Home | History | Annotate | Download | only in CodeGen
      1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
     11 // not natively support them (which includes the C backend). Note that the code
     12 // generated is not quite as efficient as algorithms which generate stack maps
     13 // to identify roots.
     14 //
     15 // This pass implements the code transformation described in this paper:
     16 //   "Accurate Garbage Collection in an Uncooperative Environment"
     17 //   Fergus Henderson, ISMM, 2002
     18 //
     19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
     20 // ShadowStackGC.
     21 //
     22 // In order to support this particular transformation, all stack roots are
     23 // coallocated in the stack. This allows a fully target-independent stack map
     24 // while introducing only minor runtime overhead.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #define DEBUG_TYPE "shadowstackgc"
     29 #include "llvm/CodeGen/GCs.h"
     30 #include "llvm/ADT/StringExtras.h"
     31 #include "llvm/CodeGen/GCStrategy.h"
     32 #include "llvm/IntrinsicInst.h"
     33 #include "llvm/Module.h"
     34 #include "llvm/Support/CallSite.h"
     35 #include "llvm/Support/IRBuilder.h"
     36 
     37 using namespace llvm;
     38 
     39 namespace {
     40 
     41   class ShadowStackGC : public GCStrategy {
     42     /// RootChain - This is the global linked-list that contains the chain of GC
     43     /// roots.
     44     GlobalVariable *Head;
     45 
     46     /// StackEntryTy - Abstract type of a link in the shadow stack.
     47     ///
     48     StructType *StackEntryTy;
     49     StructType *FrameMapTy;
     50 
     51     /// Roots - GC roots in the current function. Each is a pair of the
     52     /// intrinsic call and its corresponding alloca.
     53     std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
     54 
     55   public:
     56     ShadowStackGC();
     57 
     58     bool initializeCustomLowering(Module &M);
     59     bool performCustomLowering(Function &F);
     60 
     61   private:
     62     bool IsNullValue(Value *V);
     63     Constant *GetFrameMap(Function &F);
     64     Type* GetConcreteStackEntryType(Function &F);
     65     void CollectRoots(Function &F);
     66     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
     67                                         IRBuilder<> &B, Value *BasePtr,
     68                                         int Idx1, const char *Name);
     69     static GetElementPtrInst *CreateGEP(LLVMContext &Context,
     70                                         IRBuilder<> &B, Value *BasePtr,
     71                                         int Idx1, int Idx2, const char *Name);
     72   };
     73 
     74 }
     75 
     76 static GCRegistry::Add<ShadowStackGC>
     77 X("shadow-stack", "Very portable GC for uncooperative code generators");
     78 
     79 namespace {
     80   /// EscapeEnumerator - This is a little algorithm to find all escape points
     81   /// from a function so that "finally"-style code can be inserted. In addition
     82   /// to finding the existing return and unwind instructions, it also (if
     83   /// necessary) transforms any call instructions into invokes and sends them to
     84   /// a landing pad.
     85   ///
     86   /// It's wrapped up in a state machine using the same transform C# uses for
     87   /// 'yield return' enumerators, This transform allows it to be non-allocating.
     88   class EscapeEnumerator {
     89     Function &F;
     90     const char *CleanupBBName;
     91 
     92     // State.
     93     int State;
     94     Function::iterator StateBB, StateE;
     95     IRBuilder<> Builder;
     96 
     97   public:
     98     EscapeEnumerator(Function &F, const char *N = "cleanup")
     99       : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
    100 
    101     IRBuilder<> *Next() {
    102       switch (State) {
    103       default:
    104         return 0;
    105 
    106       case 0:
    107         StateBB = F.begin();
    108         StateE = F.end();
    109         State = 1;
    110 
    111       case 1:
    112         // Find all 'return', 'resume', and 'unwind' instructions.
    113         while (StateBB != StateE) {
    114           BasicBlock *CurBB = StateBB++;
    115 
    116           // Branches and invokes do not escape, only unwind, resume, and return
    117           // do.
    118           TerminatorInst *TI = CurBB->getTerminator();
    119           if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI))
    120             continue;
    121 
    122           Builder.SetInsertPoint(TI->getParent(), TI);
    123           return &Builder;
    124         }
    125 
    126         State = 2;
    127 
    128         // Find all 'call' instructions.
    129         SmallVector<Instruction*,16> Calls;
    130         for (Function::iterator BB = F.begin(),
    131                                 E = F.end(); BB != E; ++BB)
    132           for (BasicBlock::iterator II = BB->begin(),
    133                                     EE = BB->end(); II != EE; ++II)
    134             if (CallInst *CI = dyn_cast<CallInst>(II))
    135               if (!CI->getCalledFunction() ||
    136                   !CI->getCalledFunction()->getIntrinsicID())
    137                 Calls.push_back(CI);
    138 
    139         if (Calls.empty())
    140           return 0;
    141 
    142         // Create a cleanup block.
    143         LLVMContext &C = F.getContext();
    144         BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F);
    145         Type *ExnTy = StructType::get(Type::getInt8PtrTy(C),
    146                                       Type::getInt32Ty(C), NULL);
    147         Constant *PersFn =
    148           F.getParent()->
    149           getOrInsertFunction("__gcc_personality_v0",
    150                               FunctionType::get(Type::getInt32Ty(C), true));
    151         LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1,
    152                                                       "cleanup.lpad",
    153                                                       CleanupBB);
    154         LPad->setCleanup(true);
    155         ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB);
    156 
    157         // Transform the 'call' instructions into 'invoke's branching to the
    158         // cleanup block. Go in reverse order to make prettier BB names.
    159         SmallVector<Value*,16> Args;
    160         for (unsigned I = Calls.size(); I != 0; ) {
    161           CallInst *CI = cast<CallInst>(Calls[--I]);
    162 
    163           // Split the basic block containing the function call.
    164           BasicBlock *CallBB = CI->getParent();
    165           BasicBlock *NewBB =
    166             CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
    167 
    168           // Remove the unconditional branch inserted at the end of CallBB.
    169           CallBB->getInstList().pop_back();
    170           NewBB->getInstList().remove(CI);
    171 
    172           // Create a new invoke instruction.
    173           Args.clear();
    174           CallSite CS(CI);
    175           Args.append(CS.arg_begin(), CS.arg_end());
    176 
    177           InvokeInst *II = InvokeInst::Create(CI->getCalledValue(),
    178                                               NewBB, CleanupBB,
    179                                               Args, CI->getName(), CallBB);
    180           II->setCallingConv(CI->getCallingConv());
    181           II->setAttributes(CI->getAttributes());
    182           CI->replaceAllUsesWith(II);
    183           delete CI;
    184         }
    185 
    186         Builder.SetInsertPoint(RI->getParent(), RI);
    187         return &Builder;
    188       }
    189     }
    190   };
    191 }
    192 
    193 // -----------------------------------------------------------------------------
    194 
    195 void llvm::linkShadowStackGC() { }
    196 
    197 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
    198   InitRoots = true;
    199   CustomRoots = true;
    200 }
    201 
    202 Constant *ShadowStackGC::GetFrameMap(Function &F) {
    203   // doInitialization creates the abstract type of this value.
    204   Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
    205 
    206   // Truncate the ShadowStackDescriptor if some metadata is null.
    207   unsigned NumMeta = 0;
    208   SmallVector<Constant*, 16> Metadata;
    209   for (unsigned I = 0; I != Roots.size(); ++I) {
    210     Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
    211     if (!C->isNullValue())
    212       NumMeta = I + 1;
    213     Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
    214   }
    215   Metadata.resize(NumMeta);
    216 
    217   Type *Int32Ty = Type::getInt32Ty(F.getContext());
    218 
    219   Constant *BaseElts[] = {
    220     ConstantInt::get(Int32Ty, Roots.size(), false),
    221     ConstantInt::get(Int32Ty, NumMeta, false),
    222   };
    223 
    224   Constant *DescriptorElts[] = {
    225     ConstantStruct::get(FrameMapTy, BaseElts),
    226     ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)
    227   };
    228 
    229   Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()};
    230   StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta));
    231 
    232   Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
    233 
    234   // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
    235   //        that, short of multithreaded LLVM, it should be safe; all that is
    236   //        necessary is that a simple Module::iterator loop not be invalidated.
    237   //        Appending to the GlobalVariable list is safe in that sense.
    238   //
    239   //        All of the output passes emit globals last. The ExecutionEngine
    240   //        explicitly supports adding globals to the module after
    241   //        initialization.
    242   //
    243   //        Still, if it isn't deemed acceptable, then this transformation needs
    244   //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
    245   //        (which uses a FunctionPassManager (which segfaults (not asserts) if
    246   //        provided a ModulePass))).
    247   Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
    248                                     GlobalVariable::InternalLinkage,
    249                                     FrameMap, "__gc_" + F.getName());
    250 
    251   Constant *GEPIndices[2] = {
    252                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
    253                           ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
    254                           };
    255   return ConstantExpr::getGetElementPtr(GV, GEPIndices);
    256 }
    257 
    258 Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
    259   // doInitialization creates the generic version of this type.
    260   std::vector<Type*> EltTys;
    261   EltTys.push_back(StackEntryTy);
    262   for (size_t I = 0; I != Roots.size(); I++)
    263     EltTys.push_back(Roots[I].second->getAllocatedType());
    264 
    265   return StructType::create(EltTys, "gc_stackentry."+F.getName().str());
    266 }
    267 
    268 /// doInitialization - If this module uses the GC intrinsics, find them now. If
    269 /// not, exit fast.
    270 bool ShadowStackGC::initializeCustomLowering(Module &M) {
    271   // struct FrameMap {
    272   //   int32_t NumRoots; // Number of roots in stack frame.
    273   //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
    274   //   void *Meta[];     // May be absent for roots without metadata.
    275   // };
    276   std::vector<Type*> EltTys;
    277   // 32 bits is ok up to a 32GB stack frame. :)
    278   EltTys.push_back(Type::getInt32Ty(M.getContext()));
    279   // Specifies length of variable length array.
    280   EltTys.push_back(Type::getInt32Ty(M.getContext()));
    281   FrameMapTy = StructType::create(EltTys, "gc_map");
    282   PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
    283 
    284   // struct StackEntry {
    285   //   ShadowStackEntry *Next; // Caller's stack entry.
    286   //   FrameMap *Map;          // Pointer to constant FrameMap.
    287   //   void *Roots[];          // Stack roots (in-place array, so we pretend).
    288   // };
    289 
    290   StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
    291 
    292   EltTys.clear();
    293   EltTys.push_back(PointerType::getUnqual(StackEntryTy));
    294   EltTys.push_back(FrameMapPtrTy);
    295   StackEntryTy->setBody(EltTys);
    296   PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
    297 
    298   // Get the root chain if it already exists.
    299   Head = M.getGlobalVariable("llvm_gc_root_chain");
    300   if (!Head) {
    301     // If the root chain does not exist, insert a new one with linkonce
    302     // linkage!
    303     Head = new GlobalVariable(M, StackEntryPtrTy, false,
    304                               GlobalValue::LinkOnceAnyLinkage,
    305                               Constant::getNullValue(StackEntryPtrTy),
    306                               "llvm_gc_root_chain");
    307   } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
    308     Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
    309     Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
    310   }
    311 
    312   return true;
    313 }
    314 
    315 bool ShadowStackGC::IsNullValue(Value *V) {
    316   if (Constant *C = dyn_cast<Constant>(V))
    317     return C->isNullValue();
    318   return false;
    319 }
    320 
    321 void ShadowStackGC::CollectRoots(Function &F) {
    322   // FIXME: Account for original alignment. Could fragment the root array.
    323   //   Approach 1: Null initialize empty slots at runtime. Yuck.
    324   //   Approach 2: Emit a map of the array instead of just a count.
    325 
    326   assert(Roots.empty() && "Not cleaned up?");
    327 
    328   SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots;
    329 
    330   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    331     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
    332       if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
    333         if (Function *F = CI->getCalledFunction())
    334           if (F->getIntrinsicID() == Intrinsic::gcroot) {
    335             std::pair<CallInst*, AllocaInst*> Pair = std::make_pair(
    336               CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
    337             if (IsNullValue(CI->getArgOperand(1)))
    338               Roots.push_back(Pair);
    339             else
    340               MetaRoots.push_back(Pair);
    341           }
    342 
    343   // Number roots with metadata (usually empty) at the beginning, so that the
    344   // FrameMap::Meta array can be elided.
    345   Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
    346 }
    347 
    348 GetElementPtrInst *
    349 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
    350                          int Idx, int Idx2, const char *Name) {
    351   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
    352                        ConstantInt::get(Type::getInt32Ty(Context), Idx),
    353                        ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
    354   Value* Val = B.CreateGEP(BasePtr, Indices, Name);
    355 
    356   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
    357 
    358   return dyn_cast<GetElementPtrInst>(Val);
    359 }
    360 
    361 GetElementPtrInst *
    362 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
    363                          int Idx, const char *Name) {
    364   Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
    365                        ConstantInt::get(Type::getInt32Ty(Context), Idx) };
    366   Value *Val = B.CreateGEP(BasePtr, Indices, Name);
    367 
    368   assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
    369 
    370   return dyn_cast<GetElementPtrInst>(Val);
    371 }
    372 
    373 /// runOnFunction - Insert code to maintain the shadow stack.
    374 bool ShadowStackGC::performCustomLowering(Function &F) {
    375   LLVMContext &Context = F.getContext();
    376 
    377   // Find calls to llvm.gcroot.
    378   CollectRoots(F);
    379 
    380   // If there are no roots in this function, then there is no need to add a
    381   // stack map entry for it.
    382   if (Roots.empty())
    383     return false;
    384 
    385   // Build the constant map and figure the type of the shadow stack entry.
    386   Value *FrameMap = GetFrameMap(F);
    387   Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
    388 
    389   // Build the shadow stack entry at the very start of the function.
    390   BasicBlock::iterator IP = F.getEntryBlock().begin();
    391   IRBuilder<> AtEntry(IP->getParent(), IP);
    392 
    393   Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
    394                                                    "gc_frame");
    395 
    396   while (isa<AllocaInst>(IP)) ++IP;
    397   AtEntry.SetInsertPoint(IP->getParent(), IP);
    398 
    399   // Initialize the map pointer and load the current head of the shadow stack.
    400   Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead");
    401   Instruction *EntryMapPtr  = CreateGEP(Context, AtEntry, StackEntry,
    402                                         0,1,"gc_frame.map");
    403   AtEntry.CreateStore(FrameMap, EntryMapPtr);
    404 
    405   // After all the allocas...
    406   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
    407     // For each root, find the corresponding slot in the aggregate...
    408     Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
    409 
    410     // And use it in lieu of the alloca.
    411     AllocaInst *OriginalAlloca = Roots[I].second;
    412     SlotPtr->takeName(OriginalAlloca);
    413     OriginalAlloca->replaceAllUsesWith(SlotPtr);
    414   }
    415 
    416   // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
    417   // really necessary (the collector would never see the intermediate state at
    418   // runtime), but it's nicer not to push the half-initialized entry onto the
    419   // shadow stack.
    420   while (isa<StoreInst>(IP)) ++IP;
    421   AtEntry.SetInsertPoint(IP->getParent(), IP);
    422 
    423   // Push the entry onto the shadow stack.
    424   Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
    425                                         StackEntry,0,0,"gc_frame.next");
    426   Instruction *NewHeadVal   = CreateGEP(Context, AtEntry,
    427                                         StackEntry, 0, "gc_newhead");
    428   AtEntry.CreateStore(CurrentHead, EntryNextPtr);
    429   AtEntry.CreateStore(NewHeadVal, Head);
    430 
    431   // For each instruction that escapes...
    432   EscapeEnumerator EE(F, "gc_cleanup");
    433   while (IRBuilder<> *AtExit = EE.Next()) {
    434     // Pop the entry from the shadow stack. Don't reuse CurrentHead from
    435     // AtEntry, since that would make the value live for the entire function.
    436     Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
    437                                            "gc_frame.next");
    438     Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
    439                        AtExit->CreateStore(SavedHead, Head);
    440   }
    441 
    442   // Delete the original allocas (which are no longer used) and the intrinsic
    443   // calls (which are no longer valid). Doing this last avoids invalidating
    444   // iterators.
    445   for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
    446     Roots[I].first->eraseFromParent();
    447     Roots[I].second->eraseFromParent();
    448   }
    449 
    450   Roots.clear();
    451   return true;
    452 }
    453