Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/MC/MCRegisterInfo.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/ValueTypes.h"
     22 #include "llvm/ADT/ArrayRef.h"
     23 #include "llvm/CallingConv.h"
     24 #include <cassert>
     25 #include <functional>
     26 
     27 namespace llvm {
     28 
     29 class BitVector;
     30 class MachineFunction;
     31 class RegScavenger;
     32 template<class T> class SmallVectorImpl;
     33 class raw_ostream;
     34 
     35 class TargetRegisterClass {
     36 public:
     37   typedef const uint16_t* iterator;
     38   typedef const uint16_t* const_iterator;
     39   typedef const MVT::SimpleValueType* vt_iterator;
     40   typedef const TargetRegisterClass* const * sc_iterator;
     41 
     42   // Instance variables filled by tablegen, do not use!
     43   const MCRegisterClass *MC;
     44   const vt_iterator VTs;
     45   const unsigned *SubClassMask;
     46   const sc_iterator SuperClasses;
     47   const sc_iterator SuperRegClasses;
     48   ArrayRef<uint16_t> (*OrderFunc)(const MachineFunction&);
     49 
     50   /// getID() - Return the register class ID number.
     51   ///
     52   unsigned getID() const { return MC->getID(); }
     53 
     54   /// getName() - Return the register class name for debugging.
     55   ///
     56   const char *getName() const { return MC->getName(); }
     57 
     58   /// begin/end - Return all of the registers in this class.
     59   ///
     60   iterator       begin() const { return MC->begin(); }
     61   iterator         end() const { return MC->end(); }
     62 
     63   /// getNumRegs - Return the number of registers in this class.
     64   ///
     65   unsigned getNumRegs() const { return MC->getNumRegs(); }
     66 
     67   /// getRegister - Return the specified register in the class.
     68   ///
     69   unsigned getRegister(unsigned i) const {
     70     return MC->getRegister(i);
     71   }
     72 
     73   /// contains - Return true if the specified register is included in this
     74   /// register class.  This does not include virtual registers.
     75   bool contains(unsigned Reg) const {
     76     return MC->contains(Reg);
     77   }
     78 
     79   /// contains - Return true if both registers are in this class.
     80   bool contains(unsigned Reg1, unsigned Reg2) const {
     81     return MC->contains(Reg1, Reg2);
     82   }
     83 
     84   /// getSize - Return the size of the register in bytes, which is also the size
     85   /// of a stack slot allocated to hold a spilled copy of this register.
     86   unsigned getSize() const { return MC->getSize(); }
     87 
     88   /// getAlignment - Return the minimum required alignment for a register of
     89   /// this class.
     90   unsigned getAlignment() const { return MC->getAlignment(); }
     91 
     92   /// getCopyCost - Return the cost of copying a value between two registers in
     93   /// this class. A negative number means the register class is very expensive
     94   /// to copy e.g. status flag register classes.
     95   int getCopyCost() const { return MC->getCopyCost(); }
     96 
     97   /// isAllocatable - Return true if this register class may be used to create
     98   /// virtual registers.
     99   bool isAllocatable() const { return MC->isAllocatable(); }
    100 
    101   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
    102   ///
    103   bool hasType(EVT vt) const {
    104     for(int i = 0; VTs[i] != MVT::Other; ++i)
    105       if (EVT(VTs[i]) == vt)
    106         return true;
    107     return false;
    108   }
    109 
    110   /// vt_begin / vt_end - Loop over all of the value types that can be
    111   /// represented by values in this register class.
    112   vt_iterator vt_begin() const {
    113     return VTs;
    114   }
    115 
    116   vt_iterator vt_end() const {
    117     vt_iterator I = VTs;
    118     while (*I != MVT::Other) ++I;
    119     return I;
    120   }
    121 
    122   /// superregclasses_begin / superregclasses_end - Loop over all of
    123   /// the superreg register classes of this register class.
    124   sc_iterator superregclasses_begin() const {
    125     return SuperRegClasses;
    126   }
    127 
    128   sc_iterator superregclasses_end() const {
    129     sc_iterator I = SuperRegClasses;
    130     while (*I != NULL) ++I;
    131     return I;
    132   }
    133 
    134   /// hasSubClass - return true if the specified TargetRegisterClass
    135   /// is a proper sub-class of this TargetRegisterClass.
    136   bool hasSubClass(const TargetRegisterClass *RC) const {
    137     return RC != this && hasSubClassEq(RC);
    138   }
    139 
    140   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
    141   /// class.
    142   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    143     unsigned ID = RC->getID();
    144     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    145   }
    146 
    147   /// hasSuperClass - return true if the specified TargetRegisterClass is a
    148   /// proper super-class of this TargetRegisterClass.
    149   bool hasSuperClass(const TargetRegisterClass *RC) const {
    150     return RC->hasSubClass(this);
    151   }
    152 
    153   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
    154   /// class.
    155   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    156     return RC->hasSubClassEq(this);
    157   }
    158 
    159   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
    160   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
    161   /// use it.
    162   const uint32_t *getSubClassMask() const {
    163     return SubClassMask;
    164   }
    165 
    166   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
    167   /// classes are ordered by ID which is also a topological ordering from large
    168   /// to small classes.  The list does NOT include the current class.
    169   sc_iterator getSuperClasses() const {
    170     return SuperClasses;
    171   }
    172 
    173   /// isASubClass - return true if this TargetRegisterClass is a subset
    174   /// class of at least one other TargetRegisterClass.
    175   bool isASubClass() const {
    176     return SuperClasses[0] != 0;
    177   }
    178 
    179   /// getRawAllocationOrder - Returns the preferred order for allocating
    180   /// registers from this register class in MF. The raw order comes directly
    181   /// from the .td file and may include reserved registers that are not
    182   /// allocatable. Register allocators should also make sure to allocate
    183   /// callee-saved registers only after all the volatiles are used. The
    184   /// RegisterClassInfo class provides filtered allocation orders with
    185   /// callee-saved registers moved to the end.
    186   ///
    187   /// The MachineFunction argument can be used to tune the allocatable
    188   /// registers based on the characteristics of the function, subtarget, or
    189   /// other criteria.
    190   ///
    191   /// By default, this method returns all registers in the class.
    192   ///
    193   ArrayRef<uint16_t> getRawAllocationOrder(const MachineFunction &MF) const {
    194     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    195   }
    196 };
    197 
    198 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
    199 /// registers. These are used by codegen, not by MC.
    200 struct TargetRegisterInfoDesc {
    201   unsigned CostPerUse;          // Extra cost of instructions using register.
    202   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    203 };
    204 
    205 /// Each TargetRegisterClass has a per register weight, and weight
    206 /// limit which must be less than the limits of its pressure sets.
    207 struct RegClassWeight {
    208   unsigned RegWeight;
    209   unsigned WeightLimit;
    210 };
    211 
    212 /// TargetRegisterInfo base class - We assume that the target defines a static
    213 /// array of TargetRegisterDesc objects that represent all of the machine
    214 /// registers that the target has.  As such, we simply have to track a pointer
    215 /// to this array so that we can turn register number into a register
    216 /// descriptor.
    217 ///
    218 class TargetRegisterInfo : public MCRegisterInfo {
    219 public:
    220   typedef const TargetRegisterClass * const * regclass_iterator;
    221 private:
    222   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    223   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    224   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    225 
    226 protected:
    227   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    228                      regclass_iterator RegClassBegin,
    229                      regclass_iterator RegClassEnd,
    230                      const char *const *subregindexnames);
    231   virtual ~TargetRegisterInfo();
    232 public:
    233 
    234   // Register numbers can represent physical registers, virtual registers, and
    235   // sometimes stack slots. The unsigned values are divided into these ranges:
    236   //
    237   //   0           Not a register, can be used as a sentinel.
    238   //   [1;2^30)    Physical registers assigned by TableGen.
    239   //   [2^30;2^31) Stack slots. (Rarely used.)
    240   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    241   //
    242   // Further sentinels can be allocated from the small negative integers.
    243   // DenseMapInfo<unsigned> uses -1u and -2u.
    244 
    245   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    246   /// frame index in a variable that normally holds a register. isStackSlot()
    247   /// returns true if Reg is in the range used for stack slots.
    248   ///
    249   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    250   /// slots, so if a variable may contains a stack slot, always check
    251   /// isStackSlot() first.
    252   ///
    253   static bool isStackSlot(unsigned Reg) {
    254     return int(Reg) >= (1 << 30);
    255   }
    256 
    257   /// stackSlot2Index - Compute the frame index from a register value
    258   /// representing a stack slot.
    259   static int stackSlot2Index(unsigned Reg) {
    260     assert(isStackSlot(Reg) && "Not a stack slot");
    261     return int(Reg - (1u << 30));
    262   }
    263 
    264   /// index2StackSlot - Convert a non-negative frame index to a stack slot
    265   /// register value.
    266   static unsigned index2StackSlot(int FI) {
    267     assert(FI >= 0 && "Cannot hold a negative frame index.");
    268     return FI + (1u << 30);
    269   }
    270 
    271   /// isPhysicalRegister - Return true if the specified register number is in
    272   /// the physical register namespace.
    273   static bool isPhysicalRegister(unsigned Reg) {
    274     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    275     return int(Reg) > 0;
    276   }
    277 
    278   /// isVirtualRegister - Return true if the specified register number is in
    279   /// the virtual register namespace.
    280   static bool isVirtualRegister(unsigned Reg) {
    281     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    282     return int(Reg) < 0;
    283   }
    284 
    285   /// virtReg2Index - Convert a virtual register number to a 0-based index.
    286   /// The first virtual register in a function will get the index 0.
    287   static unsigned virtReg2Index(unsigned Reg) {
    288     assert(isVirtualRegister(Reg) && "Not a virtual register");
    289     return Reg & ~(1u << 31);
    290   }
    291 
    292   /// index2VirtReg - Convert a 0-based index to a virtual register number.
    293   /// This is the inverse operation of VirtReg2IndexFunctor below.
    294   static unsigned index2VirtReg(unsigned Index) {
    295     return Index | (1u << 31);
    296   }
    297 
    298   /// getMinimalPhysRegClass - Returns the Register Class of a physical
    299   /// register of the given type, picking the most sub register class of
    300   /// the right type that contains this physreg.
    301   const TargetRegisterClass *
    302     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
    303 
    304   /// getAllocatableSet - Returns a bitset indexed by register number
    305   /// indicating if a register is allocatable or not. If a register class is
    306   /// specified, returns the subset for the class.
    307   BitVector getAllocatableSet(const MachineFunction &MF,
    308                               const TargetRegisterClass *RC = NULL) const;
    309 
    310   /// getCostPerUse - Return the additional cost of using this register instead
    311   /// of other registers in its class.
    312   unsigned getCostPerUse(unsigned RegNo) const {
    313     return InfoDesc[RegNo].CostPerUse;
    314   }
    315 
    316   /// isInAllocatableClass - Return true if the register is in the allocation
    317   /// of any register class.
    318   bool isInAllocatableClass(unsigned RegNo) const {
    319     return InfoDesc[RegNo].inAllocatableClass;
    320   }
    321 
    322   /// getSubRegIndexName - Return the human-readable symbolic target-specific
    323   /// name for the specified SubRegIndex.
    324   const char *getSubRegIndexName(unsigned SubIdx) const {
    325     assert(SubIdx && "This is not a subregister index");
    326     return SubRegIndexNames[SubIdx-1];
    327   }
    328 
    329   /// regsOverlap - Returns true if the two registers are equal or alias each
    330   /// other. The registers may be virtual register.
    331   bool regsOverlap(unsigned regA, unsigned regB) const {
    332     if (regA == regB) return true;
    333     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    334       return false;
    335     for (const uint16_t *regList = getOverlaps(regA)+1; *regList; ++regList) {
    336       if (*regList == regB) return true;
    337     }
    338     return false;
    339   }
    340 
    341   /// isSubRegister - Returns true if regB is a sub-register of regA.
    342   ///
    343   bool isSubRegister(unsigned regA, unsigned regB) const {
    344     return isSuperRegister(regB, regA);
    345   }
    346 
    347   /// isSuperRegister - Returns true if regB is a super-register of regA.
    348   ///
    349   bool isSuperRegister(unsigned regA, unsigned regB) const {
    350     for (const uint16_t *regList = getSuperRegisters(regA); *regList;++regList){
    351       if (*regList == regB) return true;
    352     }
    353     return false;
    354   }
    355 
    356   /// getCalleeSavedRegs - Return a null-terminated list of all of the
    357   /// callee saved registers on this target. The register should be in the
    358   /// order of desired callee-save stack frame offset. The first register is
    359   /// closest to the incoming stack pointer if stack grows down, and vice versa.
    360   ///
    361   virtual const uint16_t* getCalleeSavedRegs(const MachineFunction *MF = 0)
    362                                                                       const = 0;
    363 
    364   /// getCallPreservedMask - Return a mask of call-preserved registers for the
    365   /// given calling convention on the current sub-target.  The mask should
    366   /// include all call-preserved aliases.  This is used by the register
    367   /// allocator to determine which registers can be live across a call.
    368   ///
    369   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    370   /// A set bit indicates that all bits of the corresponding register are
    371   /// preserved across the function call.  The bit mask is expected to be
    372   /// sub-register complete, i.e. if A is preserved, so are all its
    373   /// sub-registers.
    374   ///
    375   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    376   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    377   ///
    378   /// A NULL pointer means that no register mask will be used, and call
    379   /// instructions should use implicit-def operands to indicate call clobbered
    380   /// registers.
    381   ///
    382   virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
    383     // The default mask clobbers everything.  All targets should override.
    384     return 0;
    385   }
    386 
    387   /// getReservedRegs - Returns a bitset indexed by physical register number
    388   /// indicating if a register is a special register that has particular uses
    389   /// and should be considered unavailable at all times, e.g. SP, RA. This is
    390   /// used by register scavenger to determine what registers are free.
    391   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    392 
    393   /// getMatchingSuperReg - Return a super-register of the specified register
    394   /// Reg so its sub-register of index SubIdx is Reg.
    395   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    396                                const TargetRegisterClass *RC) const {
    397     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    398   }
    399 
    400   /// canCombineSubRegIndices - Given a register class and a list of
    401   /// subregister indices, return true if it's possible to combine the
    402   /// subregister indices into one that corresponds to a larger
    403   /// subregister. Return the new subregister index by reference. Note the
    404   /// new index may be zero if the given subregisters can be combined to
    405   /// form the whole register.
    406   virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
    407                                        SmallVectorImpl<unsigned> &SubIndices,
    408                                        unsigned &NewSubIdx) const {
    409     return 0;
    410   }
    411 
    412   /// getMatchingSuperRegClass - Return a subclass of the specified register
    413   /// class A so that each register in it has a sub-register of the
    414   /// specified sub-register index which is in the specified register class B.
    415   ///
    416   /// TableGen will synthesize missing A sub-classes.
    417   virtual const TargetRegisterClass *
    418   getMatchingSuperRegClass(const TargetRegisterClass *A,
    419                            const TargetRegisterClass *B, unsigned Idx) const =0;
    420 
    421   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
    422   /// supports the sub-register index Idx.
    423   /// If no such sub-class exists, return NULL.
    424   /// If all registers in RC already have an Idx sub-register, return RC.
    425   ///
    426   /// TableGen generates a version of this function that is good enough in most
    427   /// cases.  Targets can override if they have constraints that TableGen
    428   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    429   /// supported by the full GR32 register class in 64-bit mode, but only by the
    430   /// GR32_ABCD regiister class in 32-bit mode.
    431   ///
    432   /// TableGen will synthesize missing RC sub-classes.
    433   virtual const TargetRegisterClass *
    434   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
    435 
    436   /// composeSubRegIndices - Return the subregister index you get from composing
    437   /// two subregister indices.
    438   ///
    439   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    440   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    441   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    442   /// b, composeSubRegIndices doesn't tell you.
    443   ///
    444   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    445   /// ssub_0:S0 - ssub_3:S3 subregs.
    446   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    447   ///
    448   virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    449     // This default implementation is correct for most targets.
    450     return b;
    451   }
    452 
    453   //===--------------------------------------------------------------------===//
    454   // Register Class Information
    455   //
    456 
    457   /// Register class iterators
    458   ///
    459   regclass_iterator regclass_begin() const { return RegClassBegin; }
    460   regclass_iterator regclass_end() const { return RegClassEnd; }
    461 
    462   unsigned getNumRegClasses() const {
    463     return (unsigned)(regclass_end()-regclass_begin());
    464   }
    465 
    466   /// getRegClass - Returns the register class associated with the enumeration
    467   /// value.  See class MCOperandInfo.
    468   const TargetRegisterClass *getRegClass(unsigned i) const {
    469     assert(i < getNumRegClasses() && "Register Class ID out of range");
    470     return RegClassBegin[i];
    471   }
    472 
    473   /// getCommonSubClass - find the largest common subclass of A and B. Return
    474   /// NULL if there is no common subclass.
    475   const TargetRegisterClass *
    476   getCommonSubClass(const TargetRegisterClass *A,
    477                     const TargetRegisterClass *B) const;
    478 
    479   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
    480   /// values.  If a target supports multiple different pointer register classes,
    481   /// kind specifies which one is indicated.
    482   virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
    483     llvm_unreachable("Target didn't implement getPointerRegClass!");
    484   }
    485 
    486   /// getCrossCopyRegClass - Returns a legal register class to copy a register
    487   /// in the specified class to or from. If it is possible to copy the register
    488   /// directly without using a cross register class copy, return the specified
    489   /// RC. Returns NULL if it is not possible to copy between a two registers of
    490   /// the specified class.
    491   virtual const TargetRegisterClass *
    492   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    493     return RC;
    494   }
    495 
    496   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
    497   /// legal to use in the current sub-target and has the same spill size.
    498   /// The returned register class can be used to create virtual registers which
    499   /// means that all its registers can be copied and spilled.
    500   virtual const TargetRegisterClass*
    501   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
    502     /// The default implementation is very conservative and doesn't allow the
    503     /// register allocator to inflate register classes.
    504     return RC;
    505   }
    506 
    507   /// getRegPressureLimit - Return the register pressure "high water mark" for
    508   /// the specific register class. The scheduler is in high register pressure
    509   /// mode (for the specific register class) if it goes over the limit.
    510   ///
    511   /// Note: this is the old register pressure model that relies on a manually
    512   /// specified representative register class per value type.
    513   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    514                                        MachineFunction &MF) const {
    515     return 0;
    516   }
    517 
    518   /// Get the weight in units of pressure for this register class.
    519   virtual const RegClassWeight &getRegClassWeight(
    520     const TargetRegisterClass *RC) const = 0;
    521 
    522   /// Get the number of dimensions of register pressure.
    523   virtual unsigned getNumRegPressureSets() const = 0;
    524 
    525   /// Get the register unit pressure limit for this dimension.
    526   /// This limit must be adjusted dynamically for reserved registers.
    527   virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
    528 
    529   /// Get the dimensions of register pressure impacted by this register class.
    530   /// Returns a -1 terminated array of pressure set IDs.
    531   virtual const int *getRegClassPressureSets(
    532     const TargetRegisterClass *RC) const = 0;
    533 
    534   /// getRawAllocationOrder - Returns the register allocation order for a
    535   /// specified register class with a target-dependent hint. The returned list
    536   /// may contain reserved registers that cannot be allocated.
    537   ///
    538   /// Register allocators need only call this function to resolve
    539   /// target-dependent hints, but it should work without hinting as well.
    540   virtual ArrayRef<uint16_t>
    541   getRawAllocationOrder(const TargetRegisterClass *RC,
    542                         unsigned HintType, unsigned HintReg,
    543                         const MachineFunction &MF) const {
    544     return RC->getRawAllocationOrder(MF);
    545   }
    546 
    547   /// ResolveRegAllocHint - Resolves the specified register allocation hint
    548   /// to a physical register. Returns the physical register if it is successful.
    549   virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
    550                                        const MachineFunction &MF) const {
    551     if (Type == 0 && Reg && isPhysicalRegister(Reg))
    552       return Reg;
    553     return 0;
    554   }
    555 
    556   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
    557   /// writing a register from RC in two consecutive instructions.
    558   /// This can avoid pipeline stalls on certain architectures.
    559   /// It does cause increased register pressure, though.
    560   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
    561     return false;
    562   }
    563 
    564   /// UpdateRegAllocHint - A callback to allow target a chance to update
    565   /// register allocation hints when a register is "changed" (e.g. coalesced)
    566   /// to another register. e.g. On ARM, some virtual registers should target
    567   /// register pairs, if one of pair is coalesced to another register, the
    568   /// allocation hint of the other half of the pair should be changed to point
    569   /// to the new register.
    570   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
    571                                   MachineFunction &MF) const {
    572     // Do nothing.
    573   }
    574 
    575   /// requiresRegisterScavenging - returns true if the target requires (and can
    576   /// make use of) the register scavenger.
    577   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    578     return false;
    579   }
    580 
    581   /// useFPForScavengingIndex - returns true if the target wants to use
    582   /// frame pointer based accesses to spill to the scavenger emergency spill
    583   /// slot.
    584   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    585     return true;
    586   }
    587 
    588   /// requiresFrameIndexScavenging - returns true if the target requires post
    589   /// PEI scavenging of registers for materializing frame index constants.
    590   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    591     return false;
    592   }
    593 
    594   /// requiresVirtualBaseRegisters - Returns true if the target wants the
    595   /// LocalStackAllocation pass to be run and virtual base registers
    596   /// used for more efficient stack access.
    597   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    598     return false;
    599   }
    600 
    601   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
    602   /// the stack frame of the given function for the specified register. e.g. On
    603   /// x86, if the frame register is required, the first fixed stack object is
    604   /// reserved as its spill slot. This tells PEI not to create a new stack frame
    605   /// object for the given register. It should be called only after
    606   /// processFunctionBeforeCalleeSavedScan().
    607   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    608                                     int &FrameIdx) const {
    609     return false;
    610   }
    611 
    612   /// needsStackRealignment - true if storage within the function requires the
    613   /// stack pointer to be aligned more than the normal calling convention calls
    614   /// for.
    615   virtual bool needsStackRealignment(const MachineFunction &MF) const {
    616     return false;
    617   }
    618 
    619   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
    620   /// index in the instruction, if there is one.
    621   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    622                                            int Idx) const {
    623     return 0;
    624   }
    625 
    626   /// needsFrameBaseReg - Returns true if the instruction's frame index
    627   /// reference would be better served by a base register other than FP
    628   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
    629   /// references it should create new base registers for.
    630   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    631     return false;
    632   }
    633 
    634   /// materializeFrameBaseRegister - Insert defining instruction(s) for
    635   /// BaseReg to be a pointer to FrameIdx before insertion point I.
    636   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    637                                             unsigned BaseReg, int FrameIdx,
    638                                             int64_t Offset) const {
    639     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    640                      "target");
    641   }
    642 
    643   /// resolveFrameIndex - Resolve a frame index operand of an instruction
    644   /// to reference the indicated base register plus offset instead.
    645   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
    646                                  unsigned BaseReg, int64_t Offset) const {
    647     llvm_unreachable("resolveFrameIndex does not exist on this target");
    648   }
    649 
    650   /// isFrameOffsetLegal - Determine whether a given offset immediate is
    651   /// encodable to resolve a frame index.
    652   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
    653                                   int64_t Offset) const {
    654     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    655   }
    656 
    657   /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
    658   /// code insertion to eliminate call frame setup and destroy pseudo
    659   /// instructions (but only if the Target is using them).  It is responsible
    660   /// for eliminating these instructions, replacing them with concrete
    661   /// instructions.  This method need only be implemented if using call frame
    662   /// setup/destroy pseudo instructions.
    663   ///
    664   virtual void
    665   eliminateCallFramePseudoInstr(MachineFunction &MF,
    666                                 MachineBasicBlock &MBB,
    667                                 MachineBasicBlock::iterator MI) const {
    668     llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
    669                      "target!");
    670   }
    671 
    672 
    673   /// saveScavengerRegister - Spill the register so it can be used by the
    674   /// register scavenger. Return true if the register was spilled, false
    675   /// otherwise. If this function does not spill the register, the scavenger
    676   /// will instead spill it to the emergency spill slot.
    677   ///
    678   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    679                                      MachineBasicBlock::iterator I,
    680                                      MachineBasicBlock::iterator &UseMI,
    681                                      const TargetRegisterClass *RC,
    682                                      unsigned Reg) const {
    683     return false;
    684   }
    685 
    686   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
    687   /// frame indices from instructions which may use them.  The instruction
    688   /// referenced by the iterator contains an MO_FrameIndex operand which must be
    689   /// eliminated by this method.  This method may modify or replace the
    690   /// specified instruction, as long as it keeps the iterator pointing at the
    691   /// finished product. SPAdj is the SP adjustment due to call frame setup
    692   /// instruction.
    693   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    694                                    int SPAdj, RegScavenger *RS=NULL) const = 0;
    695 
    696   //===--------------------------------------------------------------------===//
    697   /// Debug information queries.
    698 
    699   /// getFrameRegister - This method should return the register used as a base
    700   /// for values allocated in the current stack frame.
    701   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    702 
    703   /// getCompactUnwindRegNum - This function maps the register to the number for
    704   /// compact unwind encoding. Return -1 if the register isn't valid.
    705   virtual int getCompactUnwindRegNum(unsigned, bool) const {
    706     return -1;
    707   }
    708 };
    709 
    710 
    711 // This is useful when building IndexedMaps keyed on virtual registers
    712 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
    713   unsigned operator()(unsigned Reg) const {
    714     return TargetRegisterInfo::virtReg2Index(Reg);
    715   }
    716 };
    717 
    718 /// PrintReg - Helper class for printing registers on a raw_ostream.
    719 /// Prints virtual and physical registers with or without a TRI instance.
    720 ///
    721 /// The format is:
    722 ///   %noreg          - NoRegister
    723 ///   %vreg5          - a virtual register.
    724 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
    725 ///   %EAX            - a physical register
    726 ///   %physreg17      - a physical register when no TRI instance given.
    727 ///
    728 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
    729 ///
    730 class PrintReg {
    731   const TargetRegisterInfo *TRI;
    732   unsigned Reg;
    733   unsigned SubIdx;
    734 public:
    735   PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
    736     : TRI(tri), Reg(reg), SubIdx(subidx) {}
    737   void print(raw_ostream&) const;
    738 };
    739 
    740 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
    741   PR.print(OS);
    742   return OS;
    743 }
    744 
    745 } // End llvm namespace
    746 
    747 #endif
    748