Home | History | Annotate | Download | only in Scalar
      1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass munges the code in the input function to better prepare it for
     11 // SelectionDAG-based code generation. This works around limitations in it's
     12 // basic-block-at-a-time approach. It should eventually be removed.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "codegenprepare"
     17 #include "llvm/Transforms/Scalar.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/IRBuilder.h"
     22 #include "llvm/InlineAsm.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallSet.h"
     28 #include "llvm/ADT/Statistic.h"
     29 #include "llvm/Analysis/Dominators.h"
     30 #include "llvm/Analysis/InstructionSimplify.h"
     31 #include "llvm/Analysis/ProfileInfo.h"
     32 #include "llvm/Assembly/Writer.h"
     33 #include "llvm/Support/CallSite.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/GetElementPtrTypeIterator.h"
     37 #include "llvm/Support/PatternMatch.h"
     38 #include "llvm/Support/ValueHandle.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Target/TargetData.h"
     41 #include "llvm/Target/TargetLibraryInfo.h"
     42 #include "llvm/Target/TargetLowering.h"
     43 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     46 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 using namespace llvm;
     49 using namespace llvm::PatternMatch;
     50 
     51 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
     52 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
     53 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
     54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
     55                       "sunken Cmps");
     56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
     57                        "of sunken Casts");
     58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
     59                           "computations were sunk");
     60 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
     61 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
     62 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
     63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
     64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
     65 
     66 static cl::opt<bool> DisableBranchOpts(
     67   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
     68   cl::desc("Disable branch optimizations in CodeGenPrepare"));
     69 
     70 static cl::opt<bool> DisableSelectToBranch(
     71   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
     72   cl::desc("Disable select to branch conversion."));
     73 
     74 namespace {
     75   class CodeGenPrepare : public FunctionPass {
     76     /// TLI - Keep a pointer of a TargetLowering to consult for determining
     77     /// transformation profitability.
     78     const TargetLowering *TLI;
     79     const TargetLibraryInfo *TLInfo;
     80     DominatorTree *DT;
     81     ProfileInfo *PFI;
     82 
     83     /// CurInstIterator - As we scan instructions optimizing them, this is the
     84     /// next instruction to optimize.  Xforms that can invalidate this should
     85     /// update it.
     86     BasicBlock::iterator CurInstIterator;
     87 
     88     /// Keeps track of non-local addresses that have been sunk into a block.
     89     /// This allows us to avoid inserting duplicate code for blocks with
     90     /// multiple load/stores of the same address.
     91     DenseMap<Value*, Value*> SunkAddrs;
     92 
     93     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
     94     /// be updated.
     95     bool ModifiedDT;
     96 
     97     /// OptSize - True if optimizing for size.
     98     bool OptSize;
     99 
    100   public:
    101     static char ID; // Pass identification, replacement for typeid
    102     explicit CodeGenPrepare(const TargetLowering *tli = 0)
    103       : FunctionPass(ID), TLI(tli) {
    104         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    105       }
    106     bool runOnFunction(Function &F);
    107 
    108     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    109       AU.addPreserved<DominatorTree>();
    110       AU.addPreserved<ProfileInfo>();
    111       AU.addRequired<TargetLibraryInfo>();
    112     }
    113 
    114   private:
    115     bool EliminateFallThrough(Function &F);
    116     bool EliminateMostlyEmptyBlocks(Function &F);
    117     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    118     void EliminateMostlyEmptyBlock(BasicBlock *BB);
    119     bool OptimizeBlock(BasicBlock &BB);
    120     bool OptimizeInst(Instruction *I);
    121     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
    122     bool OptimizeInlineAsmInst(CallInst *CS);
    123     bool OptimizeCallInst(CallInst *CI);
    124     bool MoveExtToFormExtLoad(Instruction *I);
    125     bool OptimizeExtUses(Instruction *I);
    126     bool OptimizeSelectInst(SelectInst *SI);
    127     bool DupRetToEnableTailCallOpts(ReturnInst *RI);
    128     bool PlaceDbgValues(Function &F);
    129   };
    130 }
    131 
    132 char CodeGenPrepare::ID = 0;
    133 INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
    134                 "Optimize for code generation", false, false)
    135 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    136 INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare",
    137                 "Optimize for code generation", false, false)
    138 
    139 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
    140   return new CodeGenPrepare(TLI);
    141 }
    142 
    143 bool CodeGenPrepare::runOnFunction(Function &F) {
    144   bool EverMadeChange = false;
    145 
    146   ModifiedDT = false;
    147   TLInfo = &getAnalysis<TargetLibraryInfo>();
    148   DT = getAnalysisIfAvailable<DominatorTree>();
    149   PFI = getAnalysisIfAvailable<ProfileInfo>();
    150   OptSize = F.hasFnAttr(Attribute::OptimizeForSize);
    151 
    152   /// This optimization identifies DIV instructions that can be
    153   /// profitably bypassed and carried out with a shorter, faster divide.
    154   if (TLI && TLI->isSlowDivBypassed()) {
    155     const DenseMap<Type *, Type *> &BypassTypeMap = TLI->getBypassSlowDivTypes();
    156 
    157     for (Function::iterator I = F.begin(); I != F.end(); I++) {
    158       EverMadeChange |= bypassSlowDivision(F,
    159                                            I,
    160                                            BypassTypeMap);
    161     }
    162   }
    163 
    164   // Eliminate blocks that contain only PHI nodes and an
    165   // unconditional branch.
    166   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
    167 
    168   // llvm.dbg.value is far away from the value then iSel may not be able
    169   // handle it properly. iSel will drop llvm.dbg.value if it can not
    170   // find a node corresponding to the value.
    171   EverMadeChange |= PlaceDbgValues(F);
    172 
    173   bool MadeChange = true;
    174   while (MadeChange) {
    175     MadeChange = false;
    176     for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    177       BasicBlock *BB = I++;
    178       MadeChange |= OptimizeBlock(*BB);
    179     }
    180     EverMadeChange |= MadeChange;
    181   }
    182 
    183   SunkAddrs.clear();
    184 
    185   if (!DisableBranchOpts) {
    186     MadeChange = false;
    187     SmallPtrSet<BasicBlock*, 8> WorkList;
    188     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    189       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    190       MadeChange |= ConstantFoldTerminator(BB, true);
    191       if (!MadeChange) continue;
    192 
    193       for (SmallVectorImpl<BasicBlock*>::iterator
    194              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    195         if (pred_begin(*II) == pred_end(*II))
    196           WorkList.insert(*II);
    197     }
    198 
    199     for (SmallPtrSet<BasicBlock*, 8>::iterator
    200            I = WorkList.begin(), E = WorkList.end(); I != E; ++I)
    201       DeleteDeadBlock(*I);
    202 
    203     // Merge pairs of basic blocks with unconditional branches, connected by
    204     // a single edge.
    205     if (EverMadeChange || MadeChange)
    206       MadeChange |= EliminateFallThrough(F);
    207 
    208     if (MadeChange)
    209       ModifiedDT = true;
    210     EverMadeChange |= MadeChange;
    211   }
    212 
    213   if (ModifiedDT && DT)
    214     DT->DT->recalculate(F);
    215 
    216   return EverMadeChange;
    217 }
    218 
    219 /// EliminateFallThrough - Merge basic blocks which are connected
    220 /// by a single edge, where one of the basic blocks has a single successor
    221 /// pointing to the other basic block, which has a single predecessor.
    222 bool CodeGenPrepare::EliminateFallThrough(Function &F) {
    223   bool Changed = false;
    224   // Scan all of the blocks in the function, except for the entry block.
    225   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    226     BasicBlock *BB = I++;
    227     // If the destination block has a single pred, then this is a trivial
    228     // edge, just collapse it.
    229     BasicBlock *SinglePred = BB->getSinglePredecessor();
    230 
    231     if (!SinglePred || SinglePred == BB) continue;
    232 
    233     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    234     if (Term && !Term->isConditional()) {
    235       Changed = true;
    236       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
    237       // Remember if SinglePred was the entry block of the function.
    238       // If so, we will need to move BB back to the entry position.
    239       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    240       MergeBasicBlockIntoOnlyPred(BB, this);
    241 
    242       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    243         BB->moveBefore(&BB->getParent()->getEntryBlock());
    244 
    245       // We have erased a block. Update the iterator.
    246       I = BB;
    247     }
    248   }
    249   return Changed;
    250 }
    251 
    252 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
    253 /// debug info directives, and an unconditional branch.  Passes before isel
    254 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
    255 /// isel.  Start by eliminating these blocks so we can split them the way we
    256 /// want them.
    257 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
    258   bool MadeChange = false;
    259   // Note that this intentionally skips the entry block.
    260   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    261     BasicBlock *BB = I++;
    262 
    263     // If this block doesn't end with an uncond branch, ignore it.
    264     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    265     if (!BI || !BI->isUnconditional())
    266       continue;
    267 
    268     // If the instruction before the branch (skipping debug info) isn't a phi
    269     // node, then other stuff is happening here.
    270     BasicBlock::iterator BBI = BI;
    271     if (BBI != BB->begin()) {
    272       --BBI;
    273       while (isa<DbgInfoIntrinsic>(BBI)) {
    274         if (BBI == BB->begin())
    275           break;
    276         --BBI;
    277       }
    278       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
    279         continue;
    280     }
    281 
    282     // Do not break infinite loops.
    283     BasicBlock *DestBB = BI->getSuccessor(0);
    284     if (DestBB == BB)
    285       continue;
    286 
    287     if (!CanMergeBlocks(BB, DestBB))
    288       continue;
    289 
    290     EliminateMostlyEmptyBlock(BB);
    291     MadeChange = true;
    292   }
    293   return MadeChange;
    294 }
    295 
    296 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
    297 /// single uncond branch between them, and BB contains no other non-phi
    298 /// instructions.
    299 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
    300                                     const BasicBlock *DestBB) const {
    301   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
    302   // the successor.  If there are more complex condition (e.g. preheaders),
    303   // don't mess around with them.
    304   BasicBlock::const_iterator BBI = BB->begin();
    305   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    306     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
    307          UI != E; ++UI) {
    308       const Instruction *User = cast<Instruction>(*UI);
    309       if (User->getParent() != DestBB || !isa<PHINode>(User))
    310         return false;
    311       // If User is inside DestBB block and it is a PHINode then check
    312       // incoming value. If incoming value is not from BB then this is
    313       // a complex condition (e.g. preheaders) we want to avoid here.
    314       if (User->getParent() == DestBB) {
    315         if (const PHINode *UPN = dyn_cast<PHINode>(User))
    316           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
    317             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
    318             if (Insn && Insn->getParent() == BB &&
    319                 Insn->getParent() != UPN->getIncomingBlock(I))
    320               return false;
    321           }
    322       }
    323     }
    324   }
    325 
    326   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
    327   // and DestBB may have conflicting incoming values for the block.  If so, we
    328   // can't merge the block.
    329   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
    330   if (!DestBBPN) return true;  // no conflict.
    331 
    332   // Collect the preds of BB.
    333   SmallPtrSet<const BasicBlock*, 16> BBPreds;
    334   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    335     // It is faster to get preds from a PHI than with pred_iterator.
    336     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    337       BBPreds.insert(BBPN->getIncomingBlock(i));
    338   } else {
    339     BBPreds.insert(pred_begin(BB), pred_end(BB));
    340   }
    341 
    342   // Walk the preds of DestBB.
    343   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    344     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    345     if (BBPreds.count(Pred)) {   // Common predecessor?
    346       BBI = DestBB->begin();
    347       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    348         const Value *V1 = PN->getIncomingValueForBlock(Pred);
    349         const Value *V2 = PN->getIncomingValueForBlock(BB);
    350 
    351         // If V2 is a phi node in BB, look up what the mapped value will be.
    352         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
    353           if (V2PN->getParent() == BB)
    354             V2 = V2PN->getIncomingValueForBlock(Pred);
    355 
    356         // If there is a conflict, bail out.
    357         if (V1 != V2) return false;
    358       }
    359     }
    360   }
    361 
    362   return true;
    363 }
    364 
    365 
    366 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
    367 /// an unconditional branch in it.
    368 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
    369   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
    370   BasicBlock *DestBB = BI->getSuccessor(0);
    371 
    372   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
    373 
    374   // If the destination block has a single pred, then this is a trivial edge,
    375   // just collapse it.
    376   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    377     if (SinglePred != DestBB) {
    378       // Remember if SinglePred was the entry block of the function.  If so, we
    379       // will need to move BB back to the entry position.
    380       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    381       MergeBasicBlockIntoOnlyPred(DestBB, this);
    382 
    383       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    384         BB->moveBefore(&BB->getParent()->getEntryBlock());
    385 
    386       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    387       return;
    388     }
    389   }
    390 
    391   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
    392   // to handle the new incoming edges it is about to have.
    393   PHINode *PN;
    394   for (BasicBlock::iterator BBI = DestBB->begin();
    395        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    396     // Remove the incoming value for BB, and remember it.
    397     Value *InVal = PN->removeIncomingValue(BB, false);
    398 
    399     // Two options: either the InVal is a phi node defined in BB or it is some
    400     // value that dominates BB.
    401     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    402     if (InValPhi && InValPhi->getParent() == BB) {
    403       // Add all of the input values of the input PHI as inputs of this phi.
    404       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
    405         PN->addIncoming(InValPhi->getIncomingValue(i),
    406                         InValPhi->getIncomingBlock(i));
    407     } else {
    408       // Otherwise, add one instance of the dominating value for each edge that
    409       // we will be adding.
    410       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    411         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    412           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
    413       } else {
    414         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    415           PN->addIncoming(InVal, *PI);
    416       }
    417     }
    418   }
    419 
    420   // The PHIs are now updated, change everything that refers to BB to use
    421   // DestBB and remove BB.
    422   BB->replaceAllUsesWith(DestBB);
    423   if (DT && !ModifiedDT) {
    424     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
    425     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
    426     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
    427     DT->changeImmediateDominator(DestBB, NewIDom);
    428     DT->eraseNode(BB);
    429   }
    430   if (PFI) {
    431     PFI->replaceAllUses(BB, DestBB);
    432     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
    433   }
    434   BB->eraseFromParent();
    435   ++NumBlocksElim;
    436 
    437   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    438 }
    439 
    440 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
    441 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
    442 /// sink it into user blocks to reduce the number of virtual
    443 /// registers that must be created and coalesced.
    444 ///
    445 /// Return true if any changes are made.
    446 ///
    447 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
    448   // If this is a noop copy,
    449   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
    450   EVT DstVT = TLI.getValueType(CI->getType());
    451 
    452   // This is an fp<->int conversion?
    453   if (SrcVT.isInteger() != DstVT.isInteger())
    454     return false;
    455 
    456   // If this is an extension, it will be a zero or sign extension, which
    457   // isn't a noop.
    458   if (SrcVT.bitsLT(DstVT)) return false;
    459 
    460   // If these values will be promoted, find out what they will be promoted
    461   // to.  This helps us consider truncates on PPC as noop copies when they
    462   // are.
    463   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
    464       TargetLowering::TypePromoteInteger)
    465     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
    466   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
    467       TargetLowering::TypePromoteInteger)
    468     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
    469 
    470   // If, after promotion, these are the same types, this is a noop copy.
    471   if (SrcVT != DstVT)
    472     return false;
    473 
    474   BasicBlock *DefBB = CI->getParent();
    475 
    476   /// InsertedCasts - Only insert a cast in each block once.
    477   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
    478 
    479   bool MadeChange = false;
    480   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    481        UI != E; ) {
    482     Use &TheUse = UI.getUse();
    483     Instruction *User = cast<Instruction>(*UI);
    484 
    485     // Figure out which BB this cast is used in.  For PHI's this is the
    486     // appropriate predecessor block.
    487     BasicBlock *UserBB = User->getParent();
    488     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    489       UserBB = PN->getIncomingBlock(UI);
    490     }
    491 
    492     // Preincrement use iterator so we don't invalidate it.
    493     ++UI;
    494 
    495     // If this user is in the same block as the cast, don't change the cast.
    496     if (UserBB == DefBB) continue;
    497 
    498     // If we have already inserted a cast into this block, use it.
    499     CastInst *&InsertedCast = InsertedCasts[UserBB];
    500 
    501     if (!InsertedCast) {
    502       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    503       InsertedCast =
    504         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
    505                          InsertPt);
    506       MadeChange = true;
    507     }
    508 
    509     // Replace a use of the cast with a use of the new cast.
    510     TheUse = InsertedCast;
    511     ++NumCastUses;
    512   }
    513 
    514   // If we removed all uses, nuke the cast.
    515   if (CI->use_empty()) {
    516     CI->eraseFromParent();
    517     MadeChange = true;
    518   }
    519 
    520   return MadeChange;
    521 }
    522 
    523 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
    524 /// the number of virtual registers that must be created and coalesced.  This is
    525 /// a clear win except on targets with multiple condition code registers
    526 ///  (PowerPC), where it might lose; some adjustment may be wanted there.
    527 ///
    528 /// Return true if any changes are made.
    529 static bool OptimizeCmpExpression(CmpInst *CI) {
    530   BasicBlock *DefBB = CI->getParent();
    531 
    532   /// InsertedCmp - Only insert a cmp in each block once.
    533   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
    534 
    535   bool MadeChange = false;
    536   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
    537        UI != E; ) {
    538     Use &TheUse = UI.getUse();
    539     Instruction *User = cast<Instruction>(*UI);
    540 
    541     // Preincrement use iterator so we don't invalidate it.
    542     ++UI;
    543 
    544     // Don't bother for PHI nodes.
    545     if (isa<PHINode>(User))
    546       continue;
    547 
    548     // Figure out which BB this cmp is used in.
    549     BasicBlock *UserBB = User->getParent();
    550 
    551     // If this user is in the same block as the cmp, don't change the cmp.
    552     if (UserBB == DefBB) continue;
    553 
    554     // If we have already inserted a cmp into this block, use it.
    555     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
    556 
    557     if (!InsertedCmp) {
    558       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    559       InsertedCmp =
    560         CmpInst::Create(CI->getOpcode(),
    561                         CI->getPredicate(),  CI->getOperand(0),
    562                         CI->getOperand(1), "", InsertPt);
    563       MadeChange = true;
    564     }
    565 
    566     // Replace a use of the cmp with a use of the new cmp.
    567     TheUse = InsertedCmp;
    568     ++NumCmpUses;
    569   }
    570 
    571   // If we removed all uses, nuke the cmp.
    572   if (CI->use_empty())
    573     CI->eraseFromParent();
    574 
    575   return MadeChange;
    576 }
    577 
    578 namespace {
    579 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    580 protected:
    581   void replaceCall(Value *With) {
    582     CI->replaceAllUsesWith(With);
    583     CI->eraseFromParent();
    584   }
    585   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
    586       if (ConstantInt *SizeCI =
    587                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
    588         return SizeCI->isAllOnesValue();
    589     return false;
    590   }
    591 };
    592 } // end anonymous namespace
    593 
    594 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
    595   BasicBlock *BB = CI->getParent();
    596 
    597   // Lower inline assembly if we can.
    598   // If we found an inline asm expession, and if the target knows how to
    599   // lower it to normal LLVM code, do so now.
    600   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
    601     if (TLI->ExpandInlineAsm(CI)) {
    602       // Avoid invalidating the iterator.
    603       CurInstIterator = BB->begin();
    604       // Avoid processing instructions out of order, which could cause
    605       // reuse before a value is defined.
    606       SunkAddrs.clear();
    607       return true;
    608     }
    609     // Sink address computing for memory operands into the block.
    610     if (OptimizeInlineAsmInst(CI))
    611       return true;
    612   }
    613 
    614   // Lower all uses of llvm.objectsize.*
    615   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
    616   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
    617     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
    618     Type *ReturnTy = CI->getType();
    619     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
    620 
    621     // Substituting this can cause recursive simplifications, which can
    622     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
    623     // happens.
    624     WeakVH IterHandle(CurInstIterator);
    625 
    626     replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getTargetData() : 0,
    627                                   TLInfo, ModifiedDT ? 0 : DT);
    628 
    629     // If the iterator instruction was recursively deleted, start over at the
    630     // start of the block.
    631     if (IterHandle != CurInstIterator) {
    632       CurInstIterator = BB->begin();
    633       SunkAddrs.clear();
    634     }
    635     return true;
    636   }
    637 
    638   if (II && TLI) {
    639     SmallVector<Value*, 2> PtrOps;
    640     Type *AccessTy;
    641     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
    642       while (!PtrOps.empty())
    643         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
    644           return true;
    645   }
    646 
    647   // From here on out we're working with named functions.
    648   if (CI->getCalledFunction() == 0) return false;
    649 
    650   // We'll need TargetData from here on out.
    651   const TargetData *TD = TLI ? TLI->getTargetData() : 0;
    652   if (!TD) return false;
    653 
    654   // Lower all default uses of _chk calls.  This is very similar
    655   // to what InstCombineCalls does, but here we are only lowering calls
    656   // that have the default "don't know" as the objectsize.  Anything else
    657   // should be left alone.
    658   CodeGenPrepareFortifiedLibCalls Simplifier;
    659   return Simplifier.fold(CI, TD, TLInfo);
    660 }
    661 
    662 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
    663 /// instructions to the predecessor to enable tail call optimizations. The
    664 /// case it is currently looking for is:
    665 /// bb0:
    666 ///   %tmp0 = tail call i32 @f0()
    667 ///   br label %return
    668 /// bb1:
    669 ///   %tmp1 = tail call i32 @f1()
    670 ///   br label %return
    671 /// bb2:
    672 ///   %tmp2 = tail call i32 @f2()
    673 ///   br label %return
    674 /// return:
    675 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
    676 ///   ret i32 %retval
    677 ///
    678 /// =>
    679 ///
    680 /// bb0:
    681 ///   %tmp0 = tail call i32 @f0()
    682 ///   ret i32 %tmp0
    683 /// bb1:
    684 ///   %tmp1 = tail call i32 @f1()
    685 ///   ret i32 %tmp1
    686 /// bb2:
    687 ///   %tmp2 = tail call i32 @f2()
    688 ///   ret i32 %tmp2
    689 ///
    690 bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
    691   if (!TLI)
    692     return false;
    693 
    694   PHINode *PN = 0;
    695   BitCastInst *BCI = 0;
    696   Value *V = RI->getReturnValue();
    697   if (V) {
    698     BCI = dyn_cast<BitCastInst>(V);
    699     if (BCI)
    700       V = BCI->getOperand(0);
    701 
    702     PN = dyn_cast<PHINode>(V);
    703     if (!PN)
    704       return false;
    705   }
    706 
    707   BasicBlock *BB = RI->getParent();
    708   if (PN && PN->getParent() != BB)
    709     return false;
    710 
    711   // It's not safe to eliminate the sign / zero extension of the return value.
    712   // See llvm::isInTailCallPosition().
    713   const Function *F = BB->getParent();
    714   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
    715   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    716     return false;
    717 
    718   // Make sure there are no instructions between the PHI and return, or that the
    719   // return is the first instruction in the block.
    720   if (PN) {
    721     BasicBlock::iterator BI = BB->begin();
    722     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
    723     if (&*BI == BCI)
    724       // Also skip over the bitcast.
    725       ++BI;
    726     if (&*BI != RI)
    727       return false;
    728   } else {
    729     BasicBlock::iterator BI = BB->begin();
    730     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
    731     if (&*BI != RI)
    732       return false;
    733   }
    734 
    735   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
    736   /// call.
    737   SmallVector<CallInst*, 4> TailCalls;
    738   if (PN) {
    739     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
    740       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
    741       // Make sure the phi value is indeed produced by the tail call.
    742       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
    743           TLI->mayBeEmittedAsTailCall(CI))
    744         TailCalls.push_back(CI);
    745     }
    746   } else {
    747     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
    748     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
    749       if (!VisitedBBs.insert(*PI))
    750         continue;
    751 
    752       BasicBlock::InstListType &InstList = (*PI)->getInstList();
    753       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
    754       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
    755       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
    756       if (RI == RE)
    757         continue;
    758 
    759       CallInst *CI = dyn_cast<CallInst>(&*RI);
    760       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
    761         TailCalls.push_back(CI);
    762     }
    763   }
    764 
    765   bool Changed = false;
    766   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
    767     CallInst *CI = TailCalls[i];
    768     CallSite CS(CI);
    769 
    770     // Conservatively require the attributes of the call to match those of the
    771     // return. Ignore noalias because it doesn't affect the call sequence.
    772     Attributes CalleeRetAttr = CS.getAttributes().getRetAttributes();
    773     if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
    774       continue;
    775 
    776     // Make sure the call instruction is followed by an unconditional branch to
    777     // the return block.
    778     BasicBlock *CallBB = CI->getParent();
    779     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
    780     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
    781       continue;
    782 
    783     // Duplicate the return into CallBB.
    784     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
    785     ModifiedDT = Changed = true;
    786     ++NumRetsDup;
    787   }
    788 
    789   // If we eliminated all predecessors of the block, delete the block now.
    790   if (Changed && pred_begin(BB) == pred_end(BB))
    791     BB->eraseFromParent();
    792 
    793   return Changed;
    794 }
    795 
    796 //===----------------------------------------------------------------------===//
    797 // Memory Optimization
    798 //===----------------------------------------------------------------------===//
    799 
    800 /// IsNonLocalValue - Return true if the specified values are defined in a
    801 /// different basic block than BB.
    802 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
    803   if (Instruction *I = dyn_cast<Instruction>(V))
    804     return I->getParent() != BB;
    805   return false;
    806 }
    807 
    808 /// OptimizeMemoryInst - Load and Store Instructions often have
    809 /// addressing modes that can do significant amounts of computation.  As such,
    810 /// instruction selection will try to get the load or store to do as much
    811 /// computation as possible for the program.  The problem is that isel can only
    812 /// see within a single block.  As such, we sink as much legal addressing mode
    813 /// stuff into the block as possible.
    814 ///
    815 /// This method is used to optimize both load/store and inline asms with memory
    816 /// operands.
    817 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
    818                                         Type *AccessTy) {
    819   Value *Repl = Addr;
    820 
    821   // Try to collapse single-value PHI nodes.  This is necessary to undo
    822   // unprofitable PRE transformations.
    823   SmallVector<Value*, 8> worklist;
    824   SmallPtrSet<Value*, 16> Visited;
    825   worklist.push_back(Addr);
    826 
    827   // Use a worklist to iteratively look through PHI nodes, and ensure that
    828   // the addressing mode obtained from the non-PHI roots of the graph
    829   // are equivalent.
    830   Value *Consensus = 0;
    831   unsigned NumUsesConsensus = 0;
    832   bool IsNumUsesConsensusValid = false;
    833   SmallVector<Instruction*, 16> AddrModeInsts;
    834   ExtAddrMode AddrMode;
    835   while (!worklist.empty()) {
    836     Value *V = worklist.back();
    837     worklist.pop_back();
    838 
    839     // Break use-def graph loops.
    840     if (!Visited.insert(V)) {
    841       Consensus = 0;
    842       break;
    843     }
    844 
    845     // For a PHI node, push all of its incoming values.
    846     if (PHINode *P = dyn_cast<PHINode>(V)) {
    847       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
    848         worklist.push_back(P->getIncomingValue(i));
    849       continue;
    850     }
    851 
    852     // For non-PHIs, determine the addressing mode being computed.
    853     SmallVector<Instruction*, 16> NewAddrModeInsts;
    854     ExtAddrMode NewAddrMode =
    855       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
    856                                    NewAddrModeInsts, *TLI);
    857 
    858     // This check is broken into two cases with very similar code to avoid using
    859     // getNumUses() as much as possible. Some values have a lot of uses, so
    860     // calling getNumUses() unconditionally caused a significant compile-time
    861     // regression.
    862     if (!Consensus) {
    863       Consensus = V;
    864       AddrMode = NewAddrMode;
    865       AddrModeInsts = NewAddrModeInsts;
    866       continue;
    867     } else if (NewAddrMode == AddrMode) {
    868       if (!IsNumUsesConsensusValid) {
    869         NumUsesConsensus = Consensus->getNumUses();
    870         IsNumUsesConsensusValid = true;
    871       }
    872 
    873       // Ensure that the obtained addressing mode is equivalent to that obtained
    874       // for all other roots of the PHI traversal.  Also, when choosing one
    875       // such root as representative, select the one with the most uses in order
    876       // to keep the cost modeling heuristics in AddressingModeMatcher
    877       // applicable.
    878       unsigned NumUses = V->getNumUses();
    879       if (NumUses > NumUsesConsensus) {
    880         Consensus = V;
    881         NumUsesConsensus = NumUses;
    882         AddrModeInsts = NewAddrModeInsts;
    883       }
    884       continue;
    885     }
    886 
    887     Consensus = 0;
    888     break;
    889   }
    890 
    891   // If the addressing mode couldn't be determined, or if multiple different
    892   // ones were determined, bail out now.
    893   if (!Consensus) return false;
    894 
    895   // Check to see if any of the instructions supersumed by this addr mode are
    896   // non-local to I's BB.
    897   bool AnyNonLocal = false;
    898   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
    899     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
    900       AnyNonLocal = true;
    901       break;
    902     }
    903   }
    904 
    905   // If all the instructions matched are already in this BB, don't do anything.
    906   if (!AnyNonLocal) {
    907     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
    908     return false;
    909   }
    910 
    911   // Insert this computation right after this user.  Since our caller is
    912   // scanning from the top of the BB to the bottom, reuse of the expr are
    913   // guaranteed to happen later.
    914   IRBuilder<> Builder(MemoryInst);
    915 
    916   // Now that we determined the addressing expression we want to use and know
    917   // that we have to sink it into this block.  Check to see if we have already
    918   // done this for some other load/store instr in this block.  If so, reuse the
    919   // computation.
    920   Value *&SunkAddr = SunkAddrs[Addr];
    921   if (SunkAddr) {
    922     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
    923                  << *MemoryInst);
    924     if (SunkAddr->getType() != Addr->getType())
    925       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
    926   } else {
    927     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
    928                  << *MemoryInst);
    929     Type *IntPtrTy =
    930           TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
    931 
    932     Value *Result = 0;
    933 
    934     // Start with the base register. Do this first so that subsequent address
    935     // matching finds it last, which will prevent it from trying to match it
    936     // as the scaled value in case it happens to be a mul. That would be
    937     // problematic if we've sunk a different mul for the scale, because then
    938     // we'd end up sinking both muls.
    939     if (AddrMode.BaseReg) {
    940       Value *V = AddrMode.BaseReg;
    941       if (V->getType()->isPointerTy())
    942         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
    943       if (V->getType() != IntPtrTy)
    944         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
    945       Result = V;
    946     }
    947 
    948     // Add the scale value.
    949     if (AddrMode.Scale) {
    950       Value *V = AddrMode.ScaledReg;
    951       if (V->getType() == IntPtrTy) {
    952         // done.
    953       } else if (V->getType()->isPointerTy()) {
    954         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
    955       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
    956                  cast<IntegerType>(V->getType())->getBitWidth()) {
    957         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
    958       } else {
    959         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
    960       }
    961       if (AddrMode.Scale != 1)
    962         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
    963                               "sunkaddr");
    964       if (Result)
    965         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    966       else
    967         Result = V;
    968     }
    969 
    970     // Add in the BaseGV if present.
    971     if (AddrMode.BaseGV) {
    972       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
    973       if (Result)
    974         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    975       else
    976         Result = V;
    977     }
    978 
    979     // Add in the Base Offset if present.
    980     if (AddrMode.BaseOffs) {
    981       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
    982       if (Result)
    983         Result = Builder.CreateAdd(Result, V, "sunkaddr");
    984       else
    985         Result = V;
    986     }
    987 
    988     if (Result == 0)
    989       SunkAddr = Constant::getNullValue(Addr->getType());
    990     else
    991       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
    992   }
    993 
    994   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
    995 
    996   // If we have no uses, recursively delete the value and all dead instructions
    997   // using it.
    998   if (Repl->use_empty()) {
    999     // This can cause recursive deletion, which can invalidate our iterator.
   1000     // Use a WeakVH to hold onto it in case this happens.
   1001     WeakVH IterHandle(CurInstIterator);
   1002     BasicBlock *BB = CurInstIterator->getParent();
   1003 
   1004     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
   1005 
   1006     if (IterHandle != CurInstIterator) {
   1007       // If the iterator instruction was recursively deleted, start over at the
   1008       // start of the block.
   1009       CurInstIterator = BB->begin();
   1010       SunkAddrs.clear();
   1011     } else {
   1012       // This address is now available for reassignment, so erase the table
   1013       // entry; we don't want to match some completely different instruction.
   1014       SunkAddrs[Addr] = 0;
   1015     }
   1016   }
   1017   ++NumMemoryInsts;
   1018   return true;
   1019 }
   1020 
   1021 /// OptimizeInlineAsmInst - If there are any memory operands, use
   1022 /// OptimizeMemoryInst to sink their address computing into the block when
   1023 /// possible / profitable.
   1024 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
   1025   bool MadeChange = false;
   1026 
   1027   TargetLowering::AsmOperandInfoVector
   1028     TargetConstraints = TLI->ParseConstraints(CS);
   1029   unsigned ArgNo = 0;
   1030   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   1031     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   1032 
   1033     // Compute the constraint code and ConstraintType to use.
   1034     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   1035 
   1036     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   1037         OpInfo.isIndirect) {
   1038       Value *OpVal = CS->getArgOperand(ArgNo++);
   1039       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
   1040     } else if (OpInfo.Type == InlineAsm::isInput)
   1041       ArgNo++;
   1042   }
   1043 
   1044   return MadeChange;
   1045 }
   1046 
   1047 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
   1048 /// basic block as the load, unless conditions are unfavorable. This allows
   1049 /// SelectionDAG to fold the extend into the load.
   1050 ///
   1051 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
   1052   // Look for a load being extended.
   1053   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
   1054   if (!LI) return false;
   1055 
   1056   // If they're already in the same block, there's nothing to do.
   1057   if (LI->getParent() == I->getParent())
   1058     return false;
   1059 
   1060   // If the load has other users and the truncate is not free, this probably
   1061   // isn't worthwhile.
   1062   if (!LI->hasOneUse() &&
   1063       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
   1064               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
   1065       !TLI->isTruncateFree(I->getType(), LI->getType()))
   1066     return false;
   1067 
   1068   // Check whether the target supports casts folded into loads.
   1069   unsigned LType;
   1070   if (isa<ZExtInst>(I))
   1071     LType = ISD::ZEXTLOAD;
   1072   else {
   1073     assert(isa<SExtInst>(I) && "Unexpected ext type!");
   1074     LType = ISD::SEXTLOAD;
   1075   }
   1076   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
   1077     return false;
   1078 
   1079   // Move the extend into the same block as the load, so that SelectionDAG
   1080   // can fold it.
   1081   I->removeFromParent();
   1082   I->insertAfter(LI);
   1083   ++NumExtsMoved;
   1084   return true;
   1085 }
   1086 
   1087 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
   1088   BasicBlock *DefBB = I->getParent();
   1089 
   1090   // If the result of a {s|z}ext and its source are both live out, rewrite all
   1091   // other uses of the source with result of extension.
   1092   Value *Src = I->getOperand(0);
   1093   if (Src->hasOneUse())
   1094     return false;
   1095 
   1096   // Only do this xform if truncating is free.
   1097   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
   1098     return false;
   1099 
   1100   // Only safe to perform the optimization if the source is also defined in
   1101   // this block.
   1102   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
   1103     return false;
   1104 
   1105   bool DefIsLiveOut = false;
   1106   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1107        UI != E; ++UI) {
   1108     Instruction *User = cast<Instruction>(*UI);
   1109 
   1110     // Figure out which BB this ext is used in.
   1111     BasicBlock *UserBB = User->getParent();
   1112     if (UserBB == DefBB) continue;
   1113     DefIsLiveOut = true;
   1114     break;
   1115   }
   1116   if (!DefIsLiveOut)
   1117     return false;
   1118 
   1119   // Make sure non of the uses are PHI nodes.
   1120   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1121        UI != E; ++UI) {
   1122     Instruction *User = cast<Instruction>(*UI);
   1123     BasicBlock *UserBB = User->getParent();
   1124     if (UserBB == DefBB) continue;
   1125     // Be conservative. We don't want this xform to end up introducing
   1126     // reloads just before load / store instructions.
   1127     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
   1128       return false;
   1129   }
   1130 
   1131   // InsertedTruncs - Only insert one trunc in each block once.
   1132   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
   1133 
   1134   bool MadeChange = false;
   1135   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
   1136        UI != E; ++UI) {
   1137     Use &TheUse = UI.getUse();
   1138     Instruction *User = cast<Instruction>(*UI);
   1139 
   1140     // Figure out which BB this ext is used in.
   1141     BasicBlock *UserBB = User->getParent();
   1142     if (UserBB == DefBB) continue;
   1143 
   1144     // Both src and def are live in this block. Rewrite the use.
   1145     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
   1146 
   1147     if (!InsertedTrunc) {
   1148       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   1149       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
   1150     }
   1151 
   1152     // Replace a use of the {s|z}ext source with a use of the result.
   1153     TheUse = InsertedTrunc;
   1154     ++NumExtUses;
   1155     MadeChange = true;
   1156   }
   1157 
   1158   return MadeChange;
   1159 }
   1160 
   1161 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
   1162 /// turned into an explicit branch.
   1163 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
   1164   // FIXME: This should use the same heuristics as IfConversion to determine
   1165   // whether a select is better represented as a branch.  This requires that
   1166   // branch probability metadata is preserved for the select, which is not the
   1167   // case currently.
   1168 
   1169   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1170 
   1171   // If the branch is predicted right, an out of order CPU can avoid blocking on
   1172   // the compare.  Emit cmovs on compares with a memory operand as branches to
   1173   // avoid stalls on the load from memory.  If the compare has more than one use
   1174   // there's probably another cmov or setcc around so it's not worth emitting a
   1175   // branch.
   1176   if (!Cmp)
   1177     return false;
   1178 
   1179   Value *CmpOp0 = Cmp->getOperand(0);
   1180   Value *CmpOp1 = Cmp->getOperand(1);
   1181 
   1182   // We check that the memory operand has one use to avoid uses of the loaded
   1183   // value directly after the compare, making branches unprofitable.
   1184   return Cmp->hasOneUse() &&
   1185          ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
   1186           (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
   1187 }
   1188 
   1189 
   1190 /// If we have a SelectInst that will likely profit from branch prediction,
   1191 /// turn it into a branch.
   1192 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
   1193   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
   1194 
   1195   // Can we convert the 'select' to CF ?
   1196   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
   1197     return false;
   1198 
   1199   TargetLowering::SelectSupportKind SelectKind;
   1200   if (VectorCond)
   1201     SelectKind = TargetLowering::VectorMaskSelect;
   1202   else if (SI->getType()->isVectorTy())
   1203     SelectKind = TargetLowering::ScalarCondVectorVal;
   1204   else
   1205     SelectKind = TargetLowering::ScalarValSelect;
   1206 
   1207   // Do we have efficient codegen support for this kind of 'selects' ?
   1208   if (TLI->isSelectSupported(SelectKind)) {
   1209     // We have efficient codegen support for the select instruction.
   1210     // Check if it is profitable to keep this 'select'.
   1211     if (!TLI->isPredictableSelectExpensive() ||
   1212         !isFormingBranchFromSelectProfitable(SI))
   1213       return false;
   1214   }
   1215 
   1216   ModifiedDT = true;
   1217 
   1218   // First, we split the block containing the select into 2 blocks.
   1219   BasicBlock *StartBlock = SI->getParent();
   1220   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
   1221   BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
   1222 
   1223   // Create a new block serving as the landing pad for the branch.
   1224   BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
   1225                                              NextBlock->getParent(), NextBlock);
   1226 
   1227   // Move the unconditional branch from the block with the select in it into our
   1228   // landing pad block.
   1229   StartBlock->getTerminator()->eraseFromParent();
   1230   BranchInst::Create(NextBlock, SmallBlock);
   1231 
   1232   // Insert the real conditional branch based on the original condition.
   1233   BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
   1234 
   1235   // The select itself is replaced with a PHI Node.
   1236   PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
   1237   PN->takeName(SI);
   1238   PN->addIncoming(SI->getTrueValue(), StartBlock);
   1239   PN->addIncoming(SI->getFalseValue(), SmallBlock);
   1240   SI->replaceAllUsesWith(PN);
   1241   SI->eraseFromParent();
   1242 
   1243   // Instruct OptimizeBlock to skip to the next block.
   1244   CurInstIterator = StartBlock->end();
   1245   ++NumSelectsExpanded;
   1246   return true;
   1247 }
   1248 
   1249 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
   1250   if (PHINode *P = dyn_cast<PHINode>(I)) {
   1251     // It is possible for very late stage optimizations (such as SimplifyCFG)
   1252     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
   1253     // trivial PHI, go ahead and zap it here.
   1254     if (Value *V = SimplifyInstruction(P)) {
   1255       P->replaceAllUsesWith(V);
   1256       P->eraseFromParent();
   1257       ++NumPHIsElim;
   1258       return true;
   1259     }
   1260     return false;
   1261   }
   1262 
   1263   if (CastInst *CI = dyn_cast<CastInst>(I)) {
   1264     // If the source of the cast is a constant, then this should have
   1265     // already been constant folded.  The only reason NOT to constant fold
   1266     // it is if something (e.g. LSR) was careful to place the constant
   1267     // evaluation in a block other than then one that uses it (e.g. to hoist
   1268     // the address of globals out of a loop).  If this is the case, we don't
   1269     // want to forward-subst the cast.
   1270     if (isa<Constant>(CI->getOperand(0)))
   1271       return false;
   1272 
   1273     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
   1274       return true;
   1275 
   1276     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
   1277       bool MadeChange = MoveExtToFormExtLoad(I);
   1278       return MadeChange | OptimizeExtUses(I);
   1279     }
   1280     return false;
   1281   }
   1282 
   1283   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   1284     return OptimizeCmpExpression(CI);
   1285 
   1286   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   1287     if (TLI)
   1288       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
   1289     return false;
   1290   }
   1291 
   1292   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   1293     if (TLI)
   1294       return OptimizeMemoryInst(I, SI->getOperand(1),
   1295                                 SI->getOperand(0)->getType());
   1296     return false;
   1297   }
   1298 
   1299   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
   1300     if (GEPI->hasAllZeroIndices()) {
   1301       /// The GEP operand must be a pointer, so must its result -> BitCast
   1302       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
   1303                                         GEPI->getName(), GEPI);
   1304       GEPI->replaceAllUsesWith(NC);
   1305       GEPI->eraseFromParent();
   1306       ++NumGEPsElim;
   1307       OptimizeInst(NC);
   1308       return true;
   1309     }
   1310     return false;
   1311   }
   1312 
   1313   if (CallInst *CI = dyn_cast<CallInst>(I))
   1314     return OptimizeCallInst(CI);
   1315 
   1316   if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
   1317     return DupRetToEnableTailCallOpts(RI);
   1318 
   1319   if (SelectInst *SI = dyn_cast<SelectInst>(I))
   1320     return OptimizeSelectInst(SI);
   1321 
   1322   return false;
   1323 }
   1324 
   1325 // In this pass we look for GEP and cast instructions that are used
   1326 // across basic blocks and rewrite them to improve basic-block-at-a-time
   1327 // selection.
   1328 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
   1329   SunkAddrs.clear();
   1330   bool MadeChange = false;
   1331 
   1332   CurInstIterator = BB.begin();
   1333   for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
   1334     MadeChange |= OptimizeInst(CurInstIterator++);
   1335 
   1336   return MadeChange;
   1337 }
   1338 
   1339 // llvm.dbg.value is far away from the value then iSel may not be able
   1340 // handle it properly. iSel will drop llvm.dbg.value if it can not
   1341 // find a node corresponding to the value.
   1342 bool CodeGenPrepare::PlaceDbgValues(Function &F) {
   1343   bool MadeChange = false;
   1344   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   1345     Instruction *PrevNonDbgInst = NULL;
   1346     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
   1347       Instruction *Insn = BI; ++BI;
   1348       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
   1349       if (!DVI) {
   1350         PrevNonDbgInst = Insn;
   1351         continue;
   1352       }
   1353 
   1354       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
   1355       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
   1356         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
   1357         DVI->removeFromParent();
   1358         if (isa<PHINode>(VI))
   1359           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
   1360         else
   1361           DVI->insertAfter(VI);
   1362         MadeChange = true;
   1363         ++NumDbgValueMoved;
   1364       }
   1365     }
   1366   }
   1367   return MadeChange;
   1368 }
   1369