1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CodeEmitterGen uses the descriptions of instructions and their fields to 11 // construct an automated code emitter: a function that, given a MachineInstr, 12 // returns the (currently, 32-bit unsigned) value of the instruction. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeEmitterGen.h" 17 #include "CodeGenTarget.h" 18 #include "llvm/TableGen/Record.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/Debug.h" 22 #include <map> 23 using namespace llvm; 24 25 // FIXME: Somewhat hackish to use a command line option for this. There should 26 // be a CodeEmitter class in the Target.td that controls this sort of thing 27 // instead. 28 static cl::opt<bool> 29 MCEmitter("mc-emitter", 30 cl::desc("Generate CodeEmitter for use with the MC library."), 31 cl::init(false)); 32 33 void CodeEmitterGen::reverseBits(std::vector<Record*> &Insts) { 34 for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end(); 35 I != E; ++I) { 36 Record *R = *I; 37 if (R->getValueAsString("Namespace") == "TargetOpcode" || 38 R->getValueAsBit("isPseudo")) 39 continue; 40 41 BitsInit *BI = R->getValueAsBitsInit("Inst"); 42 43 unsigned numBits = BI->getNumBits(); 44 45 SmallVector<Init *, 16> NewBits(numBits); 46 47 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 48 unsigned bitSwapIdx = numBits - bit - 1; 49 Init *OrigBit = BI->getBit(bit); 50 Init *BitSwap = BI->getBit(bitSwapIdx); 51 NewBits[bit] = BitSwap; 52 NewBits[bitSwapIdx] = OrigBit; 53 } 54 if (numBits % 2) { 55 unsigned middle = (numBits + 1) / 2; 56 NewBits[middle] = BI->getBit(middle); 57 } 58 59 BitsInit *NewBI = BitsInit::get(NewBits); 60 61 // Update the bits in reversed order so that emitInstrOpBits will get the 62 // correct endianness. 63 R->getValue("Inst")->setValue(NewBI); 64 } 65 } 66 67 // If the VarBitInit at position 'bit' matches the specified variable then 68 // return the variable bit position. Otherwise return -1. 69 int CodeEmitterGen::getVariableBit(const std::string &VarName, 70 BitsInit *BI, int bit) { 71 if (VarBitInit *VBI = dynamic_cast<VarBitInit*>(BI->getBit(bit))) { 72 if (VarInit *VI = dynamic_cast<VarInit*>(VBI->getVariable())) 73 if (VI->getName() == VarName) 74 return VBI->getBitNum(); 75 } else if (VarInit *VI = dynamic_cast<VarInit*>(BI->getBit(bit))) { 76 if (VI->getName() == VarName) 77 return 0; 78 } 79 80 return -1; 81 } 82 83 void CodeEmitterGen:: 84 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, 85 unsigned &NumberedOp, 86 std::string &Case, CodeGenTarget &Target) { 87 CodeGenInstruction &CGI = Target.getInstruction(R); 88 89 // Determine if VarName actually contributes to the Inst encoding. 90 int bit = BI->getNumBits()-1; 91 92 // Scan for a bit that this contributed to. 93 for (; bit >= 0; ) { 94 if (getVariableBit(VarName, BI, bit) != -1) 95 break; 96 97 --bit; 98 } 99 100 // If we found no bits, ignore this value, otherwise emit the call to get the 101 // operand encoding. 102 if (bit < 0) return; 103 104 // If the operand matches by name, reference according to that 105 // operand number. Non-matching operands are assumed to be in 106 // order. 107 unsigned OpIdx; 108 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { 109 // Get the machine operand number for the indicated operand. 110 OpIdx = CGI.Operands[OpIdx].MIOperandNo; 111 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && 112 "Explicitly used operand also marked as not emitted!"); 113 } else { 114 /// If this operand is not supposed to be emitted by the 115 /// generated emitter, skip it. 116 while (CGI.Operands.isFlatOperandNotEmitted(NumberedOp)) 117 ++NumberedOp; 118 OpIdx = NumberedOp++; 119 } 120 121 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); 122 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; 123 124 // If the source operand has a custom encoder, use it. This will 125 // get the encoding for all of the suboperands. 126 if (!EncoderMethodName.empty()) { 127 // A custom encoder has all of the information for the 128 // sub-operands, if there are more than one, so only 129 // query the encoder once per source operand. 130 if (SO.second == 0) { 131 Case += " // op: " + VarName + "\n" + 132 " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); 133 if (MCEmitter) 134 Case += ", Fixups"; 135 Case += ");\n"; 136 } 137 } else { 138 Case += " // op: " + VarName + "\n" + 139 " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 140 if (MCEmitter) 141 Case += ", Fixups"; 142 Case += ");\n"; 143 } 144 145 for (; bit >= 0; ) { 146 int varBit = getVariableBit(VarName, BI, bit); 147 148 // If this bit isn't from a variable, skip it. 149 if (varBit == -1) { 150 --bit; 151 continue; 152 } 153 154 // Figure out the consecutive range of bits covered by this operand, in 155 // order to generate better encoding code. 156 int beginInstBit = bit; 157 int beginVarBit = varBit; 158 int N = 1; 159 for (--bit; bit >= 0;) { 160 varBit = getVariableBit(VarName, BI, bit); 161 if (varBit == -1 || varBit != (beginVarBit - N)) break; 162 ++N; 163 --bit; 164 } 165 166 uint64_t opMask = ~(uint64_t)0 >> (64-N); 167 int opShift = beginVarBit - N + 1; 168 opMask <<= opShift; 169 opShift = beginInstBit - beginVarBit; 170 171 if (opShift > 0) { 172 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " + 173 itostr(opShift) + ";\n"; 174 } else if (opShift < 0) { 175 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " + 176 itostr(-opShift) + ";\n"; 177 } else { 178 Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n"; 179 } 180 } 181 } 182 183 184 std::string CodeEmitterGen::getInstructionCase(Record *R, 185 CodeGenTarget &Target) { 186 std::string Case; 187 188 BitsInit *BI = R->getValueAsBitsInit("Inst"); 189 const std::vector<RecordVal> &Vals = R->getValues(); 190 unsigned NumberedOp = 0; 191 192 // Loop over all of the fields in the instruction, determining which are the 193 // operands to the instruction. 194 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 195 // Ignore fixed fields in the record, we're looking for values like: 196 // bits<5> RST = { ?, ?, ?, ?, ? }; 197 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) 198 continue; 199 200 AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp, Case, Target); 201 } 202 203 std::string PostEmitter = R->getValueAsString("PostEncoderMethod"); 204 if (!PostEmitter.empty()) 205 Case += " Value = " + PostEmitter + "(MI, Value);\n"; 206 207 return Case; 208 } 209 210 void CodeEmitterGen::run(raw_ostream &o) { 211 CodeGenTarget Target(Records); 212 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 213 214 // For little-endian instruction bit encodings, reverse the bit order 215 if (Target.isLittleEndianEncoding()) reverseBits(Insts); 216 217 EmitSourceFileHeader("Machine Code Emitter", o); 218 219 const std::vector<const CodeGenInstruction*> &NumberedInstructions = 220 Target.getInstructionsByEnumValue(); 221 222 // Emit function declaration 223 o << "uint64_t " << Target.getName(); 224 if (MCEmitter) 225 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 226 << " SmallVectorImpl<MCFixup> &Fixups) const {\n"; 227 else 228 o << "CodeEmitter::getBinaryCodeForInstr(const MachineInstr &MI) const {\n"; 229 230 // Emit instruction base values 231 o << " static const uint64_t InstBits[] = {\n"; 232 for (std::vector<const CodeGenInstruction*>::const_iterator 233 IN = NumberedInstructions.begin(), 234 EN = NumberedInstructions.end(); 235 IN != EN; ++IN) { 236 const CodeGenInstruction *CGI = *IN; 237 Record *R = CGI->TheDef; 238 239 if (R->getValueAsString("Namespace") == "TargetOpcode" || 240 R->getValueAsBit("isPseudo")) { 241 o << " UINT64_C(0),\n"; 242 continue; 243 } 244 245 BitsInit *BI = R->getValueAsBitsInit("Inst"); 246 247 // Start by filling in fixed values. 248 uint64_t Value = 0; 249 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { 250 if (BitInit *B = dynamic_cast<BitInit*>(BI->getBit(e-i-1))) 251 Value |= (uint64_t)B->getValue() << (e-i-1); 252 } 253 o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n"; 254 } 255 o << " UINT64_C(0)\n };\n"; 256 257 // Map to accumulate all the cases. 258 std::map<std::string, std::vector<std::string> > CaseMap; 259 260 // Construct all cases statement for each opcode 261 for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end(); 262 IC != EC; ++IC) { 263 Record *R = *IC; 264 if (R->getValueAsString("Namespace") == "TargetOpcode" || 265 (R->getValueAsBit("isPseudo") && MCEmitter)) 266 continue; 267 const std::string &InstName = R->getValueAsString("Namespace") + "::" 268 + R->getName(); 269 std::string Case; 270 if (!R->getValueAsBit("isPseudo")) { 271 Case = getInstructionCase(R, Target); 272 } 273 274 CaseMap[Case].push_back(InstName); 275 } 276 277 // Emit initial function code 278 o << " const unsigned opcode = MI.getOpcode();\n" 279 << " uint64_t Value = InstBits[opcode];\n" 280 << " uint64_t op = 0;\n" 281 << " (void)op; // suppress warning\n" 282 << " switch (opcode) {\n"; 283 284 // Emit each case statement 285 std::map<std::string, std::vector<std::string> >::iterator IE, EE; 286 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { 287 const std::string &Case = IE->first; 288 std::vector<std::string> &InstList = IE->second; 289 290 for (int i = 0, N = InstList.size(); i < N; i++) { 291 if (i) o << "\n"; 292 o << " case " << InstList[i] << ":"; 293 } 294 o << " {\n"; 295 o << Case; 296 o << " break;\n" 297 << " }\n"; 298 } 299 300 // Default case: unhandled opcode 301 o << " default:\n" 302 << " std::string msg;\n" 303 << " raw_string_ostream Msg(msg);\n" 304 << " Msg << \"Not supported instr: \" << MI;\n" 305 << " report_fatal_error(Msg.str());\n" 306 << " }\n" 307 << " return Value;\n" 308 << "}\n\n"; 309 } 310