Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/IntrinsicInst.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/MemoryBuiltins.h"
     19 #include "llvm/Target/TargetData.h"
     20 #include "llvm/Target/TargetLibraryInfo.h"
     21 #include "llvm/Support/ConstantRange.h"
     22 #include "llvm/Support/GetElementPtrTypeIterator.h"
     23 #include "llvm/Support/PatternMatch.h"
     24 using namespace llvm;
     25 using namespace PatternMatch;
     26 
     27 static ConstantInt *getOne(Constant *C) {
     28   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     29 }
     30 
     31 /// AddOne - Add one to a ConstantInt
     32 static Constant *AddOne(Constant *C) {
     33   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     34 }
     35 /// SubOne - Subtract one from a ConstantInt
     36 static Constant *SubOne(Constant *C) {
     37   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     38 }
     39 
     40 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     41   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     42 }
     43 
     44 static bool HasAddOverflow(ConstantInt *Result,
     45                            ConstantInt *In1, ConstantInt *In2,
     46                            bool IsSigned) {
     47   if (!IsSigned)
     48     return Result->getValue().ult(In1->getValue());
     49 
     50   if (In2->isNegative())
     51     return Result->getValue().sgt(In1->getValue());
     52   return Result->getValue().slt(In1->getValue());
     53 }
     54 
     55 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     56 /// overflowed for this type.
     57 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     58                             Constant *In2, bool IsSigned = false) {
     59   Result = ConstantExpr::getAdd(In1, In2);
     60 
     61   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     62     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     63       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     64       if (HasAddOverflow(ExtractElement(Result, Idx),
     65                          ExtractElement(In1, Idx),
     66                          ExtractElement(In2, Idx),
     67                          IsSigned))
     68         return true;
     69     }
     70     return false;
     71   }
     72 
     73   return HasAddOverflow(cast<ConstantInt>(Result),
     74                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     75                         IsSigned);
     76 }
     77 
     78 static bool HasSubOverflow(ConstantInt *Result,
     79                            ConstantInt *In1, ConstantInt *In2,
     80                            bool IsSigned) {
     81   if (!IsSigned)
     82     return Result->getValue().ugt(In1->getValue());
     83 
     84   if (In2->isNegative())
     85     return Result->getValue().slt(In1->getValue());
     86 
     87   return Result->getValue().sgt(In1->getValue());
     88 }
     89 
     90 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     91 /// overflowed for this type.
     92 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     93                             Constant *In2, bool IsSigned = false) {
     94   Result = ConstantExpr::getSub(In1, In2);
     95 
     96   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     97     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     98       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     99       if (HasSubOverflow(ExtractElement(Result, Idx),
    100                          ExtractElement(In1, Idx),
    101                          ExtractElement(In2, Idx),
    102                          IsSigned))
    103         return true;
    104     }
    105     return false;
    106   }
    107 
    108   return HasSubOverflow(cast<ConstantInt>(Result),
    109                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    110                         IsSigned);
    111 }
    112 
    113 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    114 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    115 /// TrueIfSigned if the result of the comparison is true when the input value is
    116 /// signed.
    117 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    118                            bool &TrueIfSigned) {
    119   switch (pred) {
    120   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    121     TrueIfSigned = true;
    122     return RHS->isZero();
    123   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    124     TrueIfSigned = true;
    125     return RHS->isAllOnesValue();
    126   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    127     TrueIfSigned = false;
    128     return RHS->isAllOnesValue();
    129   case ICmpInst::ICMP_UGT:
    130     // True if LHS u> RHS and RHS == high-bit-mask - 1
    131     TrueIfSigned = true;
    132     return RHS->isMaxValue(true);
    133   case ICmpInst::ICMP_UGE:
    134     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    135     TrueIfSigned = true;
    136     return RHS->getValue().isSignBit();
    137   default:
    138     return false;
    139   }
    140 }
    141 
    142 // isHighOnes - Return true if the constant is of the form 1+0+.
    143 // This is the same as lowones(~X).
    144 static bool isHighOnes(const ConstantInt *CI) {
    145   return (~CI->getValue() + 1).isPowerOf2();
    146 }
    147 
    148 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    149 /// set of known zero and one bits, compute the maximum and minimum values that
    150 /// could have the specified known zero and known one bits, returning them in
    151 /// min/max.
    152 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    153                                                    const APInt& KnownOne,
    154                                                    APInt& Min, APInt& Max) {
    155   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    156          KnownZero.getBitWidth() == Min.getBitWidth() &&
    157          KnownZero.getBitWidth() == Max.getBitWidth() &&
    158          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    159   APInt UnknownBits = ~(KnownZero|KnownOne);
    160 
    161   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    162   // bit if it is unknown.
    163   Min = KnownOne;
    164   Max = KnownOne|UnknownBits;
    165 
    166   if (UnknownBits.isNegative()) { // Sign bit is unknown
    167     Min.setBit(Min.getBitWidth()-1);
    168     Max.clearBit(Max.getBitWidth()-1);
    169   }
    170 }
    171 
    172 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    173 // a set of known zero and one bits, compute the maximum and minimum values that
    174 // could have the specified known zero and known one bits, returning them in
    175 // min/max.
    176 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    177                                                      const APInt &KnownOne,
    178                                                      APInt &Min, APInt &Max) {
    179   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    180          KnownZero.getBitWidth() == Min.getBitWidth() &&
    181          KnownZero.getBitWidth() == Max.getBitWidth() &&
    182          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    183   APInt UnknownBits = ~(KnownZero|KnownOne);
    184 
    185   // The minimum value is when the unknown bits are all zeros.
    186   Min = KnownOne;
    187   // The maximum value is when the unknown bits are all ones.
    188   Max = KnownOne|UnknownBits;
    189 }
    190 
    191 
    192 
    193 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    194 ///   cmp pred (load (gep GV, ...)), cmpcst
    195 /// where GV is a global variable with a constant initializer.  Try to simplify
    196 /// this into some simple computation that does not need the load.  For example
    197 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    198 ///
    199 /// If AndCst is non-null, then the loaded value is masked with that constant
    200 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    201 Instruction *InstCombiner::
    202 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    203                              CmpInst &ICI, ConstantInt *AndCst) {
    204   // We need TD information to know the pointer size unless this is inbounds.
    205   if (!GEP->isInBounds() && TD == 0) return 0;
    206 
    207   Constant *Init = GV->getInitializer();
    208   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    209     return 0;
    210 
    211   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    212   if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
    213 
    214   // There are many forms of this optimization we can handle, for now, just do
    215   // the simple index into a single-dimensional array.
    216   //
    217   // Require: GEP GV, 0, i {{, constant indices}}
    218   if (GEP->getNumOperands() < 3 ||
    219       !isa<ConstantInt>(GEP->getOperand(1)) ||
    220       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    221       isa<Constant>(GEP->getOperand(2)))
    222     return 0;
    223 
    224   // Check that indices after the variable are constants and in-range for the
    225   // type they index.  Collect the indices.  This is typically for arrays of
    226   // structs.
    227   SmallVector<unsigned, 4> LaterIndices;
    228 
    229   Type *EltTy = Init->getType()->getArrayElementType();
    230   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    231     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    232     if (Idx == 0) return 0;  // Variable index.
    233 
    234     uint64_t IdxVal = Idx->getZExtValue();
    235     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    236 
    237     if (StructType *STy = dyn_cast<StructType>(EltTy))
    238       EltTy = STy->getElementType(IdxVal);
    239     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    240       if (IdxVal >= ATy->getNumElements()) return 0;
    241       EltTy = ATy->getElementType();
    242     } else {
    243       return 0; // Unknown type.
    244     }
    245 
    246     LaterIndices.push_back(IdxVal);
    247   }
    248 
    249   enum { Overdefined = -3, Undefined = -2 };
    250 
    251   // Variables for our state machines.
    252 
    253   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    254   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    255   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    256   // undefined, otherwise set to the first true element.  SecondTrueElement is
    257   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    258   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    259 
    260   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    261   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    262   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    263 
    264   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    265   /// define a state machine that triggers for ranges of values that the index
    266   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    267   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    268   /// index in the range (inclusive).  We use -2 for undefined here because we
    269   /// use relative comparisons and don't want 0-1 to match -1.
    270   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    271 
    272   // MagicBitvector - This is a magic bitvector where we set a bit if the
    273   // comparison is true for element 'i'.  If there are 64 elements or less in
    274   // the array, this will fully represent all the comparison results.
    275   uint64_t MagicBitvector = 0;
    276 
    277 
    278   // Scan the array and see if one of our patterns matches.
    279   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    280   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    281     Constant *Elt = Init->getAggregateElement(i);
    282     if (Elt == 0) return 0;
    283 
    284     // If this is indexing an array of structures, get the structure element.
    285     if (!LaterIndices.empty())
    286       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    287 
    288     // If the element is masked, handle it.
    289     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    290 
    291     // Find out if the comparison would be true or false for the i'th element.
    292     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    293                                                   CompareRHS, TD, TLI);
    294     // If the result is undef for this element, ignore it.
    295     if (isa<UndefValue>(C)) {
    296       // Extend range state machines to cover this element in case there is an
    297       // undef in the middle of the range.
    298       if (TrueRangeEnd == (int)i-1)
    299         TrueRangeEnd = i;
    300       if (FalseRangeEnd == (int)i-1)
    301         FalseRangeEnd = i;
    302       continue;
    303     }
    304 
    305     // If we can't compute the result for any of the elements, we have to give
    306     // up evaluating the entire conditional.
    307     if (!isa<ConstantInt>(C)) return 0;
    308 
    309     // Otherwise, we know if the comparison is true or false for this element,
    310     // update our state machines.
    311     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    312 
    313     // State machine for single/double/range index comparison.
    314     if (IsTrueForElt) {
    315       // Update the TrueElement state machine.
    316       if (FirstTrueElement == Undefined)
    317         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    318       else {
    319         // Update double-compare state machine.
    320         if (SecondTrueElement == Undefined)
    321           SecondTrueElement = i;
    322         else
    323           SecondTrueElement = Overdefined;
    324 
    325         // Update range state machine.
    326         if (TrueRangeEnd == (int)i-1)
    327           TrueRangeEnd = i;
    328         else
    329           TrueRangeEnd = Overdefined;
    330       }
    331     } else {
    332       // Update the FalseElement state machine.
    333       if (FirstFalseElement == Undefined)
    334         FirstFalseElement = FalseRangeEnd = i; // First false element.
    335       else {
    336         // Update double-compare state machine.
    337         if (SecondFalseElement == Undefined)
    338           SecondFalseElement = i;
    339         else
    340           SecondFalseElement = Overdefined;
    341 
    342         // Update range state machine.
    343         if (FalseRangeEnd == (int)i-1)
    344           FalseRangeEnd = i;
    345         else
    346           FalseRangeEnd = Overdefined;
    347       }
    348     }
    349 
    350 
    351     // If this element is in range, update our magic bitvector.
    352     if (i < 64 && IsTrueForElt)
    353       MagicBitvector |= 1ULL << i;
    354 
    355     // If all of our states become overdefined, bail out early.  Since the
    356     // predicate is expensive, only check it every 8 elements.  This is only
    357     // really useful for really huge arrays.
    358     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    359         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    360         FalseRangeEnd == Overdefined)
    361       return 0;
    362   }
    363 
    364   // Now that we've scanned the entire array, emit our new comparison(s).  We
    365   // order the state machines in complexity of the generated code.
    366   Value *Idx = GEP->getOperand(2);
    367 
    368   // If the index is larger than the pointer size of the target, truncate the
    369   // index down like the GEP would do implicitly.  We don't have to do this for
    370   // an inbounds GEP because the index can't be out of range.
    371   if (!GEP->isInBounds() &&
    372       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    373     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    374 
    375   // If the comparison is only true for one or two elements, emit direct
    376   // comparisons.
    377   if (SecondTrueElement != Overdefined) {
    378     // None true -> false.
    379     if (FirstTrueElement == Undefined)
    380       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
    381 
    382     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    383 
    384     // True for one element -> 'i == 47'.
    385     if (SecondTrueElement == Undefined)
    386       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    387 
    388     // True for two elements -> 'i == 47 | i == 72'.
    389     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    390     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    391     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    392     return BinaryOperator::CreateOr(C1, C2);
    393   }
    394 
    395   // If the comparison is only false for one or two elements, emit direct
    396   // comparisons.
    397   if (SecondFalseElement != Overdefined) {
    398     // None false -> true.
    399     if (FirstFalseElement == Undefined)
    400       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
    401 
    402     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    403 
    404     // False for one element -> 'i != 47'.
    405     if (SecondFalseElement == Undefined)
    406       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    407 
    408     // False for two elements -> 'i != 47 & i != 72'.
    409     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    410     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    411     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    412     return BinaryOperator::CreateAnd(C1, C2);
    413   }
    414 
    415   // If the comparison can be replaced with a range comparison for the elements
    416   // where it is true, emit the range check.
    417   if (TrueRangeEnd != Overdefined) {
    418     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    419 
    420     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    421     if (FirstTrueElement) {
    422       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    423       Idx = Builder->CreateAdd(Idx, Offs);
    424     }
    425 
    426     Value *End = ConstantInt::get(Idx->getType(),
    427                                   TrueRangeEnd-FirstTrueElement+1);
    428     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    429   }
    430 
    431   // False range check.
    432   if (FalseRangeEnd != Overdefined) {
    433     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    434     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    435     if (FirstFalseElement) {
    436       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    437       Idx = Builder->CreateAdd(Idx, Offs);
    438     }
    439 
    440     Value *End = ConstantInt::get(Idx->getType(),
    441                                   FalseRangeEnd-FirstFalseElement);
    442     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    443   }
    444 
    445 
    446   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
    447   // of this load, replace it with computation that does:
    448   //   ((magic_cst >> i) & 1) != 0
    449   if (ArrayElementCount <= 32 ||
    450       (TD && ArrayElementCount <= 64 && TD->isLegalInteger(64))) {
    451     Type *Ty;
    452     if (ArrayElementCount <= 32)
    453       Ty = Type::getInt32Ty(Init->getContext());
    454     else
    455       Ty = Type::getInt64Ty(Init->getContext());
    456     Value *V = Builder->CreateIntCast(Idx, Ty, false);
    457     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    458     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    459     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    460   }
    461 
    462   return 0;
    463 }
    464 
    465 
    466 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    467 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    468 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    469 /// be complex, and scales are involved.  The above expression would also be
    470 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    471 /// This later form is less amenable to optimization though, and we are allowed
    472 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    473 ///
    474 /// If we can't emit an optimized form for this expression, this returns null.
    475 ///
    476 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    477   TargetData &TD = *IC.getTargetData();
    478   gep_type_iterator GTI = gep_type_begin(GEP);
    479 
    480   // Check to see if this gep only has a single variable index.  If so, and if
    481   // any constant indices are a multiple of its scale, then we can compute this
    482   // in terms of the scale of the variable index.  For example, if the GEP
    483   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    484   // because the expression will cross zero at the same point.
    485   unsigned i, e = GEP->getNumOperands();
    486   int64_t Offset = 0;
    487   for (i = 1; i != e; ++i, ++GTI) {
    488     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    489       // Compute the aggregate offset of constant indices.
    490       if (CI->isZero()) continue;
    491 
    492       // Handle a struct index, which adds its field offset to the pointer.
    493       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    494         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    495       } else {
    496         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    497         Offset += Size*CI->getSExtValue();
    498       }
    499     } else {
    500       // Found our variable index.
    501       break;
    502     }
    503   }
    504 
    505   // If there are no variable indices, we must have a constant offset, just
    506   // evaluate it the general way.
    507   if (i == e) return 0;
    508 
    509   Value *VariableIdx = GEP->getOperand(i);
    510   // Determine the scale factor of the variable element.  For example, this is
    511   // 4 if the variable index is into an array of i32.
    512   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    513 
    514   // Verify that there are no other variable indices.  If so, emit the hard way.
    515   for (++i, ++GTI; i != e; ++i, ++GTI) {
    516     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    517     if (!CI) return 0;
    518 
    519     // Compute the aggregate offset of constant indices.
    520     if (CI->isZero()) continue;
    521 
    522     // Handle a struct index, which adds its field offset to the pointer.
    523     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    524       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    525     } else {
    526       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    527       Offset += Size*CI->getSExtValue();
    528     }
    529   }
    530 
    531   // Okay, we know we have a single variable index, which must be a
    532   // pointer/array/vector index.  If there is no offset, life is simple, return
    533   // the index.
    534   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    535   if (Offset == 0) {
    536     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    537     // we don't need to bother extending: the extension won't affect where the
    538     // computation crosses zero.
    539     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    540       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    541       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    542     }
    543     return VariableIdx;
    544   }
    545 
    546   // Otherwise, there is an index.  The computation we will do will be modulo
    547   // the pointer size, so get it.
    548   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    549 
    550   Offset &= PtrSizeMask;
    551   VariableScale &= PtrSizeMask;
    552 
    553   // To do this transformation, any constant index must be a multiple of the
    554   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    555   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    556   // multiple of the variable scale.
    557   int64_t NewOffs = Offset / (int64_t)VariableScale;
    558   if (Offset != NewOffs*(int64_t)VariableScale)
    559     return 0;
    560 
    561   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    562   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    563   if (VariableIdx->getType() != IntPtrTy)
    564     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    565                                             true /*Signed*/);
    566   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    567   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    568 }
    569 
    570 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    571 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    572 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    573                                        ICmpInst::Predicate Cond,
    574                                        Instruction &I) {
    575   // Don't transform signed compares of GEPs into index compares. Even if the
    576   // GEP is inbounds, the final add of the base pointer can have signed overflow
    577   // and would change the result of the icmp.
    578   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    579   // the maximum signed value for the pointer type.
    580   if (ICmpInst::isSigned(Cond))
    581     return 0;
    582 
    583   // Look through bitcasts.
    584   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    585     RHS = BCI->getOperand(0);
    586 
    587   Value *PtrBase = GEPLHS->getOperand(0);
    588   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    589     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    590     // This transformation (ignoring the base and scales) is valid because we
    591     // know pointers can't overflow since the gep is inbounds.  See if we can
    592     // output an optimized form.
    593     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    594 
    595     // If not, synthesize the offset the hard way.
    596     if (Offset == 0)
    597       Offset = EmitGEPOffset(GEPLHS);
    598     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    599                         Constant::getNullValue(Offset->getType()));
    600   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    601     // If the base pointers are different, but the indices are the same, just
    602     // compare the base pointer.
    603     if (PtrBase != GEPRHS->getOperand(0)) {
    604       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    605       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    606                         GEPRHS->getOperand(0)->getType();
    607       if (IndicesTheSame)
    608         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    609           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    610             IndicesTheSame = false;
    611             break;
    612           }
    613 
    614       // If all indices are the same, just compare the base pointers.
    615       if (IndicesTheSame)
    616         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
    617                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    618 
    619       // If we're comparing GEPs with two base pointers that only differ in type
    620       // and both GEPs have only constant indices or just one use, then fold
    621       // the compare with the adjusted indices.
    622       if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    623           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    624           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    625           PtrBase->stripPointerCasts() ==
    626             GEPRHS->getOperand(0)->stripPointerCasts()) {
    627         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    628                                          EmitGEPOffset(GEPLHS),
    629                                          EmitGEPOffset(GEPRHS));
    630         return ReplaceInstUsesWith(I, Cmp);
    631       }
    632 
    633       // Otherwise, the base pointers are different and the indices are
    634       // different, bail out.
    635       return 0;
    636     }
    637 
    638     // If one of the GEPs has all zero indices, recurse.
    639     bool AllZeros = true;
    640     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    641       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    642           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    643         AllZeros = false;
    644         break;
    645       }
    646     if (AllZeros)
    647       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    648                           ICmpInst::getSwappedPredicate(Cond), I);
    649 
    650     // If the other GEP has all zero indices, recurse.
    651     AllZeros = true;
    652     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    653       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    654           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    655         AllZeros = false;
    656         break;
    657       }
    658     if (AllZeros)
    659       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    660 
    661     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    662     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    663       // If the GEPs only differ by one index, compare it.
    664       unsigned NumDifferences = 0;  // Keep track of # differences.
    665       unsigned DiffOperand = 0;     // The operand that differs.
    666       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    667         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    668           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    669                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    670             // Irreconcilable differences.
    671             NumDifferences = 2;
    672             break;
    673           } else {
    674             if (NumDifferences++) break;
    675             DiffOperand = i;
    676           }
    677         }
    678 
    679       if (NumDifferences == 0)   // SAME GEP?
    680         return ReplaceInstUsesWith(I, // No comparison is needed here.
    681                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
    682                                              ICmpInst::isTrueWhenEqual(Cond)));
    683 
    684       else if (NumDifferences == 1 && GEPsInBounds) {
    685         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    686         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    687         // Make sure we do a signed comparison here.
    688         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    689       }
    690     }
    691 
    692     // Only lower this if the icmp is the only user of the GEP or if we expect
    693     // the result to fold to a constant!
    694     if (TD &&
    695         GEPsInBounds &&
    696         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    697         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    698       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    699       Value *L = EmitGEPOffset(GEPLHS);
    700       Value *R = EmitGEPOffset(GEPRHS);
    701       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    702     }
    703   }
    704   return 0;
    705 }
    706 
    707 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    708 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    709                                             Value *X, ConstantInt *CI,
    710                                             ICmpInst::Predicate Pred,
    711                                             Value *TheAdd) {
    712   // If we have X+0, exit early (simplifying logic below) and let it get folded
    713   // elsewhere.   icmp X+0, X  -> icmp X, X
    714   if (CI->isZero()) {
    715     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    716     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    717   }
    718 
    719   // (X+4) == X -> false.
    720   if (Pred == ICmpInst::ICMP_EQ)
    721     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
    722 
    723   // (X+4) != X -> true.
    724   if (Pred == ICmpInst::ICMP_NE)
    725     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
    726 
    727   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    728   // so the values can never be equal.  Similarly for all other "or equals"
    729   // operators.
    730 
    731   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    732   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    733   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    734   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    735     Value *R =
    736       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    737     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    738   }
    739 
    740   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    741   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    742   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    743   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    744     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    745 
    746   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    747   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    748                                        APInt::getSignedMaxValue(BitWidth));
    749 
    750   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    751   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    752   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    753   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    754   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    755   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    756   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    757     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    758 
    759   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    760   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    761   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    762   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    763   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    764   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    765 
    766   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    767   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
    768   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    769 }
    770 
    771 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    772 /// and CmpRHS are both known to be integer constants.
    773 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    774                                           ConstantInt *DivRHS) {
    775   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    776   const APInt &CmpRHSV = CmpRHS->getValue();
    777 
    778   // FIXME: If the operand types don't match the type of the divide
    779   // then don't attempt this transform. The code below doesn't have the
    780   // logic to deal with a signed divide and an unsigned compare (and
    781   // vice versa). This is because (x /s C1) <s C2  produces different
    782   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    783   // (x /u C1) <u C2.  Simply casting the operands and result won't
    784   // work. :(  The if statement below tests that condition and bails
    785   // if it finds it.
    786   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    787   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    788     return 0;
    789   if (DivRHS->isZero())
    790     return 0; // The ProdOV computation fails on divide by zero.
    791   if (DivIsSigned && DivRHS->isAllOnesValue())
    792     return 0; // The overflow computation also screws up here
    793   if (DivRHS->isOne()) {
    794     // This eliminates some funny cases with INT_MIN.
    795     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    796     return &ICI;
    797   }
    798 
    799   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    800   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    801   // C2 (CI). By solving for X we can turn this into a range check
    802   // instead of computing a divide.
    803   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    804 
    805   // Determine if the product overflows by seeing if the product is
    806   // not equal to the divide. Make sure we do the same kind of divide
    807   // as in the LHS instruction that we're folding.
    808   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    809                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    810 
    811   // Get the ICmp opcode
    812   ICmpInst::Predicate Pred = ICI.getPredicate();
    813 
    814   /// If the division is known to be exact, then there is no remainder from the
    815   /// divide, so the covered range size is unit, otherwise it is the divisor.
    816   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    817 
    818   // Figure out the interval that is being checked.  For example, a comparison
    819   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    820   // Compute this interval based on the constants involved and the signedness of
    821   // the compare/divide.  This computes a half-open interval, keeping track of
    822   // whether either value in the interval overflows.  After analysis each
    823   // overflow variable is set to 0 if it's corresponding bound variable is valid
    824   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    825   int LoOverflow = 0, HiOverflow = 0;
    826   Constant *LoBound = 0, *HiBound = 0;
    827 
    828   if (!DivIsSigned) {  // udiv
    829     // e.g. X/5 op 3  --> [15, 20)
    830     LoBound = Prod;
    831     HiOverflow = LoOverflow = ProdOV;
    832     if (!HiOverflow) {
    833       // If this is not an exact divide, then many values in the range collapse
    834       // to the same result value.
    835       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    836     }
    837 
    838   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    839     if (CmpRHSV == 0) {       // (X / pos) op 0
    840       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    841       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    842       HiBound = RangeSize;
    843     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    844       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    845       HiOverflow = LoOverflow = ProdOV;
    846       if (!HiOverflow)
    847         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    848     } else {                       // (X / pos) op neg
    849       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    850       HiBound = AddOne(Prod);
    851       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    852       if (!LoOverflow) {
    853         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    854         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    855       }
    856     }
    857   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    858     if (DivI->isExact())
    859       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    860     if (CmpRHSV == 0) {       // (X / neg) op 0
    861       // e.g. X/-5 op 0  --> [-4, 5)
    862       LoBound = AddOne(RangeSize);
    863       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    864       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    865         HiOverflow = 1;            // [INTMIN+1, overflow)
    866         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    867       }
    868     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    869       // e.g. X/-5 op 3  --> [-19, -14)
    870       HiBound = AddOne(Prod);
    871       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    872       if (!LoOverflow)
    873         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    874     } else {                       // (X / neg) op neg
    875       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    876       LoOverflow = HiOverflow = ProdOV;
    877       if (!HiOverflow)
    878         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    879     }
    880 
    881     // Dividing by a negative swaps the condition.  LT <-> GT
    882     Pred = ICmpInst::getSwappedPredicate(Pred);
    883   }
    884 
    885   Value *X = DivI->getOperand(0);
    886   switch (Pred) {
    887   default: llvm_unreachable("Unhandled icmp opcode!");
    888   case ICmpInst::ICMP_EQ:
    889     if (LoOverflow && HiOverflow)
    890       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    891     if (HiOverflow)
    892       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    893                           ICmpInst::ICMP_UGE, X, LoBound);
    894     if (LoOverflow)
    895       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    896                           ICmpInst::ICMP_ULT, X, HiBound);
    897     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    898                                                     DivIsSigned, true));
    899   case ICmpInst::ICMP_NE:
    900     if (LoOverflow && HiOverflow)
    901       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    902     if (HiOverflow)
    903       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    904                           ICmpInst::ICMP_ULT, X, LoBound);
    905     if (LoOverflow)
    906       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    907                           ICmpInst::ICMP_UGE, X, HiBound);
    908     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    909                                                     DivIsSigned, false));
    910   case ICmpInst::ICMP_ULT:
    911   case ICmpInst::ICMP_SLT:
    912     if (LoOverflow == +1)   // Low bound is greater than input range.
    913       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    914     if (LoOverflow == -1)   // Low bound is less than input range.
    915       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    916     return new ICmpInst(Pred, X, LoBound);
    917   case ICmpInst::ICMP_UGT:
    918   case ICmpInst::ICMP_SGT:
    919     if (HiOverflow == +1)       // High bound greater than input range.
    920       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    921     if (HiOverflow == -1)       // High bound less than input range.
    922       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    923     if (Pred == ICmpInst::ICMP_UGT)
    924       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    925     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    926   }
    927 }
    928 
    929 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    930 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    931                                           ConstantInt *ShAmt) {
    932   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    933 
    934   // Check that the shift amount is in range.  If not, don't perform
    935   // undefined shifts.  When the shift is visited it will be
    936   // simplified.
    937   uint32_t TypeBits = CmpRHSV.getBitWidth();
    938   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    939   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    940     return 0;
    941 
    942   if (!ICI.isEquality()) {
    943     // If we have an unsigned comparison and an ashr, we can't simplify this.
    944     // Similarly for signed comparisons with lshr.
    945     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    946       return 0;
    947 
    948     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    949     // by a power of 2.  Since we already have logic to simplify these,
    950     // transform to div and then simplify the resultant comparison.
    951     if (Shr->getOpcode() == Instruction::AShr &&
    952         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    953       return 0;
    954 
    955     // Revisit the shift (to delete it).
    956     Worklist.Add(Shr);
    957 
    958     Constant *DivCst =
    959       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    960 
    961     Value *Tmp =
    962       Shr->getOpcode() == Instruction::AShr ?
    963       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    964       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    965 
    966     ICI.setOperand(0, Tmp);
    967 
    968     // If the builder folded the binop, just return it.
    969     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    970     if (TheDiv == 0)
    971       return &ICI;
    972 
    973     // Otherwise, fold this div/compare.
    974     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    975            TheDiv->getOpcode() == Instruction::UDiv);
    976 
    977     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    978     assert(Res && "This div/cst should have folded!");
    979     return Res;
    980   }
    981 
    982 
    983   // If we are comparing against bits always shifted out, the
    984   // comparison cannot succeed.
    985   APInt Comp = CmpRHSV << ShAmtVal;
    986   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
    987   if (Shr->getOpcode() == Instruction::LShr)
    988     Comp = Comp.lshr(ShAmtVal);
    989   else
    990     Comp = Comp.ashr(ShAmtVal);
    991 
    992   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
    993     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    994     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
    995                                      IsICMP_NE);
    996     return ReplaceInstUsesWith(ICI, Cst);
    997   }
    998 
    999   // Otherwise, check to see if the bits shifted out are known to be zero.
   1000   // If so, we can compare against the unshifted value:
   1001   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1002   if (Shr->hasOneUse() && Shr->isExact())
   1003     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1004 
   1005   if (Shr->hasOneUse()) {
   1006     // Otherwise strength reduce the shift into an and.
   1007     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1008     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
   1009 
   1010     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1011                                     Mask, Shr->getName()+".mask");
   1012     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1013   }
   1014   return 0;
   1015 }
   1016 
   1017 
   1018 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1019 ///
   1020 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1021                                                           Instruction *LHSI,
   1022                                                           ConstantInt *RHS) {
   1023   const APInt &RHSV = RHS->getValue();
   1024 
   1025   switch (LHSI->getOpcode()) {
   1026   case Instruction::Trunc:
   1027     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1028       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1029       // of the high bits truncated out of x are known.
   1030       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1031              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1032       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1033       ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
   1034 
   1035       // If all the high bits are known, we can do this xform.
   1036       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1037         // Pull in the high bits from known-ones set.
   1038         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1039         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1040         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1041                             ConstantInt::get(ICI.getContext(), NewRHS));
   1042       }
   1043     }
   1044     break;
   1045 
   1046   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1047     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1048       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1049       // fold the xor.
   1050       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1051           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1052         Value *CompareVal = LHSI->getOperand(0);
   1053 
   1054         // If the sign bit of the XorCST is not set, there is no change to
   1055         // the operation, just stop using the Xor.
   1056         if (!XorCST->isNegative()) {
   1057           ICI.setOperand(0, CompareVal);
   1058           Worklist.Add(LHSI);
   1059           return &ICI;
   1060         }
   1061 
   1062         // Was the old condition true if the operand is positive?
   1063         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1064 
   1065         // If so, the new one isn't.
   1066         isTrueIfPositive ^= true;
   1067 
   1068         if (isTrueIfPositive)
   1069           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1070                               SubOne(RHS));
   1071         else
   1072           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1073                               AddOne(RHS));
   1074       }
   1075 
   1076       if (LHSI->hasOneUse()) {
   1077         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1078         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1079           const APInt &SignBit = XorCST->getValue();
   1080           ICmpInst::Predicate Pred = ICI.isSigned()
   1081                                          ? ICI.getUnsignedPredicate()
   1082                                          : ICI.getSignedPredicate();
   1083           return new ICmpInst(Pred, LHSI->getOperand(0),
   1084                               ConstantInt::get(ICI.getContext(),
   1085                                                RHSV ^ SignBit));
   1086         }
   1087 
   1088         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1089         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1090           const APInt &NotSignBit = XorCST->getValue();
   1091           ICmpInst::Predicate Pred = ICI.isSigned()
   1092                                          ? ICI.getUnsignedPredicate()
   1093                                          : ICI.getSignedPredicate();
   1094           Pred = ICI.getSwappedPredicate(Pred);
   1095           return new ICmpInst(Pred, LHSI->getOperand(0),
   1096                               ConstantInt::get(ICI.getContext(),
   1097                                                RHSV ^ NotSignBit));
   1098         }
   1099       }
   1100     }
   1101     break;
   1102   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1103     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1104         LHSI->getOperand(0)->hasOneUse()) {
   1105       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1106 
   1107       // If the LHS is an AND of a truncating cast, we can widen the
   1108       // and/compare to be the input width without changing the value
   1109       // produced, eliminating a cast.
   1110       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1111         // We can do this transformation if either the AND constant does not
   1112         // have its sign bit set or if it is an equality comparison.
   1113         // Extending a relational comparison when we're checking the sign
   1114         // bit would not work.
   1115         if (ICI.isEquality() ||
   1116             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1117           Value *NewAnd =
   1118             Builder->CreateAnd(Cast->getOperand(0),
   1119                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1120           NewAnd->takeName(LHSI);
   1121           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1122                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1123         }
   1124       }
   1125 
   1126       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1127       // shrink the and/compare to the smaller type, eliminating the cast.
   1128       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1129         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1130         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1131         // should fold the icmp to true/false in that case.
   1132         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1133           Value *NewAnd =
   1134             Builder->CreateAnd(Cast->getOperand(0),
   1135                                ConstantExpr::getTrunc(AndCST, Ty));
   1136           NewAnd->takeName(LHSI);
   1137           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1138                               ConstantExpr::getTrunc(RHS, Ty));
   1139         }
   1140       }
   1141 
   1142       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1143       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1144       // happens a LOT in code produced by the C front-end, for bitfield
   1145       // access.
   1146       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1147       if (Shift && !Shift->isShift())
   1148         Shift = 0;
   1149 
   1150       ConstantInt *ShAmt;
   1151       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1152       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1153       Type *AndTy = AndCST->getType();          // Type of the and.
   1154 
   1155       // We can fold this as long as we can't shift unknown bits
   1156       // into the mask.  This can only happen with signed shift
   1157       // rights, as they sign-extend.
   1158       if (ShAmt) {
   1159         bool CanFold = Shift->isLogicalShift();
   1160         if (!CanFold) {
   1161           // To test for the bad case of the signed shr, see if any
   1162           // of the bits shifted in could be tested after the mask.
   1163           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1164           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1165 
   1166           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1167           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1168                AndCST->getValue()) == 0)
   1169             CanFold = true;
   1170         }
   1171 
   1172         if (CanFold) {
   1173           Constant *NewCst;
   1174           if (Shift->getOpcode() == Instruction::Shl)
   1175             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1176           else
   1177             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1178 
   1179           // Check to see if we are shifting out any of the bits being
   1180           // compared.
   1181           if (ConstantExpr::get(Shift->getOpcode(),
   1182                                        NewCst, ShAmt) != RHS) {
   1183             // If we shifted bits out, the fold is not going to work out.
   1184             // As a special case, check to see if this means that the
   1185             // result is always true or false now.
   1186             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1187               return ReplaceInstUsesWith(ICI,
   1188                                        ConstantInt::getFalse(ICI.getContext()));
   1189             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1190               return ReplaceInstUsesWith(ICI,
   1191                                        ConstantInt::getTrue(ICI.getContext()));
   1192           } else {
   1193             ICI.setOperand(1, NewCst);
   1194             Constant *NewAndCST;
   1195             if (Shift->getOpcode() == Instruction::Shl)
   1196               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1197             else
   1198               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1199             LHSI->setOperand(1, NewAndCST);
   1200             LHSI->setOperand(0, Shift->getOperand(0));
   1201             Worklist.Add(Shift); // Shift is dead.
   1202             return &ICI;
   1203           }
   1204         }
   1205       }
   1206 
   1207       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1208       // preferable because it allows the C<<Y expression to be hoisted out
   1209       // of a loop if Y is invariant and X is not.
   1210       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1211           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1212           !isa<Constant>(Shift->getOperand(0))) {
   1213         // Compute C << Y.
   1214         Value *NS;
   1215         if (Shift->getOpcode() == Instruction::LShr) {
   1216           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
   1217         } else {
   1218           // Insert a logical shift.
   1219           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
   1220         }
   1221 
   1222         // Compute X & (C << Y).
   1223         Value *NewAnd =
   1224           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1225 
   1226         ICI.setOperand(0, NewAnd);
   1227         return &ICI;
   1228       }
   1229     }
   1230 
   1231     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1232     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1233       if (GetElementPtrInst *GEP =
   1234           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1235         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1236           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1237               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1238             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1239             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1240               return Res;
   1241           }
   1242     }
   1243     break;
   1244 
   1245   case Instruction::Or: {
   1246     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1247       break;
   1248     Value *P, *Q;
   1249     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1250       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1251       // -> and (icmp eq P, null), (icmp eq Q, null).
   1252       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1253                                         Constant::getNullValue(P->getType()));
   1254       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1255                                         Constant::getNullValue(Q->getType()));
   1256       Instruction *Op;
   1257       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1258         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1259       else
   1260         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1261       return Op;
   1262     }
   1263     break;
   1264   }
   1265 
   1266   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1267     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1268     if (!ShAmt) break;
   1269 
   1270     uint32_t TypeBits = RHSV.getBitWidth();
   1271 
   1272     // Check that the shift amount is in range.  If not, don't perform
   1273     // undefined shifts.  When the shift is visited it will be
   1274     // simplified.
   1275     if (ShAmt->uge(TypeBits))
   1276       break;
   1277 
   1278     if (ICI.isEquality()) {
   1279       // If we are comparing against bits always shifted out, the
   1280       // comparison cannot succeed.
   1281       Constant *Comp =
   1282         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1283                                                                  ShAmt);
   1284       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1285         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1286         Constant *Cst =
   1287           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
   1288         return ReplaceInstUsesWith(ICI, Cst);
   1289       }
   1290 
   1291       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1292       // AND.
   1293       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1294         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1295                             ConstantExpr::getLShr(RHS, ShAmt));
   1296 
   1297       if (LHSI->hasOneUse()) {
   1298         // Otherwise strength reduce the shift into an and.
   1299         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1300         Constant *Mask =
   1301           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
   1302                                                        TypeBits-ShAmtVal));
   1303 
   1304         Value *And =
   1305           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1306         return new ICmpInst(ICI.getPredicate(), And,
   1307                             ConstantExpr::getLShr(RHS, ShAmt));
   1308       }
   1309     }
   1310 
   1311     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1312     bool TrueIfSigned = false;
   1313     if (LHSI->hasOneUse() &&
   1314         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1315       // (X << 31) <s 0  --> (X&1) != 0
   1316       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1317                                         APInt::getOneBitSet(TypeBits,
   1318                                             TypeBits-ShAmt->getZExtValue()-1));
   1319       Value *And =
   1320         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1321       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1322                           And, Constant::getNullValue(And->getType()));
   1323     }
   1324     break;
   1325   }
   1326 
   1327   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1328   case Instruction::AShr: {
   1329     // Handle equality comparisons of shift-by-constant.
   1330     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1331     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1332       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1333         return Res;
   1334     }
   1335 
   1336     // Handle exact shr's.
   1337     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1338       if (RHSV.isMinValue())
   1339         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1340     }
   1341     break;
   1342   }
   1343 
   1344   case Instruction::SDiv:
   1345   case Instruction::UDiv:
   1346     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1347     // Fold this div into the comparison, producing a range check.
   1348     // Determine, based on the divide type, what the range is being
   1349     // checked.  If there is an overflow on the low or high side, remember
   1350     // it, otherwise compute the range [low, hi) bounding the new value.
   1351     // See: InsertRangeTest above for the kinds of replacements possible.
   1352     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1353       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1354                                           DivRHS))
   1355         return R;
   1356     break;
   1357 
   1358   case Instruction::Add:
   1359     // Fold: icmp pred (add X, C1), C2
   1360     if (!ICI.isEquality()) {
   1361       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1362       if (!LHSC) break;
   1363       const APInt &LHSV = LHSC->getValue();
   1364 
   1365       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1366                             .subtract(LHSV);
   1367 
   1368       if (ICI.isSigned()) {
   1369         if (CR.getLower().isSignBit()) {
   1370           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1371                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1372         } else if (CR.getUpper().isSignBit()) {
   1373           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1374                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1375         }
   1376       } else {
   1377         if (CR.getLower().isMinValue()) {
   1378           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1379                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1380         } else if (CR.getUpper().isMinValue()) {
   1381           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1382                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1383         }
   1384       }
   1385     }
   1386     break;
   1387   }
   1388 
   1389   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1390   if (ICI.isEquality()) {
   1391     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1392 
   1393     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1394     // the second operand is a constant, simplify a bit.
   1395     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1396       switch (BO->getOpcode()) {
   1397       case Instruction::SRem:
   1398         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1399         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1400           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1401           if (V.sgt(1) && V.isPowerOf2()) {
   1402             Value *NewRem =
   1403               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1404                                   BO->getName());
   1405             return new ICmpInst(ICI.getPredicate(), NewRem,
   1406                                 Constant::getNullValue(BO->getType()));
   1407           }
   1408         }
   1409         break;
   1410       case Instruction::Add:
   1411         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1412         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1413           if (BO->hasOneUse())
   1414             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1415                                 ConstantExpr::getSub(RHS, BOp1C));
   1416         } else if (RHSV == 0) {
   1417           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1418           // efficiently invertible, or if the add has just this one use.
   1419           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1420 
   1421           if (Value *NegVal = dyn_castNegVal(BOp1))
   1422             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1423           if (Value *NegVal = dyn_castNegVal(BOp0))
   1424             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1425           if (BO->hasOneUse()) {
   1426             Value *Neg = Builder->CreateNeg(BOp1);
   1427             Neg->takeName(BO);
   1428             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1429           }
   1430         }
   1431         break;
   1432       case Instruction::Xor:
   1433         // For the xor case, we can xor two constants together, eliminating
   1434         // the explicit xor.
   1435         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1436           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1437                               ConstantExpr::getXor(RHS, BOC));
   1438         } else if (RHSV == 0) {
   1439           // Replace ((xor A, B) != 0) with (A != B)
   1440           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1441                               BO->getOperand(1));
   1442         }
   1443         break;
   1444       case Instruction::Sub:
   1445         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1446         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1447           if (BO->hasOneUse())
   1448             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1449                                 ConstantExpr::getSub(BOp0C, RHS));
   1450         } else if (RHSV == 0) {
   1451           // Replace ((sub A, B) != 0) with (A != B)
   1452           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1453                               BO->getOperand(1));
   1454         }
   1455         break;
   1456       case Instruction::Or:
   1457         // If bits are being or'd in that are not present in the constant we
   1458         // are comparing against, then the comparison could never succeed!
   1459         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1460           Constant *NotCI = ConstantExpr::getNot(RHS);
   1461           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1462             return ReplaceInstUsesWith(ICI,
   1463                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1464                                        isICMP_NE));
   1465         }
   1466         break;
   1467 
   1468       case Instruction::And:
   1469         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1470           // If bits are being compared against that are and'd out, then the
   1471           // comparison can never succeed!
   1472           if ((RHSV & ~BOC->getValue()) != 0)
   1473             return ReplaceInstUsesWith(ICI,
   1474                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1475                                        isICMP_NE));
   1476 
   1477           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1478           if (RHS == BOC && RHSV.isPowerOf2())
   1479             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1480                                 ICmpInst::ICMP_NE, LHSI,
   1481                                 Constant::getNullValue(RHS->getType()));
   1482 
   1483           // Don't perform the following transforms if the AND has multiple uses
   1484           if (!BO->hasOneUse())
   1485             break;
   1486 
   1487           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1488           if (BOC->getValue().isSignBit()) {
   1489             Value *X = BO->getOperand(0);
   1490             Constant *Zero = Constant::getNullValue(X->getType());
   1491             ICmpInst::Predicate pred = isICMP_NE ?
   1492               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1493             return new ICmpInst(pred, X, Zero);
   1494           }
   1495 
   1496           // ((X & ~7) == 0) --> X < 8
   1497           if (RHSV == 0 && isHighOnes(BOC)) {
   1498             Value *X = BO->getOperand(0);
   1499             Constant *NegX = ConstantExpr::getNeg(BOC);
   1500             ICmpInst::Predicate pred = isICMP_NE ?
   1501               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1502             return new ICmpInst(pred, X, NegX);
   1503           }
   1504         }
   1505       default: break;
   1506       }
   1507     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1508       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1509       switch (II->getIntrinsicID()) {
   1510       case Intrinsic::bswap:
   1511         Worklist.Add(II);
   1512         ICI.setOperand(0, II->getArgOperand(0));
   1513         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
   1514         return &ICI;
   1515       case Intrinsic::ctlz:
   1516       case Intrinsic::cttz:
   1517         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1518         if (RHSV == RHS->getType()->getBitWidth()) {
   1519           Worklist.Add(II);
   1520           ICI.setOperand(0, II->getArgOperand(0));
   1521           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1522           return &ICI;
   1523         }
   1524         break;
   1525       case Intrinsic::ctpop:
   1526         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1527         if (RHS->isZero()) {
   1528           Worklist.Add(II);
   1529           ICI.setOperand(0, II->getArgOperand(0));
   1530           ICI.setOperand(1, RHS);
   1531           return &ICI;
   1532         }
   1533         break;
   1534       default:
   1535         break;
   1536       }
   1537     }
   1538   }
   1539   return 0;
   1540 }
   1541 
   1542 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1543 /// We only handle extending casts so far.
   1544 ///
   1545 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1546   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1547   Value *LHSCIOp        = LHSCI->getOperand(0);
   1548   Type *SrcTy     = LHSCIOp->getType();
   1549   Type *DestTy    = LHSCI->getType();
   1550   Value *RHSCIOp;
   1551 
   1552   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1553   // integer type is the same size as the pointer type.
   1554   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1555       TD->getPointerSizeInBits() ==
   1556          cast<IntegerType>(DestTy)->getBitWidth()) {
   1557     Value *RHSOp = 0;
   1558     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1559       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1560     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1561       RHSOp = RHSC->getOperand(0);
   1562       // If the pointer types don't match, insert a bitcast.
   1563       if (LHSCIOp->getType() != RHSOp->getType())
   1564         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1565     }
   1566 
   1567     if (RHSOp)
   1568       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1569   }
   1570 
   1571   // The code below only handles extension cast instructions, so far.
   1572   // Enforce this.
   1573   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1574       LHSCI->getOpcode() != Instruction::SExt)
   1575     return 0;
   1576 
   1577   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1578   bool isSignedCmp = ICI.isSigned();
   1579 
   1580   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1581     // Not an extension from the same type?
   1582     RHSCIOp = CI->getOperand(0);
   1583     if (RHSCIOp->getType() != LHSCIOp->getType())
   1584       return 0;
   1585 
   1586     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1587     // and the other is a zext), then we can't handle this.
   1588     if (CI->getOpcode() != LHSCI->getOpcode())
   1589       return 0;
   1590 
   1591     // Deal with equality cases early.
   1592     if (ICI.isEquality())
   1593       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1594 
   1595     // A signed comparison of sign extended values simplifies into a
   1596     // signed comparison.
   1597     if (isSignedCmp && isSignedExt)
   1598       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1599 
   1600     // The other three cases all fold into an unsigned comparison.
   1601     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1602   }
   1603 
   1604   // If we aren't dealing with a constant on the RHS, exit early
   1605   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1606   if (!CI)
   1607     return 0;
   1608 
   1609   // Compute the constant that would happen if we truncated to SrcTy then
   1610   // reextended to DestTy.
   1611   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1612   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1613                                                 Res1, DestTy);
   1614 
   1615   // If the re-extended constant didn't change...
   1616   if (Res2 == CI) {
   1617     // Deal with equality cases early.
   1618     if (ICI.isEquality())
   1619       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1620 
   1621     // A signed comparison of sign extended values simplifies into a
   1622     // signed comparison.
   1623     if (isSignedExt && isSignedCmp)
   1624       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1625 
   1626     // The other three cases all fold into an unsigned comparison.
   1627     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1628   }
   1629 
   1630   // The re-extended constant changed so the constant cannot be represented
   1631   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1632   // All the cases that fold to true or false will have already been handled
   1633   // by SimplifyICmpInst, so only deal with the tricky case.
   1634 
   1635   if (isSignedCmp || !isSignedExt)
   1636     return 0;
   1637 
   1638   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1639   // should have been folded away previously and not enter in here.
   1640 
   1641   // We're performing an unsigned comp with a sign extended value.
   1642   // This is true if the input is >= 0. [aka >s -1]
   1643   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1644   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1645 
   1646   // Finally, return the value computed.
   1647   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1648     return ReplaceInstUsesWith(ICI, Result);
   1649 
   1650   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1651   return BinaryOperator::CreateNot(Result);
   1652 }
   1653 
   1654 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1655 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1656 /// If this is of the form:
   1657 ///   sum = a + b
   1658 ///   if (sum+128 >u 255)
   1659 /// Then replace it with llvm.sadd.with.overflow.i8.
   1660 ///
   1661 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1662                                           ConstantInt *CI2, ConstantInt *CI1,
   1663                                           InstCombiner &IC) {
   1664   // The transformation we're trying to do here is to transform this into an
   1665   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1666   // with a narrower add, and discard the add-with-constant that is part of the
   1667   // range check (if we can't eliminate it, this isn't profitable).
   1668 
   1669   // In order to eliminate the add-with-constant, the compare can be its only
   1670   // use.
   1671   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1672   if (!AddWithCst->hasOneUse()) return 0;
   1673 
   1674   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1675   if (!CI2->getValue().isPowerOf2()) return 0;
   1676   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1677   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1678 
   1679   // The width of the new add formed is 1 more than the bias.
   1680   ++NewWidth;
   1681 
   1682   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1683   if (CI1->getBitWidth() == NewWidth ||
   1684       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1685     return 0;
   1686 
   1687   // This is only really a signed overflow check if the inputs have been
   1688   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   1689   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   1690   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   1691   if (IC.ComputeNumSignBits(A) < NeededSignBits ||
   1692       IC.ComputeNumSignBits(B) < NeededSignBits)
   1693     return 0;
   1694 
   1695   // In order to replace the original add with a narrower
   1696   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1697   // and truncates that discard the high bits of the add.  Verify that this is
   1698   // the case.
   1699   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1700   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1701        UI != E; ++UI) {
   1702     if (*UI == AddWithCst) continue;
   1703 
   1704     // Only accept truncates for now.  We would really like a nice recursive
   1705     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1706     // chain to see which bits of a value are actually demanded.  If the
   1707     // original add had another add which was then immediately truncated, we
   1708     // could still do the transformation.
   1709     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1710     if (TI == 0 ||
   1711         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1712   }
   1713 
   1714   // If the pattern matches, truncate the inputs to the narrower type and
   1715   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1716   // result and the overflow bit.
   1717   Module *M = I.getParent()->getParent()->getParent();
   1718 
   1719   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1720   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1721                                        NewType);
   1722 
   1723   InstCombiner::BuilderTy *Builder = IC.Builder;
   1724 
   1725   // Put the new code above the original add, in case there are any uses of the
   1726   // add between the add and the compare.
   1727   Builder->SetInsertPoint(OrigAdd);
   1728 
   1729   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1730   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1731   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1732   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1733   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1734 
   1735   // The inner add was the result of the narrow add, zero extended to the
   1736   // wider type.  Replace it with the result computed by the intrinsic.
   1737   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1738 
   1739   // The original icmp gets replaced with the overflow value.
   1740   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1741 }
   1742 
   1743 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1744                                      InstCombiner &IC) {
   1745   // Don't bother doing this transformation for pointers, don't do it for
   1746   // vectors.
   1747   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1748 
   1749   // If the add is a constant expr, then we don't bother transforming it.
   1750   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1751   if (OrigAdd == 0) return 0;
   1752 
   1753   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1754 
   1755   // Put the new code above the original add, in case there are any uses of the
   1756   // add between the add and the compare.
   1757   InstCombiner::BuilderTy *Builder = IC.Builder;
   1758   Builder->SetInsertPoint(OrigAdd);
   1759 
   1760   Module *M = I.getParent()->getParent()->getParent();
   1761   Type *Ty = LHS->getType();
   1762   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1763   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1764   Value *Add = Builder->CreateExtractValue(Call, 0);
   1765 
   1766   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1767 
   1768   // The original icmp gets replaced with the overflow value.
   1769   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1770 }
   1771 
   1772 // DemandedBitsLHSMask - When performing a comparison against a constant,
   1773 // it is possible that not all the bits in the LHS are demanded.  This helper
   1774 // method computes the mask that IS demanded.
   1775 static APInt DemandedBitsLHSMask(ICmpInst &I,
   1776                                  unsigned BitWidth, bool isSignCheck) {
   1777   if (isSignCheck)
   1778     return APInt::getSignBit(BitWidth);
   1779 
   1780   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   1781   if (!CI) return APInt::getAllOnesValue(BitWidth);
   1782   const APInt &RHS = CI->getValue();
   1783 
   1784   switch (I.getPredicate()) {
   1785   // For a UGT comparison, we don't care about any bits that
   1786   // correspond to the trailing ones of the comparand.  The value of these
   1787   // bits doesn't impact the outcome of the comparison, because any value
   1788   // greater than the RHS must differ in a bit higher than these due to carry.
   1789   case ICmpInst::ICMP_UGT: {
   1790     unsigned trailingOnes = RHS.countTrailingOnes();
   1791     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   1792     return ~lowBitsSet;
   1793   }
   1794 
   1795   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   1796   // Any value less than the RHS must differ in a higher bit because of carries.
   1797   case ICmpInst::ICMP_ULT: {
   1798     unsigned trailingZeros = RHS.countTrailingZeros();
   1799     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   1800     return ~lowBitsSet;
   1801   }
   1802 
   1803   default:
   1804     return APInt::getAllOnesValue(BitWidth);
   1805   }
   1806 
   1807 }
   1808 
   1809 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   1810   bool Changed = false;
   1811   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1812 
   1813   /// Orders the operands of the compare so that they are listed from most
   1814   /// complex to least complex.  This puts constants before unary operators,
   1815   /// before binary operators.
   1816   if (getComplexity(Op0) < getComplexity(Op1)) {
   1817     I.swapOperands();
   1818     std::swap(Op0, Op1);
   1819     Changed = true;
   1820   }
   1821 
   1822   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   1823     return ReplaceInstUsesWith(I, V);
   1824 
   1825   // comparing -val or val with non-zero is the same as just comparing val
   1826   // ie, abs(val) != 0 -> val != 0
   1827   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   1828   {
   1829     Value *Cond, *SelectTrue, *SelectFalse;
   1830     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   1831                             m_Value(SelectFalse)))) {
   1832       if (Value *V = dyn_castNegVal(SelectTrue)) {
   1833         if (V == SelectFalse)
   1834           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1835       }
   1836       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   1837         if (V == SelectTrue)
   1838           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   1839       }
   1840     }
   1841   }
   1842 
   1843   Type *Ty = Op0->getType();
   1844 
   1845   // icmp's with boolean values can always be turned into bitwise operations
   1846   if (Ty->isIntegerTy(1)) {
   1847     switch (I.getPredicate()) {
   1848     default: llvm_unreachable("Invalid icmp instruction!");
   1849     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   1850       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   1851       return BinaryOperator::CreateNot(Xor);
   1852     }
   1853     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   1854       return BinaryOperator::CreateXor(Op0, Op1);
   1855 
   1856     case ICmpInst::ICMP_UGT:
   1857       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   1858       // FALL THROUGH
   1859     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   1860       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1861       return BinaryOperator::CreateAnd(Not, Op1);
   1862     }
   1863     case ICmpInst::ICMP_SGT:
   1864       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   1865       // FALL THROUGH
   1866     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   1867       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1868       return BinaryOperator::CreateAnd(Not, Op0);
   1869     }
   1870     case ICmpInst::ICMP_UGE:
   1871       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   1872       // FALL THROUGH
   1873     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   1874       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1875       return BinaryOperator::CreateOr(Not, Op1);
   1876     }
   1877     case ICmpInst::ICMP_SGE:
   1878       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   1879       // FALL THROUGH
   1880     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   1881       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1882       return BinaryOperator::CreateOr(Not, Op0);
   1883     }
   1884     }
   1885   }
   1886 
   1887   unsigned BitWidth = 0;
   1888   if (Ty->isIntOrIntVectorTy())
   1889     BitWidth = Ty->getScalarSizeInBits();
   1890   else if (TD)  // Pointers require TD info to get their size.
   1891     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   1892 
   1893   bool isSignBit = false;
   1894 
   1895   // See if we are doing a comparison with a constant.
   1896   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   1897     Value *A = 0, *B = 0;
   1898 
   1899     // Match the following pattern, which is a common idiom when writing
   1900     // overflow-safe integer arithmetic function.  The source performs an
   1901     // addition in wider type, and explicitly checks for overflow using
   1902     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   1903     // sadd_with_overflow intrinsic.
   1904     //
   1905     // TODO: This could probably be generalized to handle other overflow-safe
   1906     // operations if we worked out the formulas to compute the appropriate
   1907     // magic constants.
   1908     //
   1909     // sum = a + b
   1910     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   1911     {
   1912     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   1913     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   1914         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   1915       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   1916         return Res;
   1917     }
   1918 
   1919     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   1920     if (I.isEquality() && CI->isZero() &&
   1921         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   1922       // (icmp cond A B) if cond is equality
   1923       return new ICmpInst(I.getPredicate(), A, B);
   1924     }
   1925 
   1926     // If we have an icmp le or icmp ge instruction, turn it into the
   1927     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   1928     // them being folded in the code below.  The SimplifyICmpInst code has
   1929     // already handled the edge cases for us, so we just assert on them.
   1930     switch (I.getPredicate()) {
   1931     default: break;
   1932     case ICmpInst::ICMP_ULE:
   1933       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   1934       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   1935                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1936     case ICmpInst::ICMP_SLE:
   1937       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   1938       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   1939                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1940     case ICmpInst::ICMP_UGE:
   1941       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   1942       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   1943                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1944     case ICmpInst::ICMP_SGE:
   1945       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   1946       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   1947                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1948     }
   1949 
   1950     // If this comparison is a normal comparison, it demands all
   1951     // bits, if it is a sign bit comparison, it only demands the sign bit.
   1952     bool UnusedBit;
   1953     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   1954   }
   1955 
   1956   // See if we can fold the comparison based on range information we can get
   1957   // by checking whether bits are known to be zero or one in the input.
   1958   if (BitWidth != 0) {
   1959     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   1960     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   1961 
   1962     if (SimplifyDemandedBits(I.getOperandUse(0),
   1963                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   1964                              Op0KnownZero, Op0KnownOne, 0))
   1965       return &I;
   1966     if (SimplifyDemandedBits(I.getOperandUse(1),
   1967                              APInt::getAllOnesValue(BitWidth),
   1968                              Op1KnownZero, Op1KnownOne, 0))
   1969       return &I;
   1970 
   1971     // Given the known and unknown bits, compute a range that the LHS could be
   1972     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   1973     // EQ and NE we use unsigned values.
   1974     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   1975     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   1976     if (I.isSigned()) {
   1977       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1978                                              Op0Min, Op0Max);
   1979       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1980                                              Op1Min, Op1Max);
   1981     } else {
   1982       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1983                                                Op0Min, Op0Max);
   1984       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1985                                                Op1Min, Op1Max);
   1986     }
   1987 
   1988     // If Min and Max are known to be the same, then SimplifyDemandedBits
   1989     // figured out that the LHS is a constant.  Just constant fold this now so
   1990     // that code below can assume that Min != Max.
   1991     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   1992       return new ICmpInst(I.getPredicate(),
   1993                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   1994     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   1995       return new ICmpInst(I.getPredicate(), Op0,
   1996                           ConstantInt::get(Op1->getType(), Op1Min));
   1997 
   1998     // Based on the range information we know about the LHS, see if we can
   1999     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2000     switch (I.getPredicate()) {
   2001     default: llvm_unreachable("Unknown icmp opcode!");
   2002     case ICmpInst::ICMP_EQ: {
   2003       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2004         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2005 
   2006       // If all bits are known zero except for one, then we know at most one
   2007       // bit is set.   If the comparison is against zero, then this is a check
   2008       // to see if *that* bit is set.
   2009       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2010       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2011         // If the LHS is an AND with the same constant, look through it.
   2012         Value *LHS = 0;
   2013         ConstantInt *LHSC = 0;
   2014         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2015             LHSC->getValue() != Op0KnownZeroInverted)
   2016           LHS = Op0;
   2017 
   2018         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2019         // then turn "((1 << x)&8) == 0" into "x != 3".
   2020         Value *X = 0;
   2021         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2022           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2023           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2024                               ConstantInt::get(X->getType(), CmpVal));
   2025         }
   2026 
   2027         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2028         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2029         const APInt *CI;
   2030         if (Op0KnownZeroInverted == 1 &&
   2031             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2032           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2033                               ConstantInt::get(X->getType(),
   2034                                                CI->countTrailingZeros()));
   2035       }
   2036 
   2037       break;
   2038     }
   2039     case ICmpInst::ICMP_NE: {
   2040       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2041         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2042 
   2043       // If all bits are known zero except for one, then we know at most one
   2044       // bit is set.   If the comparison is against zero, then this is a check
   2045       // to see if *that* bit is set.
   2046       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2047       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   2048         // If the LHS is an AND with the same constant, look through it.
   2049         Value *LHS = 0;
   2050         ConstantInt *LHSC = 0;
   2051         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2052             LHSC->getValue() != Op0KnownZeroInverted)
   2053           LHS = Op0;
   2054 
   2055         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2056         // then turn "((1 << x)&8) != 0" into "x == 3".
   2057         Value *X = 0;
   2058         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2059           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2060           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2061                               ConstantInt::get(X->getType(), CmpVal));
   2062         }
   2063 
   2064         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2065         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2066         const APInt *CI;
   2067         if (Op0KnownZeroInverted == 1 &&
   2068             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2069           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2070                               ConstantInt::get(X->getType(),
   2071                                                CI->countTrailingZeros()));
   2072       }
   2073 
   2074       break;
   2075     }
   2076     case ICmpInst::ICMP_ULT:
   2077       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2078         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2079       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2080         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2081       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2082         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2083       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2084         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2085           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2086                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2087 
   2088         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2089         if (CI->isMinValue(true))
   2090           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2091                            Constant::getAllOnesValue(Op0->getType()));
   2092       }
   2093       break;
   2094     case ICmpInst::ICMP_UGT:
   2095       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2096         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2097       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2098         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2099 
   2100       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2101         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2102       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2103         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2104           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2105                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2106 
   2107         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2108         if (CI->isMaxValue(true))
   2109           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2110                               Constant::getNullValue(Op0->getType()));
   2111       }
   2112       break;
   2113     case ICmpInst::ICMP_SLT:
   2114       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2115         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2116       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2117         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2118       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2119         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2120       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2121         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2122           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2123                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2124       }
   2125       break;
   2126     case ICmpInst::ICMP_SGT:
   2127       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2128         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2129       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2130         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2131 
   2132       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2133         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2134       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2135         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2136           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2137                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2138       }
   2139       break;
   2140     case ICmpInst::ICMP_SGE:
   2141       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2142       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2143         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2144       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2145         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2146       break;
   2147     case ICmpInst::ICMP_SLE:
   2148       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2149       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2150         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2151       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2152         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2153       break;
   2154     case ICmpInst::ICMP_UGE:
   2155       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2156       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2157         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2158       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2159         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2160       break;
   2161     case ICmpInst::ICMP_ULE:
   2162       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2163       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2164         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2165       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2166         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2167       break;
   2168     }
   2169 
   2170     // Turn a signed comparison into an unsigned one if both operands
   2171     // are known to have the same sign.
   2172     if (I.isSigned() &&
   2173         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2174          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2175       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2176   }
   2177 
   2178   // Test if the ICmpInst instruction is used exclusively by a select as
   2179   // part of a minimum or maximum operation. If so, refrain from doing
   2180   // any other folding. This helps out other analyses which understand
   2181   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2182   // and CodeGen. And in this case, at least one of the comparison
   2183   // operands has at least one user besides the compare (the select),
   2184   // which would often largely negate the benefit of folding anyway.
   2185   if (I.hasOneUse())
   2186     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2187       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2188           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2189         return 0;
   2190 
   2191   // See if we are doing a comparison between a constant and an instruction that
   2192   // can be folded into the comparison.
   2193   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2194     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2195     // instruction, see if that instruction also has constants so that the
   2196     // instruction can be folded into the icmp
   2197     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2198       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2199         return Res;
   2200   }
   2201 
   2202   // Handle icmp with constant (but not simple integer constant) RHS
   2203   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2204     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2205       switch (LHSI->getOpcode()) {
   2206       case Instruction::GetElementPtr:
   2207           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2208         if (RHSC->isNullValue() &&
   2209             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2210           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2211                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2212         break;
   2213       case Instruction::PHI:
   2214         // Only fold icmp into the PHI if the phi and icmp are in the same
   2215         // block.  If in the same block, we're encouraging jump threading.  If
   2216         // not, we are just pessimizing the code by making an i1 phi.
   2217         if (LHSI->getParent() == I.getParent())
   2218           if (Instruction *NV = FoldOpIntoPhi(I))
   2219             return NV;
   2220         break;
   2221       case Instruction::Select: {
   2222         // If either operand of the select is a constant, we can fold the
   2223         // comparison into the select arms, which will cause one to be
   2224         // constant folded and the select turned into a bitwise or.
   2225         Value *Op1 = 0, *Op2 = 0;
   2226         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2227           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2228         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2229           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2230 
   2231         // We only want to perform this transformation if it will not lead to
   2232         // additional code. This is true if either both sides of the select
   2233         // fold to a constant (in which case the icmp is replaced with a select
   2234         // which will usually simplify) or this is the only user of the
   2235         // select (in which case we are trading a select+icmp for a simpler
   2236         // select+icmp).
   2237         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2238           if (!Op1)
   2239             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2240                                       RHSC, I.getName());
   2241           if (!Op2)
   2242             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2243                                       RHSC, I.getName());
   2244           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2245         }
   2246         break;
   2247       }
   2248       case Instruction::IntToPtr:
   2249         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2250         if (RHSC->isNullValue() && TD &&
   2251             TD->getIntPtrType(RHSC->getContext()) ==
   2252                LHSI->getOperand(0)->getType())
   2253           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2254                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2255         break;
   2256 
   2257       case Instruction::Load:
   2258         // Try to optimize things like "A[i] > 4" to index computations.
   2259         if (GetElementPtrInst *GEP =
   2260               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2261           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2262             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2263                 !cast<LoadInst>(LHSI)->isVolatile())
   2264               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2265                 return Res;
   2266         }
   2267         break;
   2268       }
   2269   }
   2270 
   2271   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2272   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2273     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2274       return NI;
   2275   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2276     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2277                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2278       return NI;
   2279 
   2280   // Test to see if the operands of the icmp are casted versions of other
   2281   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2282   // now.
   2283   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2284     if (Op0->getType()->isPointerTy() &&
   2285         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2286       // We keep moving the cast from the left operand over to the right
   2287       // operand, where it can often be eliminated completely.
   2288       Op0 = CI->getOperand(0);
   2289 
   2290       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2291       // so eliminate it as well.
   2292       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2293         Op1 = CI2->getOperand(0);
   2294 
   2295       // If Op1 is a constant, we can fold the cast into the constant.
   2296       if (Op0->getType() != Op1->getType()) {
   2297         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2298           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2299         } else {
   2300           // Otherwise, cast the RHS right before the icmp
   2301           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2302         }
   2303       }
   2304       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2305     }
   2306   }
   2307 
   2308   if (isa<CastInst>(Op0)) {
   2309     // Handle the special case of: icmp (cast bool to X), <cst>
   2310     // This comes up when you have code like
   2311     //   int X = A < B;
   2312     //   if (X) ...
   2313     // For generality, we handle any zero-extension of any operand comparison
   2314     // with a constant or another cast from the same type.
   2315     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2316       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2317         return R;
   2318   }
   2319 
   2320   // Special logic for binary operators.
   2321   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2322   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2323   if (BO0 || BO1) {
   2324     CmpInst::Predicate Pred = I.getPredicate();
   2325     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2326     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2327       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2328         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2329         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2330     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2331       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2332         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2333         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2334 
   2335     // Analyze the case when either Op0 or Op1 is an add instruction.
   2336     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2337     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2338     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2339       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2340     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2341       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2342 
   2343     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2344     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2345       return new ICmpInst(Pred, A == Op1 ? B : A,
   2346                           Constant::getNullValue(Op1->getType()));
   2347 
   2348     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2349     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2350       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2351                           C == Op0 ? D : C);
   2352 
   2353     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2354     if (A && C && (A == C || A == D || B == C || B == D) &&
   2355         NoOp0WrapProblem && NoOp1WrapProblem &&
   2356         // Try not to increase register pressure.
   2357         BO0->hasOneUse() && BO1->hasOneUse()) {
   2358       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2359       Value *Y = (A == C || A == D) ? B : A;
   2360       Value *Z = (C == A || C == B) ? D : C;
   2361       return new ICmpInst(Pred, Y, Z);
   2362     }
   2363 
   2364     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2365     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2366     A = 0; B = 0; C = 0; D = 0;
   2367     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2368       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2369     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2370       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2371 
   2372     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2373     if (A == Op1 && NoOp0WrapProblem)
   2374       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2375 
   2376     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2377     if (C == Op0 && NoOp1WrapProblem)
   2378       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2379 
   2380     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2381     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2382         // Try not to increase register pressure.
   2383         BO0->hasOneUse() && BO1->hasOneUse())
   2384       return new ICmpInst(Pred, A, C);
   2385 
   2386     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2387     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2388         // Try not to increase register pressure.
   2389         BO0->hasOneUse() && BO1->hasOneUse())
   2390       return new ICmpInst(Pred, D, B);
   2391 
   2392     BinaryOperator *SRem = NULL;
   2393     // icmp (srem X, Y), Y
   2394     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2395         Op1 == BO0->getOperand(1))
   2396       SRem = BO0;
   2397     // icmp Y, (srem X, Y)
   2398     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2399              Op0 == BO1->getOperand(1))
   2400       SRem = BO1;
   2401     if (SRem) {
   2402       // We don't check hasOneUse to avoid increasing register pressure because
   2403       // the value we use is the same value this instruction was already using.
   2404       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2405         default: break;
   2406         case ICmpInst::ICMP_EQ:
   2407           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2408         case ICmpInst::ICMP_NE:
   2409           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2410         case ICmpInst::ICMP_SGT:
   2411         case ICmpInst::ICMP_SGE:
   2412           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2413                               Constant::getAllOnesValue(SRem->getType()));
   2414         case ICmpInst::ICMP_SLT:
   2415         case ICmpInst::ICMP_SLE:
   2416           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2417                               Constant::getNullValue(SRem->getType()));
   2418       }
   2419     }
   2420 
   2421     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2422         BO0->hasOneUse() && BO1->hasOneUse() &&
   2423         BO0->getOperand(1) == BO1->getOperand(1)) {
   2424       switch (BO0->getOpcode()) {
   2425       default: break;
   2426       case Instruction::Add:
   2427       case Instruction::Sub:
   2428       case Instruction::Xor:
   2429         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2430           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2431                               BO1->getOperand(0));
   2432         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2433         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2434           if (CI->getValue().isSignBit()) {
   2435             ICmpInst::Predicate Pred = I.isSigned()
   2436                                            ? I.getUnsignedPredicate()
   2437                                            : I.getSignedPredicate();
   2438             return new ICmpInst(Pred, BO0->getOperand(0),
   2439                                 BO1->getOperand(0));
   2440           }
   2441 
   2442           if (CI->isMaxValue(true)) {
   2443             ICmpInst::Predicate Pred = I.isSigned()
   2444                                            ? I.getUnsignedPredicate()
   2445                                            : I.getSignedPredicate();
   2446             Pred = I.getSwappedPredicate(Pred);
   2447             return new ICmpInst(Pred, BO0->getOperand(0),
   2448                                 BO1->getOperand(0));
   2449           }
   2450         }
   2451         break;
   2452       case Instruction::Mul:
   2453         if (!I.isEquality())
   2454           break;
   2455 
   2456         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2457           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2458           // Mask = -1 >> count-trailing-zeros(Cst).
   2459           if (!CI->isZero() && !CI->isOne()) {
   2460             const APInt &AP = CI->getValue();
   2461             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2462                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2463                                                          AP.getBitWidth() -
   2464                                                     AP.countTrailingZeros()));
   2465             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2466             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2467             return new ICmpInst(I.getPredicate(), And1, And2);
   2468           }
   2469         }
   2470         break;
   2471       case Instruction::UDiv:
   2472       case Instruction::LShr:
   2473         if (I.isSigned())
   2474           break;
   2475         // fall-through
   2476       case Instruction::SDiv:
   2477       case Instruction::AShr:
   2478         if (!BO0->isExact() || !BO1->isExact())
   2479           break;
   2480         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2481                             BO1->getOperand(0));
   2482       case Instruction::Shl: {
   2483         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2484         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2485         if (!NUW && !NSW)
   2486           break;
   2487         if (!NSW && I.isSigned())
   2488           break;
   2489         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2490                             BO1->getOperand(0));
   2491       }
   2492       }
   2493     }
   2494   }
   2495 
   2496   { Value *A, *B;
   2497     // ~x < ~y --> y < x
   2498     // ~x < cst --> ~cst < x
   2499     if (match(Op0, m_Not(m_Value(A)))) {
   2500       if (match(Op1, m_Not(m_Value(B))))
   2501         return new ICmpInst(I.getPredicate(), B, A);
   2502       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2503         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2504     }
   2505 
   2506     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2507     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2508     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2509         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2510         (Op1 == A || Op1 == B))
   2511       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2512         return R;
   2513 
   2514     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2515     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2516     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2517         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2518         (Op0 == A || Op0 == B))
   2519       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2520         return R;
   2521   }
   2522 
   2523   if (I.isEquality()) {
   2524     Value *A, *B, *C, *D;
   2525 
   2526     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2527       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2528         Value *OtherVal = A == Op1 ? B : A;
   2529         return new ICmpInst(I.getPredicate(), OtherVal,
   2530                             Constant::getNullValue(A->getType()));
   2531       }
   2532 
   2533       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2534         // A^c1 == C^c2 --> A == C^(c1^c2)
   2535         ConstantInt *C1, *C2;
   2536         if (match(B, m_ConstantInt(C1)) &&
   2537             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2538           Constant *NC = ConstantInt::get(I.getContext(),
   2539                                           C1->getValue() ^ C2->getValue());
   2540           Value *Xor = Builder->CreateXor(C, NC);
   2541           return new ICmpInst(I.getPredicate(), A, Xor);
   2542         }
   2543 
   2544         // A^B == A^D -> B == D
   2545         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2546         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2547         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2548         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2549       }
   2550     }
   2551 
   2552     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2553         (A == Op0 || B == Op0)) {
   2554       // A == (A^B)  ->  B == 0
   2555       Value *OtherVal = A == Op0 ? B : A;
   2556       return new ICmpInst(I.getPredicate(), OtherVal,
   2557                           Constant::getNullValue(A->getType()));
   2558     }
   2559 
   2560     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2561     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2562         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2563       Value *X = 0, *Y = 0, *Z = 0;
   2564 
   2565       if (A == C) {
   2566         X = B; Y = D; Z = A;
   2567       } else if (A == D) {
   2568         X = B; Y = C; Z = A;
   2569       } else if (B == C) {
   2570         X = A; Y = D; Z = B;
   2571       } else if (B == D) {
   2572         X = A; Y = C; Z = B;
   2573       }
   2574 
   2575       if (X) {   // Build (X^Y) & Z
   2576         Op1 = Builder->CreateXor(X, Y);
   2577         Op1 = Builder->CreateAnd(Op1, Z);
   2578         I.setOperand(0, Op1);
   2579         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2580         return &I;
   2581       }
   2582     }
   2583 
   2584     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   2585     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   2586     ConstantInt *Cst1;
   2587     if ((Op0->hasOneUse() &&
   2588          match(Op0, m_ZExt(m_Value(A))) &&
   2589          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   2590         (Op1->hasOneUse() &&
   2591          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   2592          match(Op1, m_ZExt(m_Value(A))))) {
   2593       APInt Pow2 = Cst1->getValue() + 1;
   2594       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   2595           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   2596         return new ICmpInst(I.getPredicate(), A,
   2597                             Builder->CreateTrunc(B, A->getType()));
   2598     }
   2599 
   2600     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2601     // "icmp (and X, mask), cst"
   2602     uint64_t ShAmt = 0;
   2603     if (Op0->hasOneUse() &&
   2604         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2605                                            m_ConstantInt(ShAmt))))) &&
   2606         match(Op1, m_ConstantInt(Cst1)) &&
   2607         // Only do this when A has multiple uses.  This is most important to do
   2608         // when it exposes other optimizations.
   2609         !A->hasOneUse()) {
   2610       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2611 
   2612       if (ShAmt < ASize) {
   2613         APInt MaskV =
   2614           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2615         MaskV <<= ShAmt;
   2616 
   2617         APInt CmpV = Cst1->getValue().zext(ASize);
   2618         CmpV <<= ShAmt;
   2619 
   2620         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2621         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2622       }
   2623     }
   2624   }
   2625 
   2626   {
   2627     Value *X; ConstantInt *Cst;
   2628     // icmp X+Cst, X
   2629     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2630       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2631 
   2632     // icmp X, X+Cst
   2633     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2634       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2635   }
   2636   return Changed ? &I : 0;
   2637 }
   2638 
   2639 
   2640 
   2641 
   2642 
   2643 
   2644 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2645 ///
   2646 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2647                                                 Instruction *LHSI,
   2648                                                 Constant *RHSC) {
   2649   if (!isa<ConstantFP>(RHSC)) return 0;
   2650   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2651 
   2652   // Get the width of the mantissa.  We don't want to hack on conversions that
   2653   // might lose information from the integer, e.g. "i64 -> float"
   2654   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2655   if (MantissaWidth == -1) return 0;  // Unknown.
   2656 
   2657   // Check to see that the input is converted from an integer type that is small
   2658   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2659   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2660   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2661 
   2662   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2663   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2664   if (LHSUnsigned)
   2665     ++InputSize;
   2666 
   2667   // If the conversion would lose info, don't hack on this.
   2668   if ((int)InputSize > MantissaWidth)
   2669     return 0;
   2670 
   2671   // Otherwise, we can potentially simplify the comparison.  We know that it
   2672   // will always come through as an integer value and we know the constant is
   2673   // not a NAN (it would have been previously simplified).
   2674   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2675 
   2676   ICmpInst::Predicate Pred;
   2677   switch (I.getPredicate()) {
   2678   default: llvm_unreachable("Unexpected predicate!");
   2679   case FCmpInst::FCMP_UEQ:
   2680   case FCmpInst::FCMP_OEQ:
   2681     Pred = ICmpInst::ICMP_EQ;
   2682     break;
   2683   case FCmpInst::FCMP_UGT:
   2684   case FCmpInst::FCMP_OGT:
   2685     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2686     break;
   2687   case FCmpInst::FCMP_UGE:
   2688   case FCmpInst::FCMP_OGE:
   2689     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2690     break;
   2691   case FCmpInst::FCMP_ULT:
   2692   case FCmpInst::FCMP_OLT:
   2693     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2694     break;
   2695   case FCmpInst::FCMP_ULE:
   2696   case FCmpInst::FCMP_OLE:
   2697     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   2698     break;
   2699   case FCmpInst::FCMP_UNE:
   2700   case FCmpInst::FCMP_ONE:
   2701     Pred = ICmpInst::ICMP_NE;
   2702     break;
   2703   case FCmpInst::FCMP_ORD:
   2704     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2705   case FCmpInst::FCMP_UNO:
   2706     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2707   }
   2708 
   2709   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   2710 
   2711   // Now we know that the APFloat is a normal number, zero or inf.
   2712 
   2713   // See if the FP constant is too large for the integer.  For example,
   2714   // comparing an i8 to 300.0.
   2715   unsigned IntWidth = IntTy->getScalarSizeInBits();
   2716 
   2717   if (!LHSUnsigned) {
   2718     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   2719     // and large values.
   2720     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
   2721     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   2722                           APFloat::rmNearestTiesToEven);
   2723     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   2724       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   2725           Pred == ICmpInst::ICMP_SLE)
   2726         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2727       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2728     }
   2729   } else {
   2730     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   2731     // +INF and large values.
   2732     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
   2733     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   2734                           APFloat::rmNearestTiesToEven);
   2735     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   2736       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   2737           Pred == ICmpInst::ICMP_ULE)
   2738         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2739       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2740     }
   2741   }
   2742 
   2743   if (!LHSUnsigned) {
   2744     // See if the RHS value is < SignedMin.
   2745     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2746     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   2747                           APFloat::rmNearestTiesToEven);
   2748     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   2749       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   2750           Pred == ICmpInst::ICMP_SGE)
   2751         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2752       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2753     }
   2754   } else {
   2755     // See if the RHS value is < UnsignedMin.
   2756     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2757     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   2758                           APFloat::rmNearestTiesToEven);
   2759     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   2760       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   2761           Pred == ICmpInst::ICMP_UGE)
   2762         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2763       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2764     }
   2765   }
   2766 
   2767   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   2768   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   2769   // casting the FP value to the integer value and back, checking for equality.
   2770   // Don't do this for zero, because -0.0 is not fractional.
   2771   Constant *RHSInt = LHSUnsigned
   2772     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   2773     : ConstantExpr::getFPToSI(RHSC, IntTy);
   2774   if (!RHS.isZero()) {
   2775     bool Equal = LHSUnsigned
   2776       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   2777       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   2778     if (!Equal) {
   2779       // If we had a comparison against a fractional value, we have to adjust
   2780       // the compare predicate and sometimes the value.  RHSC is rounded towards
   2781       // zero at this point.
   2782       switch (Pred) {
   2783       default: llvm_unreachable("Unexpected integer comparison!");
   2784       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   2785         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2786       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   2787         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2788       case ICmpInst::ICMP_ULE:
   2789         // (float)int <= 4.4   --> int <= 4
   2790         // (float)int <= -4.4  --> false
   2791         if (RHS.isNegative())
   2792           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2793         break;
   2794       case ICmpInst::ICMP_SLE:
   2795         // (float)int <= 4.4   --> int <= 4
   2796         // (float)int <= -4.4  --> int < -4
   2797         if (RHS.isNegative())
   2798           Pred = ICmpInst::ICMP_SLT;
   2799         break;
   2800       case ICmpInst::ICMP_ULT:
   2801         // (float)int < -4.4   --> false
   2802         // (float)int < 4.4    --> int <= 4
   2803         if (RHS.isNegative())
   2804           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2805         Pred = ICmpInst::ICMP_ULE;
   2806         break;
   2807       case ICmpInst::ICMP_SLT:
   2808         // (float)int < -4.4   --> int < -4
   2809         // (float)int < 4.4    --> int <= 4
   2810         if (!RHS.isNegative())
   2811           Pred = ICmpInst::ICMP_SLE;
   2812         break;
   2813       case ICmpInst::ICMP_UGT:
   2814         // (float)int > 4.4    --> int > 4
   2815         // (float)int > -4.4   --> true
   2816         if (RHS.isNegative())
   2817           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2818         break;
   2819       case ICmpInst::ICMP_SGT:
   2820         // (float)int > 4.4    --> int > 4
   2821         // (float)int > -4.4   --> int >= -4
   2822         if (RHS.isNegative())
   2823           Pred = ICmpInst::ICMP_SGE;
   2824         break;
   2825       case ICmpInst::ICMP_UGE:
   2826         // (float)int >= -4.4   --> true
   2827         // (float)int >= 4.4    --> int > 4
   2828         if (RHS.isNegative())
   2829           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2830         Pred = ICmpInst::ICMP_UGT;
   2831         break;
   2832       case ICmpInst::ICMP_SGE:
   2833         // (float)int >= -4.4   --> int >= -4
   2834         // (float)int >= 4.4    --> int > 4
   2835         if (!RHS.isNegative())
   2836           Pred = ICmpInst::ICMP_SGT;
   2837         break;
   2838       }
   2839     }
   2840   }
   2841 
   2842   // Lower this FP comparison into an appropriate integer version of the
   2843   // comparison.
   2844   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   2845 }
   2846 
   2847 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   2848   bool Changed = false;
   2849 
   2850   /// Orders the operands of the compare so that they are listed from most
   2851   /// complex to least complex.  This puts constants before unary operators,
   2852   /// before binary operators.
   2853   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   2854     I.swapOperands();
   2855     Changed = true;
   2856   }
   2857 
   2858   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2859 
   2860   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   2861     return ReplaceInstUsesWith(I, V);
   2862 
   2863   // Simplify 'fcmp pred X, X'
   2864   if (Op0 == Op1) {
   2865     switch (I.getPredicate()) {
   2866     default: llvm_unreachable("Unknown predicate!");
   2867     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   2868     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   2869     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   2870     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   2871       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   2872       I.setPredicate(FCmpInst::FCMP_UNO);
   2873       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2874       return &I;
   2875 
   2876     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   2877     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   2878     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   2879     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   2880       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   2881       I.setPredicate(FCmpInst::FCMP_ORD);
   2882       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2883       return &I;
   2884     }
   2885   }
   2886 
   2887   // Handle fcmp with constant RHS
   2888   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2889     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2890       switch (LHSI->getOpcode()) {
   2891       case Instruction::FPExt: {
   2892         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   2893         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   2894         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   2895         if (!RHSF)
   2896           break;
   2897 
   2898         // We can't convert a PPC double double.
   2899         if (RHSF->getType()->isPPC_FP128Ty())
   2900           break;
   2901 
   2902         const fltSemantics *Sem;
   2903         // FIXME: This shouldn't be here.
   2904         if (LHSExt->getSrcTy()->isHalfTy())
   2905           Sem = &APFloat::IEEEhalf;
   2906         else if (LHSExt->getSrcTy()->isFloatTy())
   2907           Sem = &APFloat::IEEEsingle;
   2908         else if (LHSExt->getSrcTy()->isDoubleTy())
   2909           Sem = &APFloat::IEEEdouble;
   2910         else if (LHSExt->getSrcTy()->isFP128Ty())
   2911           Sem = &APFloat::IEEEquad;
   2912         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   2913           Sem = &APFloat::x87DoubleExtended;
   2914         else
   2915           break;
   2916 
   2917         bool Lossy;
   2918         APFloat F = RHSF->getValueAPF();
   2919         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   2920 
   2921         // Avoid lossy conversions and denormals. Zero is a special case
   2922         // that's OK to convert.
   2923         APFloat Fabs = F;
   2924         Fabs.clearSign();
   2925         if (!Lossy &&
   2926             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   2927                  APFloat::cmpLessThan) || Fabs.isZero()))
   2928 
   2929           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2930                               ConstantFP::get(RHSC->getContext(), F));
   2931         break;
   2932       }
   2933       case Instruction::PHI:
   2934         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   2935         // block.  If in the same block, we're encouraging jump threading.  If
   2936         // not, we are just pessimizing the code by making an i1 phi.
   2937         if (LHSI->getParent() == I.getParent())
   2938           if (Instruction *NV = FoldOpIntoPhi(I))
   2939             return NV;
   2940         break;
   2941       case Instruction::SIToFP:
   2942       case Instruction::UIToFP:
   2943         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   2944           return NV;
   2945         break;
   2946       case Instruction::Select: {
   2947         // If either operand of the select is a constant, we can fold the
   2948         // comparison into the select arms, which will cause one to be
   2949         // constant folded and the select turned into a bitwise or.
   2950         Value *Op1 = 0, *Op2 = 0;
   2951         if (LHSI->hasOneUse()) {
   2952           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   2953             // Fold the known value into the constant operand.
   2954             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2955             // Insert a new FCmp of the other select operand.
   2956             Op2 = Builder->CreateFCmp(I.getPredicate(),
   2957                                       LHSI->getOperand(2), RHSC, I.getName());
   2958           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   2959             // Fold the known value into the constant operand.
   2960             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2961             // Insert a new FCmp of the other select operand.
   2962             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   2963                                       RHSC, I.getName());
   2964           }
   2965         }
   2966 
   2967         if (Op1)
   2968           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2969         break;
   2970       }
   2971       case Instruction::FSub: {
   2972         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   2973         Value *Op;
   2974         if (match(LHSI, m_FNeg(m_Value(Op))))
   2975           return new FCmpInst(I.getSwappedPredicate(), Op,
   2976                               ConstantExpr::getFNeg(RHSC));
   2977         break;
   2978       }
   2979       case Instruction::Load:
   2980         if (GetElementPtrInst *GEP =
   2981             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2982           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2983             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2984                 !cast<LoadInst>(LHSI)->isVolatile())
   2985               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2986                 return Res;
   2987         }
   2988         break;
   2989       case Instruction::Call: {
   2990         CallInst *CI = cast<CallInst>(LHSI);
   2991         LibFunc::Func Func;
   2992         // Various optimization for fabs compared with zero.
   2993         if (RHSC->isNullValue() && CI->getCalledFunction() &&
   2994             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
   2995             TLI->has(Func)) {
   2996           if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   2997               Func == LibFunc::fabsl) {
   2998             switch (I.getPredicate()) {
   2999             default: break;
   3000             // fabs(x) < 0 --> false
   3001             case FCmpInst::FCMP_OLT:
   3002               return ReplaceInstUsesWith(I, Builder->getFalse());
   3003             // fabs(x) > 0 --> x != 0
   3004             case FCmpInst::FCMP_OGT:
   3005               return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
   3006                                   RHSC);
   3007             // fabs(x) <= 0 --> x == 0
   3008             case FCmpInst::FCMP_OLE:
   3009               return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
   3010                                   RHSC);
   3011             // fabs(x) >= 0 --> !isnan(x)
   3012             case FCmpInst::FCMP_OGE:
   3013               return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
   3014                                   RHSC);
   3015             // fabs(x) == 0 --> x == 0
   3016             // fabs(x) != 0 --> x != 0
   3017             case FCmpInst::FCMP_OEQ:
   3018             case FCmpInst::FCMP_UEQ:
   3019             case FCmpInst::FCMP_ONE:
   3020             case FCmpInst::FCMP_UNE:
   3021               return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
   3022                                   RHSC);
   3023             }
   3024           }
   3025         }
   3026       }
   3027       }
   3028   }
   3029 
   3030   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   3031   Value *X, *Y;
   3032   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   3033     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   3034 
   3035   // fcmp (fpext x), (fpext y) -> fcmp x, y
   3036   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   3037     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   3038       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   3039         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   3040                             RHSExt->getOperand(0));
   3041 
   3042   return Changed ? &I : 0;
   3043 }
   3044