Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "pre-RA-sched"
     16 #include "llvm/CodeGen/ScheduleDAG.h"
     17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     18 #include "llvm/CodeGen/SelectionDAGNodes.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 #include "llvm/Target/TargetRegisterInfo.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include <climits>
     26 using namespace llvm;
     27 
     28 #ifndef NDEBUG
     29 static cl::opt<bool> StressSchedOpt(
     30   "stress-sched", cl::Hidden, cl::init(false),
     31   cl::desc("Stress test instruction scheduling"));
     32 #endif
     33 
     34 void SchedulingPriorityQueue::anchor() { }
     35 
     36 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
     37   : TM(mf.getTarget()),
     38     TII(TM.getInstrInfo()),
     39     TRI(TM.getRegisterInfo()),
     40     MF(mf), MRI(mf.getRegInfo()),
     41     EntrySU(), ExitSU() {
     42 #ifndef NDEBUG
     43   StressSched = StressSchedOpt;
     44 #endif
     45 }
     46 
     47 ScheduleDAG::~ScheduleDAG() {}
     48 
     49 /// Clear the DAG state (e.g. between scheduling regions).
     50 void ScheduleDAG::clearDAG() {
     51   SUnits.clear();
     52   EntrySU = SUnit();
     53   ExitSU = SUnit();
     54 }
     55 
     56 /// getInstrDesc helper to handle SDNodes.
     57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
     58   if (!Node || !Node->isMachineOpcode()) return NULL;
     59   return &TII->get(Node->getMachineOpcode());
     60 }
     61 
     62 /// addPred - This adds the specified edge as a pred of the current node if
     63 /// not already.  It also adds the current node as a successor of the
     64 /// specified node.
     65 bool SUnit::addPred(const SDep &D) {
     66   // If this node already has this depenence, don't add a redundant one.
     67   for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
     68        I != E; ++I)
     69     if (*I == D)
     70       return false;
     71   // Now add a corresponding succ to N.
     72   SDep P = D;
     73   P.setSUnit(this);
     74   SUnit *N = D.getSUnit();
     75   // Update the bookkeeping.
     76   if (D.getKind() == SDep::Data) {
     77     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
     78     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
     79     ++NumPreds;
     80     ++N->NumSuccs;
     81   }
     82   if (!N->isScheduled) {
     83     assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
     84     ++NumPredsLeft;
     85   }
     86   if (!isScheduled) {
     87     assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
     88     ++N->NumSuccsLeft;
     89   }
     90   Preds.push_back(D);
     91   N->Succs.push_back(P);
     92   if (P.getLatency() != 0) {
     93     this->setDepthDirty();
     94     N->setHeightDirty();
     95   }
     96   return true;
     97 }
     98 
     99 /// removePred - This removes the specified edge as a pred of the current
    100 /// node if it exists.  It also removes the current node as a successor of
    101 /// the specified node.
    102 void SUnit::removePred(const SDep &D) {
    103   // Find the matching predecessor.
    104   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
    105        I != E; ++I)
    106     if (*I == D) {
    107       bool FoundSucc = false;
    108       // Find the corresponding successor in N.
    109       SDep P = D;
    110       P.setSUnit(this);
    111       SUnit *N = D.getSUnit();
    112       for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
    113              EE = N->Succs.end(); II != EE; ++II)
    114         if (*II == P) {
    115           FoundSucc = true;
    116           N->Succs.erase(II);
    117           break;
    118         }
    119       assert(FoundSucc && "Mismatching preds / succs lists!");
    120       (void)FoundSucc;
    121       Preds.erase(I);
    122       // Update the bookkeeping.
    123       if (P.getKind() == SDep::Data) {
    124         assert(NumPreds > 0 && "NumPreds will underflow!");
    125         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
    126         --NumPreds;
    127         --N->NumSuccs;
    128       }
    129       if (!N->isScheduled) {
    130         assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
    131         --NumPredsLeft;
    132       }
    133       if (!isScheduled) {
    134         assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
    135         --N->NumSuccsLeft;
    136       }
    137       if (P.getLatency() != 0) {
    138         this->setDepthDirty();
    139         N->setHeightDirty();
    140       }
    141       return;
    142     }
    143 }
    144 
    145 void SUnit::setDepthDirty() {
    146   if (!isDepthCurrent) return;
    147   SmallVector<SUnit*, 8> WorkList;
    148   WorkList.push_back(this);
    149   do {
    150     SUnit *SU = WorkList.pop_back_val();
    151     SU->isDepthCurrent = false;
    152     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
    153          E = SU->Succs.end(); I != E; ++I) {
    154       SUnit *SuccSU = I->getSUnit();
    155       if (SuccSU->isDepthCurrent)
    156         WorkList.push_back(SuccSU);
    157     }
    158   } while (!WorkList.empty());
    159 }
    160 
    161 void SUnit::setHeightDirty() {
    162   if (!isHeightCurrent) return;
    163   SmallVector<SUnit*, 8> WorkList;
    164   WorkList.push_back(this);
    165   do {
    166     SUnit *SU = WorkList.pop_back_val();
    167     SU->isHeightCurrent = false;
    168     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
    169          E = SU->Preds.end(); I != E; ++I) {
    170       SUnit *PredSU = I->getSUnit();
    171       if (PredSU->isHeightCurrent)
    172         WorkList.push_back(PredSU);
    173     }
    174   } while (!WorkList.empty());
    175 }
    176 
    177 /// setDepthToAtLeast - Update this node's successors to reflect the
    178 /// fact that this node's depth just increased.
    179 ///
    180 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
    181   if (NewDepth <= getDepth())
    182     return;
    183   setDepthDirty();
    184   Depth = NewDepth;
    185   isDepthCurrent = true;
    186 }
    187 
    188 /// setHeightToAtLeast - Update this node's predecessors to reflect the
    189 /// fact that this node's height just increased.
    190 ///
    191 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
    192   if (NewHeight <= getHeight())
    193     return;
    194   setHeightDirty();
    195   Height = NewHeight;
    196   isHeightCurrent = true;
    197 }
    198 
    199 /// ComputeDepth - Calculate the maximal path from the node to the exit.
    200 ///
    201 void SUnit::ComputeDepth() {
    202   SmallVector<SUnit*, 8> WorkList;
    203   WorkList.push_back(this);
    204   do {
    205     SUnit *Cur = WorkList.back();
    206 
    207     bool Done = true;
    208     unsigned MaxPredDepth = 0;
    209     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
    210          E = Cur->Preds.end(); I != E; ++I) {
    211       SUnit *PredSU = I->getSUnit();
    212       if (PredSU->isDepthCurrent)
    213         MaxPredDepth = std::max(MaxPredDepth,
    214                                 PredSU->Depth + I->getLatency());
    215       else {
    216         Done = false;
    217         WorkList.push_back(PredSU);
    218       }
    219     }
    220 
    221     if (Done) {
    222       WorkList.pop_back();
    223       if (MaxPredDepth != Cur->Depth) {
    224         Cur->setDepthDirty();
    225         Cur->Depth = MaxPredDepth;
    226       }
    227       Cur->isDepthCurrent = true;
    228     }
    229   } while (!WorkList.empty());
    230 }
    231 
    232 /// ComputeHeight - Calculate the maximal path from the node to the entry.
    233 ///
    234 void SUnit::ComputeHeight() {
    235   SmallVector<SUnit*, 8> WorkList;
    236   WorkList.push_back(this);
    237   do {
    238     SUnit *Cur = WorkList.back();
    239 
    240     bool Done = true;
    241     unsigned MaxSuccHeight = 0;
    242     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
    243          E = Cur->Succs.end(); I != E; ++I) {
    244       SUnit *SuccSU = I->getSUnit();
    245       if (SuccSU->isHeightCurrent)
    246         MaxSuccHeight = std::max(MaxSuccHeight,
    247                                  SuccSU->Height + I->getLatency());
    248       else {
    249         Done = false;
    250         WorkList.push_back(SuccSU);
    251       }
    252     }
    253 
    254     if (Done) {
    255       WorkList.pop_back();
    256       if (MaxSuccHeight != Cur->Height) {
    257         Cur->setHeightDirty();
    258         Cur->Height = MaxSuccHeight;
    259       }
    260       Cur->isHeightCurrent = true;
    261     }
    262   } while (!WorkList.empty());
    263 }
    264 
    265 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
    266 /// a group of nodes flagged together.
    267 void SUnit::dump(const ScheduleDAG *G) const {
    268   dbgs() << "SU(" << NodeNum << "): ";
    269   G->dumpNode(this);
    270 }
    271 
    272 void SUnit::dumpAll(const ScheduleDAG *G) const {
    273   dump(G);
    274 
    275   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
    276   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
    277   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
    278   dbgs() << "  Latency            : " << Latency << "\n";
    279   dbgs() << "  Depth              : " << Depth << "\n";
    280   dbgs() << "  Height             : " << Height << "\n";
    281 
    282   if (Preds.size() != 0) {
    283     dbgs() << "  Predecessors:\n";
    284     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
    285          I != E; ++I) {
    286       dbgs() << "   ";
    287       switch (I->getKind()) {
    288       case SDep::Data:        dbgs() << "val "; break;
    289       case SDep::Anti:        dbgs() << "anti"; break;
    290       case SDep::Output:      dbgs() << "out "; break;
    291       case SDep::Order:       dbgs() << "ch  "; break;
    292       }
    293       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
    294       if (I->isArtificial())
    295         dbgs() << " *";
    296       dbgs() << ": Latency=" << I->getLatency();
    297       if (I->isAssignedRegDep())
    298         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
    299       dbgs() << "\n";
    300     }
    301   }
    302   if (Succs.size() != 0) {
    303     dbgs() << "  Successors:\n";
    304     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
    305          I != E; ++I) {
    306       dbgs() << "   ";
    307       switch (I->getKind()) {
    308       case SDep::Data:        dbgs() << "val "; break;
    309       case SDep::Anti:        dbgs() << "anti"; break;
    310       case SDep::Output:      dbgs() << "out "; break;
    311       case SDep::Order:       dbgs() << "ch  "; break;
    312       }
    313       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
    314       if (I->isArtificial())
    315         dbgs() << " *";
    316       dbgs() << ": Latency=" << I->getLatency();
    317       dbgs() << "\n";
    318     }
    319   }
    320   dbgs() << "\n";
    321 }
    322 
    323 #ifndef NDEBUG
    324 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
    325 /// their state is consistent. Return the number of scheduled nodes.
    326 ///
    327 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
    328   bool AnyNotSched = false;
    329   unsigned DeadNodes = 0;
    330   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    331     if (!SUnits[i].isScheduled) {
    332       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
    333         ++DeadNodes;
    334         continue;
    335       }
    336       if (!AnyNotSched)
    337         dbgs() << "*** Scheduling failed! ***\n";
    338       SUnits[i].dump(this);
    339       dbgs() << "has not been scheduled!\n";
    340       AnyNotSched = true;
    341     }
    342     if (SUnits[i].isScheduled &&
    343         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
    344           unsigned(INT_MAX)) {
    345       if (!AnyNotSched)
    346         dbgs() << "*** Scheduling failed! ***\n";
    347       SUnits[i].dump(this);
    348       dbgs() << "has an unexpected "
    349            << (isBottomUp ? "Height" : "Depth") << " value!\n";
    350       AnyNotSched = true;
    351     }
    352     if (isBottomUp) {
    353       if (SUnits[i].NumSuccsLeft != 0) {
    354         if (!AnyNotSched)
    355           dbgs() << "*** Scheduling failed! ***\n";
    356         SUnits[i].dump(this);
    357         dbgs() << "has successors left!\n";
    358         AnyNotSched = true;
    359       }
    360     } else {
    361       if (SUnits[i].NumPredsLeft != 0) {
    362         if (!AnyNotSched)
    363           dbgs() << "*** Scheduling failed! ***\n";
    364         SUnits[i].dump(this);
    365         dbgs() << "has predecessors left!\n";
    366         AnyNotSched = true;
    367       }
    368     }
    369   }
    370   assert(!AnyNotSched);
    371   return SUnits.size() - DeadNodes;
    372 }
    373 #endif
    374 
    375 /// InitDAGTopologicalSorting - create the initial topological
    376 /// ordering from the DAG to be scheduled.
    377 ///
    378 /// The idea of the algorithm is taken from
    379 /// "Online algorithms for managing the topological order of
    380 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
    381 /// This is the MNR algorithm, which was first introduced by
    382 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
    383 /// "Maintaining a topological order under edge insertions".
    384 ///
    385 /// Short description of the algorithm:
    386 ///
    387 /// Topological ordering, ord, of a DAG maps each node to a topological
    388 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
    389 ///
    390 /// This means that if there is a path from the node X to the node Z,
    391 /// then ord(X) < ord(Z).
    392 ///
    393 /// This property can be used to check for reachability of nodes:
    394 /// if Z is reachable from X, then an insertion of the edge Z->X would
    395 /// create a cycle.
    396 ///
    397 /// The algorithm first computes a topological ordering for the DAG by
    398 /// initializing the Index2Node and Node2Index arrays and then tries to keep
    399 /// the ordering up-to-date after edge insertions by reordering the DAG.
    400 ///
    401 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
    402 /// the nodes reachable from Y, and then shifts them using Shift to lie
    403 /// immediately after X in Index2Node.
    404 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
    405   unsigned DAGSize = SUnits.size();
    406   std::vector<SUnit*> WorkList;
    407   WorkList.reserve(DAGSize);
    408 
    409   Index2Node.resize(DAGSize);
    410   Node2Index.resize(DAGSize);
    411 
    412   // Initialize the data structures.
    413   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    414     SUnit *SU = &SUnits[i];
    415     int NodeNum = SU->NodeNum;
    416     unsigned Degree = SU->Succs.size();
    417     // Temporarily use the Node2Index array as scratch space for degree counts.
    418     Node2Index[NodeNum] = Degree;
    419 
    420     // Is it a node without dependencies?
    421     if (Degree == 0) {
    422       assert(SU->Succs.empty() && "SUnit should have no successors");
    423       // Collect leaf nodes.
    424       WorkList.push_back(SU);
    425     }
    426   }
    427 
    428   int Id = DAGSize;
    429   while (!WorkList.empty()) {
    430     SUnit *SU = WorkList.back();
    431     WorkList.pop_back();
    432     Allocate(SU->NodeNum, --Id);
    433     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    434          I != E; ++I) {
    435       SUnit *SU = I->getSUnit();
    436       if (!--Node2Index[SU->NodeNum])
    437         // If all dependencies of the node are processed already,
    438         // then the node can be computed now.
    439         WorkList.push_back(SU);
    440     }
    441   }
    442 
    443   Visited.resize(DAGSize);
    444 
    445 #ifndef NDEBUG
    446   // Check correctness of the ordering
    447   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    448     SUnit *SU = &SUnits[i];
    449     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    450          I != E; ++I) {
    451       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
    452       "Wrong topological sorting");
    453     }
    454   }
    455 #endif
    456 }
    457 
    458 /// AddPred - Updates the topological ordering to accommodate an edge
    459 /// to be added from SUnit X to SUnit Y.
    460 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
    461   int UpperBound, LowerBound;
    462   LowerBound = Node2Index[Y->NodeNum];
    463   UpperBound = Node2Index[X->NodeNum];
    464   bool HasLoop = false;
    465   // Is Ord(X) < Ord(Y) ?
    466   if (LowerBound < UpperBound) {
    467     // Update the topological order.
    468     Visited.reset();
    469     DFS(Y, UpperBound, HasLoop);
    470     assert(!HasLoop && "Inserted edge creates a loop!");
    471     // Recompute topological indexes.
    472     Shift(Visited, LowerBound, UpperBound);
    473   }
    474 }
    475 
    476 /// RemovePred - Updates the topological ordering to accommodate an
    477 /// an edge to be removed from the specified node N from the predecessors
    478 /// of the current node M.
    479 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
    480   // InitDAGTopologicalSorting();
    481 }
    482 
    483 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
    484 /// all nodes affected by the edge insertion. These nodes will later get new
    485 /// topological indexes by means of the Shift method.
    486 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
    487                                      bool &HasLoop) {
    488   std::vector<const SUnit*> WorkList;
    489   WorkList.reserve(SUnits.size());
    490 
    491   WorkList.push_back(SU);
    492   do {
    493     SU = WorkList.back();
    494     WorkList.pop_back();
    495     Visited.set(SU->NodeNum);
    496     for (int I = SU->Succs.size()-1; I >= 0; --I) {
    497       int s = SU->Succs[I].getSUnit()->NodeNum;
    498       if (Node2Index[s] == UpperBound) {
    499         HasLoop = true;
    500         return;
    501       }
    502       // Visit successors if not already and in affected region.
    503       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
    504         WorkList.push_back(SU->Succs[I].getSUnit());
    505       }
    506     }
    507   } while (!WorkList.empty());
    508 }
    509 
    510 /// Shift - Renumber the nodes so that the topological ordering is
    511 /// preserved.
    512 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
    513                                        int UpperBound) {
    514   std::vector<int> L;
    515   int shift = 0;
    516   int i;
    517 
    518   for (i = LowerBound; i <= UpperBound; ++i) {
    519     // w is node at topological index i.
    520     int w = Index2Node[i];
    521     if (Visited.test(w)) {
    522       // Unmark.
    523       Visited.reset(w);
    524       L.push_back(w);
    525       shift = shift + 1;
    526     } else {
    527       Allocate(w, i - shift);
    528     }
    529   }
    530 
    531   for (unsigned j = 0; j < L.size(); ++j) {
    532     Allocate(L[j], i - shift);
    533     i = i + 1;
    534   }
    535 }
    536 
    537 
    538 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    539 /// create a cycle.
    540 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    541   if (IsReachable(TargetSU, SU))
    542     return true;
    543   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    544        I != E; ++I)
    545     if (I->isAssignedRegDep() &&
    546         IsReachable(TargetSU, I->getSUnit()))
    547       return true;
    548   return false;
    549 }
    550 
    551 /// IsReachable - Checks if SU is reachable from TargetSU.
    552 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
    553                                              const SUnit *TargetSU) {
    554   // If insertion of the edge SU->TargetSU would create a cycle
    555   // then there is a path from TargetSU to SU.
    556   int UpperBound, LowerBound;
    557   LowerBound = Node2Index[TargetSU->NodeNum];
    558   UpperBound = Node2Index[SU->NodeNum];
    559   bool HasLoop = false;
    560   // Is Ord(TargetSU) < Ord(SU) ?
    561   if (LowerBound < UpperBound) {
    562     Visited.reset();
    563     // There may be a path from TargetSU to SU. Check for it.
    564     DFS(TargetSU, UpperBound, HasLoop);
    565   }
    566   return HasLoop;
    567 }
    568 
    569 /// Allocate - assign the topological index to the node n.
    570 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
    571   Node2Index[n] = index;
    572   Index2Node[index] = n;
    573 }
    574 
    575 ScheduleDAGTopologicalSort::
    576 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
    577 
    578 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
    579