1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements semantic analysis for C++ templates. 10 //===----------------------------------------------------------------------===/ 11 12 #include "clang/Sema/SemaInternal.h" 13 #include "clang/Sema/Lookup.h" 14 #include "clang/Sema/Scope.h" 15 #include "clang/Sema/Template.h" 16 #include "clang/Sema/TemplateDeduction.h" 17 #include "TreeTransform.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/DeclFriend.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/TypeVisitor.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/ParsedTemplate.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 using namespace clang; 33 using namespace sema; 34 35 // Exported for use by Parser. 36 SourceRange 37 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41 } 42 43 /// \brief Determine whether the declaration found is acceptable as the name 44 /// of a template and, if so, return that template declaration. Otherwise, 45 /// returns NULL. 46 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84 } 85 86 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122 } 123 124 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131 } 132 133 TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217 } 218 219 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242 } 243 244 void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 337 else 338 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 339 << Name << CorrectedQuotedStr 340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 342 Diag(Template->getLocation(), diag::note_previous_decl) 343 << CorrectedQuotedStr; 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 358 !(getLangOpts().CPlusPlus0x && !Found.empty())) { 359 // C++03 [basic.lookup.classref]p1: 360 // [...] If the lookup in the class of the object expression finds a 361 // template, the name is also looked up in the context of the entire 362 // postfix-expression and [...] 363 // 364 // Note: C++11 does not perform this second lookup. 365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 366 LookupOrdinaryName); 367 LookupName(FoundOuter, S); 368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 369 370 if (FoundOuter.empty()) { 371 // - if the name is not found, the name found in the class of the 372 // object expression is used, otherwise 373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 374 FoundOuter.isAmbiguous()) { 375 // - if the name is found in the context of the entire 376 // postfix-expression and does not name a class template, the name 377 // found in the class of the object expression is used, otherwise 378 FoundOuter.clear(); 379 } else if (!Found.isSuppressingDiagnostics()) { 380 // - if the name found is a class template, it must refer to the same 381 // entity as the one found in the class of the object expression, 382 // otherwise the program is ill-formed. 383 if (!Found.isSingleResult() || 384 Found.getFoundDecl()->getCanonicalDecl() 385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 386 Diag(Found.getNameLoc(), 387 diag::ext_nested_name_member_ref_lookup_ambiguous) 388 << Found.getLookupName() 389 << ObjectType; 390 Diag(Found.getRepresentativeDecl()->getLocation(), 391 diag::note_ambig_member_ref_object_type) 392 << ObjectType; 393 Diag(FoundOuter.getFoundDecl()->getLocation(), 394 diag::note_ambig_member_ref_scope); 395 396 // Recover by taking the template that we found in the object 397 // expression's type. 398 } 399 } 400 } 401 } 402 403 /// ActOnDependentIdExpression - Handle a dependent id-expression that 404 /// was just parsed. This is only possible with an explicit scope 405 /// specifier naming a dependent type. 406 ExprResult 407 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 408 SourceLocation TemplateKWLoc, 409 const DeclarationNameInfo &NameInfo, 410 bool isAddressOfOperand, 411 const TemplateArgumentListInfo *TemplateArgs) { 412 DeclContext *DC = getFunctionLevelDeclContext(); 413 414 if (!isAddressOfOperand && 415 isa<CXXMethodDecl>(DC) && 416 cast<CXXMethodDecl>(DC)->isInstance()) { 417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 418 419 // Since the 'this' expression is synthesized, we don't need to 420 // perform the double-lookup check. 421 NamedDecl *FirstQualifierInScope = 0; 422 423 return Owned(CXXDependentScopeMemberExpr::Create(Context, 424 /*This*/ 0, ThisType, 425 /*IsArrow*/ true, 426 /*Op*/ SourceLocation(), 427 SS.getWithLocInContext(Context), 428 TemplateKWLoc, 429 FirstQualifierInScope, 430 NameInfo, 431 TemplateArgs)); 432 } 433 434 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 435 } 436 437 ExprResult 438 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 439 SourceLocation TemplateKWLoc, 440 const DeclarationNameInfo &NameInfo, 441 const TemplateArgumentListInfo *TemplateArgs) { 442 return Owned(DependentScopeDeclRefExpr::Create(Context, 443 SS.getWithLocInContext(Context), 444 TemplateKWLoc, 445 NameInfo, 446 TemplateArgs)); 447 } 448 449 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 450 /// that the template parameter 'PrevDecl' is being shadowed by a new 451 /// declaration at location Loc. Returns true to indicate that this is 452 /// an error, and false otherwise. 453 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 454 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 455 456 // Microsoft Visual C++ permits template parameters to be shadowed. 457 if (getLangOpts().MicrosoftExt) 458 return; 459 460 // C++ [temp.local]p4: 461 // A template-parameter shall not be redeclared within its 462 // scope (including nested scopes). 463 Diag(Loc, diag::err_template_param_shadow) 464 << cast<NamedDecl>(PrevDecl)->getDeclName(); 465 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 466 return; 467 } 468 469 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 470 /// the parameter D to reference the templated declaration and return a pointer 471 /// to the template declaration. Otherwise, do nothing to D and return null. 472 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 473 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 474 D = Temp->getTemplatedDecl(); 475 return Temp; 476 } 477 return 0; 478 } 479 480 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 481 SourceLocation EllipsisLoc) const { 482 assert(Kind == Template && 483 "Only template template arguments can be pack expansions here"); 484 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 485 "Template template argument pack expansion without packs"); 486 ParsedTemplateArgument Result(*this); 487 Result.EllipsisLoc = EllipsisLoc; 488 return Result; 489 } 490 491 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 492 const ParsedTemplateArgument &Arg) { 493 494 switch (Arg.getKind()) { 495 case ParsedTemplateArgument::Type: { 496 TypeSourceInfo *DI; 497 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 498 if (!DI) 499 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 500 return TemplateArgumentLoc(TemplateArgument(T), DI); 501 } 502 503 case ParsedTemplateArgument::NonType: { 504 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 505 return TemplateArgumentLoc(TemplateArgument(E), E); 506 } 507 508 case ParsedTemplateArgument::Template: { 509 TemplateName Template = Arg.getAsTemplate().get(); 510 TemplateArgument TArg; 511 if (Arg.getEllipsisLoc().isValid()) 512 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 513 else 514 TArg = Template; 515 return TemplateArgumentLoc(TArg, 516 Arg.getScopeSpec().getWithLocInContext( 517 SemaRef.Context), 518 Arg.getLocation(), 519 Arg.getEllipsisLoc()); 520 } 521 } 522 523 llvm_unreachable("Unhandled parsed template argument"); 524 } 525 526 /// \brief Translates template arguments as provided by the parser 527 /// into template arguments used by semantic analysis. 528 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 529 TemplateArgumentListInfo &TemplateArgs) { 530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 531 TemplateArgs.addArgument(translateTemplateArgument(*this, 532 TemplateArgsIn[I])); 533 } 534 535 /// ActOnTypeParameter - Called when a C++ template type parameter 536 /// (e.g., "typename T") has been parsed. Typename specifies whether 537 /// the keyword "typename" was used to declare the type parameter 538 /// (otherwise, "class" was used), and KeyLoc is the location of the 539 /// "class" or "typename" keyword. ParamName is the name of the 540 /// parameter (NULL indicates an unnamed template parameter) and 541 /// ParamNameLoc is the location of the parameter name (if any). 542 /// If the type parameter has a default argument, it will be added 543 /// later via ActOnTypeParameterDefault. 544 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 545 SourceLocation EllipsisLoc, 546 SourceLocation KeyLoc, 547 IdentifierInfo *ParamName, 548 SourceLocation ParamNameLoc, 549 unsigned Depth, unsigned Position, 550 SourceLocation EqualLoc, 551 ParsedType DefaultArg) { 552 assert(S->isTemplateParamScope() && 553 "Template type parameter not in template parameter scope!"); 554 bool Invalid = false; 555 556 if (ParamName) { 557 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 558 LookupOrdinaryName, 559 ForRedeclaration); 560 if (PrevDecl && PrevDecl->isTemplateParameter()) { 561 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 562 PrevDecl = 0; 563 } 564 } 565 566 SourceLocation Loc = ParamNameLoc; 567 if (!ParamName) 568 Loc = KeyLoc; 569 570 TemplateTypeParmDecl *Param 571 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 572 KeyLoc, Loc, Depth, Position, ParamName, 573 Typename, Ellipsis); 574 Param->setAccess(AS_public); 575 if (Invalid) 576 Param->setInvalidDecl(); 577 578 if (ParamName) { 579 // Add the template parameter into the current scope. 580 S->AddDecl(Param); 581 IdResolver.AddDecl(Param); 582 } 583 584 // C++0x [temp.param]p9: 585 // A default template-argument may be specified for any kind of 586 // template-parameter that is not a template parameter pack. 587 if (DefaultArg && Ellipsis) { 588 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 589 DefaultArg = ParsedType(); 590 } 591 592 // Handle the default argument, if provided. 593 if (DefaultArg) { 594 TypeSourceInfo *DefaultTInfo; 595 GetTypeFromParser(DefaultArg, &DefaultTInfo); 596 597 assert(DefaultTInfo && "expected source information for type"); 598 599 // Check for unexpanded parameter packs. 600 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 601 UPPC_DefaultArgument)) 602 return Param; 603 604 // Check the template argument itself. 605 if (CheckTemplateArgument(Param, DefaultTInfo)) { 606 Param->setInvalidDecl(); 607 return Param; 608 } 609 610 Param->setDefaultArgument(DefaultTInfo, false); 611 } 612 613 return Param; 614 } 615 616 /// \brief Check that the type of a non-type template parameter is 617 /// well-formed. 618 /// 619 /// \returns the (possibly-promoted) parameter type if valid; 620 /// otherwise, produces a diagnostic and returns a NULL type. 621 QualType 622 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 623 // We don't allow variably-modified types as the type of non-type template 624 // parameters. 625 if (T->isVariablyModifiedType()) { 626 Diag(Loc, diag::err_variably_modified_nontype_template_param) 627 << T; 628 return QualType(); 629 } 630 631 // C++ [temp.param]p4: 632 // 633 // A non-type template-parameter shall have one of the following 634 // (optionally cv-qualified) types: 635 // 636 // -- integral or enumeration type, 637 if (T->isIntegralOrEnumerationType() || 638 // -- pointer to object or pointer to function, 639 T->isPointerType() || 640 // -- reference to object or reference to function, 641 T->isReferenceType() || 642 // -- pointer to member, 643 T->isMemberPointerType() || 644 // -- std::nullptr_t. 645 T->isNullPtrType() || 646 // If T is a dependent type, we can't do the check now, so we 647 // assume that it is well-formed. 648 T->isDependentType()) { 649 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 650 // are ignored when determining its type. 651 return T.getUnqualifiedType(); 652 } 653 654 // C++ [temp.param]p8: 655 // 656 // A non-type template-parameter of type "array of T" or 657 // "function returning T" is adjusted to be of type "pointer to 658 // T" or "pointer to function returning T", respectively. 659 else if (T->isArrayType()) 660 // FIXME: Keep the type prior to promotion? 661 return Context.getArrayDecayedType(T); 662 else if (T->isFunctionType()) 663 // FIXME: Keep the type prior to promotion? 664 return Context.getPointerType(T); 665 666 Diag(Loc, diag::err_template_nontype_parm_bad_type) 667 << T; 668 669 return QualType(); 670 } 671 672 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 673 unsigned Depth, 674 unsigned Position, 675 SourceLocation EqualLoc, 676 Expr *Default) { 677 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 678 QualType T = TInfo->getType(); 679 680 assert(S->isTemplateParamScope() && 681 "Non-type template parameter not in template parameter scope!"); 682 bool Invalid = false; 683 684 IdentifierInfo *ParamName = D.getIdentifier(); 685 if (ParamName) { 686 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 687 LookupOrdinaryName, 688 ForRedeclaration); 689 if (PrevDecl && PrevDecl->isTemplateParameter()) { 690 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 691 PrevDecl = 0; 692 } 693 } 694 695 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 696 if (T.isNull()) { 697 T = Context.IntTy; // Recover with an 'int' type. 698 Invalid = true; 699 } 700 701 bool IsParameterPack = D.hasEllipsis(); 702 NonTypeTemplateParmDecl *Param 703 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 704 D.getLocStart(), 705 D.getIdentifierLoc(), 706 Depth, Position, ParamName, T, 707 IsParameterPack, TInfo); 708 Param->setAccess(AS_public); 709 710 if (Invalid) 711 Param->setInvalidDecl(); 712 713 if (D.getIdentifier()) { 714 // Add the template parameter into the current scope. 715 S->AddDecl(Param); 716 IdResolver.AddDecl(Param); 717 } 718 719 // C++0x [temp.param]p9: 720 // A default template-argument may be specified for any kind of 721 // template-parameter that is not a template parameter pack. 722 if (Default && IsParameterPack) { 723 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 724 Default = 0; 725 } 726 727 // Check the well-formedness of the default template argument, if provided. 728 if (Default) { 729 // Check for unexpanded parameter packs. 730 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 731 return Param; 732 733 TemplateArgument Converted; 734 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 735 if (DefaultRes.isInvalid()) { 736 Param->setInvalidDecl(); 737 return Param; 738 } 739 Default = DefaultRes.take(); 740 741 Param->setDefaultArgument(Default, false); 742 } 743 744 return Param; 745 } 746 747 /// ActOnTemplateTemplateParameter - Called when a C++ template template 748 /// parameter (e.g. T in template <template \<typename> class T> class array) 749 /// has been parsed. S is the current scope. 750 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 751 SourceLocation TmpLoc, 752 TemplateParameterList *Params, 753 SourceLocation EllipsisLoc, 754 IdentifierInfo *Name, 755 SourceLocation NameLoc, 756 unsigned Depth, 757 unsigned Position, 758 SourceLocation EqualLoc, 759 ParsedTemplateArgument Default) { 760 assert(S->isTemplateParamScope() && 761 "Template template parameter not in template parameter scope!"); 762 763 // Construct the parameter object. 764 bool IsParameterPack = EllipsisLoc.isValid(); 765 TemplateTemplateParmDecl *Param = 766 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 767 NameLoc.isInvalid()? TmpLoc : NameLoc, 768 Depth, Position, IsParameterPack, 769 Name, Params); 770 Param->setAccess(AS_public); 771 772 // If the template template parameter has a name, then link the identifier 773 // into the scope and lookup mechanisms. 774 if (Name) { 775 S->AddDecl(Param); 776 IdResolver.AddDecl(Param); 777 } 778 779 if (Params->size() == 0) { 780 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 781 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 782 Param->setInvalidDecl(); 783 } 784 785 // C++0x [temp.param]p9: 786 // A default template-argument may be specified for any kind of 787 // template-parameter that is not a template parameter pack. 788 if (IsParameterPack && !Default.isInvalid()) { 789 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 790 Default = ParsedTemplateArgument(); 791 } 792 793 if (!Default.isInvalid()) { 794 // Check only that we have a template template argument. We don't want to 795 // try to check well-formedness now, because our template template parameter 796 // might have dependent types in its template parameters, which we wouldn't 797 // be able to match now. 798 // 799 // If none of the template template parameter's template arguments mention 800 // other template parameters, we could actually perform more checking here. 801 // However, it isn't worth doing. 802 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 803 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 804 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 805 << DefaultArg.getSourceRange(); 806 return Param; 807 } 808 809 // Check for unexpanded parameter packs. 810 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 811 DefaultArg.getArgument().getAsTemplate(), 812 UPPC_DefaultArgument)) 813 return Param; 814 815 Param->setDefaultArgument(DefaultArg, false); 816 } 817 818 return Param; 819 } 820 821 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 822 /// contains the template parameters in Params/NumParams. 823 TemplateParameterList * 824 Sema::ActOnTemplateParameterList(unsigned Depth, 825 SourceLocation ExportLoc, 826 SourceLocation TemplateLoc, 827 SourceLocation LAngleLoc, 828 Decl **Params, unsigned NumParams, 829 SourceLocation RAngleLoc) { 830 if (ExportLoc.isValid()) 831 Diag(ExportLoc, diag::warn_template_export_unsupported); 832 833 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 834 (NamedDecl**)Params, NumParams, 835 RAngleLoc); 836 } 837 838 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 839 if (SS.isSet()) 840 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 841 } 842 843 DeclResult 844 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 845 SourceLocation KWLoc, CXXScopeSpec &SS, 846 IdentifierInfo *Name, SourceLocation NameLoc, 847 AttributeList *Attr, 848 TemplateParameterList *TemplateParams, 849 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 850 unsigned NumOuterTemplateParamLists, 851 TemplateParameterList** OuterTemplateParamLists) { 852 assert(TemplateParams && TemplateParams->size() > 0 && 853 "No template parameters"); 854 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 855 bool Invalid = false; 856 857 // Check that we can declare a template here. 858 if (CheckTemplateDeclScope(S, TemplateParams)) 859 return true; 860 861 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 862 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 863 864 // There is no such thing as an unnamed class template. 865 if (!Name) { 866 Diag(KWLoc, diag::err_template_unnamed_class); 867 return true; 868 } 869 870 // Find any previous declaration with this name. For a friend with no 871 // scope explicitly specified, we only look for tag declarations (per 872 // C++11 [basic.lookup.elab]p2). 873 DeclContext *SemanticContext; 874 LookupResult Previous(*this, Name, NameLoc, 875 (SS.isEmpty() && TUK == TUK_Friend) 876 ? LookupTagName : LookupOrdinaryName, 877 ForRedeclaration); 878 if (SS.isNotEmpty() && !SS.isInvalid()) { 879 SemanticContext = computeDeclContext(SS, true); 880 if (!SemanticContext) { 881 // FIXME: Horrible, horrible hack! We can't currently represent this 882 // in the AST, and historically we have just ignored such friend 883 // class templates, so don't complain here. 884 if (TUK != TUK_Friend) 885 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 886 << SS.getScopeRep() << SS.getRange(); 887 return true; 888 } 889 890 if (RequireCompleteDeclContext(SS, SemanticContext)) 891 return true; 892 893 // If we're adding a template to a dependent context, we may need to 894 // rebuilding some of the types used within the template parameter list, 895 // now that we know what the current instantiation is. 896 if (SemanticContext->isDependentContext()) { 897 ContextRAII SavedContext(*this, SemanticContext); 898 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 899 Invalid = true; 900 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 901 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 902 903 LookupQualifiedName(Previous, SemanticContext); 904 } else { 905 SemanticContext = CurContext; 906 LookupName(Previous, S); 907 } 908 909 if (Previous.isAmbiguous()) 910 return true; 911 912 NamedDecl *PrevDecl = 0; 913 if (Previous.begin() != Previous.end()) 914 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 915 916 // If there is a previous declaration with the same name, check 917 // whether this is a valid redeclaration. 918 ClassTemplateDecl *PrevClassTemplate 919 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 920 921 // We may have found the injected-class-name of a class template, 922 // class template partial specialization, or class template specialization. 923 // In these cases, grab the template that is being defined or specialized. 924 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 925 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 926 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 927 PrevClassTemplate 928 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 929 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 930 PrevClassTemplate 931 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 932 ->getSpecializedTemplate(); 933 } 934 } 935 936 if (TUK == TUK_Friend) { 937 // C++ [namespace.memdef]p3: 938 // [...] When looking for a prior declaration of a class or a function 939 // declared as a friend, and when the name of the friend class or 940 // function is neither a qualified name nor a template-id, scopes outside 941 // the innermost enclosing namespace scope are not considered. 942 if (!SS.isSet()) { 943 DeclContext *OutermostContext = CurContext; 944 while (!OutermostContext->isFileContext()) 945 OutermostContext = OutermostContext->getLookupParent(); 946 947 if (PrevDecl && 948 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 949 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 950 SemanticContext = PrevDecl->getDeclContext(); 951 } else { 952 // Declarations in outer scopes don't matter. However, the outermost 953 // context we computed is the semantic context for our new 954 // declaration. 955 PrevDecl = PrevClassTemplate = 0; 956 SemanticContext = OutermostContext; 957 958 // Check that the chosen semantic context doesn't already contain a 959 // declaration of this name as a non-tag type. 960 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 961 ForRedeclaration); 962 DeclContext *LookupContext = SemanticContext; 963 while (LookupContext->isTransparentContext()) 964 LookupContext = LookupContext->getLookupParent(); 965 LookupQualifiedName(Previous, LookupContext); 966 967 if (Previous.isAmbiguous()) 968 return true; 969 970 if (Previous.begin() != Previous.end()) 971 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 972 } 973 } 974 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 975 PrevDecl = PrevClassTemplate = 0; 976 977 if (PrevClassTemplate) { 978 // Ensure that the template parameter lists are compatible. Skip this check 979 // for a friend in a dependent context: the template parameter list itself 980 // could be dependent. 981 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 982 !TemplateParameterListsAreEqual(TemplateParams, 983 PrevClassTemplate->getTemplateParameters(), 984 /*Complain=*/true, 985 TPL_TemplateMatch)) 986 return true; 987 988 // C++ [temp.class]p4: 989 // In a redeclaration, partial specialization, explicit 990 // specialization or explicit instantiation of a class template, 991 // the class-key shall agree in kind with the original class 992 // template declaration (7.1.5.3). 993 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 994 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 995 TUK == TUK_Definition, KWLoc, *Name)) { 996 Diag(KWLoc, diag::err_use_with_wrong_tag) 997 << Name 998 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 999 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1000 Kind = PrevRecordDecl->getTagKind(); 1001 } 1002 1003 // Check for redefinition of this class template. 1004 if (TUK == TUK_Definition) { 1005 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1006 Diag(NameLoc, diag::err_redefinition) << Name; 1007 Diag(Def->getLocation(), diag::note_previous_definition); 1008 // FIXME: Would it make sense to try to "forget" the previous 1009 // definition, as part of error recovery? 1010 return true; 1011 } 1012 } 1013 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1014 // Maybe we will complain about the shadowed template parameter. 1015 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1016 // Just pretend that we didn't see the previous declaration. 1017 PrevDecl = 0; 1018 } else if (PrevDecl) { 1019 // C++ [temp]p5: 1020 // A class template shall not have the same name as any other 1021 // template, class, function, object, enumeration, enumerator, 1022 // namespace, or type in the same scope (3.3), except as specified 1023 // in (14.5.4). 1024 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1025 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1026 return true; 1027 } 1028 1029 // Check the template parameter list of this declaration, possibly 1030 // merging in the template parameter list from the previous class 1031 // template declaration. Skip this check for a friend in a dependent 1032 // context, because the template parameter list might be dependent. 1033 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1034 CheckTemplateParameterList(TemplateParams, 1035 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1036 (SS.isSet() && SemanticContext && 1037 SemanticContext->isRecord() && 1038 SemanticContext->isDependentContext()) 1039 ? TPC_ClassTemplateMember 1040 : TPC_ClassTemplate)) 1041 Invalid = true; 1042 1043 if (SS.isSet()) { 1044 // If the name of the template was qualified, we must be defining the 1045 // template out-of-line. 1046 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1047 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1048 : diag::err_member_def_does_not_match) 1049 << Name << SemanticContext << SS.getRange(); 1050 Invalid = true; 1051 } 1052 } 1053 1054 CXXRecordDecl *NewClass = 1055 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1056 PrevClassTemplate? 1057 PrevClassTemplate->getTemplatedDecl() : 0, 1058 /*DelayTypeCreation=*/true); 1059 SetNestedNameSpecifier(NewClass, SS); 1060 if (NumOuterTemplateParamLists > 0) 1061 NewClass->setTemplateParameterListsInfo(Context, 1062 NumOuterTemplateParamLists, 1063 OuterTemplateParamLists); 1064 1065 // Add alignment attributes if necessary; these attributes are checked when 1066 // the ASTContext lays out the structure. 1067 if (TUK == TUK_Definition) { 1068 AddAlignmentAttributesForRecord(NewClass); 1069 AddMsStructLayoutForRecord(NewClass); 1070 } 1071 1072 ClassTemplateDecl *NewTemplate 1073 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1074 DeclarationName(Name), TemplateParams, 1075 NewClass, PrevClassTemplate); 1076 NewClass->setDescribedClassTemplate(NewTemplate); 1077 1078 if (ModulePrivateLoc.isValid()) 1079 NewTemplate->setModulePrivate(); 1080 1081 // Build the type for the class template declaration now. 1082 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1083 T = Context.getInjectedClassNameType(NewClass, T); 1084 assert(T->isDependentType() && "Class template type is not dependent?"); 1085 (void)T; 1086 1087 // If we are providing an explicit specialization of a member that is a 1088 // class template, make a note of that. 1089 if (PrevClassTemplate && 1090 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1091 PrevClassTemplate->setMemberSpecialization(); 1092 1093 // Set the access specifier. 1094 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1095 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1096 1097 // Set the lexical context of these templates 1098 NewClass->setLexicalDeclContext(CurContext); 1099 NewTemplate->setLexicalDeclContext(CurContext); 1100 1101 if (TUK == TUK_Definition) 1102 NewClass->startDefinition(); 1103 1104 if (Attr) 1105 ProcessDeclAttributeList(S, NewClass, Attr); 1106 1107 if (PrevClassTemplate) 1108 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1109 1110 AddPushedVisibilityAttribute(NewClass); 1111 1112 if (TUK != TUK_Friend) 1113 PushOnScopeChains(NewTemplate, S); 1114 else { 1115 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1116 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1117 NewClass->setAccess(PrevClassTemplate->getAccess()); 1118 } 1119 1120 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1121 PrevClassTemplate != NULL); 1122 1123 // Friend templates are visible in fairly strange ways. 1124 if (!CurContext->isDependentContext()) { 1125 DeclContext *DC = SemanticContext->getRedeclContext(); 1126 DC->makeDeclVisibleInContext(NewTemplate); 1127 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1128 PushOnScopeChains(NewTemplate, EnclosingScope, 1129 /* AddToContext = */ false); 1130 } 1131 1132 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1133 NewClass->getLocation(), 1134 NewTemplate, 1135 /*FIXME:*/NewClass->getLocation()); 1136 Friend->setAccess(AS_public); 1137 CurContext->addDecl(Friend); 1138 } 1139 1140 if (Invalid) { 1141 NewTemplate->setInvalidDecl(); 1142 NewClass->setInvalidDecl(); 1143 } 1144 1145 ActOnDocumentableDecl(NewTemplate); 1146 1147 return NewTemplate; 1148 } 1149 1150 /// \brief Diagnose the presence of a default template argument on a 1151 /// template parameter, which is ill-formed in certain contexts. 1152 /// 1153 /// \returns true if the default template argument should be dropped. 1154 static bool DiagnoseDefaultTemplateArgument(Sema &S, 1155 Sema::TemplateParamListContext TPC, 1156 SourceLocation ParamLoc, 1157 SourceRange DefArgRange) { 1158 switch (TPC) { 1159 case Sema::TPC_ClassTemplate: 1160 case Sema::TPC_TypeAliasTemplate: 1161 return false; 1162 1163 case Sema::TPC_FunctionTemplate: 1164 case Sema::TPC_FriendFunctionTemplateDefinition: 1165 // C++ [temp.param]p9: 1166 // A default template-argument shall not be specified in a 1167 // function template declaration or a function template 1168 // definition [...] 1169 // If a friend function template declaration specifies a default 1170 // template-argument, that declaration shall be a definition and shall be 1171 // the only declaration of the function template in the translation unit. 1172 // (C++98/03 doesn't have this wording; see DR226). 1173 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ? 1174 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1175 : diag::ext_template_parameter_default_in_function_template) 1176 << DefArgRange; 1177 return false; 1178 1179 case Sema::TPC_ClassTemplateMember: 1180 // C++0x [temp.param]p9: 1181 // A default template-argument shall not be specified in the 1182 // template-parameter-lists of the definition of a member of a 1183 // class template that appears outside of the member's class. 1184 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1185 << DefArgRange; 1186 return true; 1187 1188 case Sema::TPC_FriendFunctionTemplate: 1189 // C++ [temp.param]p9: 1190 // A default template-argument shall not be specified in a 1191 // friend template declaration. 1192 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1193 << DefArgRange; 1194 return true; 1195 1196 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1197 // for friend function templates if there is only a single 1198 // declaration (and it is a definition). Strange! 1199 } 1200 1201 llvm_unreachable("Invalid TemplateParamListContext!"); 1202 } 1203 1204 /// \brief Check for unexpanded parameter packs within the template parameters 1205 /// of a template template parameter, recursively. 1206 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1207 TemplateTemplateParmDecl *TTP) { 1208 // A template template parameter which is a parameter pack is also a pack 1209 // expansion. 1210 if (TTP->isParameterPack()) 1211 return false; 1212 1213 TemplateParameterList *Params = TTP->getTemplateParameters(); 1214 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1215 NamedDecl *P = Params->getParam(I); 1216 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1217 if (!NTTP->isParameterPack() && 1218 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1219 NTTP->getTypeSourceInfo(), 1220 Sema::UPPC_NonTypeTemplateParameterType)) 1221 return true; 1222 1223 continue; 1224 } 1225 1226 if (TemplateTemplateParmDecl *InnerTTP 1227 = dyn_cast<TemplateTemplateParmDecl>(P)) 1228 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1229 return true; 1230 } 1231 1232 return false; 1233 } 1234 1235 /// \brief Checks the validity of a template parameter list, possibly 1236 /// considering the template parameter list from a previous 1237 /// declaration. 1238 /// 1239 /// If an "old" template parameter list is provided, it must be 1240 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 1241 /// template parameter list. 1242 /// 1243 /// \param NewParams Template parameter list for a new template 1244 /// declaration. This template parameter list will be updated with any 1245 /// default arguments that are carried through from the previous 1246 /// template parameter list. 1247 /// 1248 /// \param OldParams If provided, template parameter list from a 1249 /// previous declaration of the same template. Default template 1250 /// arguments will be merged from the old template parameter list to 1251 /// the new template parameter list. 1252 /// 1253 /// \param TPC Describes the context in which we are checking the given 1254 /// template parameter list. 1255 /// 1256 /// \returns true if an error occurred, false otherwise. 1257 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1258 TemplateParameterList *OldParams, 1259 TemplateParamListContext TPC) { 1260 bool Invalid = false; 1261 1262 // C++ [temp.param]p10: 1263 // The set of default template-arguments available for use with a 1264 // template declaration or definition is obtained by merging the 1265 // default arguments from the definition (if in scope) and all 1266 // declarations in scope in the same way default function 1267 // arguments are (8.3.6). 1268 bool SawDefaultArgument = false; 1269 SourceLocation PreviousDefaultArgLoc; 1270 1271 // Dummy initialization to avoid warnings. 1272 TemplateParameterList::iterator OldParam = NewParams->end(); 1273 if (OldParams) 1274 OldParam = OldParams->begin(); 1275 1276 bool RemoveDefaultArguments = false; 1277 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1278 NewParamEnd = NewParams->end(); 1279 NewParam != NewParamEnd; ++NewParam) { 1280 // Variables used to diagnose redundant default arguments 1281 bool RedundantDefaultArg = false; 1282 SourceLocation OldDefaultLoc; 1283 SourceLocation NewDefaultLoc; 1284 1285 // Variable used to diagnose missing default arguments 1286 bool MissingDefaultArg = false; 1287 1288 // Variable used to diagnose non-final parameter packs 1289 bool SawParameterPack = false; 1290 1291 if (TemplateTypeParmDecl *NewTypeParm 1292 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1293 // Check the presence of a default argument here. 1294 if (NewTypeParm->hasDefaultArgument() && 1295 DiagnoseDefaultTemplateArgument(*this, TPC, 1296 NewTypeParm->getLocation(), 1297 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1298 .getSourceRange())) 1299 NewTypeParm->removeDefaultArgument(); 1300 1301 // Merge default arguments for template type parameters. 1302 TemplateTypeParmDecl *OldTypeParm 1303 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1304 1305 if (NewTypeParm->isParameterPack()) { 1306 assert(!NewTypeParm->hasDefaultArgument() && 1307 "Parameter packs can't have a default argument!"); 1308 SawParameterPack = true; 1309 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1310 NewTypeParm->hasDefaultArgument()) { 1311 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1312 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1313 SawDefaultArgument = true; 1314 RedundantDefaultArg = true; 1315 PreviousDefaultArgLoc = NewDefaultLoc; 1316 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1317 // Merge the default argument from the old declaration to the 1318 // new declaration. 1319 SawDefaultArgument = true; 1320 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1321 true); 1322 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1323 } else if (NewTypeParm->hasDefaultArgument()) { 1324 SawDefaultArgument = true; 1325 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1326 } else if (SawDefaultArgument) 1327 MissingDefaultArg = true; 1328 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1329 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1330 // Check for unexpanded parameter packs. 1331 if (!NewNonTypeParm->isParameterPack() && 1332 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1333 NewNonTypeParm->getTypeSourceInfo(), 1334 UPPC_NonTypeTemplateParameterType)) { 1335 Invalid = true; 1336 continue; 1337 } 1338 1339 // Check the presence of a default argument here. 1340 if (NewNonTypeParm->hasDefaultArgument() && 1341 DiagnoseDefaultTemplateArgument(*this, TPC, 1342 NewNonTypeParm->getLocation(), 1343 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1344 NewNonTypeParm->removeDefaultArgument(); 1345 } 1346 1347 // Merge default arguments for non-type template parameters 1348 NonTypeTemplateParmDecl *OldNonTypeParm 1349 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1350 if (NewNonTypeParm->isParameterPack()) { 1351 assert(!NewNonTypeParm->hasDefaultArgument() && 1352 "Parameter packs can't have a default argument!"); 1353 if (!NewNonTypeParm->isPackExpansion()) 1354 SawParameterPack = true; 1355 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1356 NewNonTypeParm->hasDefaultArgument()) { 1357 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1358 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1359 SawDefaultArgument = true; 1360 RedundantDefaultArg = true; 1361 PreviousDefaultArgLoc = NewDefaultLoc; 1362 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1363 // Merge the default argument from the old declaration to the 1364 // new declaration. 1365 SawDefaultArgument = true; 1366 // FIXME: We need to create a new kind of "default argument" 1367 // expression that points to a previous non-type template 1368 // parameter. 1369 NewNonTypeParm->setDefaultArgument( 1370 OldNonTypeParm->getDefaultArgument(), 1371 /*Inherited=*/ true); 1372 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1373 } else if (NewNonTypeParm->hasDefaultArgument()) { 1374 SawDefaultArgument = true; 1375 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1376 } else if (SawDefaultArgument) 1377 MissingDefaultArg = true; 1378 } else { 1379 TemplateTemplateParmDecl *NewTemplateParm 1380 = cast<TemplateTemplateParmDecl>(*NewParam); 1381 1382 // Check for unexpanded parameter packs, recursively. 1383 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1384 Invalid = true; 1385 continue; 1386 } 1387 1388 // Check the presence of a default argument here. 1389 if (NewTemplateParm->hasDefaultArgument() && 1390 DiagnoseDefaultTemplateArgument(*this, TPC, 1391 NewTemplateParm->getLocation(), 1392 NewTemplateParm->getDefaultArgument().getSourceRange())) 1393 NewTemplateParm->removeDefaultArgument(); 1394 1395 // Merge default arguments for template template parameters 1396 TemplateTemplateParmDecl *OldTemplateParm 1397 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1398 if (NewTemplateParm->isParameterPack()) { 1399 assert(!NewTemplateParm->hasDefaultArgument() && 1400 "Parameter packs can't have a default argument!"); 1401 if (!NewTemplateParm->isPackExpansion()) 1402 SawParameterPack = true; 1403 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1404 NewTemplateParm->hasDefaultArgument()) { 1405 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1406 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1407 SawDefaultArgument = true; 1408 RedundantDefaultArg = true; 1409 PreviousDefaultArgLoc = NewDefaultLoc; 1410 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1411 // Merge the default argument from the old declaration to the 1412 // new declaration. 1413 SawDefaultArgument = true; 1414 // FIXME: We need to create a new kind of "default argument" expression 1415 // that points to a previous template template parameter. 1416 NewTemplateParm->setDefaultArgument( 1417 OldTemplateParm->getDefaultArgument(), 1418 /*Inherited=*/ true); 1419 PreviousDefaultArgLoc 1420 = OldTemplateParm->getDefaultArgument().getLocation(); 1421 } else if (NewTemplateParm->hasDefaultArgument()) { 1422 SawDefaultArgument = true; 1423 PreviousDefaultArgLoc 1424 = NewTemplateParm->getDefaultArgument().getLocation(); 1425 } else if (SawDefaultArgument) 1426 MissingDefaultArg = true; 1427 } 1428 1429 // C++11 [temp.param]p11: 1430 // If a template parameter of a primary class template or alias template 1431 // is a template parameter pack, it shall be the last template parameter. 1432 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1433 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1434 Diag((*NewParam)->getLocation(), 1435 diag::err_template_param_pack_must_be_last_template_parameter); 1436 Invalid = true; 1437 } 1438 1439 if (RedundantDefaultArg) { 1440 // C++ [temp.param]p12: 1441 // A template-parameter shall not be given default arguments 1442 // by two different declarations in the same scope. 1443 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1444 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1445 Invalid = true; 1446 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1447 // C++ [temp.param]p11: 1448 // If a template-parameter of a class template has a default 1449 // template-argument, each subsequent template-parameter shall either 1450 // have a default template-argument supplied or be a template parameter 1451 // pack. 1452 Diag((*NewParam)->getLocation(), 1453 diag::err_template_param_default_arg_missing); 1454 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1455 Invalid = true; 1456 RemoveDefaultArguments = true; 1457 } 1458 1459 // If we have an old template parameter list that we're merging 1460 // in, move on to the next parameter. 1461 if (OldParams) 1462 ++OldParam; 1463 } 1464 1465 // We were missing some default arguments at the end of the list, so remove 1466 // all of the default arguments. 1467 if (RemoveDefaultArguments) { 1468 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1469 NewParamEnd = NewParams->end(); 1470 NewParam != NewParamEnd; ++NewParam) { 1471 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1472 TTP->removeDefaultArgument(); 1473 else if (NonTypeTemplateParmDecl *NTTP 1474 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1475 NTTP->removeDefaultArgument(); 1476 else 1477 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1478 } 1479 } 1480 1481 return Invalid; 1482 } 1483 1484 namespace { 1485 1486 /// A class which looks for a use of a certain level of template 1487 /// parameter. 1488 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1489 typedef RecursiveASTVisitor<DependencyChecker> super; 1490 1491 unsigned Depth; 1492 bool Match; 1493 1494 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1495 NamedDecl *ND = Params->getParam(0); 1496 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1497 Depth = PD->getDepth(); 1498 } else if (NonTypeTemplateParmDecl *PD = 1499 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1500 Depth = PD->getDepth(); 1501 } else { 1502 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1503 } 1504 } 1505 1506 bool Matches(unsigned ParmDepth) { 1507 if (ParmDepth >= Depth) { 1508 Match = true; 1509 return true; 1510 } 1511 return false; 1512 } 1513 1514 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1515 return !Matches(T->getDepth()); 1516 } 1517 1518 bool TraverseTemplateName(TemplateName N) { 1519 if (TemplateTemplateParmDecl *PD = 1520 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1521 if (Matches(PD->getDepth())) return false; 1522 return super::TraverseTemplateName(N); 1523 } 1524 1525 bool VisitDeclRefExpr(DeclRefExpr *E) { 1526 if (NonTypeTemplateParmDecl *PD = 1527 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1528 if (PD->getDepth() == Depth) { 1529 Match = true; 1530 return false; 1531 } 1532 } 1533 return super::VisitDeclRefExpr(E); 1534 } 1535 1536 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1537 return TraverseType(T->getInjectedSpecializationType()); 1538 } 1539 }; 1540 } 1541 1542 /// Determines whether a given type depends on the given parameter 1543 /// list. 1544 static bool 1545 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1546 DependencyChecker Checker(Params); 1547 Checker.TraverseType(T); 1548 return Checker.Match; 1549 } 1550 1551 // Find the source range corresponding to the named type in the given 1552 // nested-name-specifier, if any. 1553 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1554 QualType T, 1555 const CXXScopeSpec &SS) { 1556 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1557 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1558 if (const Type *CurType = NNS->getAsType()) { 1559 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1560 return NNSLoc.getTypeLoc().getSourceRange(); 1561 } else 1562 break; 1563 1564 NNSLoc = NNSLoc.getPrefix(); 1565 } 1566 1567 return SourceRange(); 1568 } 1569 1570 /// \brief Match the given template parameter lists to the given scope 1571 /// specifier, returning the template parameter list that applies to the 1572 /// name. 1573 /// 1574 /// \param DeclStartLoc the start of the declaration that has a scope 1575 /// specifier or a template parameter list. 1576 /// 1577 /// \param DeclLoc The location of the declaration itself. 1578 /// 1579 /// \param SS the scope specifier that will be matched to the given template 1580 /// parameter lists. This scope specifier precedes a qualified name that is 1581 /// being declared. 1582 /// 1583 /// \param ParamLists the template parameter lists, from the outermost to the 1584 /// innermost template parameter lists. 1585 /// 1586 /// \param NumParamLists the number of template parameter lists in ParamLists. 1587 /// 1588 /// \param IsFriend Whether to apply the slightly different rules for 1589 /// matching template parameters to scope specifiers in friend 1590 /// declarations. 1591 /// 1592 /// \param IsExplicitSpecialization will be set true if the entity being 1593 /// declared is an explicit specialization, false otherwise. 1594 /// 1595 /// \returns the template parameter list, if any, that corresponds to the 1596 /// name that is preceded by the scope specifier @p SS. This template 1597 /// parameter list may have template parameters (if we're declaring a 1598 /// template) or may have no template parameters (if we're declaring a 1599 /// template specialization), or may be NULL (if what we're declaring isn't 1600 /// itself a template). 1601 TemplateParameterList * 1602 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1603 SourceLocation DeclLoc, 1604 const CXXScopeSpec &SS, 1605 TemplateParameterList **ParamLists, 1606 unsigned NumParamLists, 1607 bool IsFriend, 1608 bool &IsExplicitSpecialization, 1609 bool &Invalid) { 1610 IsExplicitSpecialization = false; 1611 Invalid = false; 1612 1613 // The sequence of nested types to which we will match up the template 1614 // parameter lists. We first build this list by starting with the type named 1615 // by the nested-name-specifier and walking out until we run out of types. 1616 SmallVector<QualType, 4> NestedTypes; 1617 QualType T; 1618 if (SS.getScopeRep()) { 1619 if (CXXRecordDecl *Record 1620 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1621 T = Context.getTypeDeclType(Record); 1622 else 1623 T = QualType(SS.getScopeRep()->getAsType(), 0); 1624 } 1625 1626 // If we found an explicit specialization that prevents us from needing 1627 // 'template<>' headers, this will be set to the location of that 1628 // explicit specialization. 1629 SourceLocation ExplicitSpecLoc; 1630 1631 while (!T.isNull()) { 1632 NestedTypes.push_back(T); 1633 1634 // Retrieve the parent of a record type. 1635 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1636 // If this type is an explicit specialization, we're done. 1637 if (ClassTemplateSpecializationDecl *Spec 1638 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1639 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1640 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1641 ExplicitSpecLoc = Spec->getLocation(); 1642 break; 1643 } 1644 } else if (Record->getTemplateSpecializationKind() 1645 == TSK_ExplicitSpecialization) { 1646 ExplicitSpecLoc = Record->getLocation(); 1647 break; 1648 } 1649 1650 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1651 T = Context.getTypeDeclType(Parent); 1652 else 1653 T = QualType(); 1654 continue; 1655 } 1656 1657 if (const TemplateSpecializationType *TST 1658 = T->getAs<TemplateSpecializationType>()) { 1659 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1660 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1661 T = Context.getTypeDeclType(Parent); 1662 else 1663 T = QualType(); 1664 continue; 1665 } 1666 } 1667 1668 // Look one step prior in a dependent template specialization type. 1669 if (const DependentTemplateSpecializationType *DependentTST 1670 = T->getAs<DependentTemplateSpecializationType>()) { 1671 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1672 T = QualType(NNS->getAsType(), 0); 1673 else 1674 T = QualType(); 1675 continue; 1676 } 1677 1678 // Look one step prior in a dependent name type. 1679 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1680 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1681 T = QualType(NNS->getAsType(), 0); 1682 else 1683 T = QualType(); 1684 continue; 1685 } 1686 1687 // Retrieve the parent of an enumeration type. 1688 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1689 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1690 // check here. 1691 EnumDecl *Enum = EnumT->getDecl(); 1692 1693 // Get to the parent type. 1694 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1695 T = Context.getTypeDeclType(Parent); 1696 else 1697 T = QualType(); 1698 continue; 1699 } 1700 1701 T = QualType(); 1702 } 1703 // Reverse the nested types list, since we want to traverse from the outermost 1704 // to the innermost while checking template-parameter-lists. 1705 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1706 1707 // C++0x [temp.expl.spec]p17: 1708 // A member or a member template may be nested within many 1709 // enclosing class templates. In an explicit specialization for 1710 // such a member, the member declaration shall be preceded by a 1711 // template<> for each enclosing class template that is 1712 // explicitly specialized. 1713 bool SawNonEmptyTemplateParameterList = false; 1714 unsigned ParamIdx = 0; 1715 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1716 ++TypeIdx) { 1717 T = NestedTypes[TypeIdx]; 1718 1719 // Whether we expect a 'template<>' header. 1720 bool NeedEmptyTemplateHeader = false; 1721 1722 // Whether we expect a template header with parameters. 1723 bool NeedNonemptyTemplateHeader = false; 1724 1725 // For a dependent type, the set of template parameters that we 1726 // expect to see. 1727 TemplateParameterList *ExpectedTemplateParams = 0; 1728 1729 // C++0x [temp.expl.spec]p15: 1730 // A member or a member template may be nested within many enclosing 1731 // class templates. In an explicit specialization for such a member, the 1732 // member declaration shall be preceded by a template<> for each 1733 // enclosing class template that is explicitly specialized. 1734 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1735 if (ClassTemplatePartialSpecializationDecl *Partial 1736 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1737 ExpectedTemplateParams = Partial->getTemplateParameters(); 1738 NeedNonemptyTemplateHeader = true; 1739 } else if (Record->isDependentType()) { 1740 if (Record->getDescribedClassTemplate()) { 1741 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1742 ->getTemplateParameters(); 1743 NeedNonemptyTemplateHeader = true; 1744 } 1745 } else if (ClassTemplateSpecializationDecl *Spec 1746 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1747 // C++0x [temp.expl.spec]p4: 1748 // Members of an explicitly specialized class template are defined 1749 // in the same manner as members of normal classes, and not using 1750 // the template<> syntax. 1751 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1752 NeedEmptyTemplateHeader = true; 1753 else 1754 continue; 1755 } else if (Record->getTemplateSpecializationKind()) { 1756 if (Record->getTemplateSpecializationKind() 1757 != TSK_ExplicitSpecialization && 1758 TypeIdx == NumTypes - 1) 1759 IsExplicitSpecialization = true; 1760 1761 continue; 1762 } 1763 } else if (const TemplateSpecializationType *TST 1764 = T->getAs<TemplateSpecializationType>()) { 1765 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1766 ExpectedTemplateParams = Template->getTemplateParameters(); 1767 NeedNonemptyTemplateHeader = true; 1768 } 1769 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1770 // FIXME: We actually could/should check the template arguments here 1771 // against the corresponding template parameter list. 1772 NeedNonemptyTemplateHeader = false; 1773 } 1774 1775 // C++ [temp.expl.spec]p16: 1776 // In an explicit specialization declaration for a member of a class 1777 // template or a member template that ap- pears in namespace scope, the 1778 // member template and some of its enclosing class templates may remain 1779 // unspecialized, except that the declaration shall not explicitly 1780 // specialize a class member template if its en- closing class templates 1781 // are not explicitly specialized as well. 1782 if (ParamIdx < NumParamLists) { 1783 if (ParamLists[ParamIdx]->size() == 0) { 1784 if (SawNonEmptyTemplateParameterList) { 1785 Diag(DeclLoc, diag::err_specialize_member_of_template) 1786 << ParamLists[ParamIdx]->getSourceRange(); 1787 Invalid = true; 1788 IsExplicitSpecialization = false; 1789 return 0; 1790 } 1791 } else 1792 SawNonEmptyTemplateParameterList = true; 1793 } 1794 1795 if (NeedEmptyTemplateHeader) { 1796 // If we're on the last of the types, and we need a 'template<>' header 1797 // here, then it's an explicit specialization. 1798 if (TypeIdx == NumTypes - 1) 1799 IsExplicitSpecialization = true; 1800 1801 if (ParamIdx < NumParamLists) { 1802 if (ParamLists[ParamIdx]->size() > 0) { 1803 // The header has template parameters when it shouldn't. Complain. 1804 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1805 diag::err_template_param_list_matches_nontemplate) 1806 << T 1807 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1808 ParamLists[ParamIdx]->getRAngleLoc()) 1809 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1810 Invalid = true; 1811 return 0; 1812 } 1813 1814 // Consume this template header. 1815 ++ParamIdx; 1816 continue; 1817 } 1818 1819 if (!IsFriend) { 1820 // We don't have a template header, but we should. 1821 SourceLocation ExpectedTemplateLoc; 1822 if (NumParamLists > 0) 1823 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1824 else 1825 ExpectedTemplateLoc = DeclStartLoc; 1826 1827 Diag(DeclLoc, diag::err_template_spec_needs_header) 1828 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1829 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1830 } 1831 1832 continue; 1833 } 1834 1835 if (NeedNonemptyTemplateHeader) { 1836 // In friend declarations we can have template-ids which don't 1837 // depend on the corresponding template parameter lists. But 1838 // assume that empty parameter lists are supposed to match this 1839 // template-id. 1840 if (IsFriend && T->isDependentType()) { 1841 if (ParamIdx < NumParamLists && 1842 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1843 ExpectedTemplateParams = 0; 1844 else 1845 continue; 1846 } 1847 1848 if (ParamIdx < NumParamLists) { 1849 // Check the template parameter list, if we can. 1850 if (ExpectedTemplateParams && 1851 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1852 ExpectedTemplateParams, 1853 true, TPL_TemplateMatch)) 1854 Invalid = true; 1855 1856 if (!Invalid && 1857 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1858 TPC_ClassTemplateMember)) 1859 Invalid = true; 1860 1861 ++ParamIdx; 1862 continue; 1863 } 1864 1865 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1866 << T 1867 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1868 Invalid = true; 1869 continue; 1870 } 1871 } 1872 1873 // If there were at least as many template-ids as there were template 1874 // parameter lists, then there are no template parameter lists remaining for 1875 // the declaration itself. 1876 if (ParamIdx >= NumParamLists) 1877 return 0; 1878 1879 // If there were too many template parameter lists, complain about that now. 1880 if (ParamIdx < NumParamLists - 1) { 1881 bool HasAnyExplicitSpecHeader = false; 1882 bool AllExplicitSpecHeaders = true; 1883 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1884 if (ParamLists[I]->size() == 0) 1885 HasAnyExplicitSpecHeader = true; 1886 else 1887 AllExplicitSpecHeaders = false; 1888 } 1889 1890 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1891 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1892 : diag::err_template_spec_extra_headers) 1893 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1894 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1895 1896 // If there was a specialization somewhere, such that 'template<>' is 1897 // not required, and there were any 'template<>' headers, note where the 1898 // specialization occurred. 1899 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1900 Diag(ExplicitSpecLoc, 1901 diag::note_explicit_template_spec_does_not_need_header) 1902 << NestedTypes.back(); 1903 1904 // We have a template parameter list with no corresponding scope, which 1905 // means that the resulting template declaration can't be instantiated 1906 // properly (we'll end up with dependent nodes when we shouldn't). 1907 if (!AllExplicitSpecHeaders) 1908 Invalid = true; 1909 } 1910 1911 // C++ [temp.expl.spec]p16: 1912 // In an explicit specialization declaration for a member of a class 1913 // template or a member template that ap- pears in namespace scope, the 1914 // member template and some of its enclosing class templates may remain 1915 // unspecialized, except that the declaration shall not explicitly 1916 // specialize a class member template if its en- closing class templates 1917 // are not explicitly specialized as well. 1918 if (ParamLists[NumParamLists - 1]->size() == 0 && 1919 SawNonEmptyTemplateParameterList) { 1920 Diag(DeclLoc, diag::err_specialize_member_of_template) 1921 << ParamLists[ParamIdx]->getSourceRange(); 1922 Invalid = true; 1923 IsExplicitSpecialization = false; 1924 return 0; 1925 } 1926 1927 // Return the last template parameter list, which corresponds to the 1928 // entity being declared. 1929 return ParamLists[NumParamLists - 1]; 1930 } 1931 1932 void Sema::NoteAllFoundTemplates(TemplateName Name) { 1933 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1934 Diag(Template->getLocation(), diag::note_template_declared_here) 1935 << (isa<FunctionTemplateDecl>(Template)? 0 1936 : isa<ClassTemplateDecl>(Template)? 1 1937 : isa<TypeAliasTemplateDecl>(Template)? 2 1938 : 3) 1939 << Template->getDeclName(); 1940 return; 1941 } 1942 1943 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1944 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1945 IEnd = OST->end(); 1946 I != IEnd; ++I) 1947 Diag((*I)->getLocation(), diag::note_template_declared_here) 1948 << 0 << (*I)->getDeclName(); 1949 1950 return; 1951 } 1952 } 1953 1954 QualType Sema::CheckTemplateIdType(TemplateName Name, 1955 SourceLocation TemplateLoc, 1956 TemplateArgumentListInfo &TemplateArgs) { 1957 DependentTemplateName *DTN 1958 = Name.getUnderlying().getAsDependentTemplateName(); 1959 if (DTN && DTN->isIdentifier()) 1960 // When building a template-id where the template-name is dependent, 1961 // assume the template is a type template. Either our assumption is 1962 // correct, or the code is ill-formed and will be diagnosed when the 1963 // dependent name is substituted. 1964 return Context.getDependentTemplateSpecializationType(ETK_None, 1965 DTN->getQualifier(), 1966 DTN->getIdentifier(), 1967 TemplateArgs); 1968 1969 TemplateDecl *Template = Name.getAsTemplateDecl(); 1970 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1971 // We might have a substituted template template parameter pack. If so, 1972 // build a template specialization type for it. 1973 if (Name.getAsSubstTemplateTemplateParmPack()) 1974 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1975 1976 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1977 << Name; 1978 NoteAllFoundTemplates(Name); 1979 return QualType(); 1980 } 1981 1982 // Check that the template argument list is well-formed for this 1983 // template. 1984 SmallVector<TemplateArgument, 4> Converted; 1985 bool ExpansionIntoFixedList = false; 1986 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1987 false, Converted, &ExpansionIntoFixedList)) 1988 return QualType(); 1989 1990 QualType CanonType; 1991 1992 bool InstantiationDependent = false; 1993 TypeAliasTemplateDecl *AliasTemplate = 0; 1994 if (!ExpansionIntoFixedList && 1995 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1996 // Find the canonical type for this type alias template specialization. 1997 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1998 if (Pattern->isInvalidDecl()) 1999 return QualType(); 2000 2001 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2002 Converted.data(), Converted.size()); 2003 2004 // Only substitute for the innermost template argument list. 2005 MultiLevelTemplateArgumentList TemplateArgLists; 2006 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2007 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2008 for (unsigned I = 0; I < Depth; ++I) 2009 TemplateArgLists.addOuterTemplateArguments(0, 0); 2010 2011 LocalInstantiationScope Scope(*this); 2012 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2013 if (Inst) 2014 return QualType(); 2015 2016 CanonType = SubstType(Pattern->getUnderlyingType(), 2017 TemplateArgLists, AliasTemplate->getLocation(), 2018 AliasTemplate->getDeclName()); 2019 if (CanonType.isNull()) 2020 return QualType(); 2021 } else if (Name.isDependent() || 2022 TemplateSpecializationType::anyDependentTemplateArguments( 2023 TemplateArgs, InstantiationDependent)) { 2024 // This class template specialization is a dependent 2025 // type. Therefore, its canonical type is another class template 2026 // specialization type that contains all of the converted 2027 // arguments in canonical form. This ensures that, e.g., A<T> and 2028 // A<T, T> have identical types when A is declared as: 2029 // 2030 // template<typename T, typename U = T> struct A; 2031 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2032 CanonType = Context.getTemplateSpecializationType(CanonName, 2033 Converted.data(), 2034 Converted.size()); 2035 2036 // FIXME: CanonType is not actually the canonical type, and unfortunately 2037 // it is a TemplateSpecializationType that we will never use again. 2038 // In the future, we need to teach getTemplateSpecializationType to only 2039 // build the canonical type and return that to us. 2040 CanonType = Context.getCanonicalType(CanonType); 2041 2042 // This might work out to be a current instantiation, in which 2043 // case the canonical type needs to be the InjectedClassNameType. 2044 // 2045 // TODO: in theory this could be a simple hashtable lookup; most 2046 // changes to CurContext don't change the set of current 2047 // instantiations. 2048 if (isa<ClassTemplateDecl>(Template)) { 2049 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2050 // If we get out to a namespace, we're done. 2051 if (Ctx->isFileContext()) break; 2052 2053 // If this isn't a record, keep looking. 2054 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2055 if (!Record) continue; 2056 2057 // Look for one of the two cases with InjectedClassNameTypes 2058 // and check whether it's the same template. 2059 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2060 !Record->getDescribedClassTemplate()) 2061 continue; 2062 2063 // Fetch the injected class name type and check whether its 2064 // injected type is equal to the type we just built. 2065 QualType ICNT = Context.getTypeDeclType(Record); 2066 QualType Injected = cast<InjectedClassNameType>(ICNT) 2067 ->getInjectedSpecializationType(); 2068 2069 if (CanonType != Injected->getCanonicalTypeInternal()) 2070 continue; 2071 2072 // If so, the canonical type of this TST is the injected 2073 // class name type of the record we just found. 2074 assert(ICNT.isCanonical()); 2075 CanonType = ICNT; 2076 break; 2077 } 2078 } 2079 } else if (ClassTemplateDecl *ClassTemplate 2080 = dyn_cast<ClassTemplateDecl>(Template)) { 2081 // Find the class template specialization declaration that 2082 // corresponds to these arguments. 2083 void *InsertPos = 0; 2084 ClassTemplateSpecializationDecl *Decl 2085 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2086 InsertPos); 2087 if (!Decl) { 2088 // This is the first time we have referenced this class template 2089 // specialization. Create the canonical declaration and add it to 2090 // the set of specializations. 2091 Decl = ClassTemplateSpecializationDecl::Create(Context, 2092 ClassTemplate->getTemplatedDecl()->getTagKind(), 2093 ClassTemplate->getDeclContext(), 2094 ClassTemplate->getTemplatedDecl()->getLocStart(), 2095 ClassTemplate->getLocation(), 2096 ClassTemplate, 2097 Converted.data(), 2098 Converted.size(), 0); 2099 ClassTemplate->AddSpecialization(Decl, InsertPos); 2100 if (ClassTemplate->isOutOfLine()) 2101 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2102 } 2103 2104 CanonType = Context.getTypeDeclType(Decl); 2105 assert(isa<RecordType>(CanonType) && 2106 "type of non-dependent specialization is not a RecordType"); 2107 } 2108 2109 // Build the fully-sugared type for this class template 2110 // specialization, which refers back to the class template 2111 // specialization we created or found. 2112 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2113 } 2114 2115 TypeResult 2116 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2117 TemplateTy TemplateD, SourceLocation TemplateLoc, 2118 SourceLocation LAngleLoc, 2119 ASTTemplateArgsPtr TemplateArgsIn, 2120 SourceLocation RAngleLoc, 2121 bool IsCtorOrDtorName) { 2122 if (SS.isInvalid()) 2123 return true; 2124 2125 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2126 2127 // Translate the parser's template argument list in our AST format. 2128 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2129 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2130 2131 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2132 QualType T 2133 = Context.getDependentTemplateSpecializationType(ETK_None, 2134 DTN->getQualifier(), 2135 DTN->getIdentifier(), 2136 TemplateArgs); 2137 // Build type-source information. 2138 TypeLocBuilder TLB; 2139 DependentTemplateSpecializationTypeLoc SpecTL 2140 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2141 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2142 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2143 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2144 SpecTL.setTemplateNameLoc(TemplateLoc); 2145 SpecTL.setLAngleLoc(LAngleLoc); 2146 SpecTL.setRAngleLoc(RAngleLoc); 2147 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2148 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2149 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2150 } 2151 2152 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2153 2154 if (Result.isNull()) 2155 return true; 2156 2157 // Build type-source information. 2158 TypeLocBuilder TLB; 2159 TemplateSpecializationTypeLoc SpecTL 2160 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2161 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2162 SpecTL.setTemplateNameLoc(TemplateLoc); 2163 SpecTL.setLAngleLoc(LAngleLoc); 2164 SpecTL.setRAngleLoc(RAngleLoc); 2165 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2166 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2167 2168 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2169 // constructor or destructor name (in such a case, the scope specifier 2170 // will be attached to the enclosing Decl or Expr node). 2171 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2172 // Create an elaborated-type-specifier containing the nested-name-specifier. 2173 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2174 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2175 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2176 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2177 } 2178 2179 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2180 } 2181 2182 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2183 TypeSpecifierType TagSpec, 2184 SourceLocation TagLoc, 2185 CXXScopeSpec &SS, 2186 SourceLocation TemplateKWLoc, 2187 TemplateTy TemplateD, 2188 SourceLocation TemplateLoc, 2189 SourceLocation LAngleLoc, 2190 ASTTemplateArgsPtr TemplateArgsIn, 2191 SourceLocation RAngleLoc) { 2192 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2193 2194 // Translate the parser's template argument list in our AST format. 2195 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2196 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2197 2198 // Determine the tag kind 2199 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2200 ElaboratedTypeKeyword Keyword 2201 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2202 2203 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2204 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2205 DTN->getQualifier(), 2206 DTN->getIdentifier(), 2207 TemplateArgs); 2208 2209 // Build type-source information. 2210 TypeLocBuilder TLB; 2211 DependentTemplateSpecializationTypeLoc SpecTL 2212 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2213 SpecTL.setElaboratedKeywordLoc(TagLoc); 2214 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2215 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2216 SpecTL.setTemplateNameLoc(TemplateLoc); 2217 SpecTL.setLAngleLoc(LAngleLoc); 2218 SpecTL.setRAngleLoc(RAngleLoc); 2219 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2220 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2221 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2222 } 2223 2224 if (TypeAliasTemplateDecl *TAT = 2225 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2226 // C++0x [dcl.type.elab]p2: 2227 // If the identifier resolves to a typedef-name or the simple-template-id 2228 // resolves to an alias template specialization, the 2229 // elaborated-type-specifier is ill-formed. 2230 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2231 Diag(TAT->getLocation(), diag::note_declared_at); 2232 } 2233 2234 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2235 if (Result.isNull()) 2236 return TypeResult(true); 2237 2238 // Check the tag kind 2239 if (const RecordType *RT = Result->getAs<RecordType>()) { 2240 RecordDecl *D = RT->getDecl(); 2241 2242 IdentifierInfo *Id = D->getIdentifier(); 2243 assert(Id && "templated class must have an identifier"); 2244 2245 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2246 TagLoc, *Id)) { 2247 Diag(TagLoc, diag::err_use_with_wrong_tag) 2248 << Result 2249 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2250 Diag(D->getLocation(), diag::note_previous_use); 2251 } 2252 } 2253 2254 // Provide source-location information for the template specialization. 2255 TypeLocBuilder TLB; 2256 TemplateSpecializationTypeLoc SpecTL 2257 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2258 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2259 SpecTL.setTemplateNameLoc(TemplateLoc); 2260 SpecTL.setLAngleLoc(LAngleLoc); 2261 SpecTL.setRAngleLoc(RAngleLoc); 2262 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2263 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2264 2265 // Construct an elaborated type containing the nested-name-specifier (if any) 2266 // and tag keyword. 2267 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2268 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2269 ElabTL.setElaboratedKeywordLoc(TagLoc); 2270 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2271 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2272 } 2273 2274 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2275 SourceLocation TemplateKWLoc, 2276 LookupResult &R, 2277 bool RequiresADL, 2278 const TemplateArgumentListInfo *TemplateArgs) { 2279 // FIXME: Can we do any checking at this point? I guess we could check the 2280 // template arguments that we have against the template name, if the template 2281 // name refers to a single template. That's not a terribly common case, 2282 // though. 2283 // foo<int> could identify a single function unambiguously 2284 // This approach does NOT work, since f<int>(1); 2285 // gets resolved prior to resorting to overload resolution 2286 // i.e., template<class T> void f(double); 2287 // vs template<class T, class U> void f(U); 2288 2289 // These should be filtered out by our callers. 2290 assert(!R.empty() && "empty lookup results when building templateid"); 2291 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2292 2293 // We don't want lookup warnings at this point. 2294 R.suppressDiagnostics(); 2295 2296 UnresolvedLookupExpr *ULE 2297 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2298 SS.getWithLocInContext(Context), 2299 TemplateKWLoc, 2300 R.getLookupNameInfo(), 2301 RequiresADL, TemplateArgs, 2302 R.begin(), R.end()); 2303 2304 return Owned(ULE); 2305 } 2306 2307 // We actually only call this from template instantiation. 2308 ExprResult 2309 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2310 SourceLocation TemplateKWLoc, 2311 const DeclarationNameInfo &NameInfo, 2312 const TemplateArgumentListInfo *TemplateArgs) { 2313 assert(TemplateArgs || TemplateKWLoc.isValid()); 2314 DeclContext *DC; 2315 if (!(DC = computeDeclContext(SS, false)) || 2316 DC->isDependentContext() || 2317 RequireCompleteDeclContext(SS, DC)) 2318 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2319 2320 bool MemberOfUnknownSpecialization; 2321 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2322 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2323 MemberOfUnknownSpecialization); 2324 2325 if (R.isAmbiguous()) 2326 return ExprError(); 2327 2328 if (R.empty()) { 2329 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2330 << NameInfo.getName() << SS.getRange(); 2331 return ExprError(); 2332 } 2333 2334 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2335 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2336 << (NestedNameSpecifier*) SS.getScopeRep() 2337 << NameInfo.getName() << SS.getRange(); 2338 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2339 return ExprError(); 2340 } 2341 2342 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2343 } 2344 2345 /// \brief Form a dependent template name. 2346 /// 2347 /// This action forms a dependent template name given the template 2348 /// name and its (presumably dependent) scope specifier. For 2349 /// example, given "MetaFun::template apply", the scope specifier \p 2350 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2351 /// of the "template" keyword, and "apply" is the \p Name. 2352 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2353 CXXScopeSpec &SS, 2354 SourceLocation TemplateKWLoc, 2355 UnqualifiedId &Name, 2356 ParsedType ObjectType, 2357 bool EnteringContext, 2358 TemplateTy &Result) { 2359 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2360 Diag(TemplateKWLoc, 2361 getLangOpts().CPlusPlus0x ? 2362 diag::warn_cxx98_compat_template_outside_of_template : 2363 diag::ext_template_outside_of_template) 2364 << FixItHint::CreateRemoval(TemplateKWLoc); 2365 2366 DeclContext *LookupCtx = 0; 2367 if (SS.isSet()) 2368 LookupCtx = computeDeclContext(SS, EnteringContext); 2369 if (!LookupCtx && ObjectType) 2370 LookupCtx = computeDeclContext(ObjectType.get()); 2371 if (LookupCtx) { 2372 // C++0x [temp.names]p5: 2373 // If a name prefixed by the keyword template is not the name of 2374 // a template, the program is ill-formed. [Note: the keyword 2375 // template may not be applied to non-template members of class 2376 // templates. -end note ] [ Note: as is the case with the 2377 // typename prefix, the template prefix is allowed in cases 2378 // where it is not strictly necessary; i.e., when the 2379 // nested-name-specifier or the expression on the left of the -> 2380 // or . is not dependent on a template-parameter, or the use 2381 // does not appear in the scope of a template. -end note] 2382 // 2383 // Note: C++03 was more strict here, because it banned the use of 2384 // the "template" keyword prior to a template-name that was not a 2385 // dependent name. C++ DR468 relaxed this requirement (the 2386 // "template" keyword is now permitted). We follow the C++0x 2387 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2388 bool MemberOfUnknownSpecialization; 2389 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2390 ObjectType, EnteringContext, Result, 2391 MemberOfUnknownSpecialization); 2392 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2393 isa<CXXRecordDecl>(LookupCtx) && 2394 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2395 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2396 // This is a dependent template. Handle it below. 2397 } else if (TNK == TNK_Non_template) { 2398 Diag(Name.getLocStart(), 2399 diag::err_template_kw_refers_to_non_template) 2400 << GetNameFromUnqualifiedId(Name).getName() 2401 << Name.getSourceRange() 2402 << TemplateKWLoc; 2403 return TNK_Non_template; 2404 } else { 2405 // We found something; return it. 2406 return TNK; 2407 } 2408 } 2409 2410 NestedNameSpecifier *Qualifier 2411 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2412 2413 switch (Name.getKind()) { 2414 case UnqualifiedId::IK_Identifier: 2415 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2416 Name.Identifier)); 2417 return TNK_Dependent_template_name; 2418 2419 case UnqualifiedId::IK_OperatorFunctionId: 2420 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2421 Name.OperatorFunctionId.Operator)); 2422 return TNK_Dependent_template_name; 2423 2424 case UnqualifiedId::IK_LiteralOperatorId: 2425 llvm_unreachable( 2426 "We don't support these; Parse shouldn't have allowed propagation"); 2427 2428 default: 2429 break; 2430 } 2431 2432 Diag(Name.getLocStart(), 2433 diag::err_template_kw_refers_to_non_template) 2434 << GetNameFromUnqualifiedId(Name).getName() 2435 << Name.getSourceRange() 2436 << TemplateKWLoc; 2437 return TNK_Non_template; 2438 } 2439 2440 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2441 const TemplateArgumentLoc &AL, 2442 SmallVectorImpl<TemplateArgument> &Converted) { 2443 const TemplateArgument &Arg = AL.getArgument(); 2444 2445 // Check template type parameter. 2446 switch(Arg.getKind()) { 2447 case TemplateArgument::Type: 2448 // C++ [temp.arg.type]p1: 2449 // A template-argument for a template-parameter which is a 2450 // type shall be a type-id. 2451 break; 2452 case TemplateArgument::Template: { 2453 // We have a template type parameter but the template argument 2454 // is a template without any arguments. 2455 SourceRange SR = AL.getSourceRange(); 2456 TemplateName Name = Arg.getAsTemplate(); 2457 Diag(SR.getBegin(), diag::err_template_missing_args) 2458 << Name << SR; 2459 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2460 Diag(Decl->getLocation(), diag::note_template_decl_here); 2461 2462 return true; 2463 } 2464 case TemplateArgument::Expression: { 2465 // We have a template type parameter but the template argument is an 2466 // expression; see if maybe it is missing the "typename" keyword. 2467 CXXScopeSpec SS; 2468 DeclarationNameInfo NameInfo; 2469 2470 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2471 SS.Adopt(ArgExpr->getQualifierLoc()); 2472 NameInfo = ArgExpr->getNameInfo(); 2473 } else if (DependentScopeDeclRefExpr *ArgExpr = 2474 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2475 SS.Adopt(ArgExpr->getQualifierLoc()); 2476 NameInfo = ArgExpr->getNameInfo(); 2477 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2478 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2479 if (ArgExpr->isImplicitAccess()) { 2480 SS.Adopt(ArgExpr->getQualifierLoc()); 2481 NameInfo = ArgExpr->getMemberNameInfo(); 2482 } 2483 } 2484 2485 if (NameInfo.getName().isIdentifier()) { 2486 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2487 LookupParsedName(Result, CurScope, &SS); 2488 2489 if (Result.getAsSingle<TypeDecl>() || 2490 Result.getResultKind() == 2491 LookupResult::NotFoundInCurrentInstantiation) { 2492 // FIXME: Add a FixIt and fix up the template argument for recovery. 2493 SourceLocation Loc = AL.getSourceRange().getBegin(); 2494 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2495 Diag(Param->getLocation(), diag::note_template_param_here); 2496 return true; 2497 } 2498 } 2499 // fallthrough 2500 } 2501 default: { 2502 // We have a template type parameter but the template argument 2503 // is not a type. 2504 SourceRange SR = AL.getSourceRange(); 2505 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2506 Diag(Param->getLocation(), diag::note_template_param_here); 2507 2508 return true; 2509 } 2510 } 2511 2512 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2513 return true; 2514 2515 // Add the converted template type argument. 2516 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2517 2518 // Objective-C ARC: 2519 // If an explicitly-specified template argument type is a lifetime type 2520 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2521 if (getLangOpts().ObjCAutoRefCount && 2522 ArgType->isObjCLifetimeType() && 2523 !ArgType.getObjCLifetime()) { 2524 Qualifiers Qs; 2525 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2526 ArgType = Context.getQualifiedType(ArgType, Qs); 2527 } 2528 2529 Converted.push_back(TemplateArgument(ArgType)); 2530 return false; 2531 } 2532 2533 /// \brief Substitute template arguments into the default template argument for 2534 /// the given template type parameter. 2535 /// 2536 /// \param SemaRef the semantic analysis object for which we are performing 2537 /// the substitution. 2538 /// 2539 /// \param Template the template that we are synthesizing template arguments 2540 /// for. 2541 /// 2542 /// \param TemplateLoc the location of the template name that started the 2543 /// template-id we are checking. 2544 /// 2545 /// \param RAngleLoc the location of the right angle bracket ('>') that 2546 /// terminates the template-id. 2547 /// 2548 /// \param Param the template template parameter whose default we are 2549 /// substituting into. 2550 /// 2551 /// \param Converted the list of template arguments provided for template 2552 /// parameters that precede \p Param in the template parameter list. 2553 /// \returns the substituted template argument, or NULL if an error occurred. 2554 static TypeSourceInfo * 2555 SubstDefaultTemplateArgument(Sema &SemaRef, 2556 TemplateDecl *Template, 2557 SourceLocation TemplateLoc, 2558 SourceLocation RAngleLoc, 2559 TemplateTypeParmDecl *Param, 2560 SmallVectorImpl<TemplateArgument> &Converted) { 2561 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2562 2563 // If the argument type is dependent, instantiate it now based 2564 // on the previously-computed template arguments. 2565 if (ArgType->getType()->isDependentType()) { 2566 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2567 Converted.data(), Converted.size()); 2568 2569 MultiLevelTemplateArgumentList AllTemplateArgs 2570 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2571 2572 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2573 Template, Converted, 2574 SourceRange(TemplateLoc, RAngleLoc)); 2575 if (Inst) 2576 return 0; 2577 2578 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2579 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2580 Param->getDefaultArgumentLoc(), 2581 Param->getDeclName()); 2582 } 2583 2584 return ArgType; 2585 } 2586 2587 /// \brief Substitute template arguments into the default template argument for 2588 /// the given non-type template parameter. 2589 /// 2590 /// \param SemaRef the semantic analysis object for which we are performing 2591 /// the substitution. 2592 /// 2593 /// \param Template the template that we are synthesizing template arguments 2594 /// for. 2595 /// 2596 /// \param TemplateLoc the location of the template name that started the 2597 /// template-id we are checking. 2598 /// 2599 /// \param RAngleLoc the location of the right angle bracket ('>') that 2600 /// terminates the template-id. 2601 /// 2602 /// \param Param the non-type template parameter whose default we are 2603 /// substituting into. 2604 /// 2605 /// \param Converted the list of template arguments provided for template 2606 /// parameters that precede \p Param in the template parameter list. 2607 /// 2608 /// \returns the substituted template argument, or NULL if an error occurred. 2609 static ExprResult 2610 SubstDefaultTemplateArgument(Sema &SemaRef, 2611 TemplateDecl *Template, 2612 SourceLocation TemplateLoc, 2613 SourceLocation RAngleLoc, 2614 NonTypeTemplateParmDecl *Param, 2615 SmallVectorImpl<TemplateArgument> &Converted) { 2616 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2617 Converted.data(), Converted.size()); 2618 2619 MultiLevelTemplateArgumentList AllTemplateArgs 2620 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2621 2622 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2623 Template, Converted, 2624 SourceRange(TemplateLoc, RAngleLoc)); 2625 if (Inst) 2626 return ExprError(); 2627 2628 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2629 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2630 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2631 } 2632 2633 /// \brief Substitute template arguments into the default template argument for 2634 /// the given template template parameter. 2635 /// 2636 /// \param SemaRef the semantic analysis object for which we are performing 2637 /// the substitution. 2638 /// 2639 /// \param Template the template that we are synthesizing template arguments 2640 /// for. 2641 /// 2642 /// \param TemplateLoc the location of the template name that started the 2643 /// template-id we are checking. 2644 /// 2645 /// \param RAngleLoc the location of the right angle bracket ('>') that 2646 /// terminates the template-id. 2647 /// 2648 /// \param Param the template template parameter whose default we are 2649 /// substituting into. 2650 /// 2651 /// \param Converted the list of template arguments provided for template 2652 /// parameters that precede \p Param in the template parameter list. 2653 /// 2654 /// \param QualifierLoc Will be set to the nested-name-specifier (with 2655 /// source-location information) that precedes the template name. 2656 /// 2657 /// \returns the substituted template argument, or NULL if an error occurred. 2658 static TemplateName 2659 SubstDefaultTemplateArgument(Sema &SemaRef, 2660 TemplateDecl *Template, 2661 SourceLocation TemplateLoc, 2662 SourceLocation RAngleLoc, 2663 TemplateTemplateParmDecl *Param, 2664 SmallVectorImpl<TemplateArgument> &Converted, 2665 NestedNameSpecifierLoc &QualifierLoc) { 2666 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2667 Converted.data(), Converted.size()); 2668 2669 MultiLevelTemplateArgumentList AllTemplateArgs 2670 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2671 2672 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2673 Template, Converted, 2674 SourceRange(TemplateLoc, RAngleLoc)); 2675 if (Inst) 2676 return TemplateName(); 2677 2678 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2679 // Substitute into the nested-name-specifier first, 2680 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2681 if (QualifierLoc) { 2682 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2683 AllTemplateArgs); 2684 if (!QualifierLoc) 2685 return TemplateName(); 2686 } 2687 2688 return SemaRef.SubstTemplateName(QualifierLoc, 2689 Param->getDefaultArgument().getArgument().getAsTemplate(), 2690 Param->getDefaultArgument().getTemplateNameLoc(), 2691 AllTemplateArgs); 2692 } 2693 2694 /// \brief If the given template parameter has a default template 2695 /// argument, substitute into that default template argument and 2696 /// return the corresponding template argument. 2697 TemplateArgumentLoc 2698 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2699 SourceLocation TemplateLoc, 2700 SourceLocation RAngleLoc, 2701 Decl *Param, 2702 SmallVectorImpl<TemplateArgument> &Converted) { 2703 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2704 if (!TypeParm->hasDefaultArgument()) 2705 return TemplateArgumentLoc(); 2706 2707 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2708 TemplateLoc, 2709 RAngleLoc, 2710 TypeParm, 2711 Converted); 2712 if (DI) 2713 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2714 2715 return TemplateArgumentLoc(); 2716 } 2717 2718 if (NonTypeTemplateParmDecl *NonTypeParm 2719 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2720 if (!NonTypeParm->hasDefaultArgument()) 2721 return TemplateArgumentLoc(); 2722 2723 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2724 TemplateLoc, 2725 RAngleLoc, 2726 NonTypeParm, 2727 Converted); 2728 if (Arg.isInvalid()) 2729 return TemplateArgumentLoc(); 2730 2731 Expr *ArgE = Arg.takeAs<Expr>(); 2732 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2733 } 2734 2735 TemplateTemplateParmDecl *TempTempParm 2736 = cast<TemplateTemplateParmDecl>(Param); 2737 if (!TempTempParm->hasDefaultArgument()) 2738 return TemplateArgumentLoc(); 2739 2740 2741 NestedNameSpecifierLoc QualifierLoc; 2742 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2743 TemplateLoc, 2744 RAngleLoc, 2745 TempTempParm, 2746 Converted, 2747 QualifierLoc); 2748 if (TName.isNull()) 2749 return TemplateArgumentLoc(); 2750 2751 return TemplateArgumentLoc(TemplateArgument(TName), 2752 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2753 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2754 } 2755 2756 /// \brief Check that the given template argument corresponds to the given 2757 /// template parameter. 2758 /// 2759 /// \param Param The template parameter against which the argument will be 2760 /// checked. 2761 /// 2762 /// \param Arg The template argument. 2763 /// 2764 /// \param Template The template in which the template argument resides. 2765 /// 2766 /// \param TemplateLoc The location of the template name for the template 2767 /// whose argument list we're matching. 2768 /// 2769 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 2770 /// the template argument list. 2771 /// 2772 /// \param ArgumentPackIndex The index into the argument pack where this 2773 /// argument will be placed. Only valid if the parameter is a parameter pack. 2774 /// 2775 /// \param Converted The checked, converted argument will be added to the 2776 /// end of this small vector. 2777 /// 2778 /// \param CTAK Describes how we arrived at this particular template argument: 2779 /// explicitly written, deduced, etc. 2780 /// 2781 /// \returns true on error, false otherwise. 2782 bool Sema::CheckTemplateArgument(NamedDecl *Param, 2783 const TemplateArgumentLoc &Arg, 2784 NamedDecl *Template, 2785 SourceLocation TemplateLoc, 2786 SourceLocation RAngleLoc, 2787 unsigned ArgumentPackIndex, 2788 SmallVectorImpl<TemplateArgument> &Converted, 2789 CheckTemplateArgumentKind CTAK) { 2790 // Check template type parameters. 2791 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2792 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2793 2794 // Check non-type template parameters. 2795 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2796 // Do substitution on the type of the non-type template parameter 2797 // with the template arguments we've seen thus far. But if the 2798 // template has a dependent context then we cannot substitute yet. 2799 QualType NTTPType = NTTP->getType(); 2800 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2801 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2802 2803 if (NTTPType->isDependentType() && 2804 !isa<TemplateTemplateParmDecl>(Template) && 2805 !Template->getDeclContext()->isDependentContext()) { 2806 // Do substitution on the type of the non-type template parameter. 2807 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2808 NTTP, Converted, 2809 SourceRange(TemplateLoc, RAngleLoc)); 2810 if (Inst) 2811 return true; 2812 2813 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2814 Converted.data(), Converted.size()); 2815 NTTPType = SubstType(NTTPType, 2816 MultiLevelTemplateArgumentList(TemplateArgs), 2817 NTTP->getLocation(), 2818 NTTP->getDeclName()); 2819 // If that worked, check the non-type template parameter type 2820 // for validity. 2821 if (!NTTPType.isNull()) 2822 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2823 NTTP->getLocation()); 2824 if (NTTPType.isNull()) 2825 return true; 2826 } 2827 2828 switch (Arg.getArgument().getKind()) { 2829 case TemplateArgument::Null: 2830 llvm_unreachable("Should never see a NULL template argument here"); 2831 2832 case TemplateArgument::Expression: { 2833 TemplateArgument Result; 2834 ExprResult Res = 2835 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2836 Result, CTAK); 2837 if (Res.isInvalid()) 2838 return true; 2839 2840 Converted.push_back(Result); 2841 break; 2842 } 2843 2844 case TemplateArgument::Declaration: 2845 case TemplateArgument::Integral: 2846 // We've already checked this template argument, so just copy 2847 // it to the list of converted arguments. 2848 Converted.push_back(Arg.getArgument()); 2849 break; 2850 2851 case TemplateArgument::Template: 2852 case TemplateArgument::TemplateExpansion: 2853 // We were given a template template argument. It may not be ill-formed; 2854 // see below. 2855 if (DependentTemplateName *DTN 2856 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2857 .getAsDependentTemplateName()) { 2858 // We have a template argument such as \c T::template X, which we 2859 // parsed as a template template argument. However, since we now 2860 // know that we need a non-type template argument, convert this 2861 // template name into an expression. 2862 2863 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2864 Arg.getTemplateNameLoc()); 2865 2866 CXXScopeSpec SS; 2867 SS.Adopt(Arg.getTemplateQualifierLoc()); 2868 // FIXME: the template-template arg was a DependentTemplateName, 2869 // so it was provided with a template keyword. However, its source 2870 // location is not stored in the template argument structure. 2871 SourceLocation TemplateKWLoc; 2872 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2873 SS.getWithLocInContext(Context), 2874 TemplateKWLoc, 2875 NameInfo, 0)); 2876 2877 // If we parsed the template argument as a pack expansion, create a 2878 // pack expansion expression. 2879 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2880 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2881 if (E.isInvalid()) 2882 return true; 2883 } 2884 2885 TemplateArgument Result; 2886 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2887 if (E.isInvalid()) 2888 return true; 2889 2890 Converted.push_back(Result); 2891 break; 2892 } 2893 2894 // We have a template argument that actually does refer to a class 2895 // template, alias template, or template template parameter, and 2896 // therefore cannot be a non-type template argument. 2897 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2898 << Arg.getSourceRange(); 2899 2900 Diag(Param->getLocation(), diag::note_template_param_here); 2901 return true; 2902 2903 case TemplateArgument::Type: { 2904 // We have a non-type template parameter but the template 2905 // argument is a type. 2906 2907 // C++ [temp.arg]p2: 2908 // In a template-argument, an ambiguity between a type-id and 2909 // an expression is resolved to a type-id, regardless of the 2910 // form of the corresponding template-parameter. 2911 // 2912 // We warn specifically about this case, since it can be rather 2913 // confusing for users. 2914 QualType T = Arg.getArgument().getAsType(); 2915 SourceRange SR = Arg.getSourceRange(); 2916 if (T->isFunctionType()) 2917 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2918 else 2919 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2920 Diag(Param->getLocation(), diag::note_template_param_here); 2921 return true; 2922 } 2923 2924 case TemplateArgument::Pack: 2925 llvm_unreachable("Caller must expand template argument packs"); 2926 } 2927 2928 return false; 2929 } 2930 2931 2932 // Check template template parameters. 2933 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2934 2935 // Substitute into the template parameter list of the template 2936 // template parameter, since previously-supplied template arguments 2937 // may appear within the template template parameter. 2938 { 2939 // Set up a template instantiation context. 2940 LocalInstantiationScope Scope(*this); 2941 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2942 TempParm, Converted, 2943 SourceRange(TemplateLoc, RAngleLoc)); 2944 if (Inst) 2945 return true; 2946 2947 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2948 Converted.data(), Converted.size()); 2949 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2950 SubstDecl(TempParm, CurContext, 2951 MultiLevelTemplateArgumentList(TemplateArgs))); 2952 if (!TempParm) 2953 return true; 2954 } 2955 2956 switch (Arg.getArgument().getKind()) { 2957 case TemplateArgument::Null: 2958 llvm_unreachable("Should never see a NULL template argument here"); 2959 2960 case TemplateArgument::Template: 2961 case TemplateArgument::TemplateExpansion: 2962 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 2963 return true; 2964 2965 Converted.push_back(Arg.getArgument()); 2966 break; 2967 2968 case TemplateArgument::Expression: 2969 case TemplateArgument::Type: 2970 // We have a template template parameter but the template 2971 // argument does not refer to a template. 2972 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2973 << getLangOpts().CPlusPlus0x; 2974 return true; 2975 2976 case TemplateArgument::Declaration: 2977 llvm_unreachable("Declaration argument with template template parameter"); 2978 case TemplateArgument::Integral: 2979 llvm_unreachable("Integral argument with template template parameter"); 2980 2981 case TemplateArgument::Pack: 2982 llvm_unreachable("Caller must expand template argument packs"); 2983 } 2984 2985 return false; 2986 } 2987 2988 /// \brief Diagnose an arity mismatch in the 2989 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2990 SourceLocation TemplateLoc, 2991 TemplateArgumentListInfo &TemplateArgs) { 2992 TemplateParameterList *Params = Template->getTemplateParameters(); 2993 unsigned NumParams = Params->size(); 2994 unsigned NumArgs = TemplateArgs.size(); 2995 2996 SourceRange Range; 2997 if (NumArgs > NumParams) 2998 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2999 TemplateArgs.getRAngleLoc()); 3000 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3001 << (NumArgs > NumParams) 3002 << (isa<ClassTemplateDecl>(Template)? 0 : 3003 isa<FunctionTemplateDecl>(Template)? 1 : 3004 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3005 << Template << Range; 3006 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3007 << Params->getSourceRange(); 3008 return true; 3009 } 3010 3011 /// \brief Check whether the template parameter is a pack expansion, and if so, 3012 /// determine the number of parameters produced by that expansion. For instance: 3013 /// 3014 /// \code 3015 /// template<typename ...Ts> struct A { 3016 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3017 /// }; 3018 /// \endcode 3019 /// 3020 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3021 /// is not a pack expansion, so returns an empty Optional. 3022 static llvm::Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3023 if (NonTypeTemplateParmDecl *NTTP 3024 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3025 if (NTTP->isExpandedParameterPack()) 3026 return NTTP->getNumExpansionTypes(); 3027 } 3028 3029 if (TemplateTemplateParmDecl *TTP 3030 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3031 if (TTP->isExpandedParameterPack()) 3032 return TTP->getNumExpansionTemplateParameters(); 3033 } 3034 3035 return llvm::Optional<unsigned>(); 3036 } 3037 3038 /// \brief Check that the given template argument list is well-formed 3039 /// for specializing the given template. 3040 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3041 SourceLocation TemplateLoc, 3042 TemplateArgumentListInfo &TemplateArgs, 3043 bool PartialTemplateArgs, 3044 SmallVectorImpl<TemplateArgument> &Converted, 3045 bool *ExpansionIntoFixedList) { 3046 if (ExpansionIntoFixedList) 3047 *ExpansionIntoFixedList = false; 3048 3049 TemplateParameterList *Params = Template->getTemplateParameters(); 3050 3051 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3052 3053 // C++ [temp.arg]p1: 3054 // [...] The type and form of each template-argument specified in 3055 // a template-id shall match the type and form specified for the 3056 // corresponding parameter declared by the template in its 3057 // template-parameter-list. 3058 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3059 SmallVector<TemplateArgument, 2> ArgumentPack; 3060 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3061 LocalInstantiationScope InstScope(*this, true); 3062 for (TemplateParameterList::iterator Param = Params->begin(), 3063 ParamEnd = Params->end(); 3064 Param != ParamEnd; /* increment in loop */) { 3065 // If we have an expanded parameter pack, make sure we don't have too 3066 // many arguments. 3067 if (llvm::Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3068 if (*Expansions == ArgumentPack.size()) { 3069 // We're done with this parameter pack. Pack up its arguments and add 3070 // them to the list. 3071 if (ArgumentPack.empty()) 3072 Converted.push_back(TemplateArgument(0, 0)); 3073 else { 3074 Converted.push_back( 3075 TemplateArgument::CreatePackCopy(Context, 3076 ArgumentPack.data(), 3077 ArgumentPack.size())); 3078 ArgumentPack.clear(); 3079 } 3080 // This argument is assigned to the next parameter. 3081 ++Param; 3082 continue; 3083 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3084 // Not enough arguments for this parameter pack. 3085 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3086 << false 3087 << (isa<ClassTemplateDecl>(Template)? 0 : 3088 isa<FunctionTemplateDecl>(Template)? 1 : 3089 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3090 << Template; 3091 Diag(Template->getLocation(), diag::note_template_decl_here) 3092 << Params->getSourceRange(); 3093 return true; 3094 } 3095 } 3096 3097 if (ArgIdx < NumArgs) { 3098 // Check the template argument we were given. 3099 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3100 TemplateLoc, RAngleLoc, 3101 ArgumentPack.size(), Converted)) 3102 return true; 3103 3104 // We're now done with this argument. 3105 ++ArgIdx; 3106 3107 if ((*Param)->isTemplateParameterPack()) { 3108 // The template parameter was a template parameter pack, so take the 3109 // deduced argument and place it on the argument pack. Note that we 3110 // stay on the same template parameter so that we can deduce more 3111 // arguments. 3112 ArgumentPack.push_back(Converted.back()); 3113 Converted.pop_back(); 3114 } else { 3115 // Move to the next template parameter. 3116 ++Param; 3117 } 3118 3119 // If we just saw a pack expansion, then directly convert the remaining 3120 // arguments, because we don't know what parameters they'll match up 3121 // with. 3122 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3123 bool InFinalParameterPack = Param != ParamEnd && 3124 Param + 1 == ParamEnd && 3125 (*Param)->isTemplateParameterPack() && 3126 !getExpandedPackSize(*Param); 3127 3128 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3129 // If we were part way through filling in an expanded parameter pack, 3130 // fall back to just producing individual arguments. 3131 Converted.insert(Converted.end(), 3132 ArgumentPack.begin(), ArgumentPack.end()); 3133 ArgumentPack.clear(); 3134 } 3135 3136 while (ArgIdx < NumArgs) { 3137 if (InFinalParameterPack) 3138 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3139 else 3140 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3141 ++ArgIdx; 3142 } 3143 3144 // Push the argument pack onto the list of converted arguments. 3145 if (InFinalParameterPack) { 3146 if (ArgumentPack.empty()) 3147 Converted.push_back(TemplateArgument(0, 0)); 3148 else { 3149 Converted.push_back( 3150 TemplateArgument::CreatePackCopy(Context, 3151 ArgumentPack.data(), 3152 ArgumentPack.size())); 3153 ArgumentPack.clear(); 3154 } 3155 } else if (ExpansionIntoFixedList) { 3156 // We have expanded a pack into a fixed list. 3157 *ExpansionIntoFixedList = true; 3158 } 3159 3160 return false; 3161 } 3162 3163 continue; 3164 } 3165 3166 // If we're checking a partial template argument list, we're done. 3167 if (PartialTemplateArgs) { 3168 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3169 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3170 ArgumentPack.data(), 3171 ArgumentPack.size())); 3172 3173 return false; 3174 } 3175 3176 // If we have a template parameter pack with no more corresponding 3177 // arguments, just break out now and we'll fill in the argument pack below. 3178 if ((*Param)->isTemplateParameterPack()) { 3179 assert(!getExpandedPackSize(*Param) && 3180 "Should have dealt with this already"); 3181 3182 // A non-expanded parameter pack before the end of the parameter list 3183 // only occurs for an ill-formed template parameter list, unless we've 3184 // got a partial argument list for a function template, so just bail out. 3185 if (Param + 1 != ParamEnd) 3186 return true; 3187 3188 if (ArgumentPack.empty()) 3189 Converted.push_back(TemplateArgument(0, 0)); 3190 else { 3191 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3192 ArgumentPack.data(), 3193 ArgumentPack.size())); 3194 ArgumentPack.clear(); 3195 } 3196 3197 ++Param; 3198 continue; 3199 } 3200 3201 // Check whether we have a default argument. 3202 TemplateArgumentLoc Arg; 3203 3204 // Retrieve the default template argument from the template 3205 // parameter. For each kind of template parameter, we substitute the 3206 // template arguments provided thus far and any "outer" template arguments 3207 // (when the template parameter was part of a nested template) into 3208 // the default argument. 3209 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3210 if (!TTP->hasDefaultArgument()) 3211 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3212 TemplateArgs); 3213 3214 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3215 Template, 3216 TemplateLoc, 3217 RAngleLoc, 3218 TTP, 3219 Converted); 3220 if (!ArgType) 3221 return true; 3222 3223 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3224 ArgType); 3225 } else if (NonTypeTemplateParmDecl *NTTP 3226 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3227 if (!NTTP->hasDefaultArgument()) 3228 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3229 TemplateArgs); 3230 3231 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3232 TemplateLoc, 3233 RAngleLoc, 3234 NTTP, 3235 Converted); 3236 if (E.isInvalid()) 3237 return true; 3238 3239 Expr *Ex = E.takeAs<Expr>(); 3240 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3241 } else { 3242 TemplateTemplateParmDecl *TempParm 3243 = cast<TemplateTemplateParmDecl>(*Param); 3244 3245 if (!TempParm->hasDefaultArgument()) 3246 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3247 TemplateArgs); 3248 3249 NestedNameSpecifierLoc QualifierLoc; 3250 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3251 TemplateLoc, 3252 RAngleLoc, 3253 TempParm, 3254 Converted, 3255 QualifierLoc); 3256 if (Name.isNull()) 3257 return true; 3258 3259 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3260 TempParm->getDefaultArgument().getTemplateNameLoc()); 3261 } 3262 3263 // Introduce an instantiation record that describes where we are using 3264 // the default template argument. 3265 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3266 *Param, Converted, 3267 SourceRange(TemplateLoc, RAngleLoc)); 3268 if (Instantiating) 3269 return true; 3270 3271 // Check the default template argument. 3272 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3273 RAngleLoc, 0, Converted)) 3274 return true; 3275 3276 // Core issue 150 (assumed resolution): if this is a template template 3277 // parameter, keep track of the default template arguments from the 3278 // template definition. 3279 if (isTemplateTemplateParameter) 3280 TemplateArgs.addArgument(Arg); 3281 3282 // Move to the next template parameter and argument. 3283 ++Param; 3284 ++ArgIdx; 3285 } 3286 3287 // If we have any leftover arguments, then there were too many arguments. 3288 // Complain and fail. 3289 if (ArgIdx < NumArgs) 3290 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3291 3292 return false; 3293 } 3294 3295 namespace { 3296 class UnnamedLocalNoLinkageFinder 3297 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3298 { 3299 Sema &S; 3300 SourceRange SR; 3301 3302 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3303 3304 public: 3305 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3306 3307 bool Visit(QualType T) { 3308 return inherited::Visit(T.getTypePtr()); 3309 } 3310 3311 #define TYPE(Class, Parent) \ 3312 bool Visit##Class##Type(const Class##Type *); 3313 #define ABSTRACT_TYPE(Class, Parent) \ 3314 bool Visit##Class##Type(const Class##Type *) { return false; } 3315 #define NON_CANONICAL_TYPE(Class, Parent) \ 3316 bool Visit##Class##Type(const Class##Type *) { return false; } 3317 #include "clang/AST/TypeNodes.def" 3318 3319 bool VisitTagDecl(const TagDecl *Tag); 3320 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3321 }; 3322 } 3323 3324 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3325 return false; 3326 } 3327 3328 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3329 return Visit(T->getElementType()); 3330 } 3331 3332 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3333 return Visit(T->getPointeeType()); 3334 } 3335 3336 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3337 const BlockPointerType* T) { 3338 return Visit(T->getPointeeType()); 3339 } 3340 3341 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3342 const LValueReferenceType* T) { 3343 return Visit(T->getPointeeType()); 3344 } 3345 3346 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3347 const RValueReferenceType* T) { 3348 return Visit(T->getPointeeType()); 3349 } 3350 3351 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3352 const MemberPointerType* T) { 3353 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3354 } 3355 3356 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3357 const ConstantArrayType* T) { 3358 return Visit(T->getElementType()); 3359 } 3360 3361 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3362 const IncompleteArrayType* T) { 3363 return Visit(T->getElementType()); 3364 } 3365 3366 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3367 const VariableArrayType* T) { 3368 return Visit(T->getElementType()); 3369 } 3370 3371 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3372 const DependentSizedArrayType* T) { 3373 return Visit(T->getElementType()); 3374 } 3375 3376 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3377 const DependentSizedExtVectorType* T) { 3378 return Visit(T->getElementType()); 3379 } 3380 3381 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3382 return Visit(T->getElementType()); 3383 } 3384 3385 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3386 return Visit(T->getElementType()); 3387 } 3388 3389 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3390 const FunctionProtoType* T) { 3391 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3392 AEnd = T->arg_type_end(); 3393 A != AEnd; ++A) { 3394 if (Visit(*A)) 3395 return true; 3396 } 3397 3398 return Visit(T->getResultType()); 3399 } 3400 3401 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3402 const FunctionNoProtoType* T) { 3403 return Visit(T->getResultType()); 3404 } 3405 3406 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3407 const UnresolvedUsingType*) { 3408 return false; 3409 } 3410 3411 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3412 return false; 3413 } 3414 3415 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3416 return Visit(T->getUnderlyingType()); 3417 } 3418 3419 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3420 return false; 3421 } 3422 3423 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3424 const UnaryTransformType*) { 3425 return false; 3426 } 3427 3428 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3429 return Visit(T->getDeducedType()); 3430 } 3431 3432 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3433 return VisitTagDecl(T->getDecl()); 3434 } 3435 3436 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3437 return VisitTagDecl(T->getDecl()); 3438 } 3439 3440 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3441 const TemplateTypeParmType*) { 3442 return false; 3443 } 3444 3445 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3446 const SubstTemplateTypeParmPackType *) { 3447 return false; 3448 } 3449 3450 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3451 const TemplateSpecializationType*) { 3452 return false; 3453 } 3454 3455 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3456 const InjectedClassNameType* T) { 3457 return VisitTagDecl(T->getDecl()); 3458 } 3459 3460 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3461 const DependentNameType* T) { 3462 return VisitNestedNameSpecifier(T->getQualifier()); 3463 } 3464 3465 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3466 const DependentTemplateSpecializationType* T) { 3467 return VisitNestedNameSpecifier(T->getQualifier()); 3468 } 3469 3470 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3471 const PackExpansionType* T) { 3472 return Visit(T->getPattern()); 3473 } 3474 3475 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3476 return false; 3477 } 3478 3479 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3480 const ObjCInterfaceType *) { 3481 return false; 3482 } 3483 3484 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3485 const ObjCObjectPointerType *) { 3486 return false; 3487 } 3488 3489 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3490 return Visit(T->getValueType()); 3491 } 3492 3493 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3494 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3495 S.Diag(SR.getBegin(), 3496 S.getLangOpts().CPlusPlus0x ? 3497 diag::warn_cxx98_compat_template_arg_local_type : 3498 diag::ext_template_arg_local_type) 3499 << S.Context.getTypeDeclType(Tag) << SR; 3500 return true; 3501 } 3502 3503 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3504 S.Diag(SR.getBegin(), 3505 S.getLangOpts().CPlusPlus0x ? 3506 diag::warn_cxx98_compat_template_arg_unnamed_type : 3507 diag::ext_template_arg_unnamed_type) << SR; 3508 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3509 return true; 3510 } 3511 3512 return false; 3513 } 3514 3515 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3516 NestedNameSpecifier *NNS) { 3517 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3518 return true; 3519 3520 switch (NNS->getKind()) { 3521 case NestedNameSpecifier::Identifier: 3522 case NestedNameSpecifier::Namespace: 3523 case NestedNameSpecifier::NamespaceAlias: 3524 case NestedNameSpecifier::Global: 3525 return false; 3526 3527 case NestedNameSpecifier::TypeSpec: 3528 case NestedNameSpecifier::TypeSpecWithTemplate: 3529 return Visit(QualType(NNS->getAsType(), 0)); 3530 } 3531 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3532 } 3533 3534 3535 /// \brief Check a template argument against its corresponding 3536 /// template type parameter. 3537 /// 3538 /// This routine implements the semantics of C++ [temp.arg.type]. It 3539 /// returns true if an error occurred, and false otherwise. 3540 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3541 TypeSourceInfo *ArgInfo) { 3542 assert(ArgInfo && "invalid TypeSourceInfo"); 3543 QualType Arg = ArgInfo->getType(); 3544 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3545 3546 if (Arg->isVariablyModifiedType()) { 3547 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3548 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3549 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3550 } 3551 3552 // C++03 [temp.arg.type]p2: 3553 // A local type, a type with no linkage, an unnamed type or a type 3554 // compounded from any of these types shall not be used as a 3555 // template-argument for a template type-parameter. 3556 // 3557 // C++11 allows these, and even in C++03 we allow them as an extension with 3558 // a warning. 3559 if (LangOpts.CPlusPlus0x ? 3560 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3561 SR.getBegin()) != DiagnosticsEngine::Ignored || 3562 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3563 SR.getBegin()) != DiagnosticsEngine::Ignored : 3564 Arg->hasUnnamedOrLocalType()) { 3565 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3566 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3567 } 3568 3569 return false; 3570 } 3571 3572 enum NullPointerValueKind { 3573 NPV_NotNullPointer, 3574 NPV_NullPointer, 3575 NPV_Error 3576 }; 3577 3578 /// \brief Determine whether the given template argument is a null pointer 3579 /// value of the appropriate type. 3580 static NullPointerValueKind 3581 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3582 QualType ParamType, Expr *Arg) { 3583 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3584 return NPV_NotNullPointer; 3585 3586 if (!S.getLangOpts().CPlusPlus0x) 3587 return NPV_NotNullPointer; 3588 3589 // Determine whether we have a constant expression. 3590 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3591 if (ArgRV.isInvalid()) 3592 return NPV_Error; 3593 Arg = ArgRV.take(); 3594 3595 Expr::EvalResult EvalResult; 3596 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 3597 EvalResult.Diag = &Notes; 3598 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3599 EvalResult.HasSideEffects) { 3600 SourceLocation DiagLoc = Arg->getExprLoc(); 3601 3602 // If our only note is the usual "invalid subexpression" note, just point 3603 // the caret at its location rather than producing an essentially 3604 // redundant note. 3605 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3606 diag::note_invalid_subexpr_in_const_expr) { 3607 DiagLoc = Notes[0].first; 3608 Notes.clear(); 3609 } 3610 3611 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3612 << Arg->getType() << Arg->getSourceRange(); 3613 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3614 S.Diag(Notes[I].first, Notes[I].second); 3615 3616 S.Diag(Param->getLocation(), diag::note_template_param_here); 3617 return NPV_Error; 3618 } 3619 3620 // C++11 [temp.arg.nontype]p1: 3621 // - an address constant expression of type std::nullptr_t 3622 if (Arg->getType()->isNullPtrType()) 3623 return NPV_NullPointer; 3624 3625 // - a constant expression that evaluates to a null pointer value (4.10); or 3626 // - a constant expression that evaluates to a null member pointer value 3627 // (4.11); or 3628 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3629 (EvalResult.Val.isMemberPointer() && 3630 !EvalResult.Val.getMemberPointerDecl())) { 3631 // If our expression has an appropriate type, we've succeeded. 3632 bool ObjCLifetimeConversion; 3633 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3634 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3635 ObjCLifetimeConversion)) 3636 return NPV_NullPointer; 3637 3638 // The types didn't match, but we know we got a null pointer; complain, 3639 // then recover as if the types were correct. 3640 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3641 << Arg->getType() << ParamType << Arg->getSourceRange(); 3642 S.Diag(Param->getLocation(), diag::note_template_param_here); 3643 return NPV_NullPointer; 3644 } 3645 3646 // If we don't have a null pointer value, but we do have a NULL pointer 3647 // constant, suggest a cast to the appropriate type. 3648 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3649 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3650 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3651 << ParamType 3652 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3653 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3654 ")"); 3655 S.Diag(Param->getLocation(), diag::note_template_param_here); 3656 return NPV_NullPointer; 3657 } 3658 3659 // FIXME: If we ever want to support general, address-constant expressions 3660 // as non-type template arguments, we should return the ExprResult here to 3661 // be interpreted by the caller. 3662 return NPV_NotNullPointer; 3663 } 3664 3665 /// \brief Checks whether the given template argument is the address 3666 /// of an object or function according to C++ [temp.arg.nontype]p1. 3667 static bool 3668 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3669 NonTypeTemplateParmDecl *Param, 3670 QualType ParamType, 3671 Expr *ArgIn, 3672 TemplateArgument &Converted) { 3673 bool Invalid = false; 3674 Expr *Arg = ArgIn; 3675 QualType ArgType = Arg->getType(); 3676 3677 // If our parameter has pointer type, check for a null template value. 3678 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3679 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3680 case NPV_NullPointer: 3681 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3682 Converted = TemplateArgument((Decl *)0); 3683 return false; 3684 3685 case NPV_Error: 3686 return true; 3687 3688 case NPV_NotNullPointer: 3689 break; 3690 } 3691 } 3692 3693 // See through any implicit casts we added to fix the type. 3694 Arg = Arg->IgnoreImpCasts(); 3695 3696 // C++ [temp.arg.nontype]p1: 3697 // 3698 // A template-argument for a non-type, non-template 3699 // template-parameter shall be one of: [...] 3700 // 3701 // -- the address of an object or function with external 3702 // linkage, including function templates and function 3703 // template-ids but excluding non-static class members, 3704 // expressed as & id-expression where the & is optional if 3705 // the name refers to a function or array, or if the 3706 // corresponding template-parameter is a reference; or 3707 3708 // In C++98/03 mode, give an extension warning on any extra parentheses. 3709 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3710 bool ExtraParens = false; 3711 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3712 if (!Invalid && !ExtraParens) { 3713 S.Diag(Arg->getLocStart(), 3714 S.getLangOpts().CPlusPlus0x ? 3715 diag::warn_cxx98_compat_template_arg_extra_parens : 3716 diag::ext_template_arg_extra_parens) 3717 << Arg->getSourceRange(); 3718 ExtraParens = true; 3719 } 3720 3721 Arg = Parens->getSubExpr(); 3722 } 3723 3724 while (SubstNonTypeTemplateParmExpr *subst = 3725 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3726 Arg = subst->getReplacement()->IgnoreImpCasts(); 3727 3728 bool AddressTaken = false; 3729 SourceLocation AddrOpLoc; 3730 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3731 if (UnOp->getOpcode() == UO_AddrOf) { 3732 Arg = UnOp->getSubExpr(); 3733 AddressTaken = true; 3734 AddrOpLoc = UnOp->getOperatorLoc(); 3735 } 3736 } 3737 3738 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3739 Converted = TemplateArgument(ArgIn); 3740 return false; 3741 } 3742 3743 while (SubstNonTypeTemplateParmExpr *subst = 3744 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3745 Arg = subst->getReplacement()->IgnoreImpCasts(); 3746 3747 // Stop checking the precise nature of the argument if it is value dependent, 3748 // it should be checked when instantiated. 3749 if (Arg->isValueDependent()) { 3750 Converted = TemplateArgument(ArgIn); 3751 return false; 3752 } 3753 3754 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3755 if (!DRE) { 3756 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3757 << Arg->getSourceRange(); 3758 S.Diag(Param->getLocation(), diag::note_template_param_here); 3759 return true; 3760 } 3761 3762 if (!isa<ValueDecl>(DRE->getDecl())) { 3763 S.Diag(Arg->getLocStart(), 3764 diag::err_template_arg_not_object_or_func_form) 3765 << Arg->getSourceRange(); 3766 S.Diag(Param->getLocation(), diag::note_template_param_here); 3767 return true; 3768 } 3769 3770 NamedDecl *Entity = DRE->getDecl(); 3771 3772 // Cannot refer to non-static data members 3773 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3774 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3775 << Field << Arg->getSourceRange(); 3776 S.Diag(Param->getLocation(), diag::note_template_param_here); 3777 return true; 3778 } 3779 3780 // Cannot refer to non-static member functions 3781 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3782 if (!Method->isStatic()) { 3783 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3784 << Method << Arg->getSourceRange(); 3785 S.Diag(Param->getLocation(), diag::note_template_param_here); 3786 return true; 3787 } 3788 } 3789 3790 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3791 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3792 3793 // A non-type template argument must refer to an object or function. 3794 if (!Func && !Var) { 3795 // We found something, but we don't know specifically what it is. 3796 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3797 << Arg->getSourceRange(); 3798 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3799 return true; 3800 } 3801 3802 // Address / reference template args must have external linkage in C++98. 3803 if (Entity->getLinkage() == InternalLinkage) { 3804 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ? 3805 diag::warn_cxx98_compat_template_arg_object_internal : 3806 diag::ext_template_arg_object_internal) 3807 << !Func << Entity << Arg->getSourceRange(); 3808 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3809 << !Func; 3810 } else if (Entity->getLinkage() == NoLinkage) { 3811 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3812 << !Func << Entity << Arg->getSourceRange(); 3813 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3814 << !Func; 3815 return true; 3816 } 3817 3818 if (Func) { 3819 // If the template parameter has pointer type, the function decays. 3820 if (ParamType->isPointerType() && !AddressTaken) 3821 ArgType = S.Context.getPointerType(Func->getType()); 3822 else if (AddressTaken && ParamType->isReferenceType()) { 3823 // If we originally had an address-of operator, but the 3824 // parameter has reference type, complain and (if things look 3825 // like they will work) drop the address-of operator. 3826 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3827 ParamType.getNonReferenceType())) { 3828 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3829 << ParamType; 3830 S.Diag(Param->getLocation(), diag::note_template_param_here); 3831 return true; 3832 } 3833 3834 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3835 << ParamType 3836 << FixItHint::CreateRemoval(AddrOpLoc); 3837 S.Diag(Param->getLocation(), diag::note_template_param_here); 3838 3839 ArgType = Func->getType(); 3840 } 3841 } else { 3842 // A value of reference type is not an object. 3843 if (Var->getType()->isReferenceType()) { 3844 S.Diag(Arg->getLocStart(), 3845 diag::err_template_arg_reference_var) 3846 << Var->getType() << Arg->getSourceRange(); 3847 S.Diag(Param->getLocation(), diag::note_template_param_here); 3848 return true; 3849 } 3850 3851 // A template argument must have static storage duration. 3852 // FIXME: Ensure this works for thread_local as well as __thread. 3853 if (Var->isThreadSpecified()) { 3854 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3855 << Arg->getSourceRange(); 3856 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3857 return true; 3858 } 3859 3860 // If the template parameter has pointer type, we must have taken 3861 // the address of this object. 3862 if (ParamType->isReferenceType()) { 3863 if (AddressTaken) { 3864 // If we originally had an address-of operator, but the 3865 // parameter has reference type, complain and (if things look 3866 // like they will work) drop the address-of operator. 3867 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3868 ParamType.getNonReferenceType())) { 3869 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3870 << ParamType; 3871 S.Diag(Param->getLocation(), diag::note_template_param_here); 3872 return true; 3873 } 3874 3875 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3876 << ParamType 3877 << FixItHint::CreateRemoval(AddrOpLoc); 3878 S.Diag(Param->getLocation(), diag::note_template_param_here); 3879 3880 ArgType = Var->getType(); 3881 } 3882 } else if (!AddressTaken && ParamType->isPointerType()) { 3883 if (Var->getType()->isArrayType()) { 3884 // Array-to-pointer decay. 3885 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3886 } else { 3887 // If the template parameter has pointer type but the address of 3888 // this object was not taken, complain and (possibly) recover by 3889 // taking the address of the entity. 3890 ArgType = S.Context.getPointerType(Var->getType()); 3891 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3892 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3893 << ParamType; 3894 S.Diag(Param->getLocation(), diag::note_template_param_here); 3895 return true; 3896 } 3897 3898 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3899 << ParamType 3900 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3901 3902 S.Diag(Param->getLocation(), diag::note_template_param_here); 3903 } 3904 } 3905 } 3906 3907 bool ObjCLifetimeConversion; 3908 if (ParamType->isPointerType() && 3909 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3910 S.IsQualificationConversion(ArgType, ParamType, false, 3911 ObjCLifetimeConversion)) { 3912 // For pointer-to-object types, qualification conversions are 3913 // permitted. 3914 } else { 3915 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3916 if (!ParamRef->getPointeeType()->isFunctionType()) { 3917 // C++ [temp.arg.nontype]p5b3: 3918 // For a non-type template-parameter of type reference to 3919 // object, no conversions apply. The type referred to by the 3920 // reference may be more cv-qualified than the (otherwise 3921 // identical) type of the template- argument. The 3922 // template-parameter is bound directly to the 3923 // template-argument, which shall be an lvalue. 3924 3925 // FIXME: Other qualifiers? 3926 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3927 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3928 3929 if ((ParamQuals | ArgQuals) != ParamQuals) { 3930 S.Diag(Arg->getLocStart(), 3931 diag::err_template_arg_ref_bind_ignores_quals) 3932 << ParamType << Arg->getType() 3933 << Arg->getSourceRange(); 3934 S.Diag(Param->getLocation(), diag::note_template_param_here); 3935 return true; 3936 } 3937 } 3938 } 3939 3940 // At this point, the template argument refers to an object or 3941 // function with external linkage. We now need to check whether the 3942 // argument and parameter types are compatible. 3943 if (!S.Context.hasSameUnqualifiedType(ArgType, 3944 ParamType.getNonReferenceType())) { 3945 // We can't perform this conversion or binding. 3946 if (ParamType->isReferenceType()) 3947 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3948 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3949 else 3950 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3951 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3952 S.Diag(Param->getLocation(), diag::note_template_param_here); 3953 return true; 3954 } 3955 } 3956 3957 // Create the template argument. 3958 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3959 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3960 return false; 3961 } 3962 3963 /// \brief Checks whether the given template argument is a pointer to 3964 /// member constant according to C++ [temp.arg.nontype]p1. 3965 static bool CheckTemplateArgumentPointerToMember(Sema &S, 3966 NonTypeTemplateParmDecl *Param, 3967 QualType ParamType, 3968 Expr *&ResultArg, 3969 TemplateArgument &Converted) { 3970 bool Invalid = false; 3971 3972 // Check for a null pointer value. 3973 Expr *Arg = ResultArg; 3974 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3975 case NPV_Error: 3976 return true; 3977 case NPV_NullPointer: 3978 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3979 Converted = TemplateArgument((Decl *)0); 3980 return false; 3981 case NPV_NotNullPointer: 3982 break; 3983 } 3984 3985 bool ObjCLifetimeConversion; 3986 if (S.IsQualificationConversion(Arg->getType(), 3987 ParamType.getNonReferenceType(), 3988 false, ObjCLifetimeConversion)) { 3989 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3990 Arg->getValueKind()).take(); 3991 ResultArg = Arg; 3992 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3993 ParamType.getNonReferenceType())) { 3994 // We can't perform this conversion. 3995 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3996 << Arg->getType() << ParamType << Arg->getSourceRange(); 3997 S.Diag(Param->getLocation(), diag::note_template_param_here); 3998 return true; 3999 } 4000 4001 // See through any implicit casts we added to fix the type. 4002 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 4003 Arg = Cast->getSubExpr(); 4004 4005 // C++ [temp.arg.nontype]p1: 4006 // 4007 // A template-argument for a non-type, non-template 4008 // template-parameter shall be one of: [...] 4009 // 4010 // -- a pointer to member expressed as described in 5.3.1. 4011 DeclRefExpr *DRE = 0; 4012 4013 // In C++98/03 mode, give an extension warning on any extra parentheses. 4014 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4015 bool ExtraParens = false; 4016 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4017 if (!Invalid && !ExtraParens) { 4018 S.Diag(Arg->getLocStart(), 4019 S.getLangOpts().CPlusPlus0x ? 4020 diag::warn_cxx98_compat_template_arg_extra_parens : 4021 diag::ext_template_arg_extra_parens) 4022 << Arg->getSourceRange(); 4023 ExtraParens = true; 4024 } 4025 4026 Arg = Parens->getSubExpr(); 4027 } 4028 4029 while (SubstNonTypeTemplateParmExpr *subst = 4030 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4031 Arg = subst->getReplacement()->IgnoreImpCasts(); 4032 4033 // A pointer-to-member constant written &Class::member. 4034 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4035 if (UnOp->getOpcode() == UO_AddrOf) { 4036 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4037 if (DRE && !DRE->getQualifier()) 4038 DRE = 0; 4039 } 4040 } 4041 // A constant of pointer-to-member type. 4042 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4043 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4044 if (VD->getType()->isMemberPointerType()) { 4045 if (isa<NonTypeTemplateParmDecl>(VD) || 4046 (isa<VarDecl>(VD) && 4047 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4048 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4049 Converted = TemplateArgument(Arg); 4050 else 4051 Converted = TemplateArgument(VD->getCanonicalDecl()); 4052 return Invalid; 4053 } 4054 } 4055 } 4056 4057 DRE = 0; 4058 } 4059 4060 if (!DRE) 4061 return S.Diag(Arg->getLocStart(), 4062 diag::err_template_arg_not_pointer_to_member_form) 4063 << Arg->getSourceRange(); 4064 4065 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4066 assert((isa<FieldDecl>(DRE->getDecl()) || 4067 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4068 "Only non-static member pointers can make it here"); 4069 4070 // Okay: this is the address of a non-static member, and therefore 4071 // a member pointer constant. 4072 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4073 Converted = TemplateArgument(Arg); 4074 else 4075 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 4076 return Invalid; 4077 } 4078 4079 // We found something else, but we don't know specifically what it is. 4080 S.Diag(Arg->getLocStart(), 4081 diag::err_template_arg_not_pointer_to_member_form) 4082 << Arg->getSourceRange(); 4083 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4084 return true; 4085 } 4086 4087 /// \brief Check a template argument against its corresponding 4088 /// non-type template parameter. 4089 /// 4090 /// This routine implements the semantics of C++ [temp.arg.nontype]. 4091 /// If an error occurred, it returns ExprError(); otherwise, it 4092 /// returns the converted template argument. \p 4093 /// InstantiatedParamType is the type of the non-type template 4094 /// parameter after it has been instantiated. 4095 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4096 QualType InstantiatedParamType, Expr *Arg, 4097 TemplateArgument &Converted, 4098 CheckTemplateArgumentKind CTAK) { 4099 SourceLocation StartLoc = Arg->getLocStart(); 4100 4101 // If either the parameter has a dependent type or the argument is 4102 // type-dependent, there's nothing we can check now. 4103 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4104 // FIXME: Produce a cloned, canonical expression? 4105 Converted = TemplateArgument(Arg); 4106 return Owned(Arg); 4107 } 4108 4109 // C++ [temp.arg.nontype]p5: 4110 // The following conversions are performed on each expression used 4111 // as a non-type template-argument. If a non-type 4112 // template-argument cannot be converted to the type of the 4113 // corresponding template-parameter then the program is 4114 // ill-formed. 4115 QualType ParamType = InstantiatedParamType; 4116 if (ParamType->isIntegralOrEnumerationType()) { 4117 // C++11: 4118 // -- for a non-type template-parameter of integral or 4119 // enumeration type, conversions permitted in a converted 4120 // constant expression are applied. 4121 // 4122 // C++98: 4123 // -- for a non-type template-parameter of integral or 4124 // enumeration type, integral promotions (4.5) and integral 4125 // conversions (4.7) are applied. 4126 4127 if (CTAK == CTAK_Deduced && 4128 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4129 // C++ [temp.deduct.type]p17: 4130 // If, in the declaration of a function template with a non-type 4131 // template-parameter, the non-type template-parameter is used 4132 // in an expression in the function parameter-list and, if the 4133 // corresponding template-argument is deduced, the 4134 // template-argument type shall match the type of the 4135 // template-parameter exactly, except that a template-argument 4136 // deduced from an array bound may be of any integral type. 4137 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4138 << Arg->getType().getUnqualifiedType() 4139 << ParamType.getUnqualifiedType(); 4140 Diag(Param->getLocation(), diag::note_template_param_here); 4141 return ExprError(); 4142 } 4143 4144 if (getLangOpts().CPlusPlus0x) { 4145 // We can't check arbitrary value-dependent arguments. 4146 // FIXME: If there's no viable conversion to the template parameter type, 4147 // we should be able to diagnose that prior to instantiation. 4148 if (Arg->isValueDependent()) { 4149 Converted = TemplateArgument(Arg); 4150 return Owned(Arg); 4151 } 4152 4153 // C++ [temp.arg.nontype]p1: 4154 // A template-argument for a non-type, non-template template-parameter 4155 // shall be one of: 4156 // 4157 // -- for a non-type template-parameter of integral or enumeration 4158 // type, a converted constant expression of the type of the 4159 // template-parameter; or 4160 llvm::APSInt Value; 4161 ExprResult ArgResult = 4162 CheckConvertedConstantExpression(Arg, ParamType, Value, 4163 CCEK_TemplateArg); 4164 if (ArgResult.isInvalid()) 4165 return ExprError(); 4166 4167 // Widen the argument value to sizeof(parameter type). This is almost 4168 // always a no-op, except when the parameter type is bool. In 4169 // that case, this may extend the argument from 1 bit to 8 bits. 4170 QualType IntegerType = ParamType; 4171 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4172 IntegerType = Enum->getDecl()->getIntegerType(); 4173 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4174 4175 Converted = TemplateArgument(Context, Value, 4176 Context.getCanonicalType(ParamType)); 4177 return ArgResult; 4178 } 4179 4180 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4181 if (ArgResult.isInvalid()) 4182 return ExprError(); 4183 Arg = ArgResult.take(); 4184 4185 QualType ArgType = Arg->getType(); 4186 4187 // C++ [temp.arg.nontype]p1: 4188 // A template-argument for a non-type, non-template 4189 // template-parameter shall be one of: 4190 // 4191 // -- an integral constant-expression of integral or enumeration 4192 // type; or 4193 // -- the name of a non-type template-parameter; or 4194 SourceLocation NonConstantLoc; 4195 llvm::APSInt Value; 4196 if (!ArgType->isIntegralOrEnumerationType()) { 4197 Diag(Arg->getLocStart(), 4198 diag::err_template_arg_not_integral_or_enumeral) 4199 << ArgType << Arg->getSourceRange(); 4200 Diag(Param->getLocation(), diag::note_template_param_here); 4201 return ExprError(); 4202 } else if (!Arg->isValueDependent()) { 4203 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4204 QualType T; 4205 4206 public: 4207 TmplArgICEDiagnoser(QualType T) : T(T) { } 4208 4209 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4210 SourceRange SR) { 4211 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4212 } 4213 } Diagnoser(ArgType); 4214 4215 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4216 false).take(); 4217 if (!Arg) 4218 return ExprError(); 4219 } 4220 4221 // From here on out, all we care about are the unqualified forms 4222 // of the parameter and argument types. 4223 ParamType = ParamType.getUnqualifiedType(); 4224 ArgType = ArgType.getUnqualifiedType(); 4225 4226 // Try to convert the argument to the parameter's type. 4227 if (Context.hasSameType(ParamType, ArgType)) { 4228 // Okay: no conversion necessary 4229 } else if (ParamType->isBooleanType()) { 4230 // This is an integral-to-boolean conversion. 4231 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4232 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4233 !ParamType->isEnumeralType()) { 4234 // This is an integral promotion or conversion. 4235 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4236 } else { 4237 // We can't perform this conversion. 4238 Diag(Arg->getLocStart(), 4239 diag::err_template_arg_not_convertible) 4240 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4241 Diag(Param->getLocation(), diag::note_template_param_here); 4242 return ExprError(); 4243 } 4244 4245 // Add the value of this argument to the list of converted 4246 // arguments. We use the bitwidth and signedness of the template 4247 // parameter. 4248 if (Arg->isValueDependent()) { 4249 // The argument is value-dependent. Create a new 4250 // TemplateArgument with the converted expression. 4251 Converted = TemplateArgument(Arg); 4252 return Owned(Arg); 4253 } 4254 4255 QualType IntegerType = Context.getCanonicalType(ParamType); 4256 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4257 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4258 4259 if (ParamType->isBooleanType()) { 4260 // Value must be zero or one. 4261 Value = Value != 0; 4262 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4263 if (Value.getBitWidth() != AllowedBits) 4264 Value = Value.extOrTrunc(AllowedBits); 4265 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4266 } else { 4267 llvm::APSInt OldValue = Value; 4268 4269 // Coerce the template argument's value to the value it will have 4270 // based on the template parameter's type. 4271 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4272 if (Value.getBitWidth() != AllowedBits) 4273 Value = Value.extOrTrunc(AllowedBits); 4274 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4275 4276 // Complain if an unsigned parameter received a negative value. 4277 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4278 && (OldValue.isSigned() && OldValue.isNegative())) { 4279 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4280 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4281 << Arg->getSourceRange(); 4282 Diag(Param->getLocation(), diag::note_template_param_here); 4283 } 4284 4285 // Complain if we overflowed the template parameter's type. 4286 unsigned RequiredBits; 4287 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4288 RequiredBits = OldValue.getActiveBits(); 4289 else if (OldValue.isUnsigned()) 4290 RequiredBits = OldValue.getActiveBits() + 1; 4291 else 4292 RequiredBits = OldValue.getMinSignedBits(); 4293 if (RequiredBits > AllowedBits) { 4294 Diag(Arg->getLocStart(), 4295 diag::warn_template_arg_too_large) 4296 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4297 << Arg->getSourceRange(); 4298 Diag(Param->getLocation(), diag::note_template_param_here); 4299 } 4300 } 4301 4302 Converted = TemplateArgument(Context, Value, 4303 ParamType->isEnumeralType() 4304 ? Context.getCanonicalType(ParamType) 4305 : IntegerType); 4306 return Owned(Arg); 4307 } 4308 4309 QualType ArgType = Arg->getType(); 4310 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4311 4312 // Handle pointer-to-function, reference-to-function, and 4313 // pointer-to-member-function all in (roughly) the same way. 4314 if (// -- For a non-type template-parameter of type pointer to 4315 // function, only the function-to-pointer conversion (4.3) is 4316 // applied. If the template-argument represents a set of 4317 // overloaded functions (or a pointer to such), the matching 4318 // function is selected from the set (13.4). 4319 (ParamType->isPointerType() && 4320 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4321 // -- For a non-type template-parameter of type reference to 4322 // function, no conversions apply. If the template-argument 4323 // represents a set of overloaded functions, the matching 4324 // function is selected from the set (13.4). 4325 (ParamType->isReferenceType() && 4326 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4327 // -- For a non-type template-parameter of type pointer to 4328 // member function, no conversions apply. If the 4329 // template-argument represents a set of overloaded member 4330 // functions, the matching member function is selected from 4331 // the set (13.4). 4332 (ParamType->isMemberPointerType() && 4333 ParamType->getAs<MemberPointerType>()->getPointeeType() 4334 ->isFunctionType())) { 4335 4336 if (Arg->getType() == Context.OverloadTy) { 4337 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4338 true, 4339 FoundResult)) { 4340 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4341 return ExprError(); 4342 4343 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4344 ArgType = Arg->getType(); 4345 } else 4346 return ExprError(); 4347 } 4348 4349 if (!ParamType->isMemberPointerType()) { 4350 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4351 ParamType, 4352 Arg, Converted)) 4353 return ExprError(); 4354 return Owned(Arg); 4355 } 4356 4357 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4358 Converted)) 4359 return ExprError(); 4360 return Owned(Arg); 4361 } 4362 4363 if (ParamType->isPointerType()) { 4364 // -- for a non-type template-parameter of type pointer to 4365 // object, qualification conversions (4.4) and the 4366 // array-to-pointer conversion (4.2) are applied. 4367 // C++0x also allows a value of std::nullptr_t. 4368 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4369 "Only object pointers allowed here"); 4370 4371 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4372 ParamType, 4373 Arg, Converted)) 4374 return ExprError(); 4375 return Owned(Arg); 4376 } 4377 4378 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4379 // -- For a non-type template-parameter of type reference to 4380 // object, no conversions apply. The type referred to by the 4381 // reference may be more cv-qualified than the (otherwise 4382 // identical) type of the template-argument. The 4383 // template-parameter is bound directly to the 4384 // template-argument, which must be an lvalue. 4385 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4386 "Only object references allowed here"); 4387 4388 if (Arg->getType() == Context.OverloadTy) { 4389 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4390 ParamRefType->getPointeeType(), 4391 true, 4392 FoundResult)) { 4393 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4394 return ExprError(); 4395 4396 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4397 ArgType = Arg->getType(); 4398 } else 4399 return ExprError(); 4400 } 4401 4402 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4403 ParamType, 4404 Arg, Converted)) 4405 return ExprError(); 4406 return Owned(Arg); 4407 } 4408 4409 // Deal with parameters of type std::nullptr_t. 4410 if (ParamType->isNullPtrType()) { 4411 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4412 Converted = TemplateArgument(Arg); 4413 return Owned(Arg); 4414 } 4415 4416 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4417 case NPV_NotNullPointer: 4418 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4419 << Arg->getType() << ParamType; 4420 Diag(Param->getLocation(), diag::note_template_param_here); 4421 return ExprError(); 4422 4423 case NPV_Error: 4424 return ExprError(); 4425 4426 case NPV_NullPointer: 4427 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4428 Converted = TemplateArgument((Decl *)0); 4429 return Owned(Arg); 4430 } 4431 } 4432 4433 // -- For a non-type template-parameter of type pointer to data 4434 // member, qualification conversions (4.4) are applied. 4435 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4436 4437 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4438 Converted)) 4439 return ExprError(); 4440 return Owned(Arg); 4441 } 4442 4443 /// \brief Check a template argument against its corresponding 4444 /// template template parameter. 4445 /// 4446 /// This routine implements the semantics of C++ [temp.arg.template]. 4447 /// It returns true if an error occurred, and false otherwise. 4448 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4449 const TemplateArgumentLoc &Arg, 4450 unsigned ArgumentPackIndex) { 4451 TemplateName Name = Arg.getArgument().getAsTemplate(); 4452 TemplateDecl *Template = Name.getAsTemplateDecl(); 4453 if (!Template) { 4454 // Any dependent template name is fine. 4455 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4456 return false; 4457 } 4458 4459 // C++0x [temp.arg.template]p1: 4460 // A template-argument for a template template-parameter shall be 4461 // the name of a class template or an alias template, expressed as an 4462 // id-expression. When the template-argument names a class template, only 4463 // primary class templates are considered when matching the 4464 // template template argument with the corresponding parameter; 4465 // partial specializations are not considered even if their 4466 // parameter lists match that of the template template parameter. 4467 // 4468 // Note that we also allow template template parameters here, which 4469 // will happen when we are dealing with, e.g., class template 4470 // partial specializations. 4471 if (!isa<ClassTemplateDecl>(Template) && 4472 !isa<TemplateTemplateParmDecl>(Template) && 4473 !isa<TypeAliasTemplateDecl>(Template)) { 4474 assert(isa<FunctionTemplateDecl>(Template) && 4475 "Only function templates are possible here"); 4476 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4477 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4478 << Template; 4479 } 4480 4481 TemplateParameterList *Params = Param->getTemplateParameters(); 4482 if (Param->isExpandedParameterPack()) 4483 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4484 4485 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4486 Params, 4487 true, 4488 TPL_TemplateTemplateArgumentMatch, 4489 Arg.getLocation()); 4490 } 4491 4492 /// \brief Given a non-type template argument that refers to a 4493 /// declaration and the type of its corresponding non-type template 4494 /// parameter, produce an expression that properly refers to that 4495 /// declaration. 4496 ExprResult 4497 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4498 QualType ParamType, 4499 SourceLocation Loc) { 4500 assert(Arg.getKind() == TemplateArgument::Declaration && 4501 "Only declaration template arguments permitted here"); 4502 4503 // For a NULL non-type template argument, return nullptr casted to the 4504 // parameter's type. 4505 if (!Arg.getAsDecl()) { 4506 return ImpCastExprToType( 4507 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4508 ParamType, 4509 ParamType->getAs<MemberPointerType>() 4510 ? CK_NullToMemberPointer 4511 : CK_NullToPointer); 4512 } 4513 4514 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4515 4516 if (VD->getDeclContext()->isRecord() && 4517 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4518 // If the value is a class member, we might have a pointer-to-member. 4519 // Determine whether the non-type template template parameter is of 4520 // pointer-to-member type. If so, we need to build an appropriate 4521 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4522 // would refer to the member itself. 4523 if (ParamType->isMemberPointerType()) { 4524 QualType ClassType 4525 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4526 NestedNameSpecifier *Qualifier 4527 = NestedNameSpecifier::Create(Context, 0, false, 4528 ClassType.getTypePtr()); 4529 CXXScopeSpec SS; 4530 SS.MakeTrivial(Context, Qualifier, Loc); 4531 4532 // The actual value-ness of this is unimportant, but for 4533 // internal consistency's sake, references to instance methods 4534 // are r-values. 4535 ExprValueKind VK = VK_LValue; 4536 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4537 VK = VK_RValue; 4538 4539 ExprResult RefExpr = BuildDeclRefExpr(VD, 4540 VD->getType().getNonReferenceType(), 4541 VK, 4542 Loc, 4543 &SS); 4544 if (RefExpr.isInvalid()) 4545 return ExprError(); 4546 4547 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4548 4549 // We might need to perform a trailing qualification conversion, since 4550 // the element type on the parameter could be more qualified than the 4551 // element type in the expression we constructed. 4552 bool ObjCLifetimeConversion; 4553 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4554 ParamType.getUnqualifiedType(), false, 4555 ObjCLifetimeConversion)) 4556 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4557 4558 assert(!RefExpr.isInvalid() && 4559 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4560 ParamType.getUnqualifiedType())); 4561 return RefExpr; 4562 } 4563 } 4564 4565 QualType T = VD->getType().getNonReferenceType(); 4566 if (ParamType->isPointerType()) { 4567 // When the non-type template parameter is a pointer, take the 4568 // address of the declaration. 4569 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4570 if (RefExpr.isInvalid()) 4571 return ExprError(); 4572 4573 if (T->isFunctionType() || T->isArrayType()) { 4574 // Decay functions and arrays. 4575 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4576 if (RefExpr.isInvalid()) 4577 return ExprError(); 4578 4579 return RefExpr; 4580 } 4581 4582 // Take the address of everything else 4583 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4584 } 4585 4586 ExprValueKind VK = VK_RValue; 4587 4588 // If the non-type template parameter has reference type, qualify the 4589 // resulting declaration reference with the extra qualifiers on the 4590 // type that the reference refers to. 4591 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4592 VK = VK_LValue; 4593 T = Context.getQualifiedType(T, 4594 TargetRef->getPointeeType().getQualifiers()); 4595 } 4596 4597 return BuildDeclRefExpr(VD, T, VK, Loc); 4598 } 4599 4600 /// \brief Construct a new expression that refers to the given 4601 /// integral template argument with the given source-location 4602 /// information. 4603 /// 4604 /// This routine takes care of the mapping from an integral template 4605 /// argument (which may have any integral type) to the appropriate 4606 /// literal value. 4607 ExprResult 4608 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4609 SourceLocation Loc) { 4610 assert(Arg.getKind() == TemplateArgument::Integral && 4611 "Operation is only valid for integral template arguments"); 4612 QualType T = Arg.getIntegralType(); 4613 if (T->isAnyCharacterType()) { 4614 CharacterLiteral::CharacterKind Kind; 4615 if (T->isWideCharType()) 4616 Kind = CharacterLiteral::Wide; 4617 else if (T->isChar16Type()) 4618 Kind = CharacterLiteral::UTF16; 4619 else if (T->isChar32Type()) 4620 Kind = CharacterLiteral::UTF32; 4621 else 4622 Kind = CharacterLiteral::Ascii; 4623 4624 return Owned(new (Context) CharacterLiteral( 4625 Arg.getAsIntegral().getZExtValue(), 4626 Kind, T, Loc)); 4627 } 4628 4629 if (T->isBooleanType()) 4630 return Owned(new (Context) CXXBoolLiteralExpr( 4631 Arg.getAsIntegral().getBoolValue(), 4632 T, Loc)); 4633 4634 if (T->isNullPtrType()) 4635 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4636 4637 // If this is an enum type that we're instantiating, we need to use an integer 4638 // type the same size as the enumerator. We don't want to build an 4639 // IntegerLiteral with enum type. 4640 QualType BT; 4641 if (const EnumType *ET = T->getAs<EnumType>()) 4642 BT = ET->getDecl()->getIntegerType(); 4643 else 4644 BT = T; 4645 4646 Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc); 4647 if (T->isEnumeralType()) { 4648 // FIXME: This is a hack. We need a better way to handle substituted 4649 // non-type template parameters. 4650 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4651 Context.getTrivialTypeSourceInfo(T, Loc), 4652 Loc, Loc); 4653 } 4654 4655 return Owned(E); 4656 } 4657 4658 /// \brief Match two template parameters within template parameter lists. 4659 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4660 bool Complain, 4661 Sema::TemplateParameterListEqualKind Kind, 4662 SourceLocation TemplateArgLoc) { 4663 // Check the actual kind (type, non-type, template). 4664 if (Old->getKind() != New->getKind()) { 4665 if (Complain) { 4666 unsigned NextDiag = diag::err_template_param_different_kind; 4667 if (TemplateArgLoc.isValid()) { 4668 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4669 NextDiag = diag::note_template_param_different_kind; 4670 } 4671 S.Diag(New->getLocation(), NextDiag) 4672 << (Kind != Sema::TPL_TemplateMatch); 4673 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4674 << (Kind != Sema::TPL_TemplateMatch); 4675 } 4676 4677 return false; 4678 } 4679 4680 // Check that both are parameter packs are neither are parameter packs. 4681 // However, if we are matching a template template argument to a 4682 // template template parameter, the template template parameter can have 4683 // a parameter pack where the template template argument does not. 4684 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4685 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4686 Old->isTemplateParameterPack())) { 4687 if (Complain) { 4688 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4689 if (TemplateArgLoc.isValid()) { 4690 S.Diag(TemplateArgLoc, 4691 diag::err_template_arg_template_params_mismatch); 4692 NextDiag = diag::note_template_parameter_pack_non_pack; 4693 } 4694 4695 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4696 : isa<NonTypeTemplateParmDecl>(New)? 1 4697 : 2; 4698 S.Diag(New->getLocation(), NextDiag) 4699 << ParamKind << New->isParameterPack(); 4700 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4701 << ParamKind << Old->isParameterPack(); 4702 } 4703 4704 return false; 4705 } 4706 4707 // For non-type template parameters, check the type of the parameter. 4708 if (NonTypeTemplateParmDecl *OldNTTP 4709 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4710 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4711 4712 // If we are matching a template template argument to a template 4713 // template parameter and one of the non-type template parameter types 4714 // is dependent, then we must wait until template instantiation time 4715 // to actually compare the arguments. 4716 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4717 (OldNTTP->getType()->isDependentType() || 4718 NewNTTP->getType()->isDependentType())) 4719 return true; 4720 4721 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4722 if (Complain) { 4723 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4724 if (TemplateArgLoc.isValid()) { 4725 S.Diag(TemplateArgLoc, 4726 diag::err_template_arg_template_params_mismatch); 4727 NextDiag = diag::note_template_nontype_parm_different_type; 4728 } 4729 S.Diag(NewNTTP->getLocation(), NextDiag) 4730 << NewNTTP->getType() 4731 << (Kind != Sema::TPL_TemplateMatch); 4732 S.Diag(OldNTTP->getLocation(), 4733 diag::note_template_nontype_parm_prev_declaration) 4734 << OldNTTP->getType(); 4735 } 4736 4737 return false; 4738 } 4739 4740 return true; 4741 } 4742 4743 // For template template parameters, check the template parameter types. 4744 // The template parameter lists of template template 4745 // parameters must agree. 4746 if (TemplateTemplateParmDecl *OldTTP 4747 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4748 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4749 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4750 OldTTP->getTemplateParameters(), 4751 Complain, 4752 (Kind == Sema::TPL_TemplateMatch 4753 ? Sema::TPL_TemplateTemplateParmMatch 4754 : Kind), 4755 TemplateArgLoc); 4756 } 4757 4758 return true; 4759 } 4760 4761 /// \brief Diagnose a known arity mismatch when comparing template argument 4762 /// lists. 4763 static 4764 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4765 TemplateParameterList *New, 4766 TemplateParameterList *Old, 4767 Sema::TemplateParameterListEqualKind Kind, 4768 SourceLocation TemplateArgLoc) { 4769 unsigned NextDiag = diag::err_template_param_list_different_arity; 4770 if (TemplateArgLoc.isValid()) { 4771 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4772 NextDiag = diag::note_template_param_list_different_arity; 4773 } 4774 S.Diag(New->getTemplateLoc(), NextDiag) 4775 << (New->size() > Old->size()) 4776 << (Kind != Sema::TPL_TemplateMatch) 4777 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4778 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4779 << (Kind != Sema::TPL_TemplateMatch) 4780 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4781 } 4782 4783 /// \brief Determine whether the given template parameter lists are 4784 /// equivalent. 4785 /// 4786 /// \param New The new template parameter list, typically written in the 4787 /// source code as part of a new template declaration. 4788 /// 4789 /// \param Old The old template parameter list, typically found via 4790 /// name lookup of the template declared with this template parameter 4791 /// list. 4792 /// 4793 /// \param Complain If true, this routine will produce a diagnostic if 4794 /// the template parameter lists are not equivalent. 4795 /// 4796 /// \param Kind describes how we are to match the template parameter lists. 4797 /// 4798 /// \param TemplateArgLoc If this source location is valid, then we 4799 /// are actually checking the template parameter list of a template 4800 /// argument (New) against the template parameter list of its 4801 /// corresponding template template parameter (Old). We produce 4802 /// slightly different diagnostics in this scenario. 4803 /// 4804 /// \returns True if the template parameter lists are equal, false 4805 /// otherwise. 4806 bool 4807 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4808 TemplateParameterList *Old, 4809 bool Complain, 4810 TemplateParameterListEqualKind Kind, 4811 SourceLocation TemplateArgLoc) { 4812 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4813 if (Complain) 4814 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4815 TemplateArgLoc); 4816 4817 return false; 4818 } 4819 4820 // C++0x [temp.arg.template]p3: 4821 // A template-argument matches a template template-parameter (call it P) 4822 // when each of the template parameters in the template-parameter-list of 4823 // the template-argument's corresponding class template or alias template 4824 // (call it A) matches the corresponding template parameter in the 4825 // template-parameter-list of P. [...] 4826 TemplateParameterList::iterator NewParm = New->begin(); 4827 TemplateParameterList::iterator NewParmEnd = New->end(); 4828 for (TemplateParameterList::iterator OldParm = Old->begin(), 4829 OldParmEnd = Old->end(); 4830 OldParm != OldParmEnd; ++OldParm) { 4831 if (Kind != TPL_TemplateTemplateArgumentMatch || 4832 !(*OldParm)->isTemplateParameterPack()) { 4833 if (NewParm == NewParmEnd) { 4834 if (Complain) 4835 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4836 TemplateArgLoc); 4837 4838 return false; 4839 } 4840 4841 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4842 Kind, TemplateArgLoc)) 4843 return false; 4844 4845 ++NewParm; 4846 continue; 4847 } 4848 4849 // C++0x [temp.arg.template]p3: 4850 // [...] When P's template- parameter-list contains a template parameter 4851 // pack (14.5.3), the template parameter pack will match zero or more 4852 // template parameters or template parameter packs in the 4853 // template-parameter-list of A with the same type and form as the 4854 // template parameter pack in P (ignoring whether those template 4855 // parameters are template parameter packs). 4856 for (; NewParm != NewParmEnd; ++NewParm) { 4857 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4858 Kind, TemplateArgLoc)) 4859 return false; 4860 } 4861 } 4862 4863 // Make sure we exhausted all of the arguments. 4864 if (NewParm != NewParmEnd) { 4865 if (Complain) 4866 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4867 TemplateArgLoc); 4868 4869 return false; 4870 } 4871 4872 return true; 4873 } 4874 4875 /// \brief Check whether a template can be declared within this scope. 4876 /// 4877 /// If the template declaration is valid in this scope, returns 4878 /// false. Otherwise, issues a diagnostic and returns true. 4879 bool 4880 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4881 if (!S) 4882 return false; 4883 4884 // Find the nearest enclosing declaration scope. 4885 while ((S->getFlags() & Scope::DeclScope) == 0 || 4886 (S->getFlags() & Scope::TemplateParamScope) != 0) 4887 S = S->getParent(); 4888 4889 // C++ [temp]p2: 4890 // A template-declaration can appear only as a namespace scope or 4891 // class scope declaration. 4892 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4893 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4894 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4895 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4896 << TemplateParams->getSourceRange(); 4897 4898 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4899 Ctx = Ctx->getParent(); 4900 4901 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4902 return false; 4903 4904 return Diag(TemplateParams->getTemplateLoc(), 4905 diag::err_template_outside_namespace_or_class_scope) 4906 << TemplateParams->getSourceRange(); 4907 } 4908 4909 /// \brief Determine what kind of template specialization the given declaration 4910 /// is. 4911 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4912 if (!D) 4913 return TSK_Undeclared; 4914 4915 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4916 return Record->getTemplateSpecializationKind(); 4917 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4918 return Function->getTemplateSpecializationKind(); 4919 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4920 return Var->getTemplateSpecializationKind(); 4921 4922 return TSK_Undeclared; 4923 } 4924 4925 /// \brief Check whether a specialization is well-formed in the current 4926 /// context. 4927 /// 4928 /// This routine determines whether a template specialization can be declared 4929 /// in the current context (C++ [temp.expl.spec]p2). 4930 /// 4931 /// \param S the semantic analysis object for which this check is being 4932 /// performed. 4933 /// 4934 /// \param Specialized the entity being specialized or instantiated, which 4935 /// may be a kind of template (class template, function template, etc.) or 4936 /// a member of a class template (member function, static data member, 4937 /// member class). 4938 /// 4939 /// \param PrevDecl the previous declaration of this entity, if any. 4940 /// 4941 /// \param Loc the location of the explicit specialization or instantiation of 4942 /// this entity. 4943 /// 4944 /// \param IsPartialSpecialization whether this is a partial specialization of 4945 /// a class template. 4946 /// 4947 /// \returns true if there was an error that we cannot recover from, false 4948 /// otherwise. 4949 static bool CheckTemplateSpecializationScope(Sema &S, 4950 NamedDecl *Specialized, 4951 NamedDecl *PrevDecl, 4952 SourceLocation Loc, 4953 bool IsPartialSpecialization) { 4954 // Keep these "kind" numbers in sync with the %select statements in the 4955 // various diagnostics emitted by this routine. 4956 int EntityKind = 0; 4957 if (isa<ClassTemplateDecl>(Specialized)) 4958 EntityKind = IsPartialSpecialization? 1 : 0; 4959 else if (isa<FunctionTemplateDecl>(Specialized)) 4960 EntityKind = 2; 4961 else if (isa<CXXMethodDecl>(Specialized)) 4962 EntityKind = 3; 4963 else if (isa<VarDecl>(Specialized)) 4964 EntityKind = 4; 4965 else if (isa<RecordDecl>(Specialized)) 4966 EntityKind = 5; 4967 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x) 4968 EntityKind = 6; 4969 else { 4970 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4971 << S.getLangOpts().CPlusPlus0x; 4972 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4973 return true; 4974 } 4975 4976 // C++ [temp.expl.spec]p2: 4977 // An explicit specialization shall be declared in the namespace 4978 // of which the template is a member, or, for member templates, in 4979 // the namespace of which the enclosing class or enclosing class 4980 // template is a member. An explicit specialization of a member 4981 // function, member class or static data member of a class 4982 // template shall be declared in the namespace of which the class 4983 // template is a member. Such a declaration may also be a 4984 // definition. If the declaration is not a definition, the 4985 // specialization may be defined later in the name- space in which 4986 // the explicit specialization was declared, or in a namespace 4987 // that encloses the one in which the explicit specialization was 4988 // declared. 4989 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4990 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4991 << Specialized; 4992 return true; 4993 } 4994 4995 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4996 if (S.getLangOpts().MicrosoftExt) { 4997 // Do not warn for class scope explicit specialization during 4998 // instantiation, warning was already emitted during pattern 4999 // semantic analysis. 5000 if (!S.ActiveTemplateInstantiations.size()) 5001 S.Diag(Loc, diag::ext_function_specialization_in_class) 5002 << Specialized; 5003 } else { 5004 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5005 << Specialized; 5006 return true; 5007 } 5008 } 5009 5010 if (S.CurContext->isRecord() && 5011 !S.CurContext->Equals(Specialized->getDeclContext())) { 5012 // Make sure that we're specializing in the right record context. 5013 // Otherwise, things can go horribly wrong. 5014 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5015 << Specialized; 5016 return true; 5017 } 5018 5019 // C++ [temp.class.spec]p6: 5020 // A class template partial specialization may be declared or redeclared 5021 // in any namespace scope in which its definition may be defined (14.5.1 5022 // and 14.5.2). 5023 bool ComplainedAboutScope = false; 5024 DeclContext *SpecializedContext 5025 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5026 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5027 if ((!PrevDecl || 5028 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5029 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5030 // C++ [temp.exp.spec]p2: 5031 // An explicit specialization shall be declared in the namespace of which 5032 // the template is a member, or, for member templates, in the namespace 5033 // of which the enclosing class or enclosing class template is a member. 5034 // An explicit specialization of a member function, member class or 5035 // static data member of a class template shall be declared in the 5036 // namespace of which the class template is a member. 5037 // 5038 // C++0x [temp.expl.spec]p2: 5039 // An explicit specialization shall be declared in a namespace enclosing 5040 // the specialized template. 5041 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5042 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 5043 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5044 assert(!IsCPlusPlus0xExtension && 5045 "DC encloses TU but isn't in enclosing namespace set"); 5046 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5047 << EntityKind << Specialized; 5048 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5049 int Diag; 5050 if (!IsCPlusPlus0xExtension) 5051 Diag = diag::err_template_spec_decl_out_of_scope; 5052 else if (!S.getLangOpts().CPlusPlus0x) 5053 Diag = diag::ext_template_spec_decl_out_of_scope; 5054 else 5055 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5056 S.Diag(Loc, Diag) 5057 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5058 } 5059 5060 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5061 ComplainedAboutScope = 5062 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x); 5063 } 5064 } 5065 5066 // Make sure that this redeclaration (or definition) occurs in an enclosing 5067 // namespace. 5068 // Note that HandleDeclarator() performs this check for explicit 5069 // specializations of function templates, static data members, and member 5070 // functions, so we skip the check here for those kinds of entities. 5071 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5072 // Should we refactor that check, so that it occurs later? 5073 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5074 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5075 isa<FunctionDecl>(Specialized))) { 5076 if (isa<TranslationUnitDecl>(SpecializedContext)) 5077 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5078 << EntityKind << Specialized; 5079 else if (isa<NamespaceDecl>(SpecializedContext)) 5080 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5081 << EntityKind << Specialized 5082 << cast<NamedDecl>(SpecializedContext); 5083 5084 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5085 } 5086 5087 // FIXME: check for specialization-after-instantiation errors and such. 5088 5089 return false; 5090 } 5091 5092 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5093 /// that checks non-type template partial specialization arguments. 5094 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5095 NonTypeTemplateParmDecl *Param, 5096 const TemplateArgument *Args, 5097 unsigned NumArgs) { 5098 for (unsigned I = 0; I != NumArgs; ++I) { 5099 if (Args[I].getKind() == TemplateArgument::Pack) { 5100 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5101 Args[I].pack_begin(), 5102 Args[I].pack_size())) 5103 return true; 5104 5105 continue; 5106 } 5107 5108 Expr *ArgExpr = Args[I].getAsExpr(); 5109 if (!ArgExpr) { 5110 continue; 5111 } 5112 5113 // We can have a pack expansion of any of the bullets below. 5114 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5115 ArgExpr = Expansion->getPattern(); 5116 5117 // Strip off any implicit casts we added as part of type checking. 5118 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5119 ArgExpr = ICE->getSubExpr(); 5120 5121 // C++ [temp.class.spec]p8: 5122 // A non-type argument is non-specialized if it is the name of a 5123 // non-type parameter. All other non-type arguments are 5124 // specialized. 5125 // 5126 // Below, we check the two conditions that only apply to 5127 // specialized non-type arguments, so skip any non-specialized 5128 // arguments. 5129 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5130 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5131 continue; 5132 5133 // C++ [temp.class.spec]p9: 5134 // Within the argument list of a class template partial 5135 // specialization, the following restrictions apply: 5136 // -- A partially specialized non-type argument expression 5137 // shall not involve a template parameter of the partial 5138 // specialization except when the argument expression is a 5139 // simple identifier. 5140 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5141 S.Diag(ArgExpr->getLocStart(), 5142 diag::err_dependent_non_type_arg_in_partial_spec) 5143 << ArgExpr->getSourceRange(); 5144 return true; 5145 } 5146 5147 // -- The type of a template parameter corresponding to a 5148 // specialized non-type argument shall not be dependent on a 5149 // parameter of the specialization. 5150 if (Param->getType()->isDependentType()) { 5151 S.Diag(ArgExpr->getLocStart(), 5152 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5153 << Param->getType() 5154 << ArgExpr->getSourceRange(); 5155 S.Diag(Param->getLocation(), diag::note_template_param_here); 5156 return true; 5157 } 5158 } 5159 5160 return false; 5161 } 5162 5163 /// \brief Check the non-type template arguments of a class template 5164 /// partial specialization according to C++ [temp.class.spec]p9. 5165 /// 5166 /// \param TemplateParams the template parameters of the primary class 5167 /// template. 5168 /// 5169 /// \param TemplateArgs the template arguments of the class template 5170 /// partial specialization. 5171 /// 5172 /// \returns true if there was an error, false otherwise. 5173 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5174 TemplateParameterList *TemplateParams, 5175 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5176 const TemplateArgument *ArgList = TemplateArgs.data(); 5177 5178 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5179 NonTypeTemplateParmDecl *Param 5180 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5181 if (!Param) 5182 continue; 5183 5184 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5185 &ArgList[I], 1)) 5186 return true; 5187 } 5188 5189 return false; 5190 } 5191 5192 DeclResult 5193 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5194 TagUseKind TUK, 5195 SourceLocation KWLoc, 5196 SourceLocation ModulePrivateLoc, 5197 CXXScopeSpec &SS, 5198 TemplateTy TemplateD, 5199 SourceLocation TemplateNameLoc, 5200 SourceLocation LAngleLoc, 5201 ASTTemplateArgsPtr TemplateArgsIn, 5202 SourceLocation RAngleLoc, 5203 AttributeList *Attr, 5204 MultiTemplateParamsArg TemplateParameterLists) { 5205 assert(TUK != TUK_Reference && "References are not specializations"); 5206 5207 // NOTE: KWLoc is the location of the tag keyword. This will instead 5208 // store the location of the outermost template keyword in the declaration. 5209 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5210 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5211 5212 // Find the class template we're specializing 5213 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5214 ClassTemplateDecl *ClassTemplate 5215 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5216 5217 if (!ClassTemplate) { 5218 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5219 << (Name.getAsTemplateDecl() && 5220 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5221 return true; 5222 } 5223 5224 bool isExplicitSpecialization = false; 5225 bool isPartialSpecialization = false; 5226 5227 // Check the validity of the template headers that introduce this 5228 // template. 5229 // FIXME: We probably shouldn't complain about these headers for 5230 // friend declarations. 5231 bool Invalid = false; 5232 TemplateParameterList *TemplateParams 5233 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5234 TemplateNameLoc, 5235 SS, 5236 TemplateParameterLists.data(), 5237 TemplateParameterLists.size(), 5238 TUK == TUK_Friend, 5239 isExplicitSpecialization, 5240 Invalid); 5241 if (Invalid) 5242 return true; 5243 5244 if (TemplateParams && TemplateParams->size() > 0) { 5245 isPartialSpecialization = true; 5246 5247 if (TUK == TUK_Friend) { 5248 Diag(KWLoc, diag::err_partial_specialization_friend) 5249 << SourceRange(LAngleLoc, RAngleLoc); 5250 return true; 5251 } 5252 5253 // C++ [temp.class.spec]p10: 5254 // The template parameter list of a specialization shall not 5255 // contain default template argument values. 5256 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5257 Decl *Param = TemplateParams->getParam(I); 5258 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5259 if (TTP->hasDefaultArgument()) { 5260 Diag(TTP->getDefaultArgumentLoc(), 5261 diag::err_default_arg_in_partial_spec); 5262 TTP->removeDefaultArgument(); 5263 } 5264 } else if (NonTypeTemplateParmDecl *NTTP 5265 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5266 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5267 Diag(NTTP->getDefaultArgumentLoc(), 5268 diag::err_default_arg_in_partial_spec) 5269 << DefArg->getSourceRange(); 5270 NTTP->removeDefaultArgument(); 5271 } 5272 } else { 5273 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5274 if (TTP->hasDefaultArgument()) { 5275 Diag(TTP->getDefaultArgument().getLocation(), 5276 diag::err_default_arg_in_partial_spec) 5277 << TTP->getDefaultArgument().getSourceRange(); 5278 TTP->removeDefaultArgument(); 5279 } 5280 } 5281 } 5282 } else if (TemplateParams) { 5283 if (TUK == TUK_Friend) 5284 Diag(KWLoc, diag::err_template_spec_friend) 5285 << FixItHint::CreateRemoval( 5286 SourceRange(TemplateParams->getTemplateLoc(), 5287 TemplateParams->getRAngleLoc())) 5288 << SourceRange(LAngleLoc, RAngleLoc); 5289 else 5290 isExplicitSpecialization = true; 5291 } else if (TUK != TUK_Friend) { 5292 Diag(KWLoc, diag::err_template_spec_needs_header) 5293 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5294 isExplicitSpecialization = true; 5295 } 5296 5297 // Check that the specialization uses the same tag kind as the 5298 // original template. 5299 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5300 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5301 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5302 Kind, TUK == TUK_Definition, KWLoc, 5303 *ClassTemplate->getIdentifier())) { 5304 Diag(KWLoc, diag::err_use_with_wrong_tag) 5305 << ClassTemplate 5306 << FixItHint::CreateReplacement(KWLoc, 5307 ClassTemplate->getTemplatedDecl()->getKindName()); 5308 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5309 diag::note_previous_use); 5310 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5311 } 5312 5313 // Translate the parser's template argument list in our AST format. 5314 TemplateArgumentListInfo TemplateArgs; 5315 TemplateArgs.setLAngleLoc(LAngleLoc); 5316 TemplateArgs.setRAngleLoc(RAngleLoc); 5317 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5318 5319 // Check for unexpanded parameter packs in any of the template arguments. 5320 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5321 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5322 UPPC_PartialSpecialization)) 5323 return true; 5324 5325 // Check that the template argument list is well-formed for this 5326 // template. 5327 SmallVector<TemplateArgument, 4> Converted; 5328 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5329 TemplateArgs, false, Converted)) 5330 return true; 5331 5332 // Find the class template (partial) specialization declaration that 5333 // corresponds to these arguments. 5334 if (isPartialSpecialization) { 5335 if (CheckClassTemplatePartialSpecializationArgs(*this, 5336 ClassTemplate->getTemplateParameters(), 5337 Converted)) 5338 return true; 5339 5340 bool InstantiationDependent; 5341 if (!Name.isDependent() && 5342 !TemplateSpecializationType::anyDependentTemplateArguments( 5343 TemplateArgs.getArgumentArray(), 5344 TemplateArgs.size(), 5345 InstantiationDependent)) { 5346 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5347 << ClassTemplate->getDeclName(); 5348 isPartialSpecialization = false; 5349 } 5350 } 5351 5352 void *InsertPos = 0; 5353 ClassTemplateSpecializationDecl *PrevDecl = 0; 5354 5355 if (isPartialSpecialization) 5356 // FIXME: Template parameter list matters, too 5357 PrevDecl 5358 = ClassTemplate->findPartialSpecialization(Converted.data(), 5359 Converted.size(), 5360 InsertPos); 5361 else 5362 PrevDecl 5363 = ClassTemplate->findSpecialization(Converted.data(), 5364 Converted.size(), InsertPos); 5365 5366 ClassTemplateSpecializationDecl *Specialization = 0; 5367 5368 // Check whether we can declare a class template specialization in 5369 // the current scope. 5370 if (TUK != TUK_Friend && 5371 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5372 TemplateNameLoc, 5373 isPartialSpecialization)) 5374 return true; 5375 5376 // The canonical type 5377 QualType CanonType; 5378 if (PrevDecl && 5379 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5380 TUK == TUK_Friend)) { 5381 // Since the only prior class template specialization with these 5382 // arguments was referenced but not declared, or we're only 5383 // referencing this specialization as a friend, reuse that 5384 // declaration node as our own, updating its source location and 5385 // the list of outer template parameters to reflect our new declaration. 5386 Specialization = PrevDecl; 5387 Specialization->setLocation(TemplateNameLoc); 5388 if (TemplateParameterLists.size() > 0) { 5389 Specialization->setTemplateParameterListsInfo(Context, 5390 TemplateParameterLists.size(), 5391 TemplateParameterLists.data()); 5392 } 5393 PrevDecl = 0; 5394 CanonType = Context.getTypeDeclType(Specialization); 5395 } else if (isPartialSpecialization) { 5396 // Build the canonical type that describes the converted template 5397 // arguments of the class template partial specialization. 5398 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5399 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5400 Converted.data(), 5401 Converted.size()); 5402 5403 if (Context.hasSameType(CanonType, 5404 ClassTemplate->getInjectedClassNameSpecialization())) { 5405 // C++ [temp.class.spec]p9b3: 5406 // 5407 // -- The argument list of the specialization shall not be identical 5408 // to the implicit argument list of the primary template. 5409 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5410 << (TUK == TUK_Definition) 5411 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5412 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5413 ClassTemplate->getIdentifier(), 5414 TemplateNameLoc, 5415 Attr, 5416 TemplateParams, 5417 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5418 TemplateParameterLists.size() - 1, 5419 TemplateParameterLists.data()); 5420 } 5421 5422 // Create a new class template partial specialization declaration node. 5423 ClassTemplatePartialSpecializationDecl *PrevPartial 5424 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5425 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5426 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5427 ClassTemplatePartialSpecializationDecl *Partial 5428 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5429 ClassTemplate->getDeclContext(), 5430 KWLoc, TemplateNameLoc, 5431 TemplateParams, 5432 ClassTemplate, 5433 Converted.data(), 5434 Converted.size(), 5435 TemplateArgs, 5436 CanonType, 5437 PrevPartial, 5438 SequenceNumber); 5439 SetNestedNameSpecifier(Partial, SS); 5440 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5441 Partial->setTemplateParameterListsInfo(Context, 5442 TemplateParameterLists.size() - 1, 5443 TemplateParameterLists.data()); 5444 } 5445 5446 if (!PrevPartial) 5447 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5448 Specialization = Partial; 5449 5450 // If we are providing an explicit specialization of a member class 5451 // template specialization, make a note of that. 5452 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5453 PrevPartial->setMemberSpecialization(); 5454 5455 // Check that all of the template parameters of the class template 5456 // partial specialization are deducible from the template 5457 // arguments. If not, this class template partial specialization 5458 // will never be used. 5459 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5460 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5461 TemplateParams->getDepth(), 5462 DeducibleParams); 5463 5464 if (!DeducibleParams.all()) { 5465 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5466 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5467 << (NumNonDeducible > 1) 5468 << SourceRange(TemplateNameLoc, RAngleLoc); 5469 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5470 if (!DeducibleParams[I]) { 5471 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5472 if (Param->getDeclName()) 5473 Diag(Param->getLocation(), 5474 diag::note_partial_spec_unused_parameter) 5475 << Param->getDeclName(); 5476 else 5477 Diag(Param->getLocation(), 5478 diag::note_partial_spec_unused_parameter) 5479 << "<anonymous>"; 5480 } 5481 } 5482 } 5483 } else { 5484 // Create a new class template specialization declaration node for 5485 // this explicit specialization or friend declaration. 5486 Specialization 5487 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5488 ClassTemplate->getDeclContext(), 5489 KWLoc, TemplateNameLoc, 5490 ClassTemplate, 5491 Converted.data(), 5492 Converted.size(), 5493 PrevDecl); 5494 SetNestedNameSpecifier(Specialization, SS); 5495 if (TemplateParameterLists.size() > 0) { 5496 Specialization->setTemplateParameterListsInfo(Context, 5497 TemplateParameterLists.size(), 5498 TemplateParameterLists.data()); 5499 } 5500 5501 if (!PrevDecl) 5502 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5503 5504 CanonType = Context.getTypeDeclType(Specialization); 5505 } 5506 5507 // C++ [temp.expl.spec]p6: 5508 // If a template, a member template or the member of a class template is 5509 // explicitly specialized then that specialization shall be declared 5510 // before the first use of that specialization that would cause an implicit 5511 // instantiation to take place, in every translation unit in which such a 5512 // use occurs; no diagnostic is required. 5513 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5514 bool Okay = false; 5515 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5516 // Is there any previous explicit specialization declaration? 5517 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5518 Okay = true; 5519 break; 5520 } 5521 } 5522 5523 if (!Okay) { 5524 SourceRange Range(TemplateNameLoc, RAngleLoc); 5525 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5526 << Context.getTypeDeclType(Specialization) << Range; 5527 5528 Diag(PrevDecl->getPointOfInstantiation(), 5529 diag::note_instantiation_required_here) 5530 << (PrevDecl->getTemplateSpecializationKind() 5531 != TSK_ImplicitInstantiation); 5532 return true; 5533 } 5534 } 5535 5536 // If this is not a friend, note that this is an explicit specialization. 5537 if (TUK != TUK_Friend) 5538 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5539 5540 // Check that this isn't a redefinition of this specialization. 5541 if (TUK == TUK_Definition) { 5542 if (RecordDecl *Def = Specialization->getDefinition()) { 5543 SourceRange Range(TemplateNameLoc, RAngleLoc); 5544 Diag(TemplateNameLoc, diag::err_redefinition) 5545 << Context.getTypeDeclType(Specialization) << Range; 5546 Diag(Def->getLocation(), diag::note_previous_definition); 5547 Specialization->setInvalidDecl(); 5548 return true; 5549 } 5550 } 5551 5552 if (Attr) 5553 ProcessDeclAttributeList(S, Specialization, Attr); 5554 5555 // Add alignment attributes if necessary; these attributes are checked when 5556 // the ASTContext lays out the structure. 5557 if (TUK == TUK_Definition) { 5558 AddAlignmentAttributesForRecord(Specialization); 5559 AddMsStructLayoutForRecord(Specialization); 5560 } 5561 5562 if (ModulePrivateLoc.isValid()) 5563 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5564 << (isPartialSpecialization? 1 : 0) 5565 << FixItHint::CreateRemoval(ModulePrivateLoc); 5566 5567 // Build the fully-sugared type for this class template 5568 // specialization as the user wrote in the specialization 5569 // itself. This means that we'll pretty-print the type retrieved 5570 // from the specialization's declaration the way that the user 5571 // actually wrote the specialization, rather than formatting the 5572 // name based on the "canonical" representation used to store the 5573 // template arguments in the specialization. 5574 TypeSourceInfo *WrittenTy 5575 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5576 TemplateArgs, CanonType); 5577 if (TUK != TUK_Friend) { 5578 Specialization->setTypeAsWritten(WrittenTy); 5579 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5580 } 5581 5582 // C++ [temp.expl.spec]p9: 5583 // A template explicit specialization is in the scope of the 5584 // namespace in which the template was defined. 5585 // 5586 // We actually implement this paragraph where we set the semantic 5587 // context (in the creation of the ClassTemplateSpecializationDecl), 5588 // but we also maintain the lexical context where the actual 5589 // definition occurs. 5590 Specialization->setLexicalDeclContext(CurContext); 5591 5592 // We may be starting the definition of this specialization. 5593 if (TUK == TUK_Definition) 5594 Specialization->startDefinition(); 5595 5596 if (TUK == TUK_Friend) { 5597 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5598 TemplateNameLoc, 5599 WrittenTy, 5600 /*FIXME:*/KWLoc); 5601 Friend->setAccess(AS_public); 5602 CurContext->addDecl(Friend); 5603 } else { 5604 // Add the specialization into its lexical context, so that it can 5605 // be seen when iterating through the list of declarations in that 5606 // context. However, specializations are not found by name lookup. 5607 CurContext->addDecl(Specialization); 5608 } 5609 return Specialization; 5610 } 5611 5612 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5613 MultiTemplateParamsArg TemplateParameterLists, 5614 Declarator &D) { 5615 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 5616 ActOnDocumentableDecl(NewDecl); 5617 return NewDecl; 5618 } 5619 5620 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5621 MultiTemplateParamsArg TemplateParameterLists, 5622 Declarator &D) { 5623 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5624 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5625 5626 if (FTI.hasPrototype) { 5627 // FIXME: Diagnose arguments without names in C. 5628 } 5629 5630 Scope *ParentScope = FnBodyScope->getParent(); 5631 5632 D.setFunctionDefinitionKind(FDK_Definition); 5633 Decl *DP = HandleDeclarator(ParentScope, D, 5634 TemplateParameterLists); 5635 if (FunctionTemplateDecl *FunctionTemplate 5636 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5637 return ActOnStartOfFunctionDef(FnBodyScope, 5638 FunctionTemplate->getTemplatedDecl()); 5639 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5640 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5641 return 0; 5642 } 5643 5644 /// \brief Strips various properties off an implicit instantiation 5645 /// that has just been explicitly specialized. 5646 static void StripImplicitInstantiation(NamedDecl *D) { 5647 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5648 D->dropAttrs(); 5649 5650 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5651 FD->setInlineSpecified(false); 5652 } 5653 } 5654 5655 /// \brief Compute the diagnostic location for an explicit instantiation 5656 // declaration or definition. 5657 static SourceLocation DiagLocForExplicitInstantiation( 5658 NamedDecl* D, SourceLocation PointOfInstantiation) { 5659 // Explicit instantiations following a specialization have no effect and 5660 // hence no PointOfInstantiation. In that case, walk decl backwards 5661 // until a valid name loc is found. 5662 SourceLocation PrevDiagLoc = PointOfInstantiation; 5663 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5664 Prev = Prev->getPreviousDecl()) { 5665 PrevDiagLoc = Prev->getLocation(); 5666 } 5667 assert(PrevDiagLoc.isValid() && 5668 "Explicit instantiation without point of instantiation?"); 5669 return PrevDiagLoc; 5670 } 5671 5672 /// \brief Diagnose cases where we have an explicit template specialization 5673 /// before/after an explicit template instantiation, producing diagnostics 5674 /// for those cases where they are required and determining whether the 5675 /// new specialization/instantiation will have any effect. 5676 /// 5677 /// \param NewLoc the location of the new explicit specialization or 5678 /// instantiation. 5679 /// 5680 /// \param NewTSK the kind of the new explicit specialization or instantiation. 5681 /// 5682 /// \param PrevDecl the previous declaration of the entity. 5683 /// 5684 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5685 /// 5686 /// \param PrevPointOfInstantiation if valid, indicates where the previus 5687 /// declaration was instantiated (either implicitly or explicitly). 5688 /// 5689 /// \param HasNoEffect will be set to true to indicate that the new 5690 /// specialization or instantiation has no effect and should be ignored. 5691 /// 5692 /// \returns true if there was an error that should prevent the introduction of 5693 /// the new declaration into the AST, false otherwise. 5694 bool 5695 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5696 TemplateSpecializationKind NewTSK, 5697 NamedDecl *PrevDecl, 5698 TemplateSpecializationKind PrevTSK, 5699 SourceLocation PrevPointOfInstantiation, 5700 bool &HasNoEffect) { 5701 HasNoEffect = false; 5702 5703 switch (NewTSK) { 5704 case TSK_Undeclared: 5705 case TSK_ImplicitInstantiation: 5706 llvm_unreachable("Don't check implicit instantiations here"); 5707 5708 case TSK_ExplicitSpecialization: 5709 switch (PrevTSK) { 5710 case TSK_Undeclared: 5711 case TSK_ExplicitSpecialization: 5712 // Okay, we're just specializing something that is either already 5713 // explicitly specialized or has merely been mentioned without any 5714 // instantiation. 5715 return false; 5716 5717 case TSK_ImplicitInstantiation: 5718 if (PrevPointOfInstantiation.isInvalid()) { 5719 // The declaration itself has not actually been instantiated, so it is 5720 // still okay to specialize it. 5721 StripImplicitInstantiation(PrevDecl); 5722 return false; 5723 } 5724 // Fall through 5725 5726 case TSK_ExplicitInstantiationDeclaration: 5727 case TSK_ExplicitInstantiationDefinition: 5728 assert((PrevTSK == TSK_ImplicitInstantiation || 5729 PrevPointOfInstantiation.isValid()) && 5730 "Explicit instantiation without point of instantiation?"); 5731 5732 // C++ [temp.expl.spec]p6: 5733 // If a template, a member template or the member of a class template 5734 // is explicitly specialized then that specialization shall be declared 5735 // before the first use of that specialization that would cause an 5736 // implicit instantiation to take place, in every translation unit in 5737 // which such a use occurs; no diagnostic is required. 5738 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5739 // Is there any previous explicit specialization declaration? 5740 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5741 return false; 5742 } 5743 5744 Diag(NewLoc, diag::err_specialization_after_instantiation) 5745 << PrevDecl; 5746 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5747 << (PrevTSK != TSK_ImplicitInstantiation); 5748 5749 return true; 5750 } 5751 5752 case TSK_ExplicitInstantiationDeclaration: 5753 switch (PrevTSK) { 5754 case TSK_ExplicitInstantiationDeclaration: 5755 // This explicit instantiation declaration is redundant (that's okay). 5756 HasNoEffect = true; 5757 return false; 5758 5759 case TSK_Undeclared: 5760 case TSK_ImplicitInstantiation: 5761 // We're explicitly instantiating something that may have already been 5762 // implicitly instantiated; that's fine. 5763 return false; 5764 5765 case TSK_ExplicitSpecialization: 5766 // C++0x [temp.explicit]p4: 5767 // For a given set of template parameters, if an explicit instantiation 5768 // of a template appears after a declaration of an explicit 5769 // specialization for that template, the explicit instantiation has no 5770 // effect. 5771 HasNoEffect = true; 5772 return false; 5773 5774 case TSK_ExplicitInstantiationDefinition: 5775 // C++0x [temp.explicit]p10: 5776 // If an entity is the subject of both an explicit instantiation 5777 // declaration and an explicit instantiation definition in the same 5778 // translation unit, the definition shall follow the declaration. 5779 Diag(NewLoc, 5780 diag::err_explicit_instantiation_declaration_after_definition); 5781 5782 // Explicit instantiations following a specialization have no effect and 5783 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5784 // until a valid name loc is found. 5785 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5786 diag::note_explicit_instantiation_definition_here); 5787 HasNoEffect = true; 5788 return false; 5789 } 5790 5791 case TSK_ExplicitInstantiationDefinition: 5792 switch (PrevTSK) { 5793 case TSK_Undeclared: 5794 case TSK_ImplicitInstantiation: 5795 // We're explicitly instantiating something that may have already been 5796 // implicitly instantiated; that's fine. 5797 return false; 5798 5799 case TSK_ExplicitSpecialization: 5800 // C++ DR 259, C++0x [temp.explicit]p4: 5801 // For a given set of template parameters, if an explicit 5802 // instantiation of a template appears after a declaration of 5803 // an explicit specialization for that template, the explicit 5804 // instantiation has no effect. 5805 // 5806 // In C++98/03 mode, we only give an extension warning here, because it 5807 // is not harmful to try to explicitly instantiate something that 5808 // has been explicitly specialized. 5809 Diag(NewLoc, getLangOpts().CPlusPlus0x ? 5810 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5811 diag::ext_explicit_instantiation_after_specialization) 5812 << PrevDecl; 5813 Diag(PrevDecl->getLocation(), 5814 diag::note_previous_template_specialization); 5815 HasNoEffect = true; 5816 return false; 5817 5818 case TSK_ExplicitInstantiationDeclaration: 5819 // We're explicity instantiating a definition for something for which we 5820 // were previously asked to suppress instantiations. That's fine. 5821 5822 // C++0x [temp.explicit]p4: 5823 // For a given set of template parameters, if an explicit instantiation 5824 // of a template appears after a declaration of an explicit 5825 // specialization for that template, the explicit instantiation has no 5826 // effect. 5827 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5828 // Is there any previous explicit specialization declaration? 5829 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5830 HasNoEffect = true; 5831 break; 5832 } 5833 } 5834 5835 return false; 5836 5837 case TSK_ExplicitInstantiationDefinition: 5838 // C++0x [temp.spec]p5: 5839 // For a given template and a given set of template-arguments, 5840 // - an explicit instantiation definition shall appear at most once 5841 // in a program, 5842 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5843 << PrevDecl; 5844 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5845 diag::note_previous_explicit_instantiation); 5846 HasNoEffect = true; 5847 return false; 5848 } 5849 } 5850 5851 llvm_unreachable("Missing specialization/instantiation case?"); 5852 } 5853 5854 /// \brief Perform semantic analysis for the given dependent function 5855 /// template specialization. 5856 /// 5857 /// The only possible way to get a dependent function template specialization 5858 /// is with a friend declaration, like so: 5859 /// 5860 /// \code 5861 /// template \<class T> void foo(T); 5862 /// template \<class T> class A { 5863 /// friend void foo<>(T); 5864 /// }; 5865 /// \endcode 5866 /// 5867 /// There really isn't any useful analysis we can do here, so we 5868 /// just store the information. 5869 bool 5870 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5871 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5872 LookupResult &Previous) { 5873 // Remove anything from Previous that isn't a function template in 5874 // the correct context. 5875 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5876 LookupResult::Filter F = Previous.makeFilter(); 5877 while (F.hasNext()) { 5878 NamedDecl *D = F.next()->getUnderlyingDecl(); 5879 if (!isa<FunctionTemplateDecl>(D) || 5880 !FDLookupContext->InEnclosingNamespaceSetOf( 5881 D->getDeclContext()->getRedeclContext())) 5882 F.erase(); 5883 } 5884 F.done(); 5885 5886 // Should this be diagnosed here? 5887 if (Previous.empty()) return true; 5888 5889 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5890 ExplicitTemplateArgs); 5891 return false; 5892 } 5893 5894 /// \brief Perform semantic analysis for the given function template 5895 /// specialization. 5896 /// 5897 /// This routine performs all of the semantic analysis required for an 5898 /// explicit function template specialization. On successful completion, 5899 /// the function declaration \p FD will become a function template 5900 /// specialization. 5901 /// 5902 /// \param FD the function declaration, which will be updated to become a 5903 /// function template specialization. 5904 /// 5905 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5906 /// if any. Note that this may be valid info even when 0 arguments are 5907 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5908 /// as it anyway contains info on the angle brackets locations. 5909 /// 5910 /// \param Previous the set of declarations that may be specialized by 5911 /// this function specialization. 5912 bool 5913 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5914 TemplateArgumentListInfo *ExplicitTemplateArgs, 5915 LookupResult &Previous) { 5916 // The set of function template specializations that could match this 5917 // explicit function template specialization. 5918 UnresolvedSet<8> Candidates; 5919 5920 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5921 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5922 I != E; ++I) { 5923 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5924 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5925 // Only consider templates found within the same semantic lookup scope as 5926 // FD. 5927 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5928 Ovl->getDeclContext()->getRedeclContext())) 5929 continue; 5930 5931 // C++ [temp.expl.spec]p11: 5932 // A trailing template-argument can be left unspecified in the 5933 // template-id naming an explicit function template specialization 5934 // provided it can be deduced from the function argument type. 5935 // Perform template argument deduction to determine whether we may be 5936 // specializing this template. 5937 // FIXME: It is somewhat wasteful to build 5938 TemplateDeductionInfo Info(Context, FD->getLocation()); 5939 FunctionDecl *Specialization = 0; 5940 if (TemplateDeductionResult TDK 5941 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5942 FD->getType(), 5943 Specialization, 5944 Info)) { 5945 // FIXME: Template argument deduction failed; record why it failed, so 5946 // that we can provide nifty diagnostics. 5947 (void)TDK; 5948 continue; 5949 } 5950 5951 // Record this candidate. 5952 Candidates.addDecl(Specialization, I.getAccess()); 5953 } 5954 } 5955 5956 // Find the most specialized function template. 5957 UnresolvedSetIterator Result 5958 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5959 TPOC_Other, 0, FD->getLocation(), 5960 PDiag(diag::err_function_template_spec_no_match) 5961 << FD->getDeclName(), 5962 PDiag(diag::err_function_template_spec_ambiguous) 5963 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5964 PDiag(diag::note_function_template_spec_matched)); 5965 if (Result == Candidates.end()) 5966 return true; 5967 5968 // Ignore access information; it doesn't figure into redeclaration checking. 5969 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5970 5971 FunctionTemplateSpecializationInfo *SpecInfo 5972 = Specialization->getTemplateSpecializationInfo(); 5973 assert(SpecInfo && "Function template specialization info missing?"); 5974 5975 // Note: do not overwrite location info if previous template 5976 // specialization kind was explicit. 5977 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5978 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5979 Specialization->setLocation(FD->getLocation()); 5980 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 5981 // function can differ from the template declaration with respect to 5982 // the constexpr specifier. 5983 Specialization->setConstexpr(FD->isConstexpr()); 5984 } 5985 5986 // FIXME: Check if the prior specialization has a point of instantiation. 5987 // If so, we have run afoul of . 5988 5989 // If this is a friend declaration, then we're not really declaring 5990 // an explicit specialization. 5991 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5992 5993 // Check the scope of this explicit specialization. 5994 if (!isFriend && 5995 CheckTemplateSpecializationScope(*this, 5996 Specialization->getPrimaryTemplate(), 5997 Specialization, FD->getLocation(), 5998 false)) 5999 return true; 6000 6001 // C++ [temp.expl.spec]p6: 6002 // If a template, a member template or the member of a class template is 6003 // explicitly specialized then that specialization shall be declared 6004 // before the first use of that specialization that would cause an implicit 6005 // instantiation to take place, in every translation unit in which such a 6006 // use occurs; no diagnostic is required. 6007 bool HasNoEffect = false; 6008 if (!isFriend && 6009 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6010 TSK_ExplicitSpecialization, 6011 Specialization, 6012 SpecInfo->getTemplateSpecializationKind(), 6013 SpecInfo->getPointOfInstantiation(), 6014 HasNoEffect)) 6015 return true; 6016 6017 // Mark the prior declaration as an explicit specialization, so that later 6018 // clients know that this is an explicit specialization. 6019 if (!isFriend) { 6020 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6021 MarkUnusedFileScopedDecl(Specialization); 6022 } 6023 6024 // Turn the given function declaration into a function template 6025 // specialization, with the template arguments from the previous 6026 // specialization. 6027 // Take copies of (semantic and syntactic) template argument lists. 6028 const TemplateArgumentList* TemplArgs = new (Context) 6029 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6030 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6031 TemplArgs, /*InsertPos=*/0, 6032 SpecInfo->getTemplateSpecializationKind(), 6033 ExplicitTemplateArgs); 6034 FD->setStorageClass(Specialization->getStorageClass()); 6035 6036 // The "previous declaration" for this function template specialization is 6037 // the prior function template specialization. 6038 Previous.clear(); 6039 Previous.addDecl(Specialization); 6040 return false; 6041 } 6042 6043 /// \brief Perform semantic analysis for the given non-template member 6044 /// specialization. 6045 /// 6046 /// This routine performs all of the semantic analysis required for an 6047 /// explicit member function specialization. On successful completion, 6048 /// the function declaration \p FD will become a member function 6049 /// specialization. 6050 /// 6051 /// \param Member the member declaration, which will be updated to become a 6052 /// specialization. 6053 /// 6054 /// \param Previous the set of declarations, one of which may be specialized 6055 /// by this function specialization; the set will be modified to contain the 6056 /// redeclared member. 6057 bool 6058 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6059 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6060 6061 // Try to find the member we are instantiating. 6062 NamedDecl *Instantiation = 0; 6063 NamedDecl *InstantiatedFrom = 0; 6064 MemberSpecializationInfo *MSInfo = 0; 6065 6066 if (Previous.empty()) { 6067 // Nowhere to look anyway. 6068 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6069 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6070 I != E; ++I) { 6071 NamedDecl *D = (*I)->getUnderlyingDecl(); 6072 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6073 if (Context.hasSameType(Function->getType(), Method->getType())) { 6074 Instantiation = Method; 6075 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6076 MSInfo = Method->getMemberSpecializationInfo(); 6077 break; 6078 } 6079 } 6080 } 6081 } else if (isa<VarDecl>(Member)) { 6082 VarDecl *PrevVar; 6083 if (Previous.isSingleResult() && 6084 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6085 if (PrevVar->isStaticDataMember()) { 6086 Instantiation = PrevVar; 6087 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6088 MSInfo = PrevVar->getMemberSpecializationInfo(); 6089 } 6090 } else if (isa<RecordDecl>(Member)) { 6091 CXXRecordDecl *PrevRecord; 6092 if (Previous.isSingleResult() && 6093 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6094 Instantiation = PrevRecord; 6095 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6096 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6097 } 6098 } else if (isa<EnumDecl>(Member)) { 6099 EnumDecl *PrevEnum; 6100 if (Previous.isSingleResult() && 6101 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6102 Instantiation = PrevEnum; 6103 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6104 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6105 } 6106 } 6107 6108 if (!Instantiation) { 6109 // There is no previous declaration that matches. Since member 6110 // specializations are always out-of-line, the caller will complain about 6111 // this mismatch later. 6112 return false; 6113 } 6114 6115 // If this is a friend, just bail out here before we start turning 6116 // things into explicit specializations. 6117 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6118 // Preserve instantiation information. 6119 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6120 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6121 cast<CXXMethodDecl>(InstantiatedFrom), 6122 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6123 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6124 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6125 cast<CXXRecordDecl>(InstantiatedFrom), 6126 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6127 } 6128 6129 Previous.clear(); 6130 Previous.addDecl(Instantiation); 6131 return false; 6132 } 6133 6134 // Make sure that this is a specialization of a member. 6135 if (!InstantiatedFrom) { 6136 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6137 << Member; 6138 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6139 return true; 6140 } 6141 6142 // C++ [temp.expl.spec]p6: 6143 // If a template, a member template or the member of a class template is 6144 // explicitly specialized then that specialization shall be declared 6145 // before the first use of that specialization that would cause an implicit 6146 // instantiation to take place, in every translation unit in which such a 6147 // use occurs; no diagnostic is required. 6148 assert(MSInfo && "Member specialization info missing?"); 6149 6150 bool HasNoEffect = false; 6151 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6152 TSK_ExplicitSpecialization, 6153 Instantiation, 6154 MSInfo->getTemplateSpecializationKind(), 6155 MSInfo->getPointOfInstantiation(), 6156 HasNoEffect)) 6157 return true; 6158 6159 // Check the scope of this explicit specialization. 6160 if (CheckTemplateSpecializationScope(*this, 6161 InstantiatedFrom, 6162 Instantiation, Member->getLocation(), 6163 false)) 6164 return true; 6165 6166 // Note that this is an explicit instantiation of a member. 6167 // the original declaration to note that it is an explicit specialization 6168 // (if it was previously an implicit instantiation). This latter step 6169 // makes bookkeeping easier. 6170 if (isa<FunctionDecl>(Member)) { 6171 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6172 if (InstantiationFunction->getTemplateSpecializationKind() == 6173 TSK_ImplicitInstantiation) { 6174 InstantiationFunction->setTemplateSpecializationKind( 6175 TSK_ExplicitSpecialization); 6176 InstantiationFunction->setLocation(Member->getLocation()); 6177 } 6178 6179 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6180 cast<CXXMethodDecl>(InstantiatedFrom), 6181 TSK_ExplicitSpecialization); 6182 MarkUnusedFileScopedDecl(InstantiationFunction); 6183 } else if (isa<VarDecl>(Member)) { 6184 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6185 if (InstantiationVar->getTemplateSpecializationKind() == 6186 TSK_ImplicitInstantiation) { 6187 InstantiationVar->setTemplateSpecializationKind( 6188 TSK_ExplicitSpecialization); 6189 InstantiationVar->setLocation(Member->getLocation()); 6190 } 6191 6192 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6193 cast<VarDecl>(InstantiatedFrom), 6194 TSK_ExplicitSpecialization); 6195 MarkUnusedFileScopedDecl(InstantiationVar); 6196 } else if (isa<CXXRecordDecl>(Member)) { 6197 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6198 if (InstantiationClass->getTemplateSpecializationKind() == 6199 TSK_ImplicitInstantiation) { 6200 InstantiationClass->setTemplateSpecializationKind( 6201 TSK_ExplicitSpecialization); 6202 InstantiationClass->setLocation(Member->getLocation()); 6203 } 6204 6205 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6206 cast<CXXRecordDecl>(InstantiatedFrom), 6207 TSK_ExplicitSpecialization); 6208 } else { 6209 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6210 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6211 if (InstantiationEnum->getTemplateSpecializationKind() == 6212 TSK_ImplicitInstantiation) { 6213 InstantiationEnum->setTemplateSpecializationKind( 6214 TSK_ExplicitSpecialization); 6215 InstantiationEnum->setLocation(Member->getLocation()); 6216 } 6217 6218 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6219 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6220 } 6221 6222 // Save the caller the trouble of having to figure out which declaration 6223 // this specialization matches. 6224 Previous.clear(); 6225 Previous.addDecl(Instantiation); 6226 return false; 6227 } 6228 6229 /// \brief Check the scope of an explicit instantiation. 6230 /// 6231 /// \returns true if a serious error occurs, false otherwise. 6232 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6233 SourceLocation InstLoc, 6234 bool WasQualifiedName) { 6235 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6236 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6237 6238 if (CurContext->isRecord()) { 6239 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6240 << D; 6241 return true; 6242 } 6243 6244 // C++11 [temp.explicit]p3: 6245 // An explicit instantiation shall appear in an enclosing namespace of its 6246 // template. If the name declared in the explicit instantiation is an 6247 // unqualified name, the explicit instantiation shall appear in the 6248 // namespace where its template is declared or, if that namespace is inline 6249 // (7.3.1), any namespace from its enclosing namespace set. 6250 // 6251 // This is DR275, which we do not retroactively apply to C++98/03. 6252 if (WasQualifiedName) { 6253 if (CurContext->Encloses(OrigContext)) 6254 return false; 6255 } else { 6256 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6257 return false; 6258 } 6259 6260 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6261 if (WasQualifiedName) 6262 S.Diag(InstLoc, 6263 S.getLangOpts().CPlusPlus0x? 6264 diag::err_explicit_instantiation_out_of_scope : 6265 diag::warn_explicit_instantiation_out_of_scope_0x) 6266 << D << NS; 6267 else 6268 S.Diag(InstLoc, 6269 S.getLangOpts().CPlusPlus0x? 6270 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6271 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6272 << D << NS; 6273 } else 6274 S.Diag(InstLoc, 6275 S.getLangOpts().CPlusPlus0x? 6276 diag::err_explicit_instantiation_must_be_global : 6277 diag::warn_explicit_instantiation_must_be_global_0x) 6278 << D; 6279 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6280 return false; 6281 } 6282 6283 /// \brief Determine whether the given scope specifier has a template-id in it. 6284 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6285 if (!SS.isSet()) 6286 return false; 6287 6288 // C++11 [temp.explicit]p3: 6289 // If the explicit instantiation is for a member function, a member class 6290 // or a static data member of a class template specialization, the name of 6291 // the class template specialization in the qualified-id for the member 6292 // name shall be a simple-template-id. 6293 // 6294 // C++98 has the same restriction, just worded differently. 6295 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6296 NNS; NNS = NNS->getPrefix()) 6297 if (const Type *T = NNS->getAsType()) 6298 if (isa<TemplateSpecializationType>(T)) 6299 return true; 6300 6301 return false; 6302 } 6303 6304 // Explicit instantiation of a class template specialization 6305 DeclResult 6306 Sema::ActOnExplicitInstantiation(Scope *S, 6307 SourceLocation ExternLoc, 6308 SourceLocation TemplateLoc, 6309 unsigned TagSpec, 6310 SourceLocation KWLoc, 6311 const CXXScopeSpec &SS, 6312 TemplateTy TemplateD, 6313 SourceLocation TemplateNameLoc, 6314 SourceLocation LAngleLoc, 6315 ASTTemplateArgsPtr TemplateArgsIn, 6316 SourceLocation RAngleLoc, 6317 AttributeList *Attr) { 6318 // Find the class template we're specializing 6319 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6320 ClassTemplateDecl *ClassTemplate 6321 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6322 6323 // Check that the specialization uses the same tag kind as the 6324 // original template. 6325 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6326 assert(Kind != TTK_Enum && 6327 "Invalid enum tag in class template explicit instantiation!"); 6328 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6329 Kind, /*isDefinition*/false, KWLoc, 6330 *ClassTemplate->getIdentifier())) { 6331 Diag(KWLoc, diag::err_use_with_wrong_tag) 6332 << ClassTemplate 6333 << FixItHint::CreateReplacement(KWLoc, 6334 ClassTemplate->getTemplatedDecl()->getKindName()); 6335 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6336 diag::note_previous_use); 6337 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6338 } 6339 6340 // C++0x [temp.explicit]p2: 6341 // There are two forms of explicit instantiation: an explicit instantiation 6342 // definition and an explicit instantiation declaration. An explicit 6343 // instantiation declaration begins with the extern keyword. [...] 6344 TemplateSpecializationKind TSK 6345 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6346 : TSK_ExplicitInstantiationDeclaration; 6347 6348 // Translate the parser's template argument list in our AST format. 6349 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6350 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6351 6352 // Check that the template argument list is well-formed for this 6353 // template. 6354 SmallVector<TemplateArgument, 4> Converted; 6355 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6356 TemplateArgs, false, Converted)) 6357 return true; 6358 6359 // Find the class template specialization declaration that 6360 // corresponds to these arguments. 6361 void *InsertPos = 0; 6362 ClassTemplateSpecializationDecl *PrevDecl 6363 = ClassTemplate->findSpecialization(Converted.data(), 6364 Converted.size(), InsertPos); 6365 6366 TemplateSpecializationKind PrevDecl_TSK 6367 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6368 6369 // C++0x [temp.explicit]p2: 6370 // [...] An explicit instantiation shall appear in an enclosing 6371 // namespace of its template. [...] 6372 // 6373 // This is C++ DR 275. 6374 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6375 SS.isSet())) 6376 return true; 6377 6378 ClassTemplateSpecializationDecl *Specialization = 0; 6379 6380 bool HasNoEffect = false; 6381 if (PrevDecl) { 6382 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6383 PrevDecl, PrevDecl_TSK, 6384 PrevDecl->getPointOfInstantiation(), 6385 HasNoEffect)) 6386 return PrevDecl; 6387 6388 // Even though HasNoEffect == true means that this explicit instantiation 6389 // has no effect on semantics, we go on to put its syntax in the AST. 6390 6391 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6392 PrevDecl_TSK == TSK_Undeclared) { 6393 // Since the only prior class template specialization with these 6394 // arguments was referenced but not declared, reuse that 6395 // declaration node as our own, updating the source location 6396 // for the template name to reflect our new declaration. 6397 // (Other source locations will be updated later.) 6398 Specialization = PrevDecl; 6399 Specialization->setLocation(TemplateNameLoc); 6400 PrevDecl = 0; 6401 } 6402 } 6403 6404 if (!Specialization) { 6405 // Create a new class template specialization declaration node for 6406 // this explicit specialization. 6407 Specialization 6408 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6409 ClassTemplate->getDeclContext(), 6410 KWLoc, TemplateNameLoc, 6411 ClassTemplate, 6412 Converted.data(), 6413 Converted.size(), 6414 PrevDecl); 6415 SetNestedNameSpecifier(Specialization, SS); 6416 6417 if (!HasNoEffect && !PrevDecl) { 6418 // Insert the new specialization. 6419 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6420 } 6421 } 6422 6423 // Build the fully-sugared type for this explicit instantiation as 6424 // the user wrote in the explicit instantiation itself. This means 6425 // that we'll pretty-print the type retrieved from the 6426 // specialization's declaration the way that the user actually wrote 6427 // the explicit instantiation, rather than formatting the name based 6428 // on the "canonical" representation used to store the template 6429 // arguments in the specialization. 6430 TypeSourceInfo *WrittenTy 6431 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6432 TemplateArgs, 6433 Context.getTypeDeclType(Specialization)); 6434 Specialization->setTypeAsWritten(WrittenTy); 6435 6436 // Set source locations for keywords. 6437 Specialization->setExternLoc(ExternLoc); 6438 Specialization->setTemplateKeywordLoc(TemplateLoc); 6439 6440 if (Attr) 6441 ProcessDeclAttributeList(S, Specialization, Attr); 6442 6443 // Add the explicit instantiation into its lexical context. However, 6444 // since explicit instantiations are never found by name lookup, we 6445 // just put it into the declaration context directly. 6446 Specialization->setLexicalDeclContext(CurContext); 6447 CurContext->addDecl(Specialization); 6448 6449 // Syntax is now OK, so return if it has no other effect on semantics. 6450 if (HasNoEffect) { 6451 // Set the template specialization kind. 6452 Specialization->setTemplateSpecializationKind(TSK); 6453 return Specialization; 6454 } 6455 6456 // C++ [temp.explicit]p3: 6457 // A definition of a class template or class member template 6458 // shall be in scope at the point of the explicit instantiation of 6459 // the class template or class member template. 6460 // 6461 // This check comes when we actually try to perform the 6462 // instantiation. 6463 ClassTemplateSpecializationDecl *Def 6464 = cast_or_null<ClassTemplateSpecializationDecl>( 6465 Specialization->getDefinition()); 6466 if (!Def) 6467 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6468 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6469 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6470 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6471 } 6472 6473 // Instantiate the members of this class template specialization. 6474 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6475 Specialization->getDefinition()); 6476 if (Def) { 6477 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6478 6479 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6480 // TSK_ExplicitInstantiationDefinition 6481 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6482 TSK == TSK_ExplicitInstantiationDefinition) 6483 Def->setTemplateSpecializationKind(TSK); 6484 6485 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6486 } 6487 6488 // Set the template specialization kind. 6489 Specialization->setTemplateSpecializationKind(TSK); 6490 return Specialization; 6491 } 6492 6493 // Explicit instantiation of a member class of a class template. 6494 DeclResult 6495 Sema::ActOnExplicitInstantiation(Scope *S, 6496 SourceLocation ExternLoc, 6497 SourceLocation TemplateLoc, 6498 unsigned TagSpec, 6499 SourceLocation KWLoc, 6500 CXXScopeSpec &SS, 6501 IdentifierInfo *Name, 6502 SourceLocation NameLoc, 6503 AttributeList *Attr) { 6504 6505 bool Owned = false; 6506 bool IsDependent = false; 6507 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6508 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6509 /*ModulePrivateLoc=*/SourceLocation(), 6510 MultiTemplateParamsArg(), Owned, IsDependent, 6511 SourceLocation(), false, TypeResult()); 6512 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6513 6514 if (!TagD) 6515 return true; 6516 6517 TagDecl *Tag = cast<TagDecl>(TagD); 6518 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6519 6520 if (Tag->isInvalidDecl()) 6521 return true; 6522 6523 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6524 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6525 if (!Pattern) { 6526 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6527 << Context.getTypeDeclType(Record); 6528 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6529 return true; 6530 } 6531 6532 // C++0x [temp.explicit]p2: 6533 // If the explicit instantiation is for a class or member class, the 6534 // elaborated-type-specifier in the declaration shall include a 6535 // simple-template-id. 6536 // 6537 // C++98 has the same restriction, just worded differently. 6538 if (!ScopeSpecifierHasTemplateId(SS)) 6539 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6540 << Record << SS.getRange(); 6541 6542 // C++0x [temp.explicit]p2: 6543 // There are two forms of explicit instantiation: an explicit instantiation 6544 // definition and an explicit instantiation declaration. An explicit 6545 // instantiation declaration begins with the extern keyword. [...] 6546 TemplateSpecializationKind TSK 6547 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6548 : TSK_ExplicitInstantiationDeclaration; 6549 6550 // C++0x [temp.explicit]p2: 6551 // [...] An explicit instantiation shall appear in an enclosing 6552 // namespace of its template. [...] 6553 // 6554 // This is C++ DR 275. 6555 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6556 6557 // Verify that it is okay to explicitly instantiate here. 6558 CXXRecordDecl *PrevDecl 6559 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6560 if (!PrevDecl && Record->getDefinition()) 6561 PrevDecl = Record; 6562 if (PrevDecl) { 6563 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6564 bool HasNoEffect = false; 6565 assert(MSInfo && "No member specialization information?"); 6566 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6567 PrevDecl, 6568 MSInfo->getTemplateSpecializationKind(), 6569 MSInfo->getPointOfInstantiation(), 6570 HasNoEffect)) 6571 return true; 6572 if (HasNoEffect) 6573 return TagD; 6574 } 6575 6576 CXXRecordDecl *RecordDef 6577 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6578 if (!RecordDef) { 6579 // C++ [temp.explicit]p3: 6580 // A definition of a member class of a class template shall be in scope 6581 // at the point of an explicit instantiation of the member class. 6582 CXXRecordDecl *Def 6583 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6584 if (!Def) { 6585 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6586 << 0 << Record->getDeclName() << Record->getDeclContext(); 6587 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6588 << Pattern; 6589 return true; 6590 } else { 6591 if (InstantiateClass(NameLoc, Record, Def, 6592 getTemplateInstantiationArgs(Record), 6593 TSK)) 6594 return true; 6595 6596 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6597 if (!RecordDef) 6598 return true; 6599 } 6600 } 6601 6602 // Instantiate all of the members of the class. 6603 InstantiateClassMembers(NameLoc, RecordDef, 6604 getTemplateInstantiationArgs(Record), TSK); 6605 6606 if (TSK == TSK_ExplicitInstantiationDefinition) 6607 MarkVTableUsed(NameLoc, RecordDef, true); 6608 6609 // FIXME: We don't have any representation for explicit instantiations of 6610 // member classes. Such a representation is not needed for compilation, but it 6611 // should be available for clients that want to see all of the declarations in 6612 // the source code. 6613 return TagD; 6614 } 6615 6616 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6617 SourceLocation ExternLoc, 6618 SourceLocation TemplateLoc, 6619 Declarator &D) { 6620 // Explicit instantiations always require a name. 6621 // TODO: check if/when DNInfo should replace Name. 6622 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6623 DeclarationName Name = NameInfo.getName(); 6624 if (!Name) { 6625 if (!D.isInvalidType()) 6626 Diag(D.getDeclSpec().getLocStart(), 6627 diag::err_explicit_instantiation_requires_name) 6628 << D.getDeclSpec().getSourceRange() 6629 << D.getSourceRange(); 6630 6631 return true; 6632 } 6633 6634 // The scope passed in may not be a decl scope. Zip up the scope tree until 6635 // we find one that is. 6636 while ((S->getFlags() & Scope::DeclScope) == 0 || 6637 (S->getFlags() & Scope::TemplateParamScope) != 0) 6638 S = S->getParent(); 6639 6640 // Determine the type of the declaration. 6641 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6642 QualType R = T->getType(); 6643 if (R.isNull()) 6644 return true; 6645 6646 // C++ [dcl.stc]p1: 6647 // A storage-class-specifier shall not be specified in [...] an explicit 6648 // instantiation (14.7.2) directive. 6649 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6650 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6651 << Name; 6652 return true; 6653 } else if (D.getDeclSpec().getStorageClassSpec() 6654 != DeclSpec::SCS_unspecified) { 6655 // Complain about then remove the storage class specifier. 6656 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6657 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6658 6659 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6660 } 6661 6662 // C++0x [temp.explicit]p1: 6663 // [...] An explicit instantiation of a function template shall not use the 6664 // inline or constexpr specifiers. 6665 // Presumably, this also applies to member functions of class templates as 6666 // well. 6667 if (D.getDeclSpec().isInlineSpecified()) 6668 Diag(D.getDeclSpec().getInlineSpecLoc(), 6669 getLangOpts().CPlusPlus0x ? 6670 diag::err_explicit_instantiation_inline : 6671 diag::warn_explicit_instantiation_inline_0x) 6672 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6673 if (D.getDeclSpec().isConstexprSpecified()) 6674 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6675 // not already specified. 6676 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6677 diag::err_explicit_instantiation_constexpr); 6678 6679 // C++0x [temp.explicit]p2: 6680 // There are two forms of explicit instantiation: an explicit instantiation 6681 // definition and an explicit instantiation declaration. An explicit 6682 // instantiation declaration begins with the extern keyword. [...] 6683 TemplateSpecializationKind TSK 6684 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6685 : TSK_ExplicitInstantiationDeclaration; 6686 6687 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6688 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6689 6690 if (!R->isFunctionType()) { 6691 // C++ [temp.explicit]p1: 6692 // A [...] static data member of a class template can be explicitly 6693 // instantiated from the member definition associated with its class 6694 // template. 6695 if (Previous.isAmbiguous()) 6696 return true; 6697 6698 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6699 if (!Prev || !Prev->isStaticDataMember()) { 6700 // We expect to see a data data member here. 6701 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6702 << Name; 6703 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6704 P != PEnd; ++P) 6705 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6706 return true; 6707 } 6708 6709 if (!Prev->getInstantiatedFromStaticDataMember()) { 6710 // FIXME: Check for explicit specialization? 6711 Diag(D.getIdentifierLoc(), 6712 diag::err_explicit_instantiation_data_member_not_instantiated) 6713 << Prev; 6714 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6715 // FIXME: Can we provide a note showing where this was declared? 6716 return true; 6717 } 6718 6719 // C++0x [temp.explicit]p2: 6720 // If the explicit instantiation is for a member function, a member class 6721 // or a static data member of a class template specialization, the name of 6722 // the class template specialization in the qualified-id for the member 6723 // name shall be a simple-template-id. 6724 // 6725 // C++98 has the same restriction, just worded differently. 6726 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6727 Diag(D.getIdentifierLoc(), 6728 diag::ext_explicit_instantiation_without_qualified_id) 6729 << Prev << D.getCXXScopeSpec().getRange(); 6730 6731 // Check the scope of this explicit instantiation. 6732 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6733 6734 // Verify that it is okay to explicitly instantiate here. 6735 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6736 assert(MSInfo && "Missing static data member specialization info?"); 6737 bool HasNoEffect = false; 6738 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6739 MSInfo->getTemplateSpecializationKind(), 6740 MSInfo->getPointOfInstantiation(), 6741 HasNoEffect)) 6742 return true; 6743 if (HasNoEffect) 6744 return (Decl*) 0; 6745 6746 // Instantiate static data member. 6747 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6748 if (TSK == TSK_ExplicitInstantiationDefinition) 6749 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6750 6751 // FIXME: Create an ExplicitInstantiation node? 6752 return (Decl*) 0; 6753 } 6754 6755 // If the declarator is a template-id, translate the parser's template 6756 // argument list into our AST format. 6757 bool HasExplicitTemplateArgs = false; 6758 TemplateArgumentListInfo TemplateArgs; 6759 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6760 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6761 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6762 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6763 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6764 TemplateId->NumArgs); 6765 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6766 HasExplicitTemplateArgs = true; 6767 } 6768 6769 // C++ [temp.explicit]p1: 6770 // A [...] function [...] can be explicitly instantiated from its template. 6771 // A member function [...] of a class template can be explicitly 6772 // instantiated from the member definition associated with its class 6773 // template. 6774 UnresolvedSet<8> Matches; 6775 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6776 P != PEnd; ++P) { 6777 NamedDecl *Prev = *P; 6778 if (!HasExplicitTemplateArgs) { 6779 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6780 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6781 Matches.clear(); 6782 6783 Matches.addDecl(Method, P.getAccess()); 6784 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6785 break; 6786 } 6787 } 6788 } 6789 6790 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6791 if (!FunTmpl) 6792 continue; 6793 6794 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6795 FunctionDecl *Specialization = 0; 6796 if (TemplateDeductionResult TDK 6797 = DeduceTemplateArguments(FunTmpl, 6798 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6799 R, Specialization, Info)) { 6800 // FIXME: Keep track of almost-matches? 6801 (void)TDK; 6802 continue; 6803 } 6804 6805 Matches.addDecl(Specialization, P.getAccess()); 6806 } 6807 6808 // Find the most specialized function template specialization. 6809 UnresolvedSetIterator Result 6810 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6811 D.getIdentifierLoc(), 6812 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6813 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6814 PDiag(diag::note_explicit_instantiation_candidate)); 6815 6816 if (Result == Matches.end()) 6817 return true; 6818 6819 // Ignore access control bits, we don't need them for redeclaration checking. 6820 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6821 6822 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6823 Diag(D.getIdentifierLoc(), 6824 diag::err_explicit_instantiation_member_function_not_instantiated) 6825 << Specialization 6826 << (Specialization->getTemplateSpecializationKind() == 6827 TSK_ExplicitSpecialization); 6828 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6829 return true; 6830 } 6831 6832 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6833 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6834 PrevDecl = Specialization; 6835 6836 if (PrevDecl) { 6837 bool HasNoEffect = false; 6838 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6839 PrevDecl, 6840 PrevDecl->getTemplateSpecializationKind(), 6841 PrevDecl->getPointOfInstantiation(), 6842 HasNoEffect)) 6843 return true; 6844 6845 // FIXME: We may still want to build some representation of this 6846 // explicit specialization. 6847 if (HasNoEffect) 6848 return (Decl*) 0; 6849 } 6850 6851 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6852 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6853 if (Attr) 6854 ProcessDeclAttributeList(S, Specialization, Attr); 6855 6856 if (TSK == TSK_ExplicitInstantiationDefinition) 6857 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6858 6859 // C++0x [temp.explicit]p2: 6860 // If the explicit instantiation is for a member function, a member class 6861 // or a static data member of a class template specialization, the name of 6862 // the class template specialization in the qualified-id for the member 6863 // name shall be a simple-template-id. 6864 // 6865 // C++98 has the same restriction, just worded differently. 6866 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6867 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6868 D.getCXXScopeSpec().isSet() && 6869 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6870 Diag(D.getIdentifierLoc(), 6871 diag::ext_explicit_instantiation_without_qualified_id) 6872 << Specialization << D.getCXXScopeSpec().getRange(); 6873 6874 CheckExplicitInstantiationScope(*this, 6875 FunTmpl? (NamedDecl *)FunTmpl 6876 : Specialization->getInstantiatedFromMemberFunction(), 6877 D.getIdentifierLoc(), 6878 D.getCXXScopeSpec().isSet()); 6879 6880 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6881 return (Decl*) 0; 6882 } 6883 6884 TypeResult 6885 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6886 const CXXScopeSpec &SS, IdentifierInfo *Name, 6887 SourceLocation TagLoc, SourceLocation NameLoc) { 6888 // This has to hold, because SS is expected to be defined. 6889 assert(Name && "Expected a name in a dependent tag"); 6890 6891 NestedNameSpecifier *NNS 6892 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6893 if (!NNS) 6894 return true; 6895 6896 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6897 6898 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6899 Diag(NameLoc, diag::err_dependent_tag_decl) 6900 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6901 return true; 6902 } 6903 6904 // Create the resulting type. 6905 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6906 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6907 6908 // Create type-source location information for this type. 6909 TypeLocBuilder TLB; 6910 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6911 TL.setElaboratedKeywordLoc(TagLoc); 6912 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6913 TL.setNameLoc(NameLoc); 6914 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6915 } 6916 6917 TypeResult 6918 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6919 const CXXScopeSpec &SS, const IdentifierInfo &II, 6920 SourceLocation IdLoc) { 6921 if (SS.isInvalid()) 6922 return true; 6923 6924 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6925 Diag(TypenameLoc, 6926 getLangOpts().CPlusPlus0x ? 6927 diag::warn_cxx98_compat_typename_outside_of_template : 6928 diag::ext_typename_outside_of_template) 6929 << FixItHint::CreateRemoval(TypenameLoc); 6930 6931 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6932 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6933 TypenameLoc, QualifierLoc, II, IdLoc); 6934 if (T.isNull()) 6935 return true; 6936 6937 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6938 if (isa<DependentNameType>(T)) { 6939 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6940 TL.setElaboratedKeywordLoc(TypenameLoc); 6941 TL.setQualifierLoc(QualifierLoc); 6942 TL.setNameLoc(IdLoc); 6943 } else { 6944 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6945 TL.setElaboratedKeywordLoc(TypenameLoc); 6946 TL.setQualifierLoc(QualifierLoc); 6947 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6948 } 6949 6950 return CreateParsedType(T, TSI); 6951 } 6952 6953 TypeResult 6954 Sema::ActOnTypenameType(Scope *S, 6955 SourceLocation TypenameLoc, 6956 const CXXScopeSpec &SS, 6957 SourceLocation TemplateKWLoc, 6958 TemplateTy TemplateIn, 6959 SourceLocation TemplateNameLoc, 6960 SourceLocation LAngleLoc, 6961 ASTTemplateArgsPtr TemplateArgsIn, 6962 SourceLocation RAngleLoc) { 6963 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6964 Diag(TypenameLoc, 6965 getLangOpts().CPlusPlus0x ? 6966 diag::warn_cxx98_compat_typename_outside_of_template : 6967 diag::ext_typename_outside_of_template) 6968 << FixItHint::CreateRemoval(TypenameLoc); 6969 6970 // Translate the parser's template argument list in our AST format. 6971 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6972 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6973 6974 TemplateName Template = TemplateIn.get(); 6975 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6976 // Construct a dependent template specialization type. 6977 assert(DTN && "dependent template has non-dependent name?"); 6978 assert(DTN->getQualifier() 6979 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6980 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6981 DTN->getQualifier(), 6982 DTN->getIdentifier(), 6983 TemplateArgs); 6984 6985 // Create source-location information for this type. 6986 TypeLocBuilder Builder; 6987 DependentTemplateSpecializationTypeLoc SpecTL 6988 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6989 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 6990 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6991 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6992 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6993 SpecTL.setLAngleLoc(LAngleLoc); 6994 SpecTL.setRAngleLoc(RAngleLoc); 6995 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6996 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6997 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6998 } 6999 7000 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7001 if (T.isNull()) 7002 return true; 7003 7004 // Provide source-location information for the template specialization type. 7005 TypeLocBuilder Builder; 7006 TemplateSpecializationTypeLoc SpecTL 7007 = Builder.push<TemplateSpecializationTypeLoc>(T); 7008 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7009 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7010 SpecTL.setLAngleLoc(LAngleLoc); 7011 SpecTL.setRAngleLoc(RAngleLoc); 7012 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7013 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7014 7015 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7016 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7017 TL.setElaboratedKeywordLoc(TypenameLoc); 7018 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7019 7020 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7021 return CreateParsedType(T, TSI); 7022 } 7023 7024 7025 /// Determine whether this failed name lookup should be treated as being 7026 /// disabled by a usage of std::enable_if. 7027 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7028 SourceRange &CondRange) { 7029 // We must be looking for a ::type... 7030 if (!II.isStr("type")) 7031 return false; 7032 7033 // ... within an explicitly-written template specialization... 7034 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7035 return false; 7036 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7037 TemplateSpecializationTypeLoc *EnableIfTSTLoc = 7038 dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy); 7039 if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0) 7040 return false; 7041 const TemplateSpecializationType *EnableIfTST = 7042 cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr()); 7043 7044 // ... which names a complete class template declaration... 7045 const TemplateDecl *EnableIfDecl = 7046 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7047 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7048 return false; 7049 7050 // ... called "enable_if". 7051 const IdentifierInfo *EnableIfII = 7052 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7053 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7054 return false; 7055 7056 // Assume the first template argument is the condition. 7057 CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange(); 7058 return true; 7059 } 7060 7061 /// \brief Build the type that describes a C++ typename specifier, 7062 /// e.g., "typename T::type". 7063 QualType 7064 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7065 SourceLocation KeywordLoc, 7066 NestedNameSpecifierLoc QualifierLoc, 7067 const IdentifierInfo &II, 7068 SourceLocation IILoc) { 7069 CXXScopeSpec SS; 7070 SS.Adopt(QualifierLoc); 7071 7072 DeclContext *Ctx = computeDeclContext(SS); 7073 if (!Ctx) { 7074 // If the nested-name-specifier is dependent and couldn't be 7075 // resolved to a type, build a typename type. 7076 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7077 return Context.getDependentNameType(Keyword, 7078 QualifierLoc.getNestedNameSpecifier(), 7079 &II); 7080 } 7081 7082 // If the nested-name-specifier refers to the current instantiation, 7083 // the "typename" keyword itself is superfluous. In C++03, the 7084 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7085 // allows such extraneous "typename" keywords, and we retroactively 7086 // apply this DR to C++03 code with only a warning. In any case we continue. 7087 7088 if (RequireCompleteDeclContext(SS, Ctx)) 7089 return QualType(); 7090 7091 DeclarationName Name(&II); 7092 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7093 LookupQualifiedName(Result, Ctx); 7094 unsigned DiagID = 0; 7095 Decl *Referenced = 0; 7096 switch (Result.getResultKind()) { 7097 case LookupResult::NotFound: { 7098 // If we're looking up 'type' within a template named 'enable_if', produce 7099 // a more specific diagnostic. 7100 SourceRange CondRange; 7101 if (isEnableIf(QualifierLoc, II, CondRange)) { 7102 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7103 << Ctx << CondRange; 7104 return QualType(); 7105 } 7106 7107 DiagID = diag::err_typename_nested_not_found; 7108 break; 7109 } 7110 7111 case LookupResult::FoundUnresolvedValue: { 7112 // We found a using declaration that is a value. Most likely, the using 7113 // declaration itself is meant to have the 'typename' keyword. 7114 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7115 IILoc); 7116 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7117 << Name << Ctx << FullRange; 7118 if (UnresolvedUsingValueDecl *Using 7119 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7120 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7121 Diag(Loc, diag::note_using_value_decl_missing_typename) 7122 << FixItHint::CreateInsertion(Loc, "typename "); 7123 } 7124 } 7125 // Fall through to create a dependent typename type, from which we can recover 7126 // better. 7127 7128 case LookupResult::NotFoundInCurrentInstantiation: 7129 // Okay, it's a member of an unknown instantiation. 7130 return Context.getDependentNameType(Keyword, 7131 QualifierLoc.getNestedNameSpecifier(), 7132 &II); 7133 7134 case LookupResult::Found: 7135 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7136 // We found a type. Build an ElaboratedType, since the 7137 // typename-specifier was just sugar. 7138 return Context.getElaboratedType(ETK_Typename, 7139 QualifierLoc.getNestedNameSpecifier(), 7140 Context.getTypeDeclType(Type)); 7141 } 7142 7143 DiagID = diag::err_typename_nested_not_type; 7144 Referenced = Result.getFoundDecl(); 7145 break; 7146 7147 case LookupResult::FoundOverloaded: 7148 DiagID = diag::err_typename_nested_not_type; 7149 Referenced = *Result.begin(); 7150 break; 7151 7152 case LookupResult::Ambiguous: 7153 return QualType(); 7154 } 7155 7156 // If we get here, it's because name lookup did not find a 7157 // type. Emit an appropriate diagnostic and return an error. 7158 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7159 IILoc); 7160 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7161 if (Referenced) 7162 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7163 << Name; 7164 return QualType(); 7165 } 7166 7167 namespace { 7168 // See Sema::RebuildTypeInCurrentInstantiation 7169 class CurrentInstantiationRebuilder 7170 : public TreeTransform<CurrentInstantiationRebuilder> { 7171 SourceLocation Loc; 7172 DeclarationName Entity; 7173 7174 public: 7175 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7176 7177 CurrentInstantiationRebuilder(Sema &SemaRef, 7178 SourceLocation Loc, 7179 DeclarationName Entity) 7180 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7181 Loc(Loc), Entity(Entity) { } 7182 7183 /// \brief Determine whether the given type \p T has already been 7184 /// transformed. 7185 /// 7186 /// For the purposes of type reconstruction, a type has already been 7187 /// transformed if it is NULL or if it is not dependent. 7188 bool AlreadyTransformed(QualType T) { 7189 return T.isNull() || !T->isDependentType(); 7190 } 7191 7192 /// \brief Returns the location of the entity whose type is being 7193 /// rebuilt. 7194 SourceLocation getBaseLocation() { return Loc; } 7195 7196 /// \brief Returns the name of the entity whose type is being rebuilt. 7197 DeclarationName getBaseEntity() { return Entity; } 7198 7199 /// \brief Sets the "base" location and entity when that 7200 /// information is known based on another transformation. 7201 void setBase(SourceLocation Loc, DeclarationName Entity) { 7202 this->Loc = Loc; 7203 this->Entity = Entity; 7204 } 7205 7206 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7207 // Lambdas never need to be transformed. 7208 return E; 7209 } 7210 }; 7211 } 7212 7213 /// \brief Rebuilds a type within the context of the current instantiation. 7214 /// 7215 /// The type \p T is part of the type of an out-of-line member definition of 7216 /// a class template (or class template partial specialization) that was parsed 7217 /// and constructed before we entered the scope of the class template (or 7218 /// partial specialization thereof). This routine will rebuild that type now 7219 /// that we have entered the declarator's scope, which may produce different 7220 /// canonical types, e.g., 7221 /// 7222 /// \code 7223 /// template<typename T> 7224 /// struct X { 7225 /// typedef T* pointer; 7226 /// pointer data(); 7227 /// }; 7228 /// 7229 /// template<typename T> 7230 /// typename X<T>::pointer X<T>::data() { ... } 7231 /// \endcode 7232 /// 7233 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7234 /// since we do not know that we can look into X<T> when we parsed the type. 7235 /// This function will rebuild the type, performing the lookup of "pointer" 7236 /// in X<T> and returning an ElaboratedType whose canonical type is the same 7237 /// as the canonical type of T*, allowing the return types of the out-of-line 7238 /// definition and the declaration to match. 7239 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7240 SourceLocation Loc, 7241 DeclarationName Name) { 7242 if (!T || !T->getType()->isDependentType()) 7243 return T; 7244 7245 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7246 return Rebuilder.TransformType(T); 7247 } 7248 7249 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7250 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7251 DeclarationName()); 7252 return Rebuilder.TransformExpr(E); 7253 } 7254 7255 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7256 if (SS.isInvalid()) 7257 return true; 7258 7259 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7260 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7261 DeclarationName()); 7262 NestedNameSpecifierLoc Rebuilt 7263 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7264 if (!Rebuilt) 7265 return true; 7266 7267 SS.Adopt(Rebuilt); 7268 return false; 7269 } 7270 7271 /// \brief Rebuild the template parameters now that we know we're in a current 7272 /// instantiation. 7273 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7274 TemplateParameterList *Params) { 7275 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7276 Decl *Param = Params->getParam(I); 7277 7278 // There is nothing to rebuild in a type parameter. 7279 if (isa<TemplateTypeParmDecl>(Param)) 7280 continue; 7281 7282 // Rebuild the template parameter list of a template template parameter. 7283 if (TemplateTemplateParmDecl *TTP 7284 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7285 if (RebuildTemplateParamsInCurrentInstantiation( 7286 TTP->getTemplateParameters())) 7287 return true; 7288 7289 continue; 7290 } 7291 7292 // Rebuild the type of a non-type template parameter. 7293 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7294 TypeSourceInfo *NewTSI 7295 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7296 NTTP->getLocation(), 7297 NTTP->getDeclName()); 7298 if (!NewTSI) 7299 return true; 7300 7301 if (NewTSI != NTTP->getTypeSourceInfo()) { 7302 NTTP->setTypeSourceInfo(NewTSI); 7303 NTTP->setType(NewTSI->getType()); 7304 } 7305 } 7306 7307 return false; 7308 } 7309 7310 /// \brief Produces a formatted string that describes the binding of 7311 /// template parameters to template arguments. 7312 std::string 7313 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7314 const TemplateArgumentList &Args) { 7315 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7316 } 7317 7318 std::string 7319 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7320 const TemplateArgument *Args, 7321 unsigned NumArgs) { 7322 SmallString<128> Str; 7323 llvm::raw_svector_ostream Out(Str); 7324 7325 if (!Params || Params->size() == 0 || NumArgs == 0) 7326 return std::string(); 7327 7328 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7329 if (I >= NumArgs) 7330 break; 7331 7332 if (I == 0) 7333 Out << "[with "; 7334 else 7335 Out << ", "; 7336 7337 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7338 Out << Id->getName(); 7339 } else { 7340 Out << '$' << I; 7341 } 7342 7343 Out << " = "; 7344 Args[I].print(getPrintingPolicy(), Out); 7345 } 7346 7347 Out << ']'; 7348 return Out.str(); 7349 } 7350 7351 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7352 if (!FD) 7353 return; 7354 FD->setLateTemplateParsed(Flag); 7355 } 7356 7357 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7358 DeclContext *DC = CurContext; 7359 7360 while (DC) { 7361 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7362 const FunctionDecl *FD = RD->isLocalClass(); 7363 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7364 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7365 return false; 7366 7367 DC = DC->getParent(); 7368 } 7369 return false; 7370 } 7371