Home | History | Annotate | Download | only in Vectorize
      1 //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a basic-block vectorization pass. The algorithm was
     11 // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
     12 // et al. It works by looking for chains of pairable operations and then
     13 // pairing them.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define BBV_NAME "bb-vectorize"
     18 #define DEBUG_TYPE BBV_NAME
     19 #include "llvm/Constants.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/IntrinsicInst.h"
     24 #include "llvm/Intrinsics.h"
     25 #include "llvm/LLVMContext.h"
     26 #include "llvm/Pass.h"
     27 #include "llvm/Type.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/DenseSet.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/StringExtras.h"
     34 #include "llvm/Analysis/AliasAnalysis.h"
     35 #include "llvm/Analysis/AliasSetTracker.h"
     36 #include "llvm/Analysis/ScalarEvolution.h"
     37 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     38 #include "llvm/Analysis/ValueTracking.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Support/ValueHandle.h"
     43 #include "llvm/Target/TargetData.h"
     44 #include "llvm/Transforms/Vectorize.h"
     45 #include <algorithm>
     46 #include <map>
     47 using namespace llvm;
     48 
     49 static cl::opt<unsigned>
     50 ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
     51   cl::desc("The required chain depth for vectorization"));
     52 
     53 static cl::opt<unsigned>
     54 SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
     55   cl::desc("The maximum search distance for instruction pairs"));
     56 
     57 static cl::opt<bool>
     58 SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
     59   cl::desc("Replicating one element to a pair breaks the chain"));
     60 
     61 static cl::opt<unsigned>
     62 VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
     63   cl::desc("The size of the native vector registers"));
     64 
     65 static cl::opt<unsigned>
     66 MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
     67   cl::desc("The maximum number of pairing iterations"));
     68 
     69 static cl::opt<unsigned>
     70 MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
     71   cl::desc("The maximum number of pairable instructions per group"));
     72 
     73 static cl::opt<unsigned>
     74 MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
     75   cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
     76                        " a full cycle check"));
     77 
     78 static cl::opt<bool>
     79 NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
     80   cl::desc("Don't try to vectorize integer values"));
     81 
     82 static cl::opt<bool>
     83 NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
     84   cl::desc("Don't try to vectorize floating-point values"));
     85 
     86 static cl::opt<bool>
     87 NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
     88   cl::desc("Don't try to vectorize pointer values"));
     89 
     90 static cl::opt<bool>
     91 NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
     92   cl::desc("Don't try to vectorize casting (conversion) operations"));
     93 
     94 static cl::opt<bool>
     95 NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
     96   cl::desc("Don't try to vectorize floating-point math intrinsics"));
     97 
     98 static cl::opt<bool>
     99 NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
    100   cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
    101 
    102 static cl::opt<bool>
    103 NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
    104   cl::desc("Don't try to vectorize select instructions"));
    105 
    106 static cl::opt<bool>
    107 NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
    108   cl::desc("Don't try to vectorize getelementptr instructions"));
    109 
    110 static cl::opt<bool>
    111 NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
    112   cl::desc("Don't try to vectorize loads and stores"));
    113 
    114 static cl::opt<bool>
    115 AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
    116   cl::desc("Only generate aligned loads and stores"));
    117 
    118 static cl::opt<bool>
    119 NoMemOpBoost("bb-vectorize-no-mem-op-boost",
    120   cl::init(false), cl::Hidden,
    121   cl::desc("Don't boost the chain-depth contribution of loads and stores"));
    122 
    123 static cl::opt<bool>
    124 FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
    125   cl::desc("Use a fast instruction dependency analysis"));
    126 
    127 #ifndef NDEBUG
    128 static cl::opt<bool>
    129 DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
    130   cl::init(false), cl::Hidden,
    131   cl::desc("When debugging is enabled, output information on the"
    132            " instruction-examination process"));
    133 static cl::opt<bool>
    134 DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
    135   cl::init(false), cl::Hidden,
    136   cl::desc("When debugging is enabled, output information on the"
    137            " candidate-selection process"));
    138 static cl::opt<bool>
    139 DebugPairSelection("bb-vectorize-debug-pair-selection",
    140   cl::init(false), cl::Hidden,
    141   cl::desc("When debugging is enabled, output information on the"
    142            " pair-selection process"));
    143 static cl::opt<bool>
    144 DebugCycleCheck("bb-vectorize-debug-cycle-check",
    145   cl::init(false), cl::Hidden,
    146   cl::desc("When debugging is enabled, output information on the"
    147            " cycle-checking process"));
    148 #endif
    149 
    150 STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
    151 
    152 namespace {
    153   struct BBVectorize : public BasicBlockPass {
    154     static char ID; // Pass identification, replacement for typeid
    155 
    156     const VectorizeConfig Config;
    157 
    158     BBVectorize(const VectorizeConfig &C = VectorizeConfig())
    159       : BasicBlockPass(ID), Config(C) {
    160       initializeBBVectorizePass(*PassRegistry::getPassRegistry());
    161     }
    162 
    163     BBVectorize(Pass *P, const VectorizeConfig &C)
    164       : BasicBlockPass(ID), Config(C) {
    165       AA = &P->getAnalysis<AliasAnalysis>();
    166       SE = &P->getAnalysis<ScalarEvolution>();
    167       TD = P->getAnalysisIfAvailable<TargetData>();
    168     }
    169 
    170     typedef std::pair<Value *, Value *> ValuePair;
    171     typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
    172     typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
    173     typedef std::pair<std::multimap<Value *, Value *>::iterator,
    174               std::multimap<Value *, Value *>::iterator> VPIteratorPair;
    175     typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
    176               std::multimap<ValuePair, ValuePair>::iterator>
    177                 VPPIteratorPair;
    178 
    179     AliasAnalysis *AA;
    180     ScalarEvolution *SE;
    181     TargetData *TD;
    182 
    183     // FIXME: const correct?
    184 
    185     bool vectorizePairs(BasicBlock &BB);
    186 
    187     bool getCandidatePairs(BasicBlock &BB,
    188                        BasicBlock::iterator &Start,
    189                        std::multimap<Value *, Value *> &CandidatePairs,
    190                        std::vector<Value *> &PairableInsts);
    191 
    192     void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
    193                        std::vector<Value *> &PairableInsts,
    194                        std::multimap<ValuePair, ValuePair> &ConnectedPairs);
    195 
    196     void buildDepMap(BasicBlock &BB,
    197                        std::multimap<Value *, Value *> &CandidatePairs,
    198                        std::vector<Value *> &PairableInsts,
    199                        DenseSet<ValuePair> &PairableInstUsers);
    200 
    201     void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
    202                         std::vector<Value *> &PairableInsts,
    203                         std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    204                         DenseSet<ValuePair> &PairableInstUsers,
    205                         DenseMap<Value *, Value *>& ChosenPairs);
    206 
    207     void fuseChosenPairs(BasicBlock &BB,
    208                      std::vector<Value *> &PairableInsts,
    209                      DenseMap<Value *, Value *>& ChosenPairs);
    210 
    211     bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
    212 
    213     bool areInstsCompatible(Instruction *I, Instruction *J,
    214                        bool IsSimpleLoadStore);
    215 
    216     bool trackUsesOfI(DenseSet<Value *> &Users,
    217                       AliasSetTracker &WriteSet, Instruction *I,
    218                       Instruction *J, bool UpdateUsers = true,
    219                       std::multimap<Value *, Value *> *LoadMoveSet = 0);
    220 
    221     void computePairsConnectedTo(
    222                       std::multimap<Value *, Value *> &CandidatePairs,
    223                       std::vector<Value *> &PairableInsts,
    224                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    225                       ValuePair P);
    226 
    227     bool pairsConflict(ValuePair P, ValuePair Q,
    228                  DenseSet<ValuePair> &PairableInstUsers,
    229                  std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
    230 
    231     bool pairWillFormCycle(ValuePair P,
    232                        std::multimap<ValuePair, ValuePair> &PairableInstUsers,
    233                        DenseSet<ValuePair> &CurrentPairs);
    234 
    235     void pruneTreeFor(
    236                       std::multimap<Value *, Value *> &CandidatePairs,
    237                       std::vector<Value *> &PairableInsts,
    238                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    239                       DenseSet<ValuePair> &PairableInstUsers,
    240                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
    241                       DenseMap<Value *, Value *> &ChosenPairs,
    242                       DenseMap<ValuePair, size_t> &Tree,
    243                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
    244                       bool UseCycleCheck);
    245 
    246     void buildInitialTreeFor(
    247                       std::multimap<Value *, Value *> &CandidatePairs,
    248                       std::vector<Value *> &PairableInsts,
    249                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    250                       DenseSet<ValuePair> &PairableInstUsers,
    251                       DenseMap<Value *, Value *> &ChosenPairs,
    252                       DenseMap<ValuePair, size_t> &Tree, ValuePair J);
    253 
    254     void findBestTreeFor(
    255                       std::multimap<Value *, Value *> &CandidatePairs,
    256                       std::vector<Value *> &PairableInsts,
    257                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    258                       DenseSet<ValuePair> &PairableInstUsers,
    259                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
    260                       DenseMap<Value *, Value *> &ChosenPairs,
    261                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
    262                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
    263                       bool UseCycleCheck);
    264 
    265     Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
    266                      Instruction *J, unsigned o, bool &FlipMemInputs);
    267 
    268     void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
    269                      unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
    270                      unsigned IdxOffset, std::vector<Constant*> &Mask);
    271 
    272     Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
    273                      Instruction *J);
    274 
    275     Value *getReplacementInput(LLVMContext& Context, Instruction *I,
    276                      Instruction *J, unsigned o, bool FlipMemInputs);
    277 
    278     void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
    279                      Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
    280                      bool &FlipMemInputs);
    281 
    282     void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
    283                      Instruction *J, Instruction *K,
    284                      Instruction *&InsertionPt, Instruction *&K1,
    285                      Instruction *&K2, bool &FlipMemInputs);
    286 
    287     void collectPairLoadMoveSet(BasicBlock &BB,
    288                      DenseMap<Value *, Value *> &ChosenPairs,
    289                      std::multimap<Value *, Value *> &LoadMoveSet,
    290                      Instruction *I);
    291 
    292     void collectLoadMoveSet(BasicBlock &BB,
    293                      std::vector<Value *> &PairableInsts,
    294                      DenseMap<Value *, Value *> &ChosenPairs,
    295                      std::multimap<Value *, Value *> &LoadMoveSet);
    296 
    297     bool canMoveUsesOfIAfterJ(BasicBlock &BB,
    298                      std::multimap<Value *, Value *> &LoadMoveSet,
    299                      Instruction *I, Instruction *J);
    300 
    301     void moveUsesOfIAfterJ(BasicBlock &BB,
    302                      std::multimap<Value *, Value *> &LoadMoveSet,
    303                      Instruction *&InsertionPt,
    304                      Instruction *I, Instruction *J);
    305 
    306     bool vectorizeBB(BasicBlock &BB) {
    307       bool changed = false;
    308       // Iterate a sufficient number of times to merge types of size 1 bit,
    309       // then 2 bits, then 4, etc. up to half of the target vector width of the
    310       // target vector register.
    311       for (unsigned v = 2, n = 1;
    312            v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
    313            v *= 2, ++n) {
    314         DEBUG(dbgs() << "BBV: fusing loop #" << n <<
    315               " for " << BB.getName() << " in " <<
    316               BB.getParent()->getName() << "...\n");
    317         if (vectorizePairs(BB))
    318           changed = true;
    319         else
    320           break;
    321       }
    322 
    323       DEBUG(dbgs() << "BBV: done!\n");
    324       return changed;
    325     }
    326 
    327     virtual bool runOnBasicBlock(BasicBlock &BB) {
    328       AA = &getAnalysis<AliasAnalysis>();
    329       SE = &getAnalysis<ScalarEvolution>();
    330       TD = getAnalysisIfAvailable<TargetData>();
    331 
    332       return vectorizeBB(BB);
    333     }
    334 
    335     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    336       BasicBlockPass::getAnalysisUsage(AU);
    337       AU.addRequired<AliasAnalysis>();
    338       AU.addRequired<ScalarEvolution>();
    339       AU.addPreserved<AliasAnalysis>();
    340       AU.addPreserved<ScalarEvolution>();
    341       AU.setPreservesCFG();
    342     }
    343 
    344     // This returns the vector type that holds a pair of the provided type.
    345     // If the provided type is already a vector, then its length is doubled.
    346     static inline VectorType *getVecTypeForPair(Type *ElemTy) {
    347       if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
    348         unsigned numElem = VTy->getNumElements();
    349         return VectorType::get(ElemTy->getScalarType(), numElem*2);
    350       }
    351 
    352       return VectorType::get(ElemTy, 2);
    353     }
    354 
    355     // Returns the weight associated with the provided value. A chain of
    356     // candidate pairs has a length given by the sum of the weights of its
    357     // members (one weight per pair; the weight of each member of the pair
    358     // is assumed to be the same). This length is then compared to the
    359     // chain-length threshold to determine if a given chain is significant
    360     // enough to be vectorized. The length is also used in comparing
    361     // candidate chains where longer chains are considered to be better.
    362     // Note: when this function returns 0, the resulting instructions are
    363     // not actually fused.
    364     inline size_t getDepthFactor(Value *V) {
    365       // InsertElement and ExtractElement have a depth factor of zero. This is
    366       // for two reasons: First, they cannot be usefully fused. Second, because
    367       // the pass generates a lot of these, they can confuse the simple metric
    368       // used to compare the trees in the next iteration. Thus, giving them a
    369       // weight of zero allows the pass to essentially ignore them in
    370       // subsequent iterations when looking for vectorization opportunities
    371       // while still tracking dependency chains that flow through those
    372       // instructions.
    373       if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
    374         return 0;
    375 
    376       // Give a load or store half of the required depth so that load/store
    377       // pairs will vectorize.
    378       if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
    379         return Config.ReqChainDepth/2;
    380 
    381       return 1;
    382     }
    383 
    384     // This determines the relative offset of two loads or stores, returning
    385     // true if the offset could be determined to be some constant value.
    386     // For example, if OffsetInElmts == 1, then J accesses the memory directly
    387     // after I; if OffsetInElmts == -1 then I accesses the memory
    388     // directly after J. This function assumes that both instructions
    389     // have the same type.
    390     bool getPairPtrInfo(Instruction *I, Instruction *J,
    391         Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
    392         int64_t &OffsetInElmts) {
    393       OffsetInElmts = 0;
    394       if (isa<LoadInst>(I)) {
    395         IPtr = cast<LoadInst>(I)->getPointerOperand();
    396         JPtr = cast<LoadInst>(J)->getPointerOperand();
    397         IAlignment = cast<LoadInst>(I)->getAlignment();
    398         JAlignment = cast<LoadInst>(J)->getAlignment();
    399       } else {
    400         IPtr = cast<StoreInst>(I)->getPointerOperand();
    401         JPtr = cast<StoreInst>(J)->getPointerOperand();
    402         IAlignment = cast<StoreInst>(I)->getAlignment();
    403         JAlignment = cast<StoreInst>(J)->getAlignment();
    404       }
    405 
    406       const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
    407       const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
    408 
    409       // If this is a trivial offset, then we'll get something like
    410       // 1*sizeof(type). With target data, which we need anyway, this will get
    411       // constant folded into a number.
    412       const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
    413       if (const SCEVConstant *ConstOffSCEV =
    414             dyn_cast<SCEVConstant>(OffsetSCEV)) {
    415         ConstantInt *IntOff = ConstOffSCEV->getValue();
    416         int64_t Offset = IntOff->getSExtValue();
    417 
    418         Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
    419         int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
    420 
    421         assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
    422 
    423         OffsetInElmts = Offset/VTyTSS;
    424         return (abs64(Offset) % VTyTSS) == 0;
    425       }
    426 
    427       return false;
    428     }
    429 
    430     // Returns true if the provided CallInst represents an intrinsic that can
    431     // be vectorized.
    432     bool isVectorizableIntrinsic(CallInst* I) {
    433       Function *F = I->getCalledFunction();
    434       if (!F) return false;
    435 
    436       unsigned IID = F->getIntrinsicID();
    437       if (!IID) return false;
    438 
    439       switch(IID) {
    440       default:
    441         return false;
    442       case Intrinsic::sqrt:
    443       case Intrinsic::powi:
    444       case Intrinsic::sin:
    445       case Intrinsic::cos:
    446       case Intrinsic::log:
    447       case Intrinsic::log2:
    448       case Intrinsic::log10:
    449       case Intrinsic::exp:
    450       case Intrinsic::exp2:
    451       case Intrinsic::pow:
    452         return Config.VectorizeMath;
    453       case Intrinsic::fma:
    454         return Config.VectorizeFMA;
    455       }
    456     }
    457 
    458     // Returns true if J is the second element in some pair referenced by
    459     // some multimap pair iterator pair.
    460     template <typename V>
    461     bool isSecondInIteratorPair(V J, std::pair<
    462            typename std::multimap<V, V>::iterator,
    463            typename std::multimap<V, V>::iterator> PairRange) {
    464       for (typename std::multimap<V, V>::iterator K = PairRange.first;
    465            K != PairRange.second; ++K)
    466         if (K->second == J) return true;
    467 
    468       return false;
    469     }
    470   };
    471 
    472   // This function implements one vectorization iteration on the provided
    473   // basic block. It returns true if the block is changed.
    474   bool BBVectorize::vectorizePairs(BasicBlock &BB) {
    475     bool ShouldContinue;
    476     BasicBlock::iterator Start = BB.getFirstInsertionPt();
    477 
    478     std::vector<Value *> AllPairableInsts;
    479     DenseMap<Value *, Value *> AllChosenPairs;
    480 
    481     do {
    482       std::vector<Value *> PairableInsts;
    483       std::multimap<Value *, Value *> CandidatePairs;
    484       ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
    485                                          PairableInsts);
    486       if (PairableInsts.empty()) continue;
    487 
    488       // Now we have a map of all of the pairable instructions and we need to
    489       // select the best possible pairing. A good pairing is one such that the
    490       // users of the pair are also paired. This defines a (directed) forest
    491       // over the pairs such that two pairs are connected iff the second pair
    492       // uses the first.
    493 
    494       // Note that it only matters that both members of the second pair use some
    495       // element of the first pair (to allow for splatting).
    496 
    497       std::multimap<ValuePair, ValuePair> ConnectedPairs;
    498       computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
    499       if (ConnectedPairs.empty()) continue;
    500 
    501       // Build the pairable-instruction dependency map
    502       DenseSet<ValuePair> PairableInstUsers;
    503       buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
    504 
    505       // There is now a graph of the connected pairs. For each variable, pick
    506       // the pairing with the largest tree meeting the depth requirement on at
    507       // least one branch. Then select all pairings that are part of that tree
    508       // and remove them from the list of available pairings and pairable
    509       // variables.
    510 
    511       DenseMap<Value *, Value *> ChosenPairs;
    512       choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
    513         PairableInstUsers, ChosenPairs);
    514 
    515       if (ChosenPairs.empty()) continue;
    516       AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
    517                               PairableInsts.end());
    518       AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
    519     } while (ShouldContinue);
    520 
    521     if (AllChosenPairs.empty()) return false;
    522     NumFusedOps += AllChosenPairs.size();
    523 
    524     // A set of pairs has now been selected. It is now necessary to replace the
    525     // paired instructions with vector instructions. For this procedure each
    526     // operand must be replaced with a vector operand. This vector is formed
    527     // by using build_vector on the old operands. The replaced values are then
    528     // replaced with a vector_extract on the result.  Subsequent optimization
    529     // passes should coalesce the build/extract combinations.
    530 
    531     fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
    532     return true;
    533   }
    534 
    535   // This function returns true if the provided instruction is capable of being
    536   // fused into a vector instruction. This determination is based only on the
    537   // type and other attributes of the instruction.
    538   bool BBVectorize::isInstVectorizable(Instruction *I,
    539                                          bool &IsSimpleLoadStore) {
    540     IsSimpleLoadStore = false;
    541 
    542     if (CallInst *C = dyn_cast<CallInst>(I)) {
    543       if (!isVectorizableIntrinsic(C))
    544         return false;
    545     } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    546       // Vectorize simple loads if possbile:
    547       IsSimpleLoadStore = L->isSimple();
    548       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    549         return false;
    550     } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    551       // Vectorize simple stores if possbile:
    552       IsSimpleLoadStore = S->isSimple();
    553       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    554         return false;
    555     } else if (CastInst *C = dyn_cast<CastInst>(I)) {
    556       // We can vectorize casts, but not casts of pointer types, etc.
    557       if (!Config.VectorizeCasts)
    558         return false;
    559 
    560       Type *SrcTy = C->getSrcTy();
    561       if (!SrcTy->isSingleValueType())
    562         return false;
    563 
    564       Type *DestTy = C->getDestTy();
    565       if (!DestTy->isSingleValueType())
    566         return false;
    567     } else if (isa<SelectInst>(I)) {
    568       if (!Config.VectorizeSelect)
    569         return false;
    570     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
    571       if (!Config.VectorizeGEP)
    572         return false;
    573 
    574       // Currently, vector GEPs exist only with one index.
    575       if (G->getNumIndices() != 1)
    576         return false;
    577     } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
    578         isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
    579       return false;
    580     }
    581 
    582     // We can't vectorize memory operations without target data
    583     if (TD == 0 && IsSimpleLoadStore)
    584       return false;
    585 
    586     Type *T1, *T2;
    587     if (isa<StoreInst>(I)) {
    588       // For stores, it is the value type, not the pointer type that matters
    589       // because the value is what will come from a vector register.
    590 
    591       Value *IVal = cast<StoreInst>(I)->getValueOperand();
    592       T1 = IVal->getType();
    593     } else {
    594       T1 = I->getType();
    595     }
    596 
    597     if (I->isCast())
    598       T2 = cast<CastInst>(I)->getSrcTy();
    599     else
    600       T2 = T1;
    601 
    602     // Not every type can be vectorized...
    603     if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
    604         !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
    605       return false;
    606 
    607     if (!Config.VectorizeInts
    608         && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
    609       return false;
    610 
    611     if (!Config.VectorizeFloats
    612         && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
    613       return false;
    614 
    615     if ((!Config.VectorizePointers || TD == 0) &&
    616         (T1->getScalarType()->isPointerTy() ||
    617          T2->getScalarType()->isPointerTy()))
    618       return false;
    619 
    620     if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 ||
    621         T2->getPrimitiveSizeInBits() > Config.VectorBits/2)
    622       return false;
    623 
    624     return true;
    625   }
    626 
    627   // This function returns true if the two provided instructions are compatible
    628   // (meaning that they can be fused into a vector instruction). This assumes
    629   // that I has already been determined to be vectorizable and that J is not
    630   // in the use tree of I.
    631   bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
    632                        bool IsSimpleLoadStore) {
    633     DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
    634                      " <-> " << *J << "\n");
    635 
    636     // Loads and stores can be merged if they have different alignments,
    637     // but are otherwise the same.
    638     LoadInst *LI, *LJ;
    639     StoreInst *SI, *SJ;
    640     if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
    641       if (I->getType() != J->getType())
    642         return false;
    643 
    644       if (LI->getPointerOperand()->getType() !=
    645             LJ->getPointerOperand()->getType() ||
    646           LI->isVolatile() != LJ->isVolatile() ||
    647           LI->getOrdering() != LJ->getOrdering() ||
    648           LI->getSynchScope() != LJ->getSynchScope())
    649         return false;
    650     } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
    651       if (SI->getValueOperand()->getType() !=
    652             SJ->getValueOperand()->getType() ||
    653           SI->getPointerOperand()->getType() !=
    654             SJ->getPointerOperand()->getType() ||
    655           SI->isVolatile() != SJ->isVolatile() ||
    656           SI->getOrdering() != SJ->getOrdering() ||
    657           SI->getSynchScope() != SJ->getSynchScope())
    658         return false;
    659     } else if (!J->isSameOperationAs(I)) {
    660       return false;
    661     }
    662     // FIXME: handle addsub-type operations!
    663 
    664     if (IsSimpleLoadStore) {
    665       Value *IPtr, *JPtr;
    666       unsigned IAlignment, JAlignment;
    667       int64_t OffsetInElmts = 0;
    668       if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
    669             OffsetInElmts) && abs64(OffsetInElmts) == 1) {
    670         if (Config.AlignedOnly) {
    671           Type *aType = isa<StoreInst>(I) ?
    672             cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
    673           // An aligned load or store is possible only if the instruction
    674           // with the lower offset has an alignment suitable for the
    675           // vector type.
    676 
    677           unsigned BottomAlignment = IAlignment;
    678           if (OffsetInElmts < 0) BottomAlignment = JAlignment;
    679 
    680           Type *VType = getVecTypeForPair(aType);
    681           unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
    682           if (BottomAlignment < VecAlignment)
    683             return false;
    684         }
    685       } else {
    686         return false;
    687       }
    688     } else if (isa<ShuffleVectorInst>(I)) {
    689       // Only merge two shuffles if they're both constant
    690       return isa<Constant>(I->getOperand(2)) &&
    691              isa<Constant>(J->getOperand(2));
    692       // FIXME: We may want to vectorize non-constant shuffles also.
    693     }
    694 
    695     // The powi intrinsic is special because only the first argument is
    696     // vectorized, the second arguments must be equal.
    697     CallInst *CI = dyn_cast<CallInst>(I);
    698     Function *FI;
    699     if (CI && (FI = CI->getCalledFunction()) &&
    700         FI->getIntrinsicID() == Intrinsic::powi) {
    701 
    702       Value *A1I = CI->getArgOperand(1),
    703             *A1J = cast<CallInst>(J)->getArgOperand(1);
    704       const SCEV *A1ISCEV = SE->getSCEV(A1I),
    705                  *A1JSCEV = SE->getSCEV(A1J);
    706       return (A1ISCEV == A1JSCEV);
    707     }
    708 
    709     return true;
    710   }
    711 
    712   // Figure out whether or not J uses I and update the users and write-set
    713   // structures associated with I. Specifically, Users represents the set of
    714   // instructions that depend on I. WriteSet represents the set
    715   // of memory locations that are dependent on I. If UpdateUsers is true,
    716   // and J uses I, then Users is updated to contain J and WriteSet is updated
    717   // to contain any memory locations to which J writes. The function returns
    718   // true if J uses I. By default, alias analysis is used to determine
    719   // whether J reads from memory that overlaps with a location in WriteSet.
    720   // If LoadMoveSet is not null, then it is a previously-computed multimap
    721   // where the key is the memory-based user instruction and the value is
    722   // the instruction to be compared with I. So, if LoadMoveSet is provided,
    723   // then the alias analysis is not used. This is necessary because this
    724   // function is called during the process of moving instructions during
    725   // vectorization and the results of the alias analysis are not stable during
    726   // that process.
    727   bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
    728                        AliasSetTracker &WriteSet, Instruction *I,
    729                        Instruction *J, bool UpdateUsers,
    730                        std::multimap<Value *, Value *> *LoadMoveSet) {
    731     bool UsesI = false;
    732 
    733     // This instruction may already be marked as a user due, for example, to
    734     // being a member of a selected pair.
    735     if (Users.count(J))
    736       UsesI = true;
    737 
    738     if (!UsesI)
    739       for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
    740            JU != JE; ++JU) {
    741         Value *V = *JU;
    742         if (I == V || Users.count(V)) {
    743           UsesI = true;
    744           break;
    745         }
    746       }
    747     if (!UsesI && J->mayReadFromMemory()) {
    748       if (LoadMoveSet) {
    749         VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
    750         UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
    751       } else {
    752         for (AliasSetTracker::iterator W = WriteSet.begin(),
    753              WE = WriteSet.end(); W != WE; ++W) {
    754           if (W->aliasesUnknownInst(J, *AA)) {
    755             UsesI = true;
    756             break;
    757           }
    758         }
    759       }
    760     }
    761 
    762     if (UsesI && UpdateUsers) {
    763       if (J->mayWriteToMemory()) WriteSet.add(J);
    764       Users.insert(J);
    765     }
    766 
    767     return UsesI;
    768   }
    769 
    770   // This function iterates over all instruction pairs in the provided
    771   // basic block and collects all candidate pairs for vectorization.
    772   bool BBVectorize::getCandidatePairs(BasicBlock &BB,
    773                        BasicBlock::iterator &Start,
    774                        std::multimap<Value *, Value *> &CandidatePairs,
    775                        std::vector<Value *> &PairableInsts) {
    776     BasicBlock::iterator E = BB.end();
    777     if (Start == E) return false;
    778 
    779     bool ShouldContinue = false, IAfterStart = false;
    780     for (BasicBlock::iterator I = Start++; I != E; ++I) {
    781       if (I == Start) IAfterStart = true;
    782 
    783       bool IsSimpleLoadStore;
    784       if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
    785 
    786       // Look for an instruction with which to pair instruction *I...
    787       DenseSet<Value *> Users;
    788       AliasSetTracker WriteSet(*AA);
    789       bool JAfterStart = IAfterStart;
    790       BasicBlock::iterator J = llvm::next(I);
    791       for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
    792         if (J == Start) JAfterStart = true;
    793 
    794         // Determine if J uses I, if so, exit the loop.
    795         bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
    796         if (Config.FastDep) {
    797           // Note: For this heuristic to be effective, independent operations
    798           // must tend to be intermixed. This is likely to be true from some
    799           // kinds of grouped loop unrolling (but not the generic LLVM pass),
    800           // but otherwise may require some kind of reordering pass.
    801 
    802           // When using fast dependency analysis,
    803           // stop searching after first use:
    804           if (UsesI) break;
    805         } else {
    806           if (UsesI) continue;
    807         }
    808 
    809         // J does not use I, and comes before the first use of I, so it can be
    810         // merged with I if the instructions are compatible.
    811         if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
    812 
    813         // J is a candidate for merging with I.
    814         if (!PairableInsts.size() ||
    815              PairableInsts[PairableInsts.size()-1] != I) {
    816           PairableInsts.push_back(I);
    817         }
    818 
    819         CandidatePairs.insert(ValuePair(I, J));
    820 
    821         // The next call to this function must start after the last instruction
    822         // selected during this invocation.
    823         if (JAfterStart) {
    824           Start = llvm::next(J);
    825           IAfterStart = JAfterStart = false;
    826         }
    827 
    828         DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
    829                      << *I << " <-> " << *J << "\n");
    830 
    831         // If we have already found too many pairs, break here and this function
    832         // will be called again starting after the last instruction selected
    833         // during this invocation.
    834         if (PairableInsts.size() >= Config.MaxInsts) {
    835           ShouldContinue = true;
    836           break;
    837         }
    838       }
    839 
    840       if (ShouldContinue)
    841         break;
    842     }
    843 
    844     DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
    845            << " instructions with candidate pairs\n");
    846 
    847     return ShouldContinue;
    848   }
    849 
    850   // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
    851   // it looks for pairs such that both members have an input which is an
    852   // output of PI or PJ.
    853   void BBVectorize::computePairsConnectedTo(
    854                       std::multimap<Value *, Value *> &CandidatePairs,
    855                       std::vector<Value *> &PairableInsts,
    856                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
    857                       ValuePair P) {
    858     StoreInst *SI, *SJ;
    859 
    860     // For each possible pairing for this variable, look at the uses of
    861     // the first value...
    862     for (Value::use_iterator I = P.first->use_begin(),
    863          E = P.first->use_end(); I != E; ++I) {
    864       if (isa<LoadInst>(*I)) {
    865         // A pair cannot be connected to a load because the load only takes one
    866         // operand (the address) and it is a scalar even after vectorization.
    867         continue;
    868       } else if ((SI = dyn_cast<StoreInst>(*I)) &&
    869                  P.first == SI->getPointerOperand()) {
    870         // Similarly, a pair cannot be connected to a store through its
    871         // pointer operand.
    872         continue;
    873       }
    874 
    875       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
    876 
    877       // For each use of the first variable, look for uses of the second
    878       // variable...
    879       for (Value::use_iterator J = P.second->use_begin(),
    880            E2 = P.second->use_end(); J != E2; ++J) {
    881         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    882             P.second == SJ->getPointerOperand())
    883           continue;
    884 
    885         VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
    886 
    887         // Look for <I, J>:
    888         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    889           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    890 
    891         // Look for <J, I>:
    892         if (isSecondInIteratorPair<Value*>(*I, JPairRange))
    893           ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
    894       }
    895 
    896       if (Config.SplatBreaksChain) continue;
    897       // Look for cases where just the first value in the pair is used by
    898       // both members of another pair (splatting).
    899       for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
    900         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    901             P.first == SJ->getPointerOperand())
    902           continue;
    903 
    904         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    905           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    906       }
    907     }
    908 
    909     if (Config.SplatBreaksChain) return;
    910     // Look for cases where just the second value in the pair is used by
    911     // both members of another pair (splatting).
    912     for (Value::use_iterator I = P.second->use_begin(),
    913          E = P.second->use_end(); I != E; ++I) {
    914       if (isa<LoadInst>(*I))
    915         continue;
    916       else if ((SI = dyn_cast<StoreInst>(*I)) &&
    917                P.second == SI->getPointerOperand())
    918         continue;
    919 
    920       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
    921 
    922       for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
    923         if ((SJ = dyn_cast<StoreInst>(*J)) &&
    924             P.second == SJ->getPointerOperand())
    925           continue;
    926 
    927         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
    928           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
    929       }
    930     }
    931   }
    932 
    933   // This function figures out which pairs are connected.  Two pairs are
    934   // connected if some output of the first pair forms an input to both members
    935   // of the second pair.
    936   void BBVectorize::computeConnectedPairs(
    937                       std::multimap<Value *, Value *> &CandidatePairs,
    938                       std::vector<Value *> &PairableInsts,
    939                       std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
    940 
    941     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
    942          PE = PairableInsts.end(); PI != PE; ++PI) {
    943       VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
    944 
    945       for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
    946            P != choiceRange.second; ++P)
    947         computePairsConnectedTo(CandidatePairs, PairableInsts,
    948                                 ConnectedPairs, *P);
    949     }
    950 
    951     DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
    952                  << " pair connections.\n");
    953   }
    954 
    955   // This function builds a set of use tuples such that <A, B> is in the set
    956   // if B is in the use tree of A. If B is in the use tree of A, then B
    957   // depends on the output of A.
    958   void BBVectorize::buildDepMap(
    959                       BasicBlock &BB,
    960                       std::multimap<Value *, Value *> &CandidatePairs,
    961                       std::vector<Value *> &PairableInsts,
    962                       DenseSet<ValuePair> &PairableInstUsers) {
    963     DenseSet<Value *> IsInPair;
    964     for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
    965          E = CandidatePairs.end(); C != E; ++C) {
    966       IsInPair.insert(C->first);
    967       IsInPair.insert(C->second);
    968     }
    969 
    970     // Iterate through the basic block, recording all Users of each
    971     // pairable instruction.
    972 
    973     BasicBlock::iterator E = BB.end();
    974     for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
    975       if (IsInPair.find(I) == IsInPair.end()) continue;
    976 
    977       DenseSet<Value *> Users;
    978       AliasSetTracker WriteSet(*AA);
    979       for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
    980         (void) trackUsesOfI(Users, WriteSet, I, J);
    981 
    982       for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
    983            U != E; ++U)
    984         PairableInstUsers.insert(ValuePair(I, *U));
    985     }
    986   }
    987 
    988   // Returns true if an input to pair P is an output of pair Q and also an
    989   // input of pair Q is an output of pair P. If this is the case, then these
    990   // two pairs cannot be simultaneously fused.
    991   bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
    992                      DenseSet<ValuePair> &PairableInstUsers,
    993                      std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
    994     // Two pairs are in conflict if they are mutual Users of eachother.
    995     bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
    996                   PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
    997                   PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
    998                   PairableInstUsers.count(ValuePair(P.second, Q.second));
    999     bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
   1000                   PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
   1001                   PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
   1002                   PairableInstUsers.count(ValuePair(Q.second, P.second));
   1003     if (PairableInstUserMap) {
   1004       // FIXME: The expensive part of the cycle check is not so much the cycle
   1005       // check itself but this edge insertion procedure. This needs some
   1006       // profiling and probably a different data structure (same is true of
   1007       // most uses of std::multimap).
   1008       if (PUsesQ) {
   1009         VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
   1010         if (!isSecondInIteratorPair(P, QPairRange))
   1011           PairableInstUserMap->insert(VPPair(Q, P));
   1012       }
   1013       if (QUsesP) {
   1014         VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
   1015         if (!isSecondInIteratorPair(Q, PPairRange))
   1016           PairableInstUserMap->insert(VPPair(P, Q));
   1017       }
   1018     }
   1019 
   1020     return (QUsesP && PUsesQ);
   1021   }
   1022 
   1023   // This function walks the use graph of current pairs to see if, starting
   1024   // from P, the walk returns to P.
   1025   bool BBVectorize::pairWillFormCycle(ValuePair P,
   1026                        std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1027                        DenseSet<ValuePair> &CurrentPairs) {
   1028     DEBUG(if (DebugCycleCheck)
   1029             dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
   1030                    << *P.second << "\n");
   1031     // A lookup table of visisted pairs is kept because the PairableInstUserMap
   1032     // contains non-direct associations.
   1033     DenseSet<ValuePair> Visited;
   1034     SmallVector<ValuePair, 32> Q;
   1035     // General depth-first post-order traversal:
   1036     Q.push_back(P);
   1037     do {
   1038       ValuePair QTop = Q.pop_back_val();
   1039       Visited.insert(QTop);
   1040 
   1041       DEBUG(if (DebugCycleCheck)
   1042               dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
   1043                      << *QTop.second << "\n");
   1044       VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
   1045       for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
   1046            C != QPairRange.second; ++C) {
   1047         if (C->second == P) {
   1048           DEBUG(dbgs()
   1049                  << "BBV: rejected to prevent non-trivial cycle formation: "
   1050                  << *C->first.first << " <-> " << *C->first.second << "\n");
   1051           return true;
   1052         }
   1053 
   1054         if (CurrentPairs.count(C->second) && !Visited.count(C->second))
   1055           Q.push_back(C->second);
   1056       }
   1057     } while (!Q.empty());
   1058 
   1059     return false;
   1060   }
   1061 
   1062   // This function builds the initial tree of connected pairs with the
   1063   // pair J at the root.
   1064   void BBVectorize::buildInitialTreeFor(
   1065                       std::multimap<Value *, Value *> &CandidatePairs,
   1066                       std::vector<Value *> &PairableInsts,
   1067                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1068                       DenseSet<ValuePair> &PairableInstUsers,
   1069                       DenseMap<Value *, Value *> &ChosenPairs,
   1070                       DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
   1071     // Each of these pairs is viewed as the root node of a Tree. The Tree
   1072     // is then walked (depth-first). As this happens, we keep track of
   1073     // the pairs that compose the Tree and the maximum depth of the Tree.
   1074     SmallVector<ValuePairWithDepth, 32> Q;
   1075     // General depth-first post-order traversal:
   1076     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1077     do {
   1078       ValuePairWithDepth QTop = Q.back();
   1079 
   1080       // Push each child onto the queue:
   1081       bool MoreChildren = false;
   1082       size_t MaxChildDepth = QTop.second;
   1083       VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
   1084       for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
   1085            k != qtRange.second; ++k) {
   1086         // Make sure that this child pair is still a candidate:
   1087         bool IsStillCand = false;
   1088         VPIteratorPair checkRange =
   1089           CandidatePairs.equal_range(k->second.first);
   1090         for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
   1091              m != checkRange.second; ++m) {
   1092           if (m->second == k->second.second) {
   1093             IsStillCand = true;
   1094             break;
   1095           }
   1096         }
   1097 
   1098         if (IsStillCand) {
   1099           DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
   1100           if (C == Tree.end()) {
   1101             size_t d = getDepthFactor(k->second.first);
   1102             Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
   1103             MoreChildren = true;
   1104           } else {
   1105             MaxChildDepth = std::max(MaxChildDepth, C->second);
   1106           }
   1107         }
   1108       }
   1109 
   1110       if (!MoreChildren) {
   1111         // Record the current pair as part of the Tree:
   1112         Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
   1113         Q.pop_back();
   1114       }
   1115     } while (!Q.empty());
   1116   }
   1117 
   1118   // Given some initial tree, prune it by removing conflicting pairs (pairs
   1119   // that cannot be simultaneously chosen for vectorization).
   1120   void BBVectorize::pruneTreeFor(
   1121                       std::multimap<Value *, Value *> &CandidatePairs,
   1122                       std::vector<Value *> &PairableInsts,
   1123                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1124                       DenseSet<ValuePair> &PairableInstUsers,
   1125                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1126                       DenseMap<Value *, Value *> &ChosenPairs,
   1127                       DenseMap<ValuePair, size_t> &Tree,
   1128                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
   1129                       bool UseCycleCheck) {
   1130     SmallVector<ValuePairWithDepth, 32> Q;
   1131     // General depth-first post-order traversal:
   1132     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1133     do {
   1134       ValuePairWithDepth QTop = Q.pop_back_val();
   1135       PrunedTree.insert(QTop.first);
   1136 
   1137       // Visit each child, pruning as necessary...
   1138       DenseMap<ValuePair, size_t> BestChildren;
   1139       VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
   1140       for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
   1141            K != QTopRange.second; ++K) {
   1142         DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
   1143         if (C == Tree.end()) continue;
   1144 
   1145         // This child is in the Tree, now we need to make sure it is the
   1146         // best of any conflicting children. There could be multiple
   1147         // conflicting children, so first, determine if we're keeping
   1148         // this child, then delete conflicting children as necessary.
   1149 
   1150         // It is also necessary to guard against pairing-induced
   1151         // dependencies. Consider instructions a .. x .. y .. b
   1152         // such that (a,b) are to be fused and (x,y) are to be fused
   1153         // but a is an input to x and b is an output from y. This
   1154         // means that y cannot be moved after b but x must be moved
   1155         // after b for (a,b) to be fused. In other words, after
   1156         // fusing (a,b) we have y .. a/b .. x where y is an input
   1157         // to a/b and x is an output to a/b: x and y can no longer
   1158         // be legally fused. To prevent this condition, we must
   1159         // make sure that a child pair added to the Tree is not
   1160         // both an input and output of an already-selected pair.
   1161 
   1162         // Pairing-induced dependencies can also form from more complicated
   1163         // cycles. The pair vs. pair conflicts are easy to check, and so
   1164         // that is done explicitly for "fast rejection", and because for
   1165         // child vs. child conflicts, we may prefer to keep the current
   1166         // pair in preference to the already-selected child.
   1167         DenseSet<ValuePair> CurrentPairs;
   1168 
   1169         bool CanAdd = true;
   1170         for (DenseMap<ValuePair, size_t>::iterator C2
   1171               = BestChildren.begin(), E2 = BestChildren.end();
   1172              C2 != E2; ++C2) {
   1173           if (C2->first.first == C->first.first ||
   1174               C2->first.first == C->first.second ||
   1175               C2->first.second == C->first.first ||
   1176               C2->first.second == C->first.second ||
   1177               pairsConflict(C2->first, C->first, PairableInstUsers,
   1178                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1179             if (C2->second >= C->second) {
   1180               CanAdd = false;
   1181               break;
   1182             }
   1183 
   1184             CurrentPairs.insert(C2->first);
   1185           }
   1186         }
   1187         if (!CanAdd) continue;
   1188 
   1189         // Even worse, this child could conflict with another node already
   1190         // selected for the Tree. If that is the case, ignore this child.
   1191         for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
   1192              E2 = PrunedTree.end(); T != E2; ++T) {
   1193           if (T->first == C->first.first ||
   1194               T->first == C->first.second ||
   1195               T->second == C->first.first ||
   1196               T->second == C->first.second ||
   1197               pairsConflict(*T, C->first, PairableInstUsers,
   1198                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1199             CanAdd = false;
   1200             break;
   1201           }
   1202 
   1203           CurrentPairs.insert(*T);
   1204         }
   1205         if (!CanAdd) continue;
   1206 
   1207         // And check the queue too...
   1208         for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
   1209              E2 = Q.end(); C2 != E2; ++C2) {
   1210           if (C2->first.first == C->first.first ||
   1211               C2->first.first == C->first.second ||
   1212               C2->first.second == C->first.first ||
   1213               C2->first.second == C->first.second ||
   1214               pairsConflict(C2->first, C->first, PairableInstUsers,
   1215                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1216             CanAdd = false;
   1217             break;
   1218           }
   1219 
   1220           CurrentPairs.insert(C2->first);
   1221         }
   1222         if (!CanAdd) continue;
   1223 
   1224         // Last but not least, check for a conflict with any of the
   1225         // already-chosen pairs.
   1226         for (DenseMap<Value *, Value *>::iterator C2 =
   1227               ChosenPairs.begin(), E2 = ChosenPairs.end();
   1228              C2 != E2; ++C2) {
   1229           if (pairsConflict(*C2, C->first, PairableInstUsers,
   1230                             UseCycleCheck ? &PairableInstUserMap : 0)) {
   1231             CanAdd = false;
   1232             break;
   1233           }
   1234 
   1235           CurrentPairs.insert(*C2);
   1236         }
   1237         if (!CanAdd) continue;
   1238 
   1239         // To check for non-trivial cycles formed by the addition of the
   1240         // current pair we've formed a list of all relevant pairs, now use a
   1241         // graph walk to check for a cycle. We start from the current pair and
   1242         // walk the use tree to see if we again reach the current pair. If we
   1243         // do, then the current pair is rejected.
   1244 
   1245         // FIXME: It may be more efficient to use a topological-ordering
   1246         // algorithm to improve the cycle check. This should be investigated.
   1247         if (UseCycleCheck &&
   1248             pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
   1249           continue;
   1250 
   1251         // This child can be added, but we may have chosen it in preference
   1252         // to an already-selected child. Check for this here, and if a
   1253         // conflict is found, then remove the previously-selected child
   1254         // before adding this one in its place.
   1255         for (DenseMap<ValuePair, size_t>::iterator C2
   1256               = BestChildren.begin(); C2 != BestChildren.end();) {
   1257           if (C2->first.first == C->first.first ||
   1258               C2->first.first == C->first.second ||
   1259               C2->first.second == C->first.first ||
   1260               C2->first.second == C->first.second ||
   1261               pairsConflict(C2->first, C->first, PairableInstUsers))
   1262             BestChildren.erase(C2++);
   1263           else
   1264             ++C2;
   1265         }
   1266 
   1267         BestChildren.insert(ValuePairWithDepth(C->first, C->second));
   1268       }
   1269 
   1270       for (DenseMap<ValuePair, size_t>::iterator C
   1271             = BestChildren.begin(), E2 = BestChildren.end();
   1272            C != E2; ++C) {
   1273         size_t DepthF = getDepthFactor(C->first.first);
   1274         Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
   1275       }
   1276     } while (!Q.empty());
   1277   }
   1278 
   1279   // This function finds the best tree of mututally-compatible connected
   1280   // pairs, given the choice of root pairs as an iterator range.
   1281   void BBVectorize::findBestTreeFor(
   1282                       std::multimap<Value *, Value *> &CandidatePairs,
   1283                       std::vector<Value *> &PairableInsts,
   1284                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1285                       DenseSet<ValuePair> &PairableInstUsers,
   1286                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
   1287                       DenseMap<Value *, Value *> &ChosenPairs,
   1288                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
   1289                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
   1290                       bool UseCycleCheck) {
   1291     for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
   1292          J != ChoiceRange.second; ++J) {
   1293 
   1294       // Before going any further, make sure that this pair does not
   1295       // conflict with any already-selected pairs (see comment below
   1296       // near the Tree pruning for more details).
   1297       DenseSet<ValuePair> ChosenPairSet;
   1298       bool DoesConflict = false;
   1299       for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
   1300            E = ChosenPairs.end(); C != E; ++C) {
   1301         if (pairsConflict(*C, *J, PairableInstUsers,
   1302                           UseCycleCheck ? &PairableInstUserMap : 0)) {
   1303           DoesConflict = true;
   1304           break;
   1305         }
   1306 
   1307         ChosenPairSet.insert(*C);
   1308       }
   1309       if (DoesConflict) continue;
   1310 
   1311       if (UseCycleCheck &&
   1312           pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
   1313         continue;
   1314 
   1315       DenseMap<ValuePair, size_t> Tree;
   1316       buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1317                           PairableInstUsers, ChosenPairs, Tree, *J);
   1318 
   1319       // Because we'll keep the child with the largest depth, the largest
   1320       // depth is still the same in the unpruned Tree.
   1321       size_t MaxDepth = Tree.lookup(*J);
   1322 
   1323       DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
   1324                    << *J->first << " <-> " << *J->second << "} of depth " <<
   1325                    MaxDepth << " and size " << Tree.size() << "\n");
   1326 
   1327       // At this point the Tree has been constructed, but, may contain
   1328       // contradictory children (meaning that different children of
   1329       // some tree node may be attempting to fuse the same instruction).
   1330       // So now we walk the tree again, in the case of a conflict,
   1331       // keep only the child with the largest depth. To break a tie,
   1332       // favor the first child.
   1333 
   1334       DenseSet<ValuePair> PrunedTree;
   1335       pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1336                    PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
   1337                    PrunedTree, *J, UseCycleCheck);
   1338 
   1339       size_t EffSize = 0;
   1340       for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
   1341            E = PrunedTree.end(); S != E; ++S)
   1342         EffSize += getDepthFactor(S->first);
   1343 
   1344       DEBUG(if (DebugPairSelection)
   1345              dbgs() << "BBV: found pruned Tree for pair {"
   1346              << *J->first << " <-> " << *J->second << "} of depth " <<
   1347              MaxDepth << " and size " << PrunedTree.size() <<
   1348             " (effective size: " << EffSize << ")\n");
   1349       if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
   1350         BestMaxDepth = MaxDepth;
   1351         BestEffSize = EffSize;
   1352         BestTree = PrunedTree;
   1353       }
   1354     }
   1355   }
   1356 
   1357   // Given the list of candidate pairs, this function selects those
   1358   // that will be fused into vector instructions.
   1359   void BBVectorize::choosePairs(
   1360                       std::multimap<Value *, Value *> &CandidatePairs,
   1361                       std::vector<Value *> &PairableInsts,
   1362                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
   1363                       DenseSet<ValuePair> &PairableInstUsers,
   1364                       DenseMap<Value *, Value *>& ChosenPairs) {
   1365     bool UseCycleCheck =
   1366      CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
   1367     std::multimap<ValuePair, ValuePair> PairableInstUserMap;
   1368     for (std::vector<Value *>::iterator I = PairableInsts.begin(),
   1369          E = PairableInsts.end(); I != E; ++I) {
   1370       // The number of possible pairings for this variable:
   1371       size_t NumChoices = CandidatePairs.count(*I);
   1372       if (!NumChoices) continue;
   1373 
   1374       VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
   1375 
   1376       // The best pair to choose and its tree:
   1377       size_t BestMaxDepth = 0, BestEffSize = 0;
   1378       DenseSet<ValuePair> BestTree;
   1379       findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1380                       PairableInstUsers, PairableInstUserMap, ChosenPairs,
   1381                       BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
   1382                       UseCycleCheck);
   1383 
   1384       // A tree has been chosen (or not) at this point. If no tree was
   1385       // chosen, then this instruction, I, cannot be paired (and is no longer
   1386       // considered).
   1387 
   1388       DEBUG(if (BestTree.size() > 0)
   1389               dbgs() << "BBV: selected pairs in the best tree for: "
   1390                      << *cast<Instruction>(*I) << "\n");
   1391 
   1392       for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
   1393            SE2 = BestTree.end(); S != SE2; ++S) {
   1394         // Insert the members of this tree into the list of chosen pairs.
   1395         ChosenPairs.insert(ValuePair(S->first, S->second));
   1396         DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
   1397                *S->second << "\n");
   1398 
   1399         // Remove all candidate pairs that have values in the chosen tree.
   1400         for (std::multimap<Value *, Value *>::iterator K =
   1401                CandidatePairs.begin(); K != CandidatePairs.end();) {
   1402           if (K->first == S->first || K->second == S->first ||
   1403               K->second == S->second || K->first == S->second) {
   1404             // Don't remove the actual pair chosen so that it can be used
   1405             // in subsequent tree selections.
   1406             if (!(K->first == S->first && K->second == S->second))
   1407               CandidatePairs.erase(K++);
   1408             else
   1409               ++K;
   1410           } else {
   1411             ++K;
   1412           }
   1413         }
   1414       }
   1415     }
   1416 
   1417     DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
   1418   }
   1419 
   1420   std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
   1421                      unsigned n = 0) {
   1422     if (!I->hasName())
   1423       return "";
   1424 
   1425     return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
   1426              (n > 0 ? "." + utostr(n) : "")).str();
   1427   }
   1428 
   1429   // Returns the value that is to be used as the pointer input to the vector
   1430   // instruction that fuses I with J.
   1431   Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
   1432                      Instruction *I, Instruction *J, unsigned o,
   1433                      bool &FlipMemInputs) {
   1434     Value *IPtr, *JPtr;
   1435     unsigned IAlignment, JAlignment;
   1436     int64_t OffsetInElmts;
   1437     (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
   1438                           OffsetInElmts);
   1439 
   1440     // The pointer value is taken to be the one with the lowest offset.
   1441     Value *VPtr;
   1442     if (OffsetInElmts > 0) {
   1443       VPtr = IPtr;
   1444     } else {
   1445       FlipMemInputs = true;
   1446       VPtr = JPtr;
   1447     }
   1448 
   1449     Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
   1450     Type *VArgType = getVecTypeForPair(ArgType);
   1451     Type *VArgPtrType = PointerType::get(VArgType,
   1452       cast<PointerType>(IPtr->getType())->getAddressSpace());
   1453     return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
   1454                         /* insert before */ FlipMemInputs ? J : I);
   1455   }
   1456 
   1457   void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
   1458                      unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
   1459                      unsigned IdxOffset, std::vector<Constant*> &Mask) {
   1460     for (unsigned v = 0; v < NumElem/2; ++v) {
   1461       int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
   1462       if (m < 0) {
   1463         Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
   1464       } else {
   1465         unsigned mm = m + (int) IdxOffset;
   1466         if (m >= (int) NumInElem)
   1467           mm += (int) NumInElem;
   1468 
   1469         Mask[v+MaskOffset] =
   1470           ConstantInt::get(Type::getInt32Ty(Context), mm);
   1471       }
   1472     }
   1473   }
   1474 
   1475   // Returns the value that is to be used as the vector-shuffle mask to the
   1476   // vector instruction that fuses I with J.
   1477   Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
   1478                      Instruction *I, Instruction *J) {
   1479     // This is the shuffle mask. We need to append the second
   1480     // mask to the first, and the numbers need to be adjusted.
   1481 
   1482     Type *ArgType = I->getType();
   1483     Type *VArgType = getVecTypeForPair(ArgType);
   1484 
   1485     // Get the total number of elements in the fused vector type.
   1486     // By definition, this must equal the number of elements in
   1487     // the final mask.
   1488     unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
   1489     std::vector<Constant*> Mask(NumElem);
   1490 
   1491     Type *OpType = I->getOperand(0)->getType();
   1492     unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
   1493 
   1494     // For the mask from the first pair...
   1495     fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
   1496 
   1497     // For the mask from the second pair...
   1498     fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
   1499                        Mask);
   1500 
   1501     return ConstantVector::get(Mask);
   1502   }
   1503 
   1504   // Returns the value to be used as the specified operand of the vector
   1505   // instruction that fuses I with J.
   1506   Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
   1507                      Instruction *J, unsigned o, bool FlipMemInputs) {
   1508     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   1509     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
   1510 
   1511       // Compute the fused vector type for this operand
   1512     Type *ArgType = I->getOperand(o)->getType();
   1513     VectorType *VArgType = getVecTypeForPair(ArgType);
   1514 
   1515     Instruction *L = I, *H = J;
   1516     if (FlipMemInputs) {
   1517       L = J;
   1518       H = I;
   1519     }
   1520 
   1521     if (ArgType->isVectorTy()) {
   1522       unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
   1523       std::vector<Constant*> Mask(numElem);
   1524       for (unsigned v = 0; v < numElem; ++v)
   1525         Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1526 
   1527       Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
   1528                                               H->getOperand(o),
   1529                                               ConstantVector::get(Mask),
   1530                                               getReplacementName(I, true, o));
   1531       BV->insertBefore(J);
   1532       return BV;
   1533     }
   1534 
   1535     // If these two inputs are the output of another vector instruction,
   1536     // then we should use that output directly. It might be necessary to
   1537     // permute it first. [When pairings are fused recursively, you can
   1538     // end up with cases where a large vector is decomposed into scalars
   1539     // using extractelement instructions, then built into size-2
   1540     // vectors using insertelement and the into larger vectors using
   1541     // shuffles. InstCombine does not simplify all of these cases well,
   1542     // and so we make sure that shuffles are generated here when possible.
   1543     ExtractElementInst *LEE
   1544       = dyn_cast<ExtractElementInst>(L->getOperand(o));
   1545     ExtractElementInst *HEE
   1546       = dyn_cast<ExtractElementInst>(H->getOperand(o));
   1547 
   1548     if (LEE && HEE &&
   1549         LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
   1550       VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
   1551       unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
   1552       unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
   1553       if (LEE->getOperand(0) == HEE->getOperand(0)) {
   1554         if (LowIndx == 0 && HighIndx == 1)
   1555           return LEE->getOperand(0);
   1556 
   1557         std::vector<Constant*> Mask(2);
   1558         Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
   1559         Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
   1560 
   1561         Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
   1562                                           UndefValue::get(EEType),
   1563                                           ConstantVector::get(Mask),
   1564                                           getReplacementName(I, true, o));
   1565         BV->insertBefore(J);
   1566         return BV;
   1567       }
   1568 
   1569       std::vector<Constant*> Mask(2);
   1570       HighIndx += EEType->getNumElements();
   1571       Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
   1572       Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
   1573 
   1574       Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
   1575                                           HEE->getOperand(0),
   1576                                           ConstantVector::get(Mask),
   1577                                           getReplacementName(I, true, o));
   1578       BV->insertBefore(J);
   1579       return BV;
   1580     }
   1581 
   1582     Instruction *BV1 = InsertElementInst::Create(
   1583                                           UndefValue::get(VArgType),
   1584                                           L->getOperand(o), CV0,
   1585                                           getReplacementName(I, true, o, 1));
   1586     BV1->insertBefore(I);
   1587     Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
   1588                                           CV1,
   1589                                           getReplacementName(I, true, o, 2));
   1590     BV2->insertBefore(J);
   1591     return BV2;
   1592   }
   1593 
   1594   // This function creates an array of values that will be used as the inputs
   1595   // to the vector instruction that fuses I with J.
   1596   void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
   1597                      Instruction *I, Instruction *J,
   1598                      SmallVector<Value *, 3> &ReplacedOperands,
   1599                      bool &FlipMemInputs) {
   1600     FlipMemInputs = false;
   1601     unsigned NumOperands = I->getNumOperands();
   1602 
   1603     for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
   1604       // Iterate backward so that we look at the store pointer
   1605       // first and know whether or not we need to flip the inputs.
   1606 
   1607       if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
   1608         // This is the pointer for a load/store instruction.
   1609         ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
   1610                                 FlipMemInputs);
   1611         continue;
   1612       } else if (isa<CallInst>(I)) {
   1613         Function *F = cast<CallInst>(I)->getCalledFunction();
   1614         unsigned IID = F->getIntrinsicID();
   1615         if (o == NumOperands-1) {
   1616           BasicBlock &BB = *I->getParent();
   1617 
   1618           Module *M = BB.getParent()->getParent();
   1619           Type *ArgType = I->getType();
   1620           Type *VArgType = getVecTypeForPair(ArgType);
   1621 
   1622           // FIXME: is it safe to do this here?
   1623           ReplacedOperands[o] = Intrinsic::getDeclaration(M,
   1624             (Intrinsic::ID) IID, VArgType);
   1625           continue;
   1626         } else if (IID == Intrinsic::powi && o == 1) {
   1627           // The second argument of powi is a single integer and we've already
   1628           // checked that both arguments are equal. As a result, we just keep
   1629           // I's second argument.
   1630           ReplacedOperands[o] = I->getOperand(o);
   1631           continue;
   1632         }
   1633       } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
   1634         ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
   1635         continue;
   1636       }
   1637 
   1638       ReplacedOperands[o] =
   1639         getReplacementInput(Context, I, J, o, FlipMemInputs);
   1640     }
   1641   }
   1642 
   1643   // This function creates two values that represent the outputs of the
   1644   // original I and J instructions. These are generally vector shuffles
   1645   // or extracts. In many cases, these will end up being unused and, thus,
   1646   // eliminated by later passes.
   1647   void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
   1648                      Instruction *J, Instruction *K,
   1649                      Instruction *&InsertionPt,
   1650                      Instruction *&K1, Instruction *&K2,
   1651                      bool &FlipMemInputs) {
   1652     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   1653     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
   1654 
   1655     if (isa<StoreInst>(I)) {
   1656       AA->replaceWithNewValue(I, K);
   1657       AA->replaceWithNewValue(J, K);
   1658     } else {
   1659       Type *IType = I->getType();
   1660       Type *VType = getVecTypeForPair(IType);
   1661 
   1662       if (IType->isVectorTy()) {
   1663           unsigned numElem = cast<VectorType>(IType)->getNumElements();
   1664           std::vector<Constant*> Mask1(numElem), Mask2(numElem);
   1665           for (unsigned v = 0; v < numElem; ++v) {
   1666             Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   1667             Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
   1668           }
   1669 
   1670           K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
   1671                                        ConstantVector::get(
   1672                                          FlipMemInputs ? Mask2 : Mask1),
   1673                                        getReplacementName(K, false, 1));
   1674           K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
   1675                                        ConstantVector::get(
   1676                                          FlipMemInputs ? Mask1 : Mask2),
   1677                                        getReplacementName(K, false, 2));
   1678       } else {
   1679         K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
   1680                                           getReplacementName(K, false, 1));
   1681         K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
   1682                                           getReplacementName(K, false, 2));
   1683       }
   1684 
   1685       K1->insertAfter(K);
   1686       K2->insertAfter(K1);
   1687       InsertionPt = K2;
   1688     }
   1689   }
   1690 
   1691   // Move all uses of the function I (including pairing-induced uses) after J.
   1692   bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
   1693                      std::multimap<Value *, Value *> &LoadMoveSet,
   1694                      Instruction *I, Instruction *J) {
   1695     // Skip to the first instruction past I.
   1696     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   1697 
   1698     DenseSet<Value *> Users;
   1699     AliasSetTracker WriteSet(*AA);
   1700     for (; cast<Instruction>(L) != J; ++L)
   1701       (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
   1702 
   1703     assert(cast<Instruction>(L) == J &&
   1704       "Tracking has not proceeded far enough to check for dependencies");
   1705     // If J is now in the use set of I, then trackUsesOfI will return true
   1706     // and we have a dependency cycle (and the fusing operation must abort).
   1707     return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
   1708   }
   1709 
   1710   // Move all uses of the function I (including pairing-induced uses) after J.
   1711   void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
   1712                      std::multimap<Value *, Value *> &LoadMoveSet,
   1713                      Instruction *&InsertionPt,
   1714                      Instruction *I, Instruction *J) {
   1715     // Skip to the first instruction past I.
   1716     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   1717 
   1718     DenseSet<Value *> Users;
   1719     AliasSetTracker WriteSet(*AA);
   1720     for (; cast<Instruction>(L) != J;) {
   1721       if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
   1722         // Move this instruction
   1723         Instruction *InstToMove = L; ++L;
   1724 
   1725         DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
   1726                         " to after " << *InsertionPt << "\n");
   1727         InstToMove->removeFromParent();
   1728         InstToMove->insertAfter(InsertionPt);
   1729         InsertionPt = InstToMove;
   1730       } else {
   1731         ++L;
   1732       }
   1733     }
   1734   }
   1735 
   1736   // Collect all load instruction that are in the move set of a given first
   1737   // pair member.  These loads depend on the first instruction, I, and so need
   1738   // to be moved after J (the second instruction) when the pair is fused.
   1739   void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
   1740                      DenseMap<Value *, Value *> &ChosenPairs,
   1741                      std::multimap<Value *, Value *> &LoadMoveSet,
   1742                      Instruction *I) {
   1743     // Skip to the first instruction past I.
   1744     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
   1745 
   1746     DenseSet<Value *> Users;
   1747     AliasSetTracker WriteSet(*AA);
   1748 
   1749     // Note: We cannot end the loop when we reach J because J could be moved
   1750     // farther down the use chain by another instruction pairing. Also, J
   1751     // could be before I if this is an inverted input.
   1752     for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
   1753       if (trackUsesOfI(Users, WriteSet, I, L)) {
   1754         if (L->mayReadFromMemory())
   1755           LoadMoveSet.insert(ValuePair(L, I));
   1756       }
   1757     }
   1758   }
   1759 
   1760   // In cases where both load/stores and the computation of their pointers
   1761   // are chosen for vectorization, we can end up in a situation where the
   1762   // aliasing analysis starts returning different query results as the
   1763   // process of fusing instruction pairs continues. Because the algorithm
   1764   // relies on finding the same use trees here as were found earlier, we'll
   1765   // need to precompute the necessary aliasing information here and then
   1766   // manually update it during the fusion process.
   1767   void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
   1768                      std::vector<Value *> &PairableInsts,
   1769                      DenseMap<Value *, Value *> &ChosenPairs,
   1770                      std::multimap<Value *, Value *> &LoadMoveSet) {
   1771     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   1772          PIE = PairableInsts.end(); PI != PIE; ++PI) {
   1773       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
   1774       if (P == ChosenPairs.end()) continue;
   1775 
   1776       Instruction *I = cast<Instruction>(P->first);
   1777       collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
   1778     }
   1779   }
   1780 
   1781   // This function fuses the chosen instruction pairs into vector instructions,
   1782   // taking care preserve any needed scalar outputs and, then, it reorders the
   1783   // remaining instructions as needed (users of the first member of the pair
   1784   // need to be moved to after the location of the second member of the pair
   1785   // because the vector instruction is inserted in the location of the pair's
   1786   // second member).
   1787   void BBVectorize::fuseChosenPairs(BasicBlock &BB,
   1788                      std::vector<Value *> &PairableInsts,
   1789                      DenseMap<Value *, Value *> &ChosenPairs) {
   1790     LLVMContext& Context = BB.getContext();
   1791 
   1792     // During the vectorization process, the order of the pairs to be fused
   1793     // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
   1794     // list. After a pair is fused, the flipped pair is removed from the list.
   1795     std::vector<ValuePair> FlippedPairs;
   1796     FlippedPairs.reserve(ChosenPairs.size());
   1797     for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
   1798          E = ChosenPairs.end(); P != E; ++P)
   1799       FlippedPairs.push_back(ValuePair(P->second, P->first));
   1800     for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
   1801          E = FlippedPairs.end(); P != E; ++P)
   1802       ChosenPairs.insert(*P);
   1803 
   1804     std::multimap<Value *, Value *> LoadMoveSet;
   1805     collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
   1806 
   1807     DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
   1808 
   1809     for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
   1810       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
   1811       if (P == ChosenPairs.end()) {
   1812         ++PI;
   1813         continue;
   1814       }
   1815 
   1816       if (getDepthFactor(P->first) == 0) {
   1817         // These instructions are not really fused, but are tracked as though
   1818         // they are. Any case in which it would be interesting to fuse them
   1819         // will be taken care of by InstCombine.
   1820         --NumFusedOps;
   1821         ++PI;
   1822         continue;
   1823       }
   1824 
   1825       Instruction *I = cast<Instruction>(P->first),
   1826         *J = cast<Instruction>(P->second);
   1827 
   1828       DEBUG(dbgs() << "BBV: fusing: " << *I <<
   1829              " <-> " << *J << "\n");
   1830 
   1831       // Remove the pair and flipped pair from the list.
   1832       DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
   1833       assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
   1834       ChosenPairs.erase(FP);
   1835       ChosenPairs.erase(P);
   1836 
   1837       if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
   1838         DEBUG(dbgs() << "BBV: fusion of: " << *I <<
   1839                " <-> " << *J <<
   1840                " aborted because of non-trivial dependency cycle\n");
   1841         --NumFusedOps;
   1842         ++PI;
   1843         continue;
   1844       }
   1845 
   1846       bool FlipMemInputs;
   1847       unsigned NumOperands = I->getNumOperands();
   1848       SmallVector<Value *, 3> ReplacedOperands(NumOperands);
   1849       getReplacementInputsForPair(Context, I, J, ReplacedOperands,
   1850         FlipMemInputs);
   1851 
   1852       // Make a copy of the original operation, change its type to the vector
   1853       // type and replace its operands with the vector operands.
   1854       Instruction *K = I->clone();
   1855       if (I->hasName()) K->takeName(I);
   1856 
   1857       if (!isa<StoreInst>(K))
   1858         K->mutateType(getVecTypeForPair(I->getType()));
   1859 
   1860       for (unsigned o = 0; o < NumOperands; ++o)
   1861         K->setOperand(o, ReplacedOperands[o]);
   1862 
   1863       // If we've flipped the memory inputs, make sure that we take the correct
   1864       // alignment.
   1865       if (FlipMemInputs) {
   1866         if (isa<StoreInst>(K))
   1867           cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
   1868         else
   1869           cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
   1870       }
   1871 
   1872       K->insertAfter(J);
   1873 
   1874       // Instruction insertion point:
   1875       Instruction *InsertionPt = K;
   1876       Instruction *K1 = 0, *K2 = 0;
   1877       replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
   1878         FlipMemInputs);
   1879 
   1880       // The use tree of the first original instruction must be moved to after
   1881       // the location of the second instruction. The entire use tree of the
   1882       // first instruction is disjoint from the input tree of the second
   1883       // (by definition), and so commutes with it.
   1884 
   1885       moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
   1886 
   1887       if (!isa<StoreInst>(I)) {
   1888         I->replaceAllUsesWith(K1);
   1889         J->replaceAllUsesWith(K2);
   1890         AA->replaceWithNewValue(I, K1);
   1891         AA->replaceWithNewValue(J, K2);
   1892       }
   1893 
   1894       // Instructions that may read from memory may be in the load move set.
   1895       // Once an instruction is fused, we no longer need its move set, and so
   1896       // the values of the map never need to be updated. However, when a load
   1897       // is fused, we need to merge the entries from both instructions in the
   1898       // pair in case those instructions were in the move set of some other
   1899       // yet-to-be-fused pair. The loads in question are the keys of the map.
   1900       if (I->mayReadFromMemory()) {
   1901         std::vector<ValuePair> NewSetMembers;
   1902         VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
   1903         VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
   1904         for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
   1905              N != IPairRange.second; ++N)
   1906           NewSetMembers.push_back(ValuePair(K, N->second));
   1907         for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
   1908              N != JPairRange.second; ++N)
   1909           NewSetMembers.push_back(ValuePair(K, N->second));
   1910         for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
   1911              AE = NewSetMembers.end(); A != AE; ++A)
   1912           LoadMoveSet.insert(*A);
   1913       }
   1914 
   1915       // Before removing I, set the iterator to the next instruction.
   1916       PI = llvm::next(BasicBlock::iterator(I));
   1917       if (cast<Instruction>(PI) == J)
   1918         ++PI;
   1919 
   1920       SE->forgetValue(I);
   1921       SE->forgetValue(J);
   1922       I->eraseFromParent();
   1923       J->eraseFromParent();
   1924     }
   1925 
   1926     DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
   1927   }
   1928 }
   1929 
   1930 char BBVectorize::ID = 0;
   1931 static const char bb_vectorize_name[] = "Basic-Block Vectorization";
   1932 INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   1933 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   1934 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   1935 INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   1936 
   1937 BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
   1938   return new BBVectorize(C);
   1939 }
   1940 
   1941 bool
   1942 llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
   1943   BBVectorize BBVectorizer(P, C);
   1944   return BBVectorizer.vectorizeBB(BB);
   1945 }
   1946 
   1947 //===----------------------------------------------------------------------===//
   1948 VectorizeConfig::VectorizeConfig() {
   1949   VectorBits = ::VectorBits;
   1950   VectorizeInts = !::NoInts;
   1951   VectorizeFloats = !::NoFloats;
   1952   VectorizePointers = !::NoPointers;
   1953   VectorizeCasts = !::NoCasts;
   1954   VectorizeMath = !::NoMath;
   1955   VectorizeFMA = !::NoFMA;
   1956   VectorizeSelect = !::NoSelect;
   1957   VectorizeGEP = !::NoGEP;
   1958   VectorizeMemOps = !::NoMemOps;
   1959   AlignedOnly = ::AlignedOnly;
   1960   ReqChainDepth= ::ReqChainDepth;
   1961   SearchLimit = ::SearchLimit;
   1962   MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
   1963   SplatBreaksChain = ::SplatBreaksChain;
   1964   MaxInsts = ::MaxInsts;
   1965   MaxIter = ::MaxIter;
   1966   NoMemOpBoost = ::NoMemOpBoost;
   1967   FastDep = ::FastDep;
   1968 }
   1969