !IntvOut)
   1041         continue;
   1042       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1043     }
   1044   }
   1045 
   1046   ++NumGlobalSplits;
   1047 
   1048   SmallVector<unsigned, 8> IntvMap;
   1049   SE->finish(&IntvMap);
   1050   DebugVars->splitRegister(Reg, LREdit.regs());
   1051 
   1052   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1053   unsigned OrigBlocks = SA->getNumLiveBlocks();
   1054 
   1055   // Sort out the new intervals created by splitting. We get four kinds:
   1056   // - Remainder intervals should not be split again.
   1057   // - Candidate intervals can be assigned to Cand.PhysReg.
   1058   // - Block-local splits are candidates for local splitting.
   1059   // - DCE leftovers should go back on the queue.
   1060   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1061     LiveInterval &Reg = *LREdit.get(i);
   1062 
   1063     // Ignore old intervals from DCE.
   1064     if (getStage(Reg) != RS_New)
   1065       continue;
   1066 
   1067     // Remainder interval. Don't try splitting again, spill if it doesn't
   1068     // allocate.
   1069     if (IntvMap[i] == 0) {
   1070       setStage(Reg, RS_Spill);
   1071       continue;
   1072     }
   1073 
   1074     // Global intervals. Allow repeated splitting as long as the number of live
   1075     // blocks is strictly decreasing.
   1076     if (IntvMap[i] < NumGlobalIntvs) {
   1077       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
   1078         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
   1079                      << " blocks as original.\n");
   1080         // Don't allow repeated splitting as a safe guard against looping.
   1081         setStage(Reg, RS_Split2);
   1082       }
   1083       continue;
   1084     }
   1085 
   1086     // Other intervals are treated as new. This includes local intervals created
   1087     // for blocks with multiple uses, and anything created by DCE.
   1088   }
   1089 
   1090   if (VerifyEnabled)
   1091     MF->verify(this, "After splitting live range around region");
   1092 }
   1093 
   1094 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1095                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1096   unsigned NumCands = 0;
   1097   unsigned BestCand = NoCand;
   1098   float BestCost;
   1099   SmallVector<unsigned, 8> UsedCands;
   1100 
   1101   // Check if we can split this live range around a compact region.
   1102   bool HasCompact = calcCompactRegion(GlobalCand.front());
   1103   if (HasCompact) {
   1104     // Yes, keep GlobalCand[0] as the compact region candidate.
   1105     NumCands = 1;
   1106     BestCost = HUGE_VALF;
   1107   } else {
   1108     // No benefit from the compact region, our fallback will be per-block
   1109     // splitting. Make sure we find a solution that is cheaper than spilling.
   1110     BestCost = Hysteresis * calcSpillCost();
   1111     DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
   1112   }
   1113 
   1114   Order.rewind();
   1115   while (unsigned PhysReg = Order.next()) {
   1116     // Discard bad candidates before we run out of interference cache cursors.
   1117     // This will only affect register classes with a lot of registers (>32).
   1118     if (NumCands == IntfCache.getMaxCursors()) {
   1119       unsigned WorstCount = ~0u;
   1120       unsigned Worst = 0;
   1121       for (unsigned i = 0; i != NumCands; ++i) {
   1122         if (i == BestCand || !GlobalCand[i].PhysReg)
   1123           continue;
   1124         unsigned Count = GlobalCand[i].LiveBundles.count();
   1125         if (Count < WorstCount)
   1126           Worst = i, WorstCount = Count;
   1127       }
   1128       --NumCands;
   1129       GlobalCand[Worst] = GlobalCand[NumCands];
   1130       if (BestCand == NumCands)
   1131         BestCand = Worst;
   1132     }
   1133 
   1134     if (GlobalCand.size() <= NumCands)
   1135       GlobalCand.resize(NumCands+1);
   1136     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
   1137     Cand.reset(IntfCache, PhysReg);
   1138 
   1139     SpillPlacer->prepare(Cand.LiveBundles);
   1140     float Cost;
   1141     if (!addSplitConstraints(Cand.Intf, Cost)) {
   1142       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
   1143       continue;
   1144     }
   1145     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
   1146     if (Cost >= BestCost) {
   1147       DEBUG({
   1148         if (BestCand == NoCand)
   1149           dbgs() << " worse than no bundles\n";
   1150         else
   1151           dbgs() << " worse than "
   1152                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
   1153       });
   1154       continue;
   1155     }
   1156     growRegion(Cand);
   1157 
   1158     SpillPlacer->finish();
   1159 
   1160     // No live bundles, defer to splitSingleBlocks().
   1161     if (!Cand.LiveBundles.any()) {
   1162       DEBUG(dbgs() << " no bundles.\n");
   1163       continue;
   1164     }
   1165 
   1166     Cost += calcGlobalSplitCost(Cand);
   1167     DEBUG({
   1168       dbgs() << ", total = " << Cost << " with bundles";
   1169       for (int i = Cand.LiveBundles.find_first(); i>=0;
   1170            i = Cand.LiveBundles.find_next(i))
   1171         dbgs() << " EB#" << i;
   1172       dbgs() << ".\n";
   1173     });
   1174     if (Cost < BestCost) {
   1175       BestCand = NumCands;
   1176       BestCost = Hysteresis * Cost; // Prevent rounding effects.
   1177     }
   1178     ++NumCands;
   1179   }
   1180 
   1181   // No solutions found, fall back to single block splitting.
   1182   if (!HasCompact && BestCand == NoCand)
   1183     return 0;
   1184 
   1185   // Prepare split editor.
   1186   LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1187   SE->reset(LREdit, SplitSpillMode);
   1188 
   1189   // Assign all edge bundles to the preferred candidate, or NoCand.
   1190   BundleCand.assign(Bundles->getNumBundles(), NoCand);
   1191 
   1192   // Assign bundles for the best candidate region.
   1193   if (BestCand != NoCand) {
   1194     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
   1195     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
   1196       UsedCands.push_back(BestCand);
   1197       Cand.IntvIdx = SE->openIntv();
   1198       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
   1199                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
   1200       (void)B;
   1201     }
   1202   }
   1203 
   1204   // Assign bundles for the compact region.
   1205   if (HasCompact) {
   1206     GlobalSplitCandidate &Cand = GlobalCand.front();
   1207     assert(!Cand.PhysReg && "Compact region has no physreg");
   1208     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
   1209       UsedCands.push_back(0);
   1210       Cand.IntvIdx = SE->openIntv();
   1211       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
   1212                    << Cand.IntvIdx << ".\n");
   1213       (void)B;
   1214     }
   1215   }
   1216 
   1217   splitAroundRegion(LREdit, UsedCands);
   1218   return 0;
   1219 }
   1220 
   1221 
   1222 //===----------------------------------------------------------------------===//
   1223 //                            Per-Block Splitting
   1224 //===----------------------------------------------------------------------===//
   1225 
   1226 /// tryBlockSplit - Split a global live range around every block with uses. This
   1227 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
   1228 /// they don't allocate.
   1229 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1230                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1231   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
   1232   unsigned Reg = VirtReg.reg;
   1233   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
   1234   LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1235   SE->reset(LREdit, SplitSpillMode);
   1236   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1237   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1238     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1239     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1240       SE->splitSingleBlock(BI);
   1241   }
   1242   // No blocks were split.
   1243   if (LREdit.empty())
   1244     return 0;
   1245 
   1246   // We did split for some blocks.
   1247   SmallVector<unsigned, 8> IntvMap;
   1248   SE->finish(&IntvMap);
   1249 
   1250   // Tell LiveDebugVariables about the new ranges.
   1251   DebugVars->splitRegister(Reg, LREdit.regs());
   1252 
   1253   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1254 
   1255   // Sort out the new intervals created by splitting. The remainder interval
   1256   // goes straight to spilling, the new local ranges get to stay RS_New.
   1257   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1258     LiveInterval &LI = *LREdit.get(i);
   1259     if (getStage(LI) == RS_New && IntvMap[i] == 0)
   1260       setStage(LI, RS_Spill);
   1261   }
   1262 
   1263   if (VerifyEnabled)
   1264     MF->verify(this, "After splitting live range around basic blocks");
   1265   return 0;
   1266 }
   1267 
   1268 //===----------------------------------------------------------------------===//
   1269 //                             Local Splitting
   1270 //===----------------------------------------------------------------------===//
   1271 
   1272 
   1273 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
   1274 /// in order to use PhysReg between two entries in SA->UseSlots.
   1275 ///
   1276 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
   1277 ///
   1278 void RAGreedy::calcGapWeights(unsigned PhysReg,
   1279                               SmallVectorImpl<float> &GapWeight) {
   1280   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1281   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1282   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1283   const unsigned NumGaps = Uses.size()-1;
   1284 
   1285   // Start and end points for the interference check.
   1286   SlotIndex StartIdx =
   1287     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
   1288   SlotIndex StopIdx =
   1289     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
   1290 
   1291   GapWeight.assign(NumGaps, 0.0f);
   1292 
   1293   // Add interference from each overlapping register.
   1294   for (const uint16_t *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
   1295     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
   1296            .checkInterference())
   1297       continue;
   1298 
   1299     // We know that VirtReg is a continuous interval from FirstInstr to
   1300     // LastInstr, so we don't need InterferenceQuery.
   1301     //
   1302     // Interference that overlaps an instruction is counted in both gaps
   1303     // surrounding the instruction. The exception is interference before
   1304     // StartIdx and after StopIdx.
   1305     //
   1306     LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx);
   1307     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
   1308       // Skip the gaps before IntI.
   1309       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
   1310         if (++Gap == NumGaps)
   1311           break;
   1312       if (Gap == NumGaps)
   1313         break;
   1314 
   1315       // Update the gaps covered by IntI.
   1316       const float weight = IntI.value()->weight;
   1317       for (; Gap != NumGaps; ++Gap) {
   1318         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
   1319         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
   1320           break;
   1321       }
   1322       if (Gap == NumGaps)
   1323         break;
   1324     }
   1325   }
   1326 }
   1327 
   1328 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
   1329 /// basic block.
   1330 ///
   1331 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1332                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1333   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1334   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1335 
   1336   // Note that it is possible to have an interval that is live-in or live-out
   1337   // while only covering a single block - A phi-def can use undef values from
   1338   // predecessors, and the block could be a single-block loop.
   1339   // We don't bother doing anything clever about such a case, we simply assume
   1340   // that the interval is continuous from FirstInstr to LastInstr. We should
   1341   // make sure that we don't do anything illegal to such an interval, though.
   1342 
   1343   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1344   if (Uses.size() <= 2)
   1345     return 0;
   1346   const unsigned NumGaps = Uses.size()-1;
   1347 
   1348   DEBUG({
   1349     dbgs() << "tryLocalSplit: ";
   1350     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
   1351       dbgs() << ' ' << Uses[i];
   1352     dbgs() << '\n';
   1353   });
   1354 
   1355   // If VirtReg is live across any register mask operands, compute a list of
   1356   // gaps with register masks.
   1357   SmallVector<unsigned, 8> RegMaskGaps;
   1358   if (!UsableRegs.empty()) {
   1359     // Get regmask slots for the whole block.
   1360     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
   1361     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
   1362     // Constrain to VirtReg's live range.
   1363     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
   1364                                    Uses.front().getRegSlot()) - RMS.begin();
   1365     unsigned re = RMS.size();
   1366     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
   1367       // Look for Uses[i] <= RMS <= Uses[i+1].
   1368       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
   1369       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
   1370         continue;
   1371       // Skip a regmask on the same instruction as the last use. It doesn't
   1372       // overlap the live range.
   1373       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
   1374         break;
   1375       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
   1376       RegMaskGaps.push_back(i);
   1377       // Advance ri to the next gap. A regmask on one of the uses counts in
   1378       // both gaps.
   1379       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
   1380         ++ri;
   1381     }
   1382     DEBUG(dbgs() << '\n');
   1383   }
   1384 
   1385   // Since we allow local split results to be split again, there is a risk of
   1386   // creating infinite loops. It is tempting to require that the new live
   1387   // ranges have less instructions than the original. That would guarantee
   1388   // convergence, but it is too strict. A live range with 3 instructions can be
   1389   // split 2+3 (including the COPY), and we want to allow that.
   1390   //
   1391   // Instead we use these rules:
   1392   //
   1393   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
   1394   //    noop split, of course).
   1395   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
   1396   //    the new ranges must have fewer instructions than before the split.
   1397   // 3. New ranges with the same number of instructions are marked RS_Split2,
   1398   //    smaller ranges are marked RS_New.
   1399   //
   1400   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
   1401   // excessive splitting and infinite loops.
   1402   //
   1403   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
   1404 
   1405   // Best split candidate.
   1406   unsigned BestBefore = NumGaps;
   1407   unsigned BestAfter = 0;
   1408   float BestDiff = 0;
   1409 
   1410   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
   1411   SmallVector<float, 8> GapWeight;
   1412 
   1413   Order.rewind();
   1414   while (unsigned PhysReg = Order.next()) {
   1415     // Keep track of the largest spill weight that would need to be evicted in
   1416     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
   1417     calcGapWeights(PhysReg, GapWeight);
   1418 
   1419     // Remove any gaps with regmask clobbers.
   1420     if (clobberedByRegMask(PhysReg))
   1421       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
   1422         GapWeight[RegMaskGaps[i]] = HUGE_VALF;
   1423 
   1424     // Try to find the best sequence of gaps to close.
   1425     // The new spill weight must be larger than any gap interference.
   1426 
   1427     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
   1428     unsigned SplitBefore = 0, SplitAfter = 1;
   1429 
   1430     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
   1431     // It is the spill weight that needs to be evicted.
   1432     float MaxGap = GapWeight[0];
   1433 
   1434     for (;;) {
   1435       // Live before/after split?
   1436       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
   1437       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
   1438 
   1439       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
   1440                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
   1441                    << " i=" << MaxGap);
   1442 
   1443       // Stop before the interval gets so big we wouldn't be making progress.
   1444       if (!LiveBefore && !LiveAfter) {
   1445         DEBUG(dbgs() << " all\n");
   1446         break;
   1447       }
   1448       // Should the interval be extended or shrunk?
   1449       bool Shrink = true;
   1450 
   1451       // How many gaps would the new range have?
   1452       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
   1453 
   1454       // Legally, without causing looping?
   1455       bool Legal = !ProgressRequired || NewGaps < NumGaps;
   1456 
   1457       if (Legal && MaxGap < HUGE_VALF) {
   1458         // Estimate the new spill weight. Each instruction reads or writes the
   1459         // register. Conservatively assume there are no read-modify-write
   1460         // instructions.
   1461         //
   1462         // Try to guess the size of the new interval.
   1463         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
   1464                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
   1465                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
   1466         // Would this split be possible to allocate?
   1467         // Never allocate all gaps, we wouldn't be making progress.
   1468         DEBUG(dbgs() << " w=" << EstWeight);
   1469         if (EstWeight * Hysteresis >= MaxGap) {
   1470           Shrink = false;
   1471           float Diff = EstWeight - MaxGap;
   1472           if (Diff > BestDiff) {
   1473             DEBUG(dbgs() << " (best)");
   1474             BestDiff = Hysteresis * Diff;
   1475             BestBefore = SplitBefore;
   1476             BestAfter = SplitAfter;
   1477           }
   1478         }
   1479       }
   1480 
   1481       // Try to shrink.
   1482       if (Shrink) {
   1483         if (++SplitBefore < SplitAfter) {
   1484           DEBUG(dbgs() << " shrink\n");
   1485           // Recompute the max when necessary.
   1486           if (GapWeight[SplitBefore - 1] >= MaxGap) {
   1487             MaxGap = GapWeight[SplitBefore];
   1488             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
   1489               MaxGap = std::max(MaxGap, GapWeight[i]);
   1490           }
   1491           continue;
   1492         }
   1493         MaxGap = 0;
   1494       }
   1495 
   1496       // Try to extend the interval.
   1497       if (SplitAfter >= NumGaps) {
   1498         DEBUG(dbgs() << " end\n");
   1499         break;
   1500       }
   1501 
   1502       DEBUG(dbgs() << " extend\n");
   1503       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
   1504     }
   1505   }
   1506 
   1507   // Didn't find any candidates?
   1508   if (BestBefore == NumGaps)
   1509     return 0;
   1510 
   1511   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
   1512                << '-' << Uses[BestAfter] << ", " << BestDiff
   1513                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
   1514 
   1515   LiveRangeEdit LREdit(VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1516   SE->reset(LREdit);
   1517 
   1518   SE->openIntv();
   1519   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
   1520   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
   1521   SE->useIntv(SegStart, SegStop);
   1522   SmallVector<unsigned, 8> IntvMap;
   1523   SE->finish(&IntvMap);
   1524   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
   1525 
   1526   // If the new range has the same number of instructions as before, mark it as
   1527   // RS_Split2 so the next split will be forced to make progress. Otherwise,
   1528   // leave the new intervals as RS_New so they can compete.
   1529   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
   1530   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
   1531   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
   1532   if (NewGaps >= NumGaps) {
   1533     DEBUG(dbgs() << "Tagging non-progress ranges: ");
   1534     assert(!ProgressRequired && "Didn't make progress when it was required.");
   1535     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
   1536       if (IntvMap[i] == 1) {
   1537         setStage(*LREdit.get(i), RS_Split2);
   1538         DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
   1539       }
   1540     DEBUG(dbgs() << '\n');
   1541   }
   1542   ++NumLocalSplits;
   1543 
   1544   return 0;
   1545 }
   1546 
   1547 //===----------------------------------------------------------------------===//
   1548 //                          Live Range Splitting
   1549 //===----------------------------------------------------------------------===//
   1550 
   1551 /// trySplit - Try to split VirtReg or one of its interferences, making it
   1552 /// assignable.
   1553 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
   1554 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1555                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
   1556   // Ranges must be Split2 or less.
   1557   if (getStage(VirtReg) >= RS_Spill)
   1558     return 0;
   1559 
   1560   // Local intervals are handled separately.
   1561   if (LIS->intervalIsInOneMBB(VirtReg)) {
   1562     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
   1563     SA->analyze(&VirtReg);
   1564     return tryLocalSplit(VirtReg, Order, NewVRegs);
   1565   }
   1566 
   1567   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
   1568 
   1569   SA->analyze(&VirtReg);
   1570 
   1571   // FIXME: SplitAnalysis may repair broken live ranges coming from the
   1572   // coalescer. That may cause the range to become allocatable which means that
   1573   // tryRegionSplit won't be making progress. This check should be replaced with
   1574   // an assertion when the coalescer is fixed.
   1575   if (SA->didRepairRange()) {
   1576     // VirtReg has changed, so all cached queries are invalid.
   1577     invalidateVirtRegs();
   1578     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1579       return PhysReg;
   1580   }
   1581 
   1582   // First try to split around a region spanning multiple blocks. RS_Split2
   1583   // ranges already made dubious progress with region splitting, so they go
   1584   // straight to single block splitting.
   1585   if (getStage(VirtReg) < RS_Split2) {
   1586     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
   1587     if (PhysReg || !NewVRegs.empty())
   1588       return PhysReg;
   1589   }
   1590 
   1591   // Then isolate blocks.
   1592   return tryBlockSplit(VirtReg, Order, NewVRegs);
   1593 }
   1594 
   1595 
   1596 //===----------------------------------------------------------------------===//
   1597 //                            Main Entry Point
   1598 //===----------------------------------------------------------------------===//
   1599 
   1600 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
   1601                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1602   // Check if VirtReg is live across any calls.
   1603   UsableRegs.clear();
   1604   if (LIS->checkRegMaskInterference(VirtReg, UsableRegs))
   1605     DEBUG(dbgs() << "Live across regmasks.\n");
   1606 
   1607   // First try assigning a free register.
   1608   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
   1609   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1610     return PhysReg;
   1611 
   1612   LiveRangeStage Stage = getStage(VirtReg);
   1613   DEBUG(dbgs() << StageName[Stage]
   1614                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
   1615 
   1616   // Try to evict a less worthy live range, but only for ranges from the primary
   1617   // queue. The RS_Split ranges already failed to do this, and they should not
   1618   // get a second chance until they have been split.
   1619   if (Stage != RS_Split)
   1620     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
   1621       return PhysReg;
   1622 
   1623   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
   1624 
   1625   // The first time we see a live range, don't try to split or spill.
   1626   // Wait until the second time, when all smaller ranges have been allocated.
   1627   // This gives a better picture of the interference to split around.
   1628   if (Stage < RS_Split) {
   1629     setStage(VirtReg, RS_Split);
   1630     DEBUG(dbgs() << "wait for second round\n");
   1631     NewVRegs.push_back(&VirtReg);
   1632     return 0;
   1633   }
   1634 
   1635   // If we couldn't allocate a register from spilling, there is probably some
   1636   // invalid inline assembly. The base class wil report it.
   1637   if (Stage >= RS_Done || !VirtReg.isSpillable())
   1638     return ~0u;
   1639 
   1640   // Try splitting VirtReg or interferences.
   1641   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
   1642   if (PhysReg || !NewVRegs.empty())
   1643     return PhysReg;
   1644 
   1645   // Finally spill VirtReg itself.
   1646   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
   1647   LiveRangeEdit LRE(VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1648   spiller().spill(LRE);
   1649   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
   1650 
   1651   if (VerifyEnabled)
   1652     MF->verify(this, "After spilling");
   1653 
   1654   // The live virtual register requesting allocation was spilled, so tell
   1655   // the caller not to allocate anything during this round.
   1656   return 0;
   1657 }
   1658 
   1659 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
   1660   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
   1661                << "********** Function: "
   1662                << ((Value*)mf.getFunction())->getName() << '\n');
   1663 
   1664   MF = &mf;
   1665   if (VerifyEnabled)
   1666     MF->verify(this, "Before greedy register allocator");
   1667 
   1668   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
   1669   Indexes = &getAnalysis<SlotIndexes>();
   1670   DomTree = &getAnalysis<MachineDominatorTree>();
   1671   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
   1672   Loops = &getAnalysis<MachineLoopInfo>();
   1673   Bundles = &getAnalysis<EdgeBundles>();
   1674   SpillPlacer = &getAnalysis<SpillPlacement>();
   1675   DebugVars = &getAnalysis<LiveDebugVariables>();
   1676 
   1677   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
   1678   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
   1679   ExtraRegInfo.clear();
   1680   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1681   NextCascade = 1;
   1682   IntfCache.init(MF, &getLiveUnion(0), Indexes, LIS, TRI);
   1683   GlobalCand.resize(32);  // This will grow as needed.
   1684 
   1685   allocatePhysRegs();
   1686   addMBBLiveIns(MF);
   1687   LIS->addKillFlags();
   1688 
   1689   // Run rewriter
   1690   {
   1691     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
   1692     VRM->rewrite(Indexes);
   1693   }
   1694 
   1695   // Write out new DBG_VALUE instructions.
   1696   {
   1697     NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
   1698     DebugVars->emitDebugValues(VRM);
   1699   }
   1700 
   1701   // All machine operands and other references to virtual registers have been
   1702   // replaced. Remove the virtual registers and release all the transient data.
   1703   VRM->clearAllVirt();
   1704   MRI->clearVirtRegs();
   1705   releaseMemory();
   1706 
   1707   return true;
   1708 }
   1709