Home | History | Annotate | Download | only in VMCore
      1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements folding of constants for LLVM.  This implements the
     11 // (internal) ConstantFold.h interface, which is used by the
     12 // ConstantExpr::get* methods to automatically fold constants when possible.
     13 //
     14 // The current constant folding implementation is implemented in two pieces: the
     15 // pieces that don't need TargetData, and the pieces that do. This is to avoid
     16 // a dependence in VMCore on Target.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "ConstantFold.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/Function.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Operator.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/Support/Compiler.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/Support/ManagedStatic.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include <limits>
     35 using namespace llvm;
     36 
     37 //===----------------------------------------------------------------------===//
     38 //                ConstantFold*Instruction Implementations
     39 //===----------------------------------------------------------------------===//
     40 
     41 /// BitCastConstantVector - Convert the specified vector Constant node to the
     42 /// specified vector type.  At this point, we know that the elements of the
     43 /// input vector constant are all simple integer or FP values.
     44 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
     45 
     46   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
     47   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
     48 
     49   // If this cast changes element count then we can't handle it here:
     50   // doing so requires endianness information.  This should be handled by
     51   // Analysis/ConstantFolding.cpp
     52   unsigned NumElts = DstTy->getNumElements();
     53   if (NumElts != CV->getType()->getVectorNumElements())
     54     return 0;
     55 
     56   Type *DstEltTy = DstTy->getElementType();
     57 
     58   SmallVector<Constant*, 16> Result;
     59   Type *Ty = IntegerType::get(CV->getContext(), 32);
     60   for (unsigned i = 0; i != NumElts; ++i) {
     61     Constant *C =
     62       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
     63     C = ConstantExpr::getBitCast(C, DstEltTy);
     64     Result.push_back(C);
     65   }
     66 
     67   return ConstantVector::get(Result);
     68 }
     69 
     70 /// This function determines which opcode to use to fold two constant cast
     71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
     72 /// the opcode. Consequently its just a wrapper around that function.
     73 /// @brief Determine if it is valid to fold a cast of a cast
     74 static unsigned
     75 foldConstantCastPair(
     76   unsigned opc,          ///< opcode of the second cast constant expression
     77   ConstantExpr *Op,      ///< the first cast constant expression
     78   Type *DstTy      ///< desintation type of the first cast
     79 ) {
     80   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
     81   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
     82   assert(CastInst::isCast(opc) && "Invalid cast opcode");
     83 
     84   // The the types and opcodes for the two Cast constant expressions
     85   Type *SrcTy = Op->getOperand(0)->getType();
     86   Type *MidTy = Op->getType();
     87   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
     88   Instruction::CastOps secondOp = Instruction::CastOps(opc);
     89 
     90   // Let CastInst::isEliminableCastPair do the heavy lifting.
     91   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
     92                                         Type::getInt64Ty(DstTy->getContext()));
     93 }
     94 
     95 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
     96   Type *SrcTy = V->getType();
     97   if (SrcTy == DestTy)
     98     return V; // no-op cast
     99 
    100   // Check to see if we are casting a pointer to an aggregate to a pointer to
    101   // the first element.  If so, return the appropriate GEP instruction.
    102   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
    103     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
    104       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
    105           && DPTy->getElementType()->isSized()) {
    106         SmallVector<Value*, 8> IdxList;
    107         Value *Zero =
    108           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
    109         IdxList.push_back(Zero);
    110         Type *ElTy = PTy->getElementType();
    111         while (ElTy != DPTy->getElementType()) {
    112           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
    113             if (STy->getNumElements() == 0) break;
    114             ElTy = STy->getElementType(0);
    115             IdxList.push_back(Zero);
    116           } else if (SequentialType *STy =
    117                      dyn_cast<SequentialType>(ElTy)) {
    118             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
    119             ElTy = STy->getElementType();
    120             IdxList.push_back(Zero);
    121           } else {
    122             break;
    123           }
    124         }
    125 
    126         if (ElTy == DPTy->getElementType())
    127           // This GEP is inbounds because all indices are zero.
    128           return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
    129       }
    130 
    131   // Handle casts from one vector constant to another.  We know that the src
    132   // and dest type have the same size (otherwise its an illegal cast).
    133   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
    134     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
    135       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
    136              "Not cast between same sized vectors!");
    137       SrcTy = NULL;
    138       // First, check for null.  Undef is already handled.
    139       if (isa<ConstantAggregateZero>(V))
    140         return Constant::getNullValue(DestTy);
    141 
    142       // Handle ConstantVector and ConstantAggregateVector.
    143       return BitCastConstantVector(V, DestPTy);
    144     }
    145 
    146     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
    147     // This allows for other simplifications (although some of them
    148     // can only be handled by Analysis/ConstantFolding.cpp).
    149     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
    150       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
    151   }
    152 
    153   // Finally, implement bitcast folding now.   The code below doesn't handle
    154   // bitcast right.
    155   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
    156     return ConstantPointerNull::get(cast<PointerType>(DestTy));
    157 
    158   // Handle integral constant input.
    159   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    160     if (DestTy->isIntegerTy())
    161       // Integral -> Integral. This is a no-op because the bit widths must
    162       // be the same. Consequently, we just fold to V.
    163       return V;
    164 
    165     if (DestTy->isFloatingPointTy())
    166       return ConstantFP::get(DestTy->getContext(),
    167                              APFloat(CI->getValue(),
    168                                      !DestTy->isPPC_FP128Ty()));
    169 
    170     // Otherwise, can't fold this (vector?)
    171     return 0;
    172   }
    173 
    174   // Handle ConstantFP input: FP -> Integral.
    175   if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
    176     return ConstantInt::get(FP->getContext(),
    177                             FP->getValueAPF().bitcastToAPInt());
    178 
    179   return 0;
    180 }
    181 
    182 
    183 /// ExtractConstantBytes - V is an integer constant which only has a subset of
    184 /// its bytes used.  The bytes used are indicated by ByteStart (which is the
    185 /// first byte used, counting from the least significant byte) and ByteSize,
    186 /// which is the number of bytes used.
    187 ///
    188 /// This function analyzes the specified constant to see if the specified byte
    189 /// range can be returned as a simplified constant.  If so, the constant is
    190 /// returned, otherwise null is returned.
    191 ///
    192 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
    193                                       unsigned ByteSize) {
    194   assert(C->getType()->isIntegerTy() &&
    195          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
    196          "Non-byte sized integer input");
    197   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
    198   assert(ByteSize && "Must be accessing some piece");
    199   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
    200   assert(ByteSize != CSize && "Should not extract everything");
    201 
    202   // Constant Integers are simple.
    203   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    204     APInt V = CI->getValue();
    205     if (ByteStart)
    206       V = V.lshr(ByteStart*8);
    207     V = V.trunc(ByteSize*8);
    208     return ConstantInt::get(CI->getContext(), V);
    209   }
    210 
    211   // In the input is a constant expr, we might be able to recursively simplify.
    212   // If not, we definitely can't do anything.
    213   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    214   if (CE == 0) return 0;
    215 
    216   switch (CE->getOpcode()) {
    217   default: return 0;
    218   case Instruction::Or: {
    219     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    220     if (RHS == 0)
    221       return 0;
    222 
    223     // X | -1 -> -1.
    224     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
    225       if (RHSC->isAllOnesValue())
    226         return RHSC;
    227 
    228     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    229     if (LHS == 0)
    230       return 0;
    231     return ConstantExpr::getOr(LHS, RHS);
    232   }
    233   case Instruction::And: {
    234     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
    235     if (RHS == 0)
    236       return 0;
    237 
    238     // X & 0 -> 0.
    239     if (RHS->isNullValue())
    240       return RHS;
    241 
    242     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
    243     if (LHS == 0)
    244       return 0;
    245     return ConstantExpr::getAnd(LHS, RHS);
    246   }
    247   case Instruction::LShr: {
    248     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    249     if (Amt == 0)
    250       return 0;
    251     unsigned ShAmt = Amt->getZExtValue();
    252     // Cannot analyze non-byte shifts.
    253     if ((ShAmt & 7) != 0)
    254       return 0;
    255     ShAmt >>= 3;
    256 
    257     // If the extract is known to be all zeros, return zero.
    258     if (ByteStart >= CSize-ShAmt)
    259       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    260                                                      ByteSize*8));
    261     // If the extract is known to be fully in the input, extract it.
    262     if (ByteStart+ByteSize+ShAmt <= CSize)
    263       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
    264 
    265     // TODO: Handle the 'partially zero' case.
    266     return 0;
    267   }
    268 
    269   case Instruction::Shl: {
    270     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
    271     if (Amt == 0)
    272       return 0;
    273     unsigned ShAmt = Amt->getZExtValue();
    274     // Cannot analyze non-byte shifts.
    275     if ((ShAmt & 7) != 0)
    276       return 0;
    277     ShAmt >>= 3;
    278 
    279     // If the extract is known to be all zeros, return zero.
    280     if (ByteStart+ByteSize <= ShAmt)
    281       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    282                                                      ByteSize*8));
    283     // If the extract is known to be fully in the input, extract it.
    284     if (ByteStart >= ShAmt)
    285       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
    286 
    287     // TODO: Handle the 'partially zero' case.
    288     return 0;
    289   }
    290 
    291   case Instruction::ZExt: {
    292     unsigned SrcBitSize =
    293       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
    294 
    295     // If extracting something that is completely zero, return 0.
    296     if (ByteStart*8 >= SrcBitSize)
    297       return Constant::getNullValue(IntegerType::get(CE->getContext(),
    298                                                      ByteSize*8));
    299 
    300     // If exactly extracting the input, return it.
    301     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
    302       return CE->getOperand(0);
    303 
    304     // If extracting something completely in the input, if if the input is a
    305     // multiple of 8 bits, recurse.
    306     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
    307       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
    308 
    309     // Otherwise, if extracting a subset of the input, which is not multiple of
    310     // 8 bits, do a shift and trunc to get the bits.
    311     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
    312       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
    313       Constant *Res = CE->getOperand(0);
    314       if (ByteStart)
    315         Res = ConstantExpr::getLShr(Res,
    316                                  ConstantInt::get(Res->getType(), ByteStart*8));
    317       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
    318                                                           ByteSize*8));
    319     }
    320 
    321     // TODO: Handle the 'partially zero' case.
    322     return 0;
    323   }
    324   }
    325 }
    326 
    327 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
    328 /// on Ty, with any known factors factored out. If Folded is false,
    329 /// return null if no factoring was possible, to avoid endlessly
    330 /// bouncing an unfoldable expression back into the top-level folder.
    331 ///
    332 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
    333                                  bool Folded) {
    334   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    335     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
    336     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    337     return ConstantExpr::getNUWMul(E, N);
    338   }
    339 
    340   if (StructType *STy = dyn_cast<StructType>(Ty))
    341     if (!STy->isPacked()) {
    342       unsigned NumElems = STy->getNumElements();
    343       // An empty struct has size zero.
    344       if (NumElems == 0)
    345         return ConstantExpr::getNullValue(DestTy);
    346       // Check for a struct with all members having the same size.
    347       Constant *MemberSize =
    348         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    349       bool AllSame = true;
    350       for (unsigned i = 1; i != NumElems; ++i)
    351         if (MemberSize !=
    352             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    353           AllSame = false;
    354           break;
    355         }
    356       if (AllSame) {
    357         Constant *N = ConstantInt::get(DestTy, NumElems);
    358         return ConstantExpr::getNUWMul(MemberSize, N);
    359       }
    360     }
    361 
    362   // Pointer size doesn't depend on the pointee type, so canonicalize them
    363   // to an arbitrary pointee.
    364   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    365     if (!PTy->getElementType()->isIntegerTy(1))
    366       return
    367         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
    368                                          PTy->getAddressSpace()),
    369                         DestTy, true);
    370 
    371   // If there's no interesting folding happening, bail so that we don't create
    372   // a constant that looks like it needs folding but really doesn't.
    373   if (!Folded)
    374     return 0;
    375 
    376   // Base case: Get a regular sizeof expression.
    377   Constant *C = ConstantExpr::getSizeOf(Ty);
    378   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    379                                                     DestTy, false),
    380                             C, DestTy);
    381   return C;
    382 }
    383 
    384 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
    385 /// on Ty, with any known factors factored out. If Folded is false,
    386 /// return null if no factoring was possible, to avoid endlessly
    387 /// bouncing an unfoldable expression back into the top-level folder.
    388 ///
    389 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
    390                                   bool Folded) {
    391   // The alignment of an array is equal to the alignment of the
    392   // array element. Note that this is not always true for vectors.
    393   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    394     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
    395     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    396                                                       DestTy,
    397                                                       false),
    398                               C, DestTy);
    399     return C;
    400   }
    401 
    402   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    403     // Packed structs always have an alignment of 1.
    404     if (STy->isPacked())
    405       return ConstantInt::get(DestTy, 1);
    406 
    407     // Otherwise, struct alignment is the maximum alignment of any member.
    408     // Without target data, we can't compare much, but we can check to see
    409     // if all the members have the same alignment.
    410     unsigned NumElems = STy->getNumElements();
    411     // An empty struct has minimal alignment.
    412     if (NumElems == 0)
    413       return ConstantInt::get(DestTy, 1);
    414     // Check for a struct with all members having the same alignment.
    415     Constant *MemberAlign =
    416       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
    417     bool AllSame = true;
    418     for (unsigned i = 1; i != NumElems; ++i)
    419       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
    420         AllSame = false;
    421         break;
    422       }
    423     if (AllSame)
    424       return MemberAlign;
    425   }
    426 
    427   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
    428   // to an arbitrary pointee.
    429   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    430     if (!PTy->getElementType()->isIntegerTy(1))
    431       return
    432         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
    433                                                            1),
    434                                           PTy->getAddressSpace()),
    435                          DestTy, true);
    436 
    437   // If there's no interesting folding happening, bail so that we don't create
    438   // a constant that looks like it needs folding but really doesn't.
    439   if (!Folded)
    440     return 0;
    441 
    442   // Base case: Get a regular alignof expression.
    443   Constant *C = ConstantExpr::getAlignOf(Ty);
    444   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    445                                                     DestTy, false),
    446                             C, DestTy);
    447   return C;
    448 }
    449 
    450 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
    451 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
    452 /// return null if no factoring was possible, to avoid endlessly
    453 /// bouncing an unfoldable expression back into the top-level folder.
    454 ///
    455 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
    456                                    Type *DestTy,
    457                                    bool Folded) {
    458   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    459     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
    460                                                                 DestTy, false),
    461                                         FieldNo, DestTy);
    462     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
    463     return ConstantExpr::getNUWMul(E, N);
    464   }
    465 
    466   if (StructType *STy = dyn_cast<StructType>(Ty))
    467     if (!STy->isPacked()) {
    468       unsigned NumElems = STy->getNumElements();
    469       // An empty struct has no members.
    470       if (NumElems == 0)
    471         return 0;
    472       // Check for a struct with all members having the same size.
    473       Constant *MemberSize =
    474         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
    475       bool AllSame = true;
    476       for (unsigned i = 1; i != NumElems; ++i)
    477         if (MemberSize !=
    478             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
    479           AllSame = false;
    480           break;
    481         }
    482       if (AllSame) {
    483         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
    484                                                                     false,
    485                                                                     DestTy,
    486                                                                     false),
    487                                             FieldNo, DestTy);
    488         return ConstantExpr::getNUWMul(MemberSize, N);
    489       }
    490     }
    491 
    492   // If there's no interesting folding happening, bail so that we don't create
    493   // a constant that looks like it needs folding but really doesn't.
    494   if (!Folded)
    495     return 0;
    496 
    497   // Base case: Get a regular offsetof expression.
    498   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
    499   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
    500                                                     DestTy, false),
    501                             C, DestTy);
    502   return C;
    503 }
    504 
    505 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
    506                                             Type *DestTy) {
    507   if (isa<UndefValue>(V)) {
    508     // zext(undef) = 0, because the top bits will be zero.
    509     // sext(undef) = 0, because the top bits will all be the same.
    510     // [us]itofp(undef) = 0, because the result value is bounded.
    511     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
    512         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
    513       return Constant::getNullValue(DestTy);
    514     return UndefValue::get(DestTy);
    515   }
    516 
    517   // No compile-time operations on this type yet.
    518   if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
    519     return 0;
    520 
    521   if (V->isNullValue() && !DestTy->isX86_MMXTy())
    522     return Constant::getNullValue(DestTy);
    523 
    524   // If the cast operand is a constant expression, there's a few things we can
    525   // do to try to simplify it.
    526   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    527     if (CE->isCast()) {
    528       // Try hard to fold cast of cast because they are often eliminable.
    529       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
    530         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
    531     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
    532       // If all of the indexes in the GEP are null values, there is no pointer
    533       // adjustment going on.  We might as well cast the source pointer.
    534       bool isAllNull = true;
    535       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
    536         if (!CE->getOperand(i)->isNullValue()) {
    537           isAllNull = false;
    538           break;
    539         }
    540       if (isAllNull)
    541         // This is casting one pointer type to another, always BitCast
    542         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
    543     }
    544   }
    545 
    546   // If the cast operand is a constant vector, perform the cast by
    547   // operating on each element. In the cast of bitcasts, the element
    548   // count may be mismatched; don't attempt to handle that here.
    549   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
    550       DestTy->isVectorTy() &&
    551       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
    552     SmallVector<Constant*, 16> res;
    553     VectorType *DestVecTy = cast<VectorType>(DestTy);
    554     Type *DstEltTy = DestVecTy->getElementType();
    555     Type *Ty = IntegerType::get(V->getContext(), 32);
    556     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
    557       Constant *C =
    558         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    559       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
    560     }
    561     return ConstantVector::get(res);
    562   }
    563 
    564   // We actually have to do a cast now. Perform the cast according to the
    565   // opcode specified.
    566   switch (opc) {
    567   default:
    568     llvm_unreachable("Failed to cast constant expression");
    569   case Instruction::FPTrunc:
    570   case Instruction::FPExt:
    571     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    572       bool ignored;
    573       APFloat Val = FPC->getValueAPF();
    574       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
    575                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
    576                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
    577                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
    578                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
    579                   APFloat::Bogus,
    580                   APFloat::rmNearestTiesToEven, &ignored);
    581       return ConstantFP::get(V->getContext(), Val);
    582     }
    583     return 0; // Can't fold.
    584   case Instruction::FPToUI:
    585   case Instruction::FPToSI:
    586     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
    587       const APFloat &V = FPC->getValueAPF();
    588       bool ignored;
    589       uint64_t x[2];
    590       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    591       (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
    592                                 APFloat::rmTowardZero, &ignored);
    593       APInt Val(DestBitWidth, x);
    594       return ConstantInt::get(FPC->getContext(), Val);
    595     }
    596     return 0; // Can't fold.
    597   case Instruction::IntToPtr:   //always treated as unsigned
    598     if (V->isNullValue())       // Is it an integral null value?
    599       return ConstantPointerNull::get(cast<PointerType>(DestTy));
    600     return 0;                   // Other pointer types cannot be casted
    601   case Instruction::PtrToInt:   // always treated as unsigned
    602     // Is it a null pointer value?
    603     if (V->isNullValue())
    604       return ConstantInt::get(DestTy, 0);
    605     // If this is a sizeof-like expression, pull out multiplications by
    606     // known factors to expose them to subsequent folding. If it's an
    607     // alignof-like expression, factor out known factors.
    608     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    609       if (CE->getOpcode() == Instruction::GetElementPtr &&
    610           CE->getOperand(0)->isNullValue()) {
    611         Type *Ty =
    612           cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    613         if (CE->getNumOperands() == 2) {
    614           // Handle a sizeof-like expression.
    615           Constant *Idx = CE->getOperand(1);
    616           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
    617           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
    618             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
    619                                                                 DestTy, false),
    620                                         Idx, DestTy);
    621             return ConstantExpr::getMul(C, Idx);
    622           }
    623         } else if (CE->getNumOperands() == 3 &&
    624                    CE->getOperand(1)->isNullValue()) {
    625           // Handle an alignof-like expression.
    626           if (StructType *STy = dyn_cast<StructType>(Ty))
    627             if (!STy->isPacked()) {
    628               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
    629               if (CI->isOne() &&
    630                   STy->getNumElements() == 2 &&
    631                   STy->getElementType(0)->isIntegerTy(1)) {
    632                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
    633               }
    634             }
    635           // Handle an offsetof-like expression.
    636           if (Ty->isStructTy() || Ty->isArrayTy()) {
    637             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
    638                                                 DestTy, false))
    639               return C;
    640           }
    641         }
    642       }
    643     // Other pointer types cannot be casted
    644     return 0;
    645   case Instruction::UIToFP:
    646   case Instruction::SIToFP:
    647     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    648       APInt api = CI->getValue();
    649       APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
    650       (void)apf.convertFromAPInt(api,
    651                                  opc==Instruction::SIToFP,
    652                                  APFloat::rmNearestTiesToEven);
    653       return ConstantFP::get(V->getContext(), apf);
    654     }
    655     return 0;
    656   case Instruction::ZExt:
    657     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    658       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    659       return ConstantInt::get(V->getContext(),
    660                               CI->getValue().zext(BitWidth));
    661     }
    662     return 0;
    663   case Instruction::SExt:
    664     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    665       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    666       return ConstantInt::get(V->getContext(),
    667                               CI->getValue().sext(BitWidth));
    668     }
    669     return 0;
    670   case Instruction::Trunc: {
    671     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
    672     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    673       return ConstantInt::get(V->getContext(),
    674                               CI->getValue().trunc(DestBitWidth));
    675     }
    676 
    677     // The input must be a constantexpr.  See if we can simplify this based on
    678     // the bytes we are demanding.  Only do this if the source and dest are an
    679     // even multiple of a byte.
    680     if ((DestBitWidth & 7) == 0 &&
    681         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
    682       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
    683         return Res;
    684 
    685     return 0;
    686   }
    687   case Instruction::BitCast:
    688     return FoldBitCast(V, DestTy);
    689   }
    690 }
    691 
    692 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
    693                                               Constant *V1, Constant *V2) {
    694   // Check for i1 and vector true/false conditions.
    695   if (Cond->isNullValue()) return V2;
    696   if (Cond->isAllOnesValue()) return V1;
    697 
    698   // If the condition is a vector constant, fold the result elementwise.
    699   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
    700     SmallVector<Constant*, 16> Result;
    701     Type *Ty = IntegerType::get(CondV->getContext(), 32);
    702     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
    703       ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
    704       if (Cond == 0) break;
    705 
    706       Constant *V = Cond->isNullValue() ? V2 : V1;
    707       Constant *Res = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
    708       Result.push_back(Res);
    709     }
    710 
    711     // If we were able to build the vector, return it.
    712     if (Result.size() == V1->getType()->getVectorNumElements())
    713       return ConstantVector::get(Result);
    714   }
    715 
    716   if (isa<UndefValue>(Cond)) {
    717     if (isa<UndefValue>(V1)) return V1;
    718     return V2;
    719   }
    720   if (isa<UndefValue>(V1)) return V2;
    721   if (isa<UndefValue>(V2)) return V1;
    722   if (V1 == V2) return V1;
    723 
    724   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
    725     if (TrueVal->getOpcode() == Instruction::Select)
    726       if (TrueVal->getOperand(0) == Cond)
    727         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
    728   }
    729   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
    730     if (FalseVal->getOpcode() == Instruction::Select)
    731       if (FalseVal->getOperand(0) == Cond)
    732         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
    733   }
    734 
    735   return 0;
    736 }
    737 
    738 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
    739                                                       Constant *Idx) {
    740   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
    741     return UndefValue::get(Val->getType()->getVectorElementType());
    742   if (Val->isNullValue())  // ee(zero, x) -> zero
    743     return Constant::getNullValue(Val->getType()->getVectorElementType());
    744   // ee({w,x,y,z}, undef) -> undef
    745   if (isa<UndefValue>(Idx))
    746     return UndefValue::get(Val->getType()->getVectorElementType());
    747 
    748   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
    749     uint64_t Index = CIdx->getZExtValue();
    750     // ee({w,x,y,z}, wrong_value) -> undef
    751     if (Index >= Val->getType()->getVectorNumElements())
    752       return UndefValue::get(Val->getType()->getVectorElementType());
    753     return Val->getAggregateElement(Index);
    754   }
    755   return 0;
    756 }
    757 
    758 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
    759                                                      Constant *Elt,
    760                                                      Constant *Idx) {
    761   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
    762   if (!CIdx) return 0;
    763   const APInt &IdxVal = CIdx->getValue();
    764 
    765   SmallVector<Constant*, 16> Result;
    766   Type *Ty = IntegerType::get(Val->getContext(), 32);
    767   for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
    768     if (i == IdxVal) {
    769       Result.push_back(Elt);
    770       continue;
    771     }
    772 
    773     Constant *C =
    774       ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
    775     Result.push_back(C);
    776   }
    777 
    778   return ConstantVector::get(Result);
    779 }
    780 
    781 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
    782                                                      Constant *V2,
    783                                                      Constant *Mask) {
    784   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
    785   Type *EltTy = V1->getType()->getVectorElementType();
    786 
    787   // Undefined shuffle mask -> undefined value.
    788   if (isa<UndefValue>(Mask))
    789     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
    790 
    791   // Don't break the bitcode reader hack.
    792   if (isa<ConstantExpr>(Mask)) return 0;
    793 
    794   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
    795 
    796   // Loop over the shuffle mask, evaluating each element.
    797   SmallVector<Constant*, 32> Result;
    798   for (unsigned i = 0; i != MaskNumElts; ++i) {
    799     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
    800     if (Elt == -1) {
    801       Result.push_back(UndefValue::get(EltTy));
    802       continue;
    803     }
    804     Constant *InElt;
    805     if (unsigned(Elt) >= SrcNumElts*2)
    806       InElt = UndefValue::get(EltTy);
    807     else if (unsigned(Elt) >= SrcNumElts) {
    808       Type *Ty = IntegerType::get(V2->getContext(), 32);
    809       InElt =
    810         ConstantExpr::getExtractElement(V2,
    811                                         ConstantInt::get(Ty, Elt - SrcNumElts));
    812     } else {
    813       Type *Ty = IntegerType::get(V1->getContext(), 32);
    814       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
    815     }
    816     Result.push_back(InElt);
    817   }
    818 
    819   return ConstantVector::get(Result);
    820 }
    821 
    822 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
    823                                                     ArrayRef<unsigned> Idxs) {
    824   // Base case: no indices, so return the entire value.
    825   if (Idxs.empty())
    826     return Agg;
    827 
    828   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
    829     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
    830 
    831   return 0;
    832 }
    833 
    834 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
    835                                                    Constant *Val,
    836                                                    ArrayRef<unsigned> Idxs) {
    837   // Base case: no indices, so replace the entire value.
    838   if (Idxs.empty())
    839     return Val;
    840 
    841   unsigned NumElts;
    842   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    843     NumElts = ST->getNumElements();
    844   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    845     NumElts = AT->getNumElements();
    846   else
    847     NumElts = AT->getVectorNumElements();
    848 
    849   SmallVector<Constant*, 32> Result;
    850   for (unsigned i = 0; i != NumElts; ++i) {
    851     Constant *C = Agg->getAggregateElement(i);
    852     if (C == 0) return 0;
    853 
    854     if (Idxs[0] == i)
    855       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
    856 
    857     Result.push_back(C);
    858   }
    859 
    860   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
    861     return ConstantStruct::get(ST, Result);
    862   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
    863     return ConstantArray::get(AT, Result);
    864   return ConstantVector::get(Result);
    865 }
    866 
    867 
    868 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
    869                                               Constant *C1, Constant *C2) {
    870   // No compile-time operations on this type yet.
    871   if (C1->getType()->isPPC_FP128Ty())
    872     return 0;
    873 
    874   // Handle UndefValue up front.
    875   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
    876     switch (Opcode) {
    877     case Instruction::Xor:
    878       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
    879         // Handle undef ^ undef -> 0 special case. This is a common
    880         // idiom (misuse).
    881         return Constant::getNullValue(C1->getType());
    882       // Fallthrough
    883     case Instruction::Add:
    884     case Instruction::Sub:
    885       return UndefValue::get(C1->getType());
    886     case Instruction::And:
    887       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
    888         return C1;
    889       return Constant::getNullValue(C1->getType());   // undef & X -> 0
    890     case Instruction::Mul: {
    891       ConstantInt *CI;
    892       // X * undef -> undef   if X is odd or undef
    893       if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
    894           ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
    895           (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
    896         return UndefValue::get(C1->getType());
    897 
    898       // X * undef -> 0       otherwise
    899       return Constant::getNullValue(C1->getType());
    900     }
    901     case Instruction::UDiv:
    902     case Instruction::SDiv:
    903       // undef / 1 -> undef
    904       if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
    905         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
    906           if (CI2->isOne())
    907             return C1;
    908       // FALL THROUGH
    909     case Instruction::URem:
    910     case Instruction::SRem:
    911       if (!isa<UndefValue>(C2))                    // undef / X -> 0
    912         return Constant::getNullValue(C1->getType());
    913       return C2;                                   // X / undef -> undef
    914     case Instruction::Or:                          // X | undef -> -1
    915       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
    916         return C1;
    917       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
    918     case Instruction::LShr:
    919       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
    920         return C1;                                  // undef lshr undef -> undef
    921       return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
    922                                                     // undef lshr X -> 0
    923     case Instruction::AShr:
    924       if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
    925         return Constant::getAllOnesValue(C1->getType());
    926       else if (isa<UndefValue>(C1))
    927         return C1;                                  // undef ashr undef -> undef
    928       else
    929         return C1;                                  // X ashr undef --> X
    930     case Instruction::Shl:
    931       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
    932         return C1;                                  // undef shl undef -> undef
    933       // undef << X -> 0   or   X << undef -> 0
    934       return Constant::getNullValue(C1->getType());
    935     }
    936   }
    937 
    938   // Handle simplifications when the RHS is a constant int.
    939   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
    940     switch (Opcode) {
    941     case Instruction::Add:
    942       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
    943       break;
    944     case Instruction::Sub:
    945       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
    946       break;
    947     case Instruction::Mul:
    948       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
    949       if (CI2->equalsInt(1))
    950         return C1;                                              // X * 1 == X
    951       break;
    952     case Instruction::UDiv:
    953     case Instruction::SDiv:
    954       if (CI2->equalsInt(1))
    955         return C1;                                            // X / 1 == X
    956       if (CI2->equalsInt(0))
    957         return UndefValue::get(CI2->getType());               // X / 0 == undef
    958       break;
    959     case Instruction::URem:
    960     case Instruction::SRem:
    961       if (CI2->equalsInt(1))
    962         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
    963       if (CI2->equalsInt(0))
    964         return UndefValue::get(CI2->getType());               // X % 0 == undef
    965       break;
    966     case Instruction::And:
    967       if (CI2->isZero()) return C2;                           // X & 0 == 0
    968       if (CI2->isAllOnesValue())
    969         return C1;                                            // X & -1 == X
    970 
    971       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
    972         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
    973         if (CE1->getOpcode() == Instruction::ZExt) {
    974           unsigned DstWidth = CI2->getType()->getBitWidth();
    975           unsigned SrcWidth =
    976             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
    977           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
    978           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
    979             return C1;
    980         }
    981 
    982         // If and'ing the address of a global with a constant, fold it.
    983         if (CE1->getOpcode() == Instruction::PtrToInt &&
    984             isa<GlobalValue>(CE1->getOperand(0))) {
    985           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
    986 
    987           // Functions are at least 4-byte aligned.
    988           unsigned GVAlign = GV->getAlignment();
    989           if (isa<Function>(GV))
    990             GVAlign = std::max(GVAlign, 4U);
    991 
    992           if (GVAlign > 1) {
    993             unsigned DstWidth = CI2->getType()->getBitWidth();
    994             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
    995             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
    996 
    997             // If checking bits we know are clear, return zero.
    998             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
    999               return Constant::getNullValue(CI2->getType());
   1000           }
   1001         }
   1002       }
   1003       break;
   1004     case Instruction::Or:
   1005       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
   1006       if (CI2->isAllOnesValue())
   1007         return C2;                         // X | -1 == -1
   1008       break;
   1009     case Instruction::Xor:
   1010       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
   1011 
   1012       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1013         switch (CE1->getOpcode()) {
   1014         default: break;
   1015         case Instruction::ICmp:
   1016         case Instruction::FCmp:
   1017           // cmp pred ^ true -> cmp !pred
   1018           assert(CI2->equalsInt(1));
   1019           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
   1020           pred = CmpInst::getInversePredicate(pred);
   1021           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
   1022                                           CE1->getOperand(1));
   1023         }
   1024       }
   1025       break;
   1026     case Instruction::AShr:
   1027       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
   1028       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
   1029         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
   1030           return ConstantExpr::getLShr(C1, C2);
   1031       break;
   1032     }
   1033   } else if (isa<ConstantInt>(C1)) {
   1034     // If C1 is a ConstantInt and C2 is not, swap the operands.
   1035     if (Instruction::isCommutative(Opcode))
   1036       return ConstantExpr::get(Opcode, C2, C1);
   1037   }
   1038 
   1039   // At this point we know neither constant is an UndefValue.
   1040   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
   1041     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
   1042       const APInt &C1V = CI1->getValue();
   1043       const APInt &C2V = CI2->getValue();
   1044       switch (Opcode) {
   1045       default:
   1046         break;
   1047       case Instruction::Add:
   1048         return ConstantInt::get(CI1->getContext(), C1V + C2V);
   1049       case Instruction::Sub:
   1050         return ConstantInt::get(CI1->getContext(), C1V - C2V);
   1051       case Instruction::Mul:
   1052         return ConstantInt::get(CI1->getContext(), C1V * C2V);
   1053       case Instruction::UDiv:
   1054         assert(!CI2->isNullValue() && "Div by zero handled above");
   1055         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
   1056       case Instruction::SDiv:
   1057         assert(!CI2->isNullValue() && "Div by zero handled above");
   1058         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1059           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
   1060         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
   1061       case Instruction::URem:
   1062         assert(!CI2->isNullValue() && "Div by zero handled above");
   1063         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
   1064       case Instruction::SRem:
   1065         assert(!CI2->isNullValue() && "Div by zero handled above");
   1066         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
   1067           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
   1068         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
   1069       case Instruction::And:
   1070         return ConstantInt::get(CI1->getContext(), C1V & C2V);
   1071       case Instruction::Or:
   1072         return ConstantInt::get(CI1->getContext(), C1V | C2V);
   1073       case Instruction::Xor:
   1074         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
   1075       case Instruction::Shl: {
   1076         uint32_t shiftAmt = C2V.getZExtValue();
   1077         if (shiftAmt < C1V.getBitWidth())
   1078           return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
   1079         else
   1080           return UndefValue::get(C1->getType()); // too big shift is undef
   1081       }
   1082       case Instruction::LShr: {
   1083         uint32_t shiftAmt = C2V.getZExtValue();
   1084         if (shiftAmt < C1V.getBitWidth())
   1085           return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
   1086         else
   1087           return UndefValue::get(C1->getType()); // too big shift is undef
   1088       }
   1089       case Instruction::AShr: {
   1090         uint32_t shiftAmt = C2V.getZExtValue();
   1091         if (shiftAmt < C1V.getBitWidth())
   1092           return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
   1093         else
   1094           return UndefValue::get(C1->getType()); // too big shift is undef
   1095       }
   1096       }
   1097     }
   1098 
   1099     switch (Opcode) {
   1100     case Instruction::SDiv:
   1101     case Instruction::UDiv:
   1102     case Instruction::URem:
   1103     case Instruction::SRem:
   1104     case Instruction::LShr:
   1105     case Instruction::AShr:
   1106     case Instruction::Shl:
   1107       if (CI1->equalsInt(0)) return C1;
   1108       break;
   1109     default:
   1110       break;
   1111     }
   1112   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
   1113     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
   1114       APFloat C1V = CFP1->getValueAPF();
   1115       APFloat C2V = CFP2->getValueAPF();
   1116       APFloat C3V = C1V;  // copy for modification
   1117       switch (Opcode) {
   1118       default:
   1119         break;
   1120       case Instruction::FAdd:
   1121         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
   1122         return ConstantFP::get(C1->getContext(), C3V);
   1123       case Instruction::FSub:
   1124         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
   1125         return ConstantFP::get(C1->getContext(), C3V);
   1126       case Instruction::FMul:
   1127         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
   1128         return ConstantFP::get(C1->getContext(), C3V);
   1129       case Instruction::FDiv:
   1130         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
   1131         return ConstantFP::get(C1->getContext(), C3V);
   1132       case Instruction::FRem:
   1133         (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
   1134         return ConstantFP::get(C1->getContext(), C3V);
   1135       }
   1136     }
   1137   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
   1138     // Perform elementwise folding.
   1139     SmallVector<Constant*, 16> Result;
   1140     Type *Ty = IntegerType::get(VTy->getContext(), 32);
   1141     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
   1142       Constant *LHS =
   1143         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1144       Constant *RHS =
   1145         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1146 
   1147       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
   1148     }
   1149 
   1150     return ConstantVector::get(Result);
   1151   }
   1152 
   1153   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1154     // There are many possible foldings we could do here.  We should probably
   1155     // at least fold add of a pointer with an integer into the appropriate
   1156     // getelementptr.  This will improve alias analysis a bit.
   1157 
   1158     // Given ((a + b) + c), if (b + c) folds to something interesting, return
   1159     // (a + (b + c)).
   1160     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
   1161       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
   1162       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
   1163         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
   1164     }
   1165   } else if (isa<ConstantExpr>(C2)) {
   1166     // If C2 is a constant expr and C1 isn't, flop them around and fold the
   1167     // other way if possible.
   1168     if (Instruction::isCommutative(Opcode))
   1169       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
   1170   }
   1171 
   1172   // i1 can be simplified in many cases.
   1173   if (C1->getType()->isIntegerTy(1)) {
   1174     switch (Opcode) {
   1175     case Instruction::Add:
   1176     case Instruction::Sub:
   1177       return ConstantExpr::getXor(C1, C2);
   1178     case Instruction::Mul:
   1179       return ConstantExpr::getAnd(C1, C2);
   1180     case Instruction::Shl:
   1181     case Instruction::LShr:
   1182     case Instruction::AShr:
   1183       // We can assume that C2 == 0.  If it were one the result would be
   1184       // undefined because the shift value is as large as the bitwidth.
   1185       return C1;
   1186     case Instruction::SDiv:
   1187     case Instruction::UDiv:
   1188       // We can assume that C2 == 1.  If it were zero the result would be
   1189       // undefined through division by zero.
   1190       return C1;
   1191     case Instruction::URem:
   1192     case Instruction::SRem:
   1193       // We can assume that C2 == 1.  If it were zero the result would be
   1194       // undefined through division by zero.
   1195       return ConstantInt::getFalse(C1->getContext());
   1196     default:
   1197       break;
   1198     }
   1199   }
   1200 
   1201   // We don't know how to fold this.
   1202   return 0;
   1203 }
   1204 
   1205 /// isZeroSizedType - This type is zero sized if its an array or structure of
   1206 /// zero sized types.  The only leaf zero sized type is an empty structure.
   1207 static bool isMaybeZeroSizedType(Type *Ty) {
   1208   if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1209     if (STy->isOpaque()) return true;  // Can't say.
   1210 
   1211     // If all of elements have zero size, this does too.
   1212     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1213       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
   1214     return true;
   1215 
   1216   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1217     return isMaybeZeroSizedType(ATy->getElementType());
   1218   }
   1219   return false;
   1220 }
   1221 
   1222 /// IdxCompare - Compare the two constants as though they were getelementptr
   1223 /// indices.  This allows coersion of the types to be the same thing.
   1224 ///
   1225 /// If the two constants are the "same" (after coersion), return 0.  If the
   1226 /// first is less than the second, return -1, if the second is less than the
   1227 /// first, return 1.  If the constants are not integral, return -2.
   1228 ///
   1229 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
   1230   if (C1 == C2) return 0;
   1231 
   1232   // Ok, we found a different index.  If they are not ConstantInt, we can't do
   1233   // anything with them.
   1234   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
   1235     return -2; // don't know!
   1236 
   1237   // Ok, we have two differing integer indices.  Sign extend them to be the same
   1238   // type.  Long is always big enough, so we use it.
   1239   if (!C1->getType()->isIntegerTy(64))
   1240     C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
   1241 
   1242   if (!C2->getType()->isIntegerTy(64))
   1243     C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
   1244 
   1245   if (C1 == C2) return 0;  // They are equal
   1246 
   1247   // If the type being indexed over is really just a zero sized type, there is
   1248   // no pointer difference being made here.
   1249   if (isMaybeZeroSizedType(ElTy))
   1250     return -2; // dunno.
   1251 
   1252   // If they are really different, now that they are the same type, then we
   1253   // found a difference!
   1254   if (cast<ConstantInt>(C1)->getSExtValue() <
   1255       cast<ConstantInt>(C2)->getSExtValue())
   1256     return -1;
   1257   else
   1258     return 1;
   1259 }
   1260 
   1261 /// evaluateFCmpRelation - This function determines if there is anything we can
   1262 /// decide about the two constants provided.  This doesn't need to handle simple
   1263 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
   1264 /// If we can determine that the two constants have a particular relation to
   1265 /// each other, we should return the corresponding FCmpInst predicate,
   1266 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
   1267 /// ConstantFoldCompareInstruction.
   1268 ///
   1269 /// To simplify this code we canonicalize the relation so that the first
   1270 /// operand is always the most "complex" of the two.  We consider ConstantFP
   1271 /// to be the simplest, and ConstantExprs to be the most complex.
   1272 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
   1273   assert(V1->getType() == V2->getType() &&
   1274          "Cannot compare values of different types!");
   1275 
   1276   // No compile-time operations on this type yet.
   1277   if (V1->getType()->isPPC_FP128Ty())
   1278     return FCmpInst::BAD_FCMP_PREDICATE;
   1279 
   1280   // Handle degenerate case quickly
   1281   if (V1 == V2) return FCmpInst::FCMP_OEQ;
   1282 
   1283   if (!isa<ConstantExpr>(V1)) {
   1284     if (!isa<ConstantExpr>(V2)) {
   1285       // We distilled thisUse the standard constant folder for a few cases
   1286       ConstantInt *R = 0;
   1287       R = dyn_cast<ConstantInt>(
   1288                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
   1289       if (R && !R->isZero())
   1290         return FCmpInst::FCMP_OEQ;
   1291       R = dyn_cast<ConstantInt>(
   1292                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
   1293       if (R && !R->isZero())
   1294         return FCmpInst::FCMP_OLT;
   1295       R = dyn_cast<ConstantInt>(
   1296                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
   1297       if (R && !R->isZero())
   1298         return FCmpInst::FCMP_OGT;
   1299 
   1300       // Nothing more we can do
   1301       return FCmpInst::BAD_FCMP_PREDICATE;
   1302     }
   1303 
   1304     // If the first operand is simple and second is ConstantExpr, swap operands.
   1305     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
   1306     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
   1307       return FCmpInst::getSwappedPredicate(SwappedRelation);
   1308   } else {
   1309     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1310     // constantexpr or a simple constant.
   1311     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1312     switch (CE1->getOpcode()) {
   1313     case Instruction::FPTrunc:
   1314     case Instruction::FPExt:
   1315     case Instruction::UIToFP:
   1316     case Instruction::SIToFP:
   1317       // We might be able to do something with these but we don't right now.
   1318       break;
   1319     default:
   1320       break;
   1321     }
   1322   }
   1323   // There are MANY other foldings that we could perform here.  They will
   1324   // probably be added on demand, as they seem needed.
   1325   return FCmpInst::BAD_FCMP_PREDICATE;
   1326 }
   1327 
   1328 /// evaluateICmpRelation - This function determines if there is anything we can
   1329 /// decide about the two constants provided.  This doesn't need to handle simple
   1330 /// things like integer comparisons, but should instead handle ConstantExprs
   1331 /// and GlobalValues.  If we can determine that the two constants have a
   1332 /// particular relation to each other, we should return the corresponding ICmp
   1333 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
   1334 ///
   1335 /// To simplify this code we canonicalize the relation so that the first
   1336 /// operand is always the most "complex" of the two.  We consider simple
   1337 /// constants (like ConstantInt) to be the simplest, followed by
   1338 /// GlobalValues, followed by ConstantExpr's (the most complex).
   1339 ///
   1340 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
   1341                                                 bool isSigned) {
   1342   assert(V1->getType() == V2->getType() &&
   1343          "Cannot compare different types of values!");
   1344   if (V1 == V2) return ICmpInst::ICMP_EQ;
   1345 
   1346   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
   1347       !isa<BlockAddress>(V1)) {
   1348     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
   1349         !isa<BlockAddress>(V2)) {
   1350       // We distilled this down to a simple case, use the standard constant
   1351       // folder.
   1352       ConstantInt *R = 0;
   1353       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
   1354       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1355       if (R && !R->isZero())
   1356         return pred;
   1357       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1358       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1359       if (R && !R->isZero())
   1360         return pred;
   1361       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1362       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
   1363       if (R && !R->isZero())
   1364         return pred;
   1365 
   1366       // If we couldn't figure it out, bail.
   1367       return ICmpInst::BAD_ICMP_PREDICATE;
   1368     }
   1369 
   1370     // If the first operand is simple, swap operands.
   1371     ICmpInst::Predicate SwappedRelation =
   1372       evaluateICmpRelation(V2, V1, isSigned);
   1373     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1374       return ICmpInst::getSwappedPredicate(SwappedRelation);
   1375 
   1376   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
   1377     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1378       ICmpInst::Predicate SwappedRelation =
   1379         evaluateICmpRelation(V2, V1, isSigned);
   1380       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1381         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1382       return ICmpInst::BAD_ICMP_PREDICATE;
   1383     }
   1384 
   1385     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1386     // constant (which, since the types must match, means that it's a
   1387     // ConstantPointerNull).
   1388     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1389       // Don't try to decide equality of aliases.
   1390       if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
   1391         if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
   1392           return ICmpInst::ICMP_NE;
   1393     } else if (isa<BlockAddress>(V2)) {
   1394       return ICmpInst::ICMP_NE; // Globals never equal labels.
   1395     } else {
   1396       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
   1397       // GlobalVals can never be null unless they have external weak linkage.
   1398       // We don't try to evaluate aliases here.
   1399       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
   1400         return ICmpInst::ICMP_NE;
   1401     }
   1402   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
   1403     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
   1404       ICmpInst::Predicate SwappedRelation =
   1405         evaluateICmpRelation(V2, V1, isSigned);
   1406       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
   1407         return ICmpInst::getSwappedPredicate(SwappedRelation);
   1408       return ICmpInst::BAD_ICMP_PREDICATE;
   1409     }
   1410 
   1411     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
   1412     // constant (which, since the types must match, means that it is a
   1413     // ConstantPointerNull).
   1414     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
   1415       // Block address in another function can't equal this one, but block
   1416       // addresses in the current function might be the same if blocks are
   1417       // empty.
   1418       if (BA2->getFunction() != BA->getFunction())
   1419         return ICmpInst::ICMP_NE;
   1420     } else {
   1421       // Block addresses aren't null, don't equal the address of globals.
   1422       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
   1423              "Canonicalization guarantee!");
   1424       return ICmpInst::ICMP_NE;
   1425     }
   1426   } else {
   1427     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
   1428     // constantexpr, a global, block address, or a simple constant.
   1429     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
   1430     Constant *CE1Op0 = CE1->getOperand(0);
   1431 
   1432     switch (CE1->getOpcode()) {
   1433     case Instruction::Trunc:
   1434     case Instruction::FPTrunc:
   1435     case Instruction::FPExt:
   1436     case Instruction::FPToUI:
   1437     case Instruction::FPToSI:
   1438       break; // We can't evaluate floating point casts or truncations.
   1439 
   1440     case Instruction::UIToFP:
   1441     case Instruction::SIToFP:
   1442     case Instruction::BitCast:
   1443     case Instruction::ZExt:
   1444     case Instruction::SExt:
   1445       // If the cast is not actually changing bits, and the second operand is a
   1446       // null pointer, do the comparison with the pre-casted value.
   1447       if (V2->isNullValue() &&
   1448           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
   1449         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
   1450         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
   1451         return evaluateICmpRelation(CE1Op0,
   1452                                     Constant::getNullValue(CE1Op0->getType()),
   1453                                     isSigned);
   1454       }
   1455       break;
   1456 
   1457     case Instruction::GetElementPtr:
   1458       // Ok, since this is a getelementptr, we know that the constant has a
   1459       // pointer type.  Check the various cases.
   1460       if (isa<ConstantPointerNull>(V2)) {
   1461         // If we are comparing a GEP to a null pointer, check to see if the base
   1462         // of the GEP equals the null pointer.
   1463         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1464           if (GV->hasExternalWeakLinkage())
   1465             // Weak linkage GVals could be zero or not. We're comparing that
   1466             // to null pointer so its greater-or-equal
   1467             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
   1468           else
   1469             // If its not weak linkage, the GVal must have a non-zero address
   1470             // so the result is greater-than
   1471             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1472         } else if (isa<ConstantPointerNull>(CE1Op0)) {
   1473           // If we are indexing from a null pointer, check to see if we have any
   1474           // non-zero indices.
   1475           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
   1476             if (!CE1->getOperand(i)->isNullValue())
   1477               // Offsetting from null, must not be equal.
   1478               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1479           // Only zero indexes from null, must still be zero.
   1480           return ICmpInst::ICMP_EQ;
   1481         }
   1482         // Otherwise, we can't really say if the first operand is null or not.
   1483       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
   1484         if (isa<ConstantPointerNull>(CE1Op0)) {
   1485           if (GV2->hasExternalWeakLinkage())
   1486             // Weak linkage GVals could be zero or not. We're comparing it to
   1487             // a null pointer, so its less-or-equal
   1488             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1489           else
   1490             // If its not weak linkage, the GVal must have a non-zero address
   1491             // so the result is less-than
   1492             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1493         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
   1494           if (GV == GV2) {
   1495             // If this is a getelementptr of the same global, then it must be
   1496             // different.  Because the types must match, the getelementptr could
   1497             // only have at most one index, and because we fold getelementptr's
   1498             // with a single zero index, it must be nonzero.
   1499             assert(CE1->getNumOperands() == 2 &&
   1500                    !CE1->getOperand(1)->isNullValue() &&
   1501                    "Surprising getelementptr!");
   1502             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1503           } else {
   1504             // If they are different globals, we don't know what the value is,
   1505             // but they can't be equal.
   1506             return ICmpInst::ICMP_NE;
   1507           }
   1508         }
   1509       } else {
   1510         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
   1511         Constant *CE2Op0 = CE2->getOperand(0);
   1512 
   1513         // There are MANY other foldings that we could perform here.  They will
   1514         // probably be added on demand, as they seem needed.
   1515         switch (CE2->getOpcode()) {
   1516         default: break;
   1517         case Instruction::GetElementPtr:
   1518           // By far the most common case to handle is when the base pointers are
   1519           // obviously to the same or different globals.
   1520           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
   1521             if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
   1522               return ICmpInst::ICMP_NE;
   1523             // Ok, we know that both getelementptr instructions are based on the
   1524             // same global.  From this, we can precisely determine the relative
   1525             // ordering of the resultant pointers.
   1526             unsigned i = 1;
   1527 
   1528             // The logic below assumes that the result of the comparison
   1529             // can be determined by finding the first index that differs.
   1530             // This doesn't work if there is over-indexing in any
   1531             // subsequent indices, so check for that case first.
   1532             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
   1533                 !CE2->isGEPWithNoNotionalOverIndexing())
   1534                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1535 
   1536             // Compare all of the operands the GEP's have in common.
   1537             gep_type_iterator GTI = gep_type_begin(CE1);
   1538             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
   1539                  ++i, ++GTI)
   1540               switch (IdxCompare(CE1->getOperand(i),
   1541                                  CE2->getOperand(i), GTI.getIndexedType())) {
   1542               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
   1543               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
   1544               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
   1545               }
   1546 
   1547             // Ok, we ran out of things they have in common.  If any leftovers
   1548             // are non-zero then we have a difference, otherwise we are equal.
   1549             for (; i < CE1->getNumOperands(); ++i)
   1550               if (!CE1->getOperand(i)->isNullValue()) {
   1551                 if (isa<ConstantInt>(CE1->getOperand(i)))
   1552                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
   1553                 else
   1554                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1555               }
   1556 
   1557             for (; i < CE2->getNumOperands(); ++i)
   1558               if (!CE2->getOperand(i)->isNullValue()) {
   1559                 if (isa<ConstantInt>(CE2->getOperand(i)))
   1560                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1561                 else
   1562                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
   1563               }
   1564             return ICmpInst::ICMP_EQ;
   1565           }
   1566         }
   1567       }
   1568     default:
   1569       break;
   1570     }
   1571   }
   1572 
   1573   return ICmpInst::BAD_ICMP_PREDICATE;
   1574 }
   1575 
   1576 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
   1577                                                Constant *C1, Constant *C2) {
   1578   Type *ResultTy;
   1579   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
   1580     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
   1581                                VT->getNumElements());
   1582   else
   1583     ResultTy = Type::getInt1Ty(C1->getContext());
   1584 
   1585   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
   1586   if (pred == FCmpInst::FCMP_FALSE)
   1587     return Constant::getNullValue(ResultTy);
   1588 
   1589   if (pred == FCmpInst::FCMP_TRUE)
   1590     return Constant::getAllOnesValue(ResultTy);
   1591 
   1592   // Handle some degenerate cases first
   1593   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
   1594     // For EQ and NE, we can always pick a value for the undef to make the
   1595     // predicate pass or fail, so we can return undef.
   1596     // Also, if both operands are undef, we can return undef.
   1597     if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
   1598         (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
   1599       return UndefValue::get(ResultTy);
   1600     // Otherwise, pick the same value as the non-undef operand, and fold
   1601     // it to true or false.
   1602     return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
   1603   }
   1604 
   1605   // No compile-time operations on this type yet.
   1606   if (C1->getType()->isPPC_FP128Ty())
   1607     return 0;
   1608 
   1609   // icmp eq/ne(null,GV) -> false/true
   1610   if (C1->isNullValue()) {
   1611     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
   1612       // Don't try to evaluate aliases.  External weak GV can be null.
   1613       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1614         if (pred == ICmpInst::ICMP_EQ)
   1615           return ConstantInt::getFalse(C1->getContext());
   1616         else if (pred == ICmpInst::ICMP_NE)
   1617           return ConstantInt::getTrue(C1->getContext());
   1618       }
   1619   // icmp eq/ne(GV,null) -> false/true
   1620   } else if (C2->isNullValue()) {
   1621     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
   1622       // Don't try to evaluate aliases.  External weak GV can be null.
   1623       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
   1624         if (pred == ICmpInst::ICMP_EQ)
   1625           return ConstantInt::getFalse(C1->getContext());
   1626         else if (pred == ICmpInst::ICMP_NE)
   1627           return ConstantInt::getTrue(C1->getContext());
   1628       }
   1629   }
   1630 
   1631   // If the comparison is a comparison between two i1's, simplify it.
   1632   if (C1->getType()->isIntegerTy(1)) {
   1633     switch(pred) {
   1634     case ICmpInst::ICMP_EQ:
   1635       if (isa<ConstantInt>(C2))
   1636         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
   1637       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
   1638     case ICmpInst::ICMP_NE:
   1639       return ConstantExpr::getXor(C1, C2);
   1640     default:
   1641       break;
   1642     }
   1643   }
   1644 
   1645   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
   1646     APInt V1 = cast<ConstantInt>(C1)->getValue();
   1647     APInt V2 = cast<ConstantInt>(C2)->getValue();
   1648     switch (pred) {
   1649     default: llvm_unreachable("Invalid ICmp Predicate");
   1650     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
   1651     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
   1652     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
   1653     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
   1654     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
   1655     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
   1656     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
   1657     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
   1658     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
   1659     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
   1660     }
   1661   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
   1662     APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
   1663     APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
   1664     APFloat::cmpResult R = C1V.compare(C2V);
   1665     switch (pred) {
   1666     default: llvm_unreachable("Invalid FCmp Predicate");
   1667     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
   1668     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
   1669     case FCmpInst::FCMP_UNO:
   1670       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
   1671     case FCmpInst::FCMP_ORD:
   1672       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
   1673     case FCmpInst::FCMP_UEQ:
   1674       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1675                                         R==APFloat::cmpEqual);
   1676     case FCmpInst::FCMP_OEQ:
   1677       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
   1678     case FCmpInst::FCMP_UNE:
   1679       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
   1680     case FCmpInst::FCMP_ONE:
   1681       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1682                                         R==APFloat::cmpGreaterThan);
   1683     case FCmpInst::FCMP_ULT:
   1684       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1685                                         R==APFloat::cmpLessThan);
   1686     case FCmpInst::FCMP_OLT:
   1687       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
   1688     case FCmpInst::FCMP_UGT:
   1689       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
   1690                                         R==APFloat::cmpGreaterThan);
   1691     case FCmpInst::FCMP_OGT:
   1692       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
   1693     case FCmpInst::FCMP_ULE:
   1694       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
   1695     case FCmpInst::FCMP_OLE:
   1696       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
   1697                                         R==APFloat::cmpEqual);
   1698     case FCmpInst::FCMP_UGE:
   1699       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
   1700     case FCmpInst::FCMP_OGE:
   1701       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
   1702                                         R==APFloat::cmpEqual);
   1703     }
   1704   } else if (C1->getType()->isVectorTy()) {
   1705     // If we can constant fold the comparison of each element, constant fold
   1706     // the whole vector comparison.
   1707     SmallVector<Constant*, 4> ResElts;
   1708     Type *Ty = IntegerType::get(C1->getContext(), 32);
   1709     // Compare the elements, producing an i1 result or constant expr.
   1710     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
   1711       Constant *C1E =
   1712         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
   1713       Constant *C2E =
   1714         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
   1715 
   1716       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
   1717     }
   1718 
   1719     return ConstantVector::get(ResElts);
   1720   }
   1721 
   1722   if (C1->getType()->isFloatingPointTy()) {
   1723     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1724     switch (evaluateFCmpRelation(C1, C2)) {
   1725     default: llvm_unreachable("Unknown relation!");
   1726     case FCmpInst::FCMP_UNO:
   1727     case FCmpInst::FCMP_ORD:
   1728     case FCmpInst::FCMP_UEQ:
   1729     case FCmpInst::FCMP_UNE:
   1730     case FCmpInst::FCMP_ULT:
   1731     case FCmpInst::FCMP_UGT:
   1732     case FCmpInst::FCMP_ULE:
   1733     case FCmpInst::FCMP_UGE:
   1734     case FCmpInst::FCMP_TRUE:
   1735     case FCmpInst::FCMP_FALSE:
   1736     case FCmpInst::BAD_FCMP_PREDICATE:
   1737       break; // Couldn't determine anything about these constants.
   1738     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
   1739       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
   1740                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
   1741                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1742       break;
   1743     case FCmpInst::FCMP_OLT: // We know that C1 < C2
   1744       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1745                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
   1746                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
   1747       break;
   1748     case FCmpInst::FCMP_OGT: // We know that C1 > C2
   1749       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
   1750                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
   1751                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
   1752       break;
   1753     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
   1754       // We can only partially decide this relation.
   1755       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1756         Result = 0;
   1757       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1758         Result = 1;
   1759       break;
   1760     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
   1761       // We can only partially decide this relation.
   1762       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
   1763         Result = 0;
   1764       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
   1765         Result = 1;
   1766       break;
   1767     case FCmpInst::FCMP_ONE: // We know that C1 != C2
   1768       // We can only partially decide this relation.
   1769       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
   1770         Result = 0;
   1771       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
   1772         Result = 1;
   1773       break;
   1774     }
   1775 
   1776     // If we evaluated the result, return it now.
   1777     if (Result != -1)
   1778       return ConstantInt::get(ResultTy, Result);
   1779 
   1780   } else {
   1781     // Evaluate the relation between the two constants, per the predicate.
   1782     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
   1783     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
   1784     default: llvm_unreachable("Unknown relational!");
   1785     case ICmpInst::BAD_ICMP_PREDICATE:
   1786       break;  // Couldn't determine anything about these constants.
   1787     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
   1788       // If we know the constants are equal, we can decide the result of this
   1789       // computation precisely.
   1790       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
   1791       break;
   1792     case ICmpInst::ICMP_ULT:
   1793       switch (pred) {
   1794       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
   1795         Result = 1; break;
   1796       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
   1797         Result = 0; break;
   1798       }
   1799       break;
   1800     case ICmpInst::ICMP_SLT:
   1801       switch (pred) {
   1802       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
   1803         Result = 1; break;
   1804       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
   1805         Result = 0; break;
   1806       }
   1807       break;
   1808     case ICmpInst::ICMP_UGT:
   1809       switch (pred) {
   1810       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
   1811         Result = 1; break;
   1812       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
   1813         Result = 0; break;
   1814       }
   1815       break;
   1816     case ICmpInst::ICMP_SGT:
   1817       switch (pred) {
   1818       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
   1819         Result = 1; break;
   1820       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
   1821         Result = 0; break;
   1822       }
   1823       break;
   1824     case ICmpInst::ICMP_ULE:
   1825       if (pred == ICmpInst::ICMP_UGT) Result = 0;
   1826       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
   1827       break;
   1828     case ICmpInst::ICMP_SLE:
   1829       if (pred == ICmpInst::ICMP_SGT) Result = 0;
   1830       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
   1831       break;
   1832     case ICmpInst::ICMP_UGE:
   1833       if (pred == ICmpInst::ICMP_ULT) Result = 0;
   1834       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
   1835       break;
   1836     case ICmpInst::ICMP_SGE:
   1837       if (pred == ICmpInst::ICMP_SLT) Result = 0;
   1838       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
   1839       break;
   1840     case ICmpInst::ICMP_NE:
   1841       if (pred == ICmpInst::ICMP_EQ) Result = 0;
   1842       if (pred == ICmpInst::ICMP_NE) Result = 1;
   1843       break;
   1844     }
   1845 
   1846     // If we evaluated the result, return it now.
   1847     if (Result != -1)
   1848       return ConstantInt::get(ResultTy, Result);
   1849 
   1850     // If the right hand side is a bitcast, try using its inverse to simplify
   1851     // it by moving it to the left hand side.  We can't do this if it would turn
   1852     // a vector compare into a scalar compare or visa versa.
   1853     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
   1854       Constant *CE2Op0 = CE2->getOperand(0);
   1855       if (CE2->getOpcode() == Instruction::BitCast &&
   1856           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
   1857         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
   1858         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
   1859       }
   1860     }
   1861 
   1862     // If the left hand side is an extension, try eliminating it.
   1863     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
   1864       if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
   1865           (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
   1866         Constant *CE1Op0 = CE1->getOperand(0);
   1867         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
   1868         if (CE1Inverse == CE1Op0) {
   1869           // Check whether we can safely truncate the right hand side.
   1870           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
   1871           if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
   1872             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
   1873           }
   1874         }
   1875       }
   1876     }
   1877 
   1878     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
   1879         (C1->isNullValue() && !C2->isNullValue())) {
   1880       // If C2 is a constant expr and C1 isn't, flip them around and fold the
   1881       // other way if possible.
   1882       // Also, if C1 is null and C2 isn't, flip them around.
   1883       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
   1884       return ConstantExpr::getICmp(pred, C2, C1);
   1885     }
   1886   }
   1887   return 0;
   1888 }
   1889 
   1890 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
   1891 /// is "inbounds".
   1892 template<typename IndexTy>
   1893 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
   1894   // No indices means nothing that could be out of bounds.
   1895   if (Idxs.empty()) return true;
   1896 
   1897   // If the first index is zero, it's in bounds.
   1898   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
   1899 
   1900   // If the first index is one and all the rest are zero, it's in bounds,
   1901   // by the one-past-the-end rule.
   1902   if (!cast<ConstantInt>(Idxs[0])->isOne())
   1903     return false;
   1904   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
   1905     if (!cast<Constant>(Idxs[i])->isNullValue())
   1906       return false;
   1907   return true;
   1908 }
   1909 
   1910 template<typename IndexTy>
   1911 static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
   1912                                                bool inBounds,
   1913                                                ArrayRef<IndexTy> Idxs) {
   1914   if (Idxs.empty()) return C;
   1915   Constant *Idx0 = cast<Constant>(Idxs[0]);
   1916   if ((Idxs.size() == 1 && Idx0->isNullValue()))
   1917     return C;
   1918 
   1919   if (isa<UndefValue>(C)) {
   1920     PointerType *Ptr = cast<PointerType>(C->getType());
   1921     Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
   1922     assert(Ty != 0 && "Invalid indices for GEP!");
   1923     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
   1924   }
   1925 
   1926   if (C->isNullValue()) {
   1927     bool isNull = true;
   1928     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   1929       if (!cast<Constant>(Idxs[i])->isNullValue()) {
   1930         isNull = false;
   1931         break;
   1932       }
   1933     if (isNull) {
   1934       PointerType *Ptr = cast<PointerType>(C->getType());
   1935       Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
   1936       assert(Ty != 0 && "Invalid indices for GEP!");
   1937       return ConstantPointerNull::get(PointerType::get(Ty,
   1938                                                        Ptr->getAddressSpace()));
   1939     }
   1940   }
   1941 
   1942   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1943     // Combine Indices - If the source pointer to this getelementptr instruction
   1944     // is a getelementptr instruction, combine the indices of the two
   1945     // getelementptr instructions into a single instruction.
   1946     //
   1947     if (CE->getOpcode() == Instruction::GetElementPtr) {
   1948       Type *LastTy = 0;
   1949       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
   1950            I != E; ++I)
   1951         LastTy = *I;
   1952 
   1953       if ((LastTy && isa<SequentialType>(LastTy)) || Idx0->isNullValue()) {
   1954         SmallVector<Value*, 16> NewIndices;
   1955         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
   1956         for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
   1957           NewIndices.push_back(CE->getOperand(i));
   1958 
   1959         // Add the last index of the source with the first index of the new GEP.
   1960         // Make sure to handle the case when they are actually different types.
   1961         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
   1962         // Otherwise it must be an array.
   1963         if (!Idx0->isNullValue()) {
   1964           Type *IdxTy = Combined->getType();
   1965           if (IdxTy != Idx0->getType()) {
   1966             Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
   1967             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
   1968             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
   1969             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
   1970           } else {
   1971             Combined =
   1972               ConstantExpr::get(Instruction::Add, Idx0, Combined);
   1973           }
   1974         }
   1975 
   1976         NewIndices.push_back(Combined);
   1977         NewIndices.append(Idxs.begin() + 1, Idxs.end());
   1978         return
   1979           ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
   1980                                          inBounds &&
   1981                                            cast<GEPOperator>(CE)->isInBounds());
   1982       }
   1983     }
   1984 
   1985     // Implement folding of:
   1986     //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
   1987     //                        i64 0, i64 0)
   1988     // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
   1989     //
   1990     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
   1991       if (PointerType *SPT =
   1992           dyn_cast<PointerType>(CE->getOperand(0)->getType()))
   1993         if (ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
   1994           if (ArrayType *CAT =
   1995         dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
   1996             if (CAT->getElementType() == SAT->getElementType())
   1997               return
   1998                 ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
   1999                                                Idxs, inBounds);
   2000     }
   2001   }
   2002 
   2003   // Check to see if any array indices are not within the corresponding
   2004   // notional array bounds. If so, try to determine if they can be factored
   2005   // out into preceding dimensions.
   2006   bool Unknown = false;
   2007   SmallVector<Constant *, 8> NewIdxs;
   2008   Type *Ty = C->getType();
   2009   Type *Prev = 0;
   2010   for (unsigned i = 0, e = Idxs.size(); i != e;
   2011        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
   2012     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
   2013       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
   2014         if (ATy->getNumElements() <= INT64_MAX &&
   2015             ATy->getNumElements() != 0 &&
   2016             CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
   2017           if (isa<SequentialType>(Prev)) {
   2018             // It's out of range, but we can factor it into the prior
   2019             // dimension.
   2020             NewIdxs.resize(Idxs.size());
   2021             ConstantInt *Factor = ConstantInt::get(CI->getType(),
   2022                                                    ATy->getNumElements());
   2023             NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
   2024 
   2025             Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
   2026             Constant *Div = ConstantExpr::getSDiv(CI, Factor);
   2027 
   2028             // Before adding, extend both operands to i64 to avoid
   2029             // overflow trouble.
   2030             if (!PrevIdx->getType()->isIntegerTy(64))
   2031               PrevIdx = ConstantExpr::getSExt(PrevIdx,
   2032                                            Type::getInt64Ty(Div->getContext()));
   2033             if (!Div->getType()->isIntegerTy(64))
   2034               Div = ConstantExpr::getSExt(Div,
   2035                                           Type::getInt64Ty(Div->getContext()));
   2036 
   2037             NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
   2038           } else {
   2039             // It's out of range, but the prior dimension is a struct
   2040             // so we can't do anything about it.
   2041             Unknown = true;
   2042           }
   2043         }
   2044     } else {
   2045       // We don't know if it's in range or not.
   2046       Unknown = true;
   2047     }
   2048   }
   2049 
   2050   // If we did any factoring, start over with the adjusted indices.
   2051   if (!NewIdxs.empty()) {
   2052     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   2053       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
   2054     return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
   2055   }
   2056 
   2057   // If all indices are known integers and normalized, we can do a simple
   2058   // check for the "inbounds" property.
   2059   if (!Unknown && !inBounds &&
   2060       isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
   2061     return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
   2062 
   2063   return 0;
   2064 }
   2065 
   2066 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2067                                           bool inBounds,
   2068                                           ArrayRef<Constant *> Idxs) {
   2069   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
   2070 }
   2071 
   2072 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
   2073                                           bool inBounds,
   2074                                           ArrayRef<Value *> Idxs) {
   2075   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
   2076 }
   2077