Home | History | Annotate | Download | only in AST
      1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr constant evaluator.
     11 //
     12 // Constant expression evaluation produces four main results:
     13 //
     14 //  * A success/failure flag indicating whether constant folding was successful.
     15 //    This is the 'bool' return value used by most of the code in this file. A
     16 //    'false' return value indicates that constant folding has failed, and any
     17 //    appropriate diagnostic has already been produced.
     18 //
     19 //  * An evaluated result, valid only if constant folding has not failed.
     20 //
     21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
     22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
     23 //    where it is possible to determine the evaluated result regardless.
     24 //
     25 //  * A set of notes indicating why the evaluation was not a constant expression
     26 //    (under the C++11 rules only, at the moment), or, if folding failed too,
     27 //    why the expression could not be folded.
     28 //
     29 // If we are checking for a potential constant expression, failure to constant
     30 // fold a potential constant sub-expression will be indicated by a 'false'
     31 // return value (the expression could not be folded) and no diagnostic (the
     32 // expression is not necessarily non-constant).
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "clang/AST/APValue.h"
     37 #include "clang/AST/ASTContext.h"
     38 #include "clang/AST/CharUnits.h"
     39 #include "clang/AST/RecordLayout.h"
     40 #include "clang/AST/StmtVisitor.h"
     41 #include "clang/AST/TypeLoc.h"
     42 #include "clang/AST/ASTDiagnostic.h"
     43 #include "clang/AST/Expr.h"
     44 #include "clang/Basic/Builtins.h"
     45 #include "clang/Basic/TargetInfo.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include <cstring>
     48 #include <functional>
     49 
     50 using namespace clang;
     51 using llvm::APSInt;
     52 using llvm::APFloat;
     53 
     54 static bool IsGlobalLValue(APValue::LValueBase B);
     55 
     56 namespace {
     57   struct LValue;
     58   struct CallStackFrame;
     59   struct EvalInfo;
     60 
     61   static QualType getType(APValue::LValueBase B) {
     62     if (!B) return QualType();
     63     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
     64       return D->getType();
     65     return B.get<const Expr*>()->getType();
     66   }
     67 
     68   /// Get an LValue path entry, which is known to not be an array index, as a
     69   /// field or base class.
     70   static
     71   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
     72     APValue::BaseOrMemberType Value;
     73     Value.setFromOpaqueValue(E.BaseOrMember);
     74     return Value;
     75   }
     76 
     77   /// Get an LValue path entry, which is known to not be an array index, as a
     78   /// field declaration.
     79   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
     80     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
     81   }
     82   /// Get an LValue path entry, which is known to not be an array index, as a
     83   /// base class declaration.
     84   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
     85     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
     86   }
     87   /// Determine whether this LValue path entry for a base class names a virtual
     88   /// base class.
     89   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
     90     return getAsBaseOrMember(E).getInt();
     91   }
     92 
     93   /// Find the path length and type of the most-derived subobject in the given
     94   /// path, and find the size of the containing array, if any.
     95   static
     96   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
     97                                     ArrayRef<APValue::LValuePathEntry> Path,
     98                                     uint64_t &ArraySize, QualType &Type) {
     99     unsigned MostDerivedLength = 0;
    100     Type = Base;
    101     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
    102       if (Type->isArrayType()) {
    103         const ConstantArrayType *CAT =
    104           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
    105         Type = CAT->getElementType();
    106         ArraySize = CAT->getSize().getZExtValue();
    107         MostDerivedLength = I + 1;
    108       } else if (Type->isAnyComplexType()) {
    109         const ComplexType *CT = Type->castAs<ComplexType>();
    110         Type = CT->getElementType();
    111         ArraySize = 2;
    112         MostDerivedLength = I + 1;
    113       } else if (const FieldDecl *FD = getAsField(Path[I])) {
    114         Type = FD->getType();
    115         ArraySize = 0;
    116         MostDerivedLength = I + 1;
    117       } else {
    118         // Path[I] describes a base class.
    119         ArraySize = 0;
    120       }
    121     }
    122     return MostDerivedLength;
    123   }
    124 
    125   // The order of this enum is important for diagnostics.
    126   enum CheckSubobjectKind {
    127     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
    128     CSK_This, CSK_Real, CSK_Imag
    129   };
    130 
    131   /// A path from a glvalue to a subobject of that glvalue.
    132   struct SubobjectDesignator {
    133     /// True if the subobject was named in a manner not supported by C++11. Such
    134     /// lvalues can still be folded, but they are not core constant expressions
    135     /// and we cannot perform lvalue-to-rvalue conversions on them.
    136     bool Invalid : 1;
    137 
    138     /// Is this a pointer one past the end of an object?
    139     bool IsOnePastTheEnd : 1;
    140 
    141     /// The length of the path to the most-derived object of which this is a
    142     /// subobject.
    143     unsigned MostDerivedPathLength : 30;
    144 
    145     /// The size of the array of which the most-derived object is an element, or
    146     /// 0 if the most-derived object is not an array element.
    147     uint64_t MostDerivedArraySize;
    148 
    149     /// The type of the most derived object referred to by this address.
    150     QualType MostDerivedType;
    151 
    152     typedef APValue::LValuePathEntry PathEntry;
    153 
    154     /// The entries on the path from the glvalue to the designated subobject.
    155     SmallVector<PathEntry, 8> Entries;
    156 
    157     SubobjectDesignator() : Invalid(true) {}
    158 
    159     explicit SubobjectDesignator(QualType T)
    160       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
    161         MostDerivedArraySize(0), MostDerivedType(T) {}
    162 
    163     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
    164       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
    165         MostDerivedPathLength(0), MostDerivedArraySize(0) {
    166       if (!Invalid) {
    167         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
    168         ArrayRef<PathEntry> VEntries = V.getLValuePath();
    169         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
    170         if (V.getLValueBase())
    171           MostDerivedPathLength =
    172               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
    173                                        V.getLValuePath(), MostDerivedArraySize,
    174                                        MostDerivedType);
    175       }
    176     }
    177 
    178     void setInvalid() {
    179       Invalid = true;
    180       Entries.clear();
    181     }
    182 
    183     /// Determine whether this is a one-past-the-end pointer.
    184     bool isOnePastTheEnd() const {
    185       if (IsOnePastTheEnd)
    186         return true;
    187       if (MostDerivedArraySize &&
    188           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
    189         return true;
    190       return false;
    191     }
    192 
    193     /// Check that this refers to a valid subobject.
    194     bool isValidSubobject() const {
    195       if (Invalid)
    196         return false;
    197       return !isOnePastTheEnd();
    198     }
    199     /// Check that this refers to a valid subobject, and if not, produce a
    200     /// relevant diagnostic and set the designator as invalid.
    201     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
    202 
    203     /// Update this designator to refer to the first element within this array.
    204     void addArrayUnchecked(const ConstantArrayType *CAT) {
    205       PathEntry Entry;
    206       Entry.ArrayIndex = 0;
    207       Entries.push_back(Entry);
    208 
    209       // This is a most-derived object.
    210       MostDerivedType = CAT->getElementType();
    211       MostDerivedArraySize = CAT->getSize().getZExtValue();
    212       MostDerivedPathLength = Entries.size();
    213     }
    214     /// Update this designator to refer to the given base or member of this
    215     /// object.
    216     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
    217       PathEntry Entry;
    218       APValue::BaseOrMemberType Value(D, Virtual);
    219       Entry.BaseOrMember = Value.getOpaqueValue();
    220       Entries.push_back(Entry);
    221 
    222       // If this isn't a base class, it's a new most-derived object.
    223       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
    224         MostDerivedType = FD->getType();
    225         MostDerivedArraySize = 0;
    226         MostDerivedPathLength = Entries.size();
    227       }
    228     }
    229     /// Update this designator to refer to the given complex component.
    230     void addComplexUnchecked(QualType EltTy, bool Imag) {
    231       PathEntry Entry;
    232       Entry.ArrayIndex = Imag;
    233       Entries.push_back(Entry);
    234 
    235       // This is technically a most-derived object, though in practice this
    236       // is unlikely to matter.
    237       MostDerivedType = EltTy;
    238       MostDerivedArraySize = 2;
    239       MostDerivedPathLength = Entries.size();
    240     }
    241     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
    242     /// Add N to the address of this subobject.
    243     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    244       if (Invalid) return;
    245       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
    246         Entries.back().ArrayIndex += N;
    247         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
    248           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
    249           setInvalid();
    250         }
    251         return;
    252       }
    253       // [expr.add]p4: For the purposes of these operators, a pointer to a
    254       // nonarray object behaves the same as a pointer to the first element of
    255       // an array of length one with the type of the object as its element type.
    256       if (IsOnePastTheEnd && N == (uint64_t)-1)
    257         IsOnePastTheEnd = false;
    258       else if (!IsOnePastTheEnd && N == 1)
    259         IsOnePastTheEnd = true;
    260       else if (N != 0) {
    261         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
    262         setInvalid();
    263       }
    264     }
    265   };
    266 
    267   /// A stack frame in the constexpr call stack.
    268   struct CallStackFrame {
    269     EvalInfo &Info;
    270 
    271     /// Parent - The caller of this stack frame.
    272     CallStackFrame *Caller;
    273 
    274     /// CallLoc - The location of the call expression for this call.
    275     SourceLocation CallLoc;
    276 
    277     /// Callee - The function which was called.
    278     const FunctionDecl *Callee;
    279 
    280     /// Index - The call index of this call.
    281     unsigned Index;
    282 
    283     /// This - The binding for the this pointer in this call, if any.
    284     const LValue *This;
    285 
    286     /// ParmBindings - Parameter bindings for this function call, indexed by
    287     /// parameters' function scope indices.
    288     const APValue *Arguments;
    289 
    290     // Note that we intentionally use std::map here so that references to
    291     // values are stable.
    292     typedef std::map<const Expr*, APValue> MapTy;
    293     typedef MapTy::const_iterator temp_iterator;
    294     /// Temporaries - Temporary lvalues materialized within this stack frame.
    295     MapTy Temporaries;
    296 
    297     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    298                    const FunctionDecl *Callee, const LValue *This,
    299                    const APValue *Arguments);
    300     ~CallStackFrame();
    301   };
    302 
    303   /// A partial diagnostic which we might know in advance that we are not going
    304   /// to emit.
    305   class OptionalDiagnostic {
    306     PartialDiagnostic *Diag;
    307 
    308   public:
    309     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
    310 
    311     template<typename T>
    312     OptionalDiagnostic &operator<<(const T &v) {
    313       if (Diag)
    314         *Diag << v;
    315       return *this;
    316     }
    317 
    318     OptionalDiagnostic &operator<<(const APSInt &I) {
    319       if (Diag) {
    320         llvm::SmallVector<char, 32> Buffer;
    321         I.toString(Buffer);
    322         *Diag << StringRef(Buffer.data(), Buffer.size());
    323       }
    324       return *this;
    325     }
    326 
    327     OptionalDiagnostic &operator<<(const APFloat &F) {
    328       if (Diag) {
    329         llvm::SmallVector<char, 32> Buffer;
    330         F.toString(Buffer);
    331         *Diag << StringRef(Buffer.data(), Buffer.size());
    332       }
    333       return *this;
    334     }
    335   };
    336 
    337   /// EvalInfo - This is a private struct used by the evaluator to capture
    338   /// information about a subexpression as it is folded.  It retains information
    339   /// about the AST context, but also maintains information about the folded
    340   /// expression.
    341   ///
    342   /// If an expression could be evaluated, it is still possible it is not a C
    343   /// "integer constant expression" or constant expression.  If not, this struct
    344   /// captures information about how and why not.
    345   ///
    346   /// One bit of information passed *into* the request for constant folding
    347   /// indicates whether the subexpression is "evaluated" or not according to C
    348   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
    349   /// evaluate the expression regardless of what the RHS is, but C only allows
    350   /// certain things in certain situations.
    351   struct EvalInfo {
    352     ASTContext &Ctx;
    353 
    354     /// EvalStatus - Contains information about the evaluation.
    355     Expr::EvalStatus &EvalStatus;
    356 
    357     /// CurrentCall - The top of the constexpr call stack.
    358     CallStackFrame *CurrentCall;
    359 
    360     /// CallStackDepth - The number of calls in the call stack right now.
    361     unsigned CallStackDepth;
    362 
    363     /// NextCallIndex - The next call index to assign.
    364     unsigned NextCallIndex;
    365 
    366     /// BottomFrame - The frame in which evaluation started. This must be
    367     /// initialized after CurrentCall and CallStackDepth.
    368     CallStackFrame BottomFrame;
    369 
    370     /// EvaluatingDecl - This is the declaration whose initializer is being
    371     /// evaluated, if any.
    372     const VarDecl *EvaluatingDecl;
    373 
    374     /// EvaluatingDeclValue - This is the value being constructed for the
    375     /// declaration whose initializer is being evaluated, if any.
    376     APValue *EvaluatingDeclValue;
    377 
    378     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
    379     /// notes attached to it will also be stored, otherwise they will not be.
    380     bool HasActiveDiagnostic;
    381 
    382     /// CheckingPotentialConstantExpression - Are we checking whether the
    383     /// expression is a potential constant expression? If so, some diagnostics
    384     /// are suppressed.
    385     bool CheckingPotentialConstantExpression;
    386 
    387     EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
    388       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
    389         CallStackDepth(0), NextCallIndex(1),
    390         BottomFrame(*this, SourceLocation(), 0, 0, 0),
    391         EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
    392         CheckingPotentialConstantExpression(false) {}
    393 
    394     void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
    395       EvaluatingDecl = VD;
    396       EvaluatingDeclValue = &Value;
    397     }
    398 
    399     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
    400 
    401     bool CheckCallLimit(SourceLocation Loc) {
    402       // Don't perform any constexpr calls (other than the call we're checking)
    403       // when checking a potential constant expression.
    404       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
    405         return false;
    406       if (NextCallIndex == 0) {
    407         // NextCallIndex has wrapped around.
    408         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
    409         return false;
    410       }
    411       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
    412         return true;
    413       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
    414         << getLangOpts().ConstexprCallDepth;
    415       return false;
    416     }
    417 
    418     CallStackFrame *getCallFrame(unsigned CallIndex) {
    419       assert(CallIndex && "no call index in getCallFrame");
    420       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
    421       // be null in this loop.
    422       CallStackFrame *Frame = CurrentCall;
    423       while (Frame->Index > CallIndex)
    424         Frame = Frame->Caller;
    425       return (Frame->Index == CallIndex) ? Frame : 0;
    426     }
    427 
    428   private:
    429     /// Add a diagnostic to the diagnostics list.
    430     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
    431       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
    432       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
    433       return EvalStatus.Diag->back().second;
    434     }
    435 
    436     /// Add notes containing a call stack to the current point of evaluation.
    437     void addCallStack(unsigned Limit);
    438 
    439   public:
    440     /// Diagnose that the evaluation cannot be folded.
    441     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
    442                               = diag::note_invalid_subexpr_in_const_expr,
    443                             unsigned ExtraNotes = 0) {
    444       // If we have a prior diagnostic, it will be noting that the expression
    445       // isn't a constant expression. This diagnostic is more important.
    446       // FIXME: We might want to show both diagnostics to the user.
    447       if (EvalStatus.Diag) {
    448         unsigned CallStackNotes = CallStackDepth - 1;
    449         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
    450         if (Limit)
    451           CallStackNotes = std::min(CallStackNotes, Limit + 1);
    452         if (CheckingPotentialConstantExpression)
    453           CallStackNotes = 0;
    454 
    455         HasActiveDiagnostic = true;
    456         EvalStatus.Diag->clear();
    457         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
    458         addDiag(Loc, DiagId);
    459         if (!CheckingPotentialConstantExpression)
    460           addCallStack(Limit);
    461         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
    462       }
    463       HasActiveDiagnostic = false;
    464       return OptionalDiagnostic();
    465     }
    466 
    467     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
    468                               = diag::note_invalid_subexpr_in_const_expr,
    469                             unsigned ExtraNotes = 0) {
    470       if (EvalStatus.Diag)
    471         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
    472       HasActiveDiagnostic = false;
    473       return OptionalDiagnostic();
    474     }
    475 
    476     /// Diagnose that the evaluation does not produce a C++11 core constant
    477     /// expression.
    478     template<typename LocArg>
    479     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
    480                                  = diag::note_invalid_subexpr_in_const_expr,
    481                                unsigned ExtraNotes = 0) {
    482       // Don't override a previous diagnostic.
    483       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
    484         HasActiveDiagnostic = false;
    485         return OptionalDiagnostic();
    486       }
    487       return Diag(Loc, DiagId, ExtraNotes);
    488     }
    489 
    490     /// Add a note to a prior diagnostic.
    491     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
    492       if (!HasActiveDiagnostic)
    493         return OptionalDiagnostic();
    494       return OptionalDiagnostic(&addDiag(Loc, DiagId));
    495     }
    496 
    497     /// Add a stack of notes to a prior diagnostic.
    498     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
    499       if (HasActiveDiagnostic) {
    500         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
    501                                 Diags.begin(), Diags.end());
    502       }
    503     }
    504 
    505     /// Should we continue evaluation as much as possible after encountering a
    506     /// construct which can't be folded?
    507     bool keepEvaluatingAfterFailure() {
    508       return CheckingPotentialConstantExpression &&
    509              EvalStatus.Diag && EvalStatus.Diag->empty();
    510     }
    511   };
    512 
    513   /// Object used to treat all foldable expressions as constant expressions.
    514   struct FoldConstant {
    515     bool Enabled;
    516 
    517     explicit FoldConstant(EvalInfo &Info)
    518       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
    519                 !Info.EvalStatus.HasSideEffects) {
    520     }
    521     // Treat the value we've computed since this object was created as constant.
    522     void Fold(EvalInfo &Info) {
    523       if (Enabled && !Info.EvalStatus.Diag->empty() &&
    524           !Info.EvalStatus.HasSideEffects)
    525         Info.EvalStatus.Diag->clear();
    526     }
    527   };
    528 
    529   /// RAII object used to suppress diagnostics and side-effects from a
    530   /// speculative evaluation.
    531   class SpeculativeEvaluationRAII {
    532     EvalInfo &Info;
    533     Expr::EvalStatus Old;
    534 
    535   public:
    536     SpeculativeEvaluationRAII(EvalInfo &Info,
    537                               llvm::SmallVectorImpl<PartialDiagnosticAt>
    538                                 *NewDiag = 0)
    539       : Info(Info), Old(Info.EvalStatus) {
    540       Info.EvalStatus.Diag = NewDiag;
    541     }
    542     ~SpeculativeEvaluationRAII() {
    543       Info.EvalStatus = Old;
    544     }
    545   };
    546 }
    547 
    548 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
    549                                          CheckSubobjectKind CSK) {
    550   if (Invalid)
    551     return false;
    552   if (isOnePastTheEnd()) {
    553     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
    554       << CSK;
    555     setInvalid();
    556     return false;
    557   }
    558   return true;
    559 }
    560 
    561 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
    562                                                     const Expr *E, uint64_t N) {
    563   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
    564     Info.CCEDiag(E, diag::note_constexpr_array_index)
    565       << static_cast<int>(N) << /*array*/ 0
    566       << static_cast<unsigned>(MostDerivedArraySize);
    567   else
    568     Info.CCEDiag(E, diag::note_constexpr_array_index)
    569       << static_cast<int>(N) << /*non-array*/ 1;
    570   setInvalid();
    571 }
    572 
    573 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    574                                const FunctionDecl *Callee, const LValue *This,
    575                                const APValue *Arguments)
    576     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
    577       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
    578   Info.CurrentCall = this;
    579   ++Info.CallStackDepth;
    580 }
    581 
    582 CallStackFrame::~CallStackFrame() {
    583   assert(Info.CurrentCall == this && "calls retired out of order");
    584   --Info.CallStackDepth;
    585   Info.CurrentCall = Caller;
    586 }
    587 
    588 /// Produce a string describing the given constexpr call.
    589 static void describeCall(CallStackFrame *Frame, llvm::raw_ostream &Out) {
    590   unsigned ArgIndex = 0;
    591   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
    592                       !isa<CXXConstructorDecl>(Frame->Callee) &&
    593                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
    594 
    595   if (!IsMemberCall)
    596     Out << *Frame->Callee << '(';
    597 
    598   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
    599        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
    600     if (ArgIndex > (unsigned)IsMemberCall)
    601       Out << ", ";
    602 
    603     const ParmVarDecl *Param = *I;
    604     const APValue &Arg = Frame->Arguments[ArgIndex];
    605     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
    606 
    607     if (ArgIndex == 0 && IsMemberCall)
    608       Out << "->" << *Frame->Callee << '(';
    609   }
    610 
    611   Out << ')';
    612 }
    613 
    614 void EvalInfo::addCallStack(unsigned Limit) {
    615   // Determine which calls to skip, if any.
    616   unsigned ActiveCalls = CallStackDepth - 1;
    617   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
    618   if (Limit && Limit < ActiveCalls) {
    619     SkipStart = Limit / 2 + Limit % 2;
    620     SkipEnd = ActiveCalls - Limit / 2;
    621   }
    622 
    623   // Walk the call stack and add the diagnostics.
    624   unsigned CallIdx = 0;
    625   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
    626        Frame = Frame->Caller, ++CallIdx) {
    627     // Skip this call?
    628     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
    629       if (CallIdx == SkipStart) {
    630         // Note that we're skipping calls.
    631         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
    632           << unsigned(ActiveCalls - Limit);
    633       }
    634       continue;
    635     }
    636 
    637     llvm::SmallVector<char, 128> Buffer;
    638     llvm::raw_svector_ostream Out(Buffer);
    639     describeCall(Frame, Out);
    640     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
    641   }
    642 }
    643 
    644 namespace {
    645   struct ComplexValue {
    646   private:
    647     bool IsInt;
    648 
    649   public:
    650     APSInt IntReal, IntImag;
    651     APFloat FloatReal, FloatImag;
    652 
    653     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
    654 
    655     void makeComplexFloat() { IsInt = false; }
    656     bool isComplexFloat() const { return !IsInt; }
    657     APFloat &getComplexFloatReal() { return FloatReal; }
    658     APFloat &getComplexFloatImag() { return FloatImag; }
    659 
    660     void makeComplexInt() { IsInt = true; }
    661     bool isComplexInt() const { return IsInt; }
    662     APSInt &getComplexIntReal() { return IntReal; }
    663     APSInt &getComplexIntImag() { return IntImag; }
    664 
    665     void moveInto(APValue &v) const {
    666       if (isComplexFloat())
    667         v = APValue(FloatReal, FloatImag);
    668       else
    669         v = APValue(IntReal, IntImag);
    670     }
    671     void setFrom(const APValue &v) {
    672       assert(v.isComplexFloat() || v.isComplexInt());
    673       if (v.isComplexFloat()) {
    674         makeComplexFloat();
    675         FloatReal = v.getComplexFloatReal();
    676         FloatImag = v.getComplexFloatImag();
    677       } else {
    678         makeComplexInt();
    679         IntReal = v.getComplexIntReal();
    680         IntImag = v.getComplexIntImag();
    681       }
    682     }
    683   };
    684 
    685   struct LValue {
    686     APValue::LValueBase Base;
    687     CharUnits Offset;
    688     unsigned CallIndex;
    689     SubobjectDesignator Designator;
    690 
    691     const APValue::LValueBase getLValueBase() const { return Base; }
    692     CharUnits &getLValueOffset() { return Offset; }
    693     const CharUnits &getLValueOffset() const { return Offset; }
    694     unsigned getLValueCallIndex() const { return CallIndex; }
    695     SubobjectDesignator &getLValueDesignator() { return Designator; }
    696     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
    697 
    698     void moveInto(APValue &V) const {
    699       if (Designator.Invalid)
    700         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
    701       else
    702         V = APValue(Base, Offset, Designator.Entries,
    703                     Designator.IsOnePastTheEnd, CallIndex);
    704     }
    705     void setFrom(ASTContext &Ctx, const APValue &V) {
    706       assert(V.isLValue());
    707       Base = V.getLValueBase();
    708       Offset = V.getLValueOffset();
    709       CallIndex = V.getLValueCallIndex();
    710       Designator = SubobjectDesignator(Ctx, V);
    711     }
    712 
    713     void set(APValue::LValueBase B, unsigned I = 0) {
    714       Base = B;
    715       Offset = CharUnits::Zero();
    716       CallIndex = I;
    717       Designator = SubobjectDesignator(getType(B));
    718     }
    719 
    720     // Check that this LValue is not based on a null pointer. If it is, produce
    721     // a diagnostic and mark the designator as invalid.
    722     bool checkNullPointer(EvalInfo &Info, const Expr *E,
    723                           CheckSubobjectKind CSK) {
    724       if (Designator.Invalid)
    725         return false;
    726       if (!Base) {
    727         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
    728           << CSK;
    729         Designator.setInvalid();
    730         return false;
    731       }
    732       return true;
    733     }
    734 
    735     // Check this LValue refers to an object. If not, set the designator to be
    736     // invalid and emit a diagnostic.
    737     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
    738       // Outside C++11, do not build a designator referring to a subobject of
    739       // any object: we won't use such a designator for anything.
    740       if (!Info.getLangOpts().CPlusPlus0x)
    741         Designator.setInvalid();
    742       return checkNullPointer(Info, E, CSK) &&
    743              Designator.checkSubobject(Info, E, CSK);
    744     }
    745 
    746     void addDecl(EvalInfo &Info, const Expr *E,
    747                  const Decl *D, bool Virtual = false) {
    748       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
    749         Designator.addDeclUnchecked(D, Virtual);
    750     }
    751     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
    752       if (checkSubobject(Info, E, CSK_ArrayToPointer))
    753         Designator.addArrayUnchecked(CAT);
    754     }
    755     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
    756       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
    757         Designator.addComplexUnchecked(EltTy, Imag);
    758     }
    759     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    760       if (checkNullPointer(Info, E, CSK_ArrayIndex))
    761         Designator.adjustIndex(Info, E, N);
    762     }
    763   };
    764 
    765   struct MemberPtr {
    766     MemberPtr() {}
    767     explicit MemberPtr(const ValueDecl *Decl) :
    768       DeclAndIsDerivedMember(Decl, false), Path() {}
    769 
    770     /// The member or (direct or indirect) field referred to by this member
    771     /// pointer, or 0 if this is a null member pointer.
    772     const ValueDecl *getDecl() const {
    773       return DeclAndIsDerivedMember.getPointer();
    774     }
    775     /// Is this actually a member of some type derived from the relevant class?
    776     bool isDerivedMember() const {
    777       return DeclAndIsDerivedMember.getInt();
    778     }
    779     /// Get the class which the declaration actually lives in.
    780     const CXXRecordDecl *getContainingRecord() const {
    781       return cast<CXXRecordDecl>(
    782           DeclAndIsDerivedMember.getPointer()->getDeclContext());
    783     }
    784 
    785     void moveInto(APValue &V) const {
    786       V = APValue(getDecl(), isDerivedMember(), Path);
    787     }
    788     void setFrom(const APValue &V) {
    789       assert(V.isMemberPointer());
    790       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
    791       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
    792       Path.clear();
    793       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
    794       Path.insert(Path.end(), P.begin(), P.end());
    795     }
    796 
    797     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
    798     /// whether the member is a member of some class derived from the class type
    799     /// of the member pointer.
    800     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
    801     /// Path - The path of base/derived classes from the member declaration's
    802     /// class (exclusive) to the class type of the member pointer (inclusive).
    803     SmallVector<const CXXRecordDecl*, 4> Path;
    804 
    805     /// Perform a cast towards the class of the Decl (either up or down the
    806     /// hierarchy).
    807     bool castBack(const CXXRecordDecl *Class) {
    808       assert(!Path.empty());
    809       const CXXRecordDecl *Expected;
    810       if (Path.size() >= 2)
    811         Expected = Path[Path.size() - 2];
    812       else
    813         Expected = getContainingRecord();
    814       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
    815         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
    816         // if B does not contain the original member and is not a base or
    817         // derived class of the class containing the original member, the result
    818         // of the cast is undefined.
    819         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
    820         // (D::*). We consider that to be a language defect.
    821         return false;
    822       }
    823       Path.pop_back();
    824       return true;
    825     }
    826     /// Perform a base-to-derived member pointer cast.
    827     bool castToDerived(const CXXRecordDecl *Derived) {
    828       if (!getDecl())
    829         return true;
    830       if (!isDerivedMember()) {
    831         Path.push_back(Derived);
    832         return true;
    833       }
    834       if (!castBack(Derived))
    835         return false;
    836       if (Path.empty())
    837         DeclAndIsDerivedMember.setInt(false);
    838       return true;
    839     }
    840     /// Perform a derived-to-base member pointer cast.
    841     bool castToBase(const CXXRecordDecl *Base) {
    842       if (!getDecl())
    843         return true;
    844       if (Path.empty())
    845         DeclAndIsDerivedMember.setInt(true);
    846       if (isDerivedMember()) {
    847         Path.push_back(Base);
    848         return true;
    849       }
    850       return castBack(Base);
    851     }
    852   };
    853 
    854   /// Compare two member pointers, which are assumed to be of the same type.
    855   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
    856     if (!LHS.getDecl() || !RHS.getDecl())
    857       return !LHS.getDecl() && !RHS.getDecl();
    858     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
    859       return false;
    860     return LHS.Path == RHS.Path;
    861   }
    862 
    863   /// Kinds of constant expression checking, for diagnostics.
    864   enum CheckConstantExpressionKind {
    865     CCEK_Constant,    ///< A normal constant.
    866     CCEK_ReturnValue, ///< A constexpr function return value.
    867     CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
    868   };
    869 }
    870 
    871 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
    872 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
    873                             const LValue &This, const Expr *E,
    874                             CheckConstantExpressionKind CCEK = CCEK_Constant,
    875                             bool AllowNonLiteralTypes = false);
    876 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
    877 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
    878 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
    879                                   EvalInfo &Info);
    880 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
    881 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
    882 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
    883                                     EvalInfo &Info);
    884 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
    885 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
    886 
    887 //===----------------------------------------------------------------------===//
    888 // Misc utilities
    889 //===----------------------------------------------------------------------===//
    890 
    891 /// Should this call expression be treated as a string literal?
    892 static bool IsStringLiteralCall(const CallExpr *E) {
    893   unsigned Builtin = E->isBuiltinCall();
    894   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
    895           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
    896 }
    897 
    898 static bool IsGlobalLValue(APValue::LValueBase B) {
    899   // C++11 [expr.const]p3 An address constant expression is a prvalue core
    900   // constant expression of pointer type that evaluates to...
    901 
    902   // ... a null pointer value, or a prvalue core constant expression of type
    903   // std::nullptr_t.
    904   if (!B) return true;
    905 
    906   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
    907     // ... the address of an object with static storage duration,
    908     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
    909       return VD->hasGlobalStorage();
    910     // ... the address of a function,
    911     return isa<FunctionDecl>(D);
    912   }
    913 
    914   const Expr *E = B.get<const Expr*>();
    915   switch (E->getStmtClass()) {
    916   default:
    917     return false;
    918   case Expr::CompoundLiteralExprClass: {
    919     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
    920     return CLE->isFileScope() && CLE->isLValue();
    921   }
    922   // A string literal has static storage duration.
    923   case Expr::StringLiteralClass:
    924   case Expr::PredefinedExprClass:
    925   case Expr::ObjCStringLiteralClass:
    926   case Expr::ObjCEncodeExprClass:
    927   case Expr::CXXTypeidExprClass:
    928   case Expr::CXXUuidofExprClass:
    929     return true;
    930   case Expr::CallExprClass:
    931     return IsStringLiteralCall(cast<CallExpr>(E));
    932   // For GCC compatibility, &&label has static storage duration.
    933   case Expr::AddrLabelExprClass:
    934     return true;
    935   // A Block literal expression may be used as the initialization value for
    936   // Block variables at global or local static scope.
    937   case Expr::BlockExprClass:
    938     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
    939   case Expr::ImplicitValueInitExprClass:
    940     // FIXME:
    941     // We can never form an lvalue with an implicit value initialization as its
    942     // base through expression evaluation, so these only appear in one case: the
    943     // implicit variable declaration we invent when checking whether a constexpr
    944     // constructor can produce a constant expression. We must assume that such
    945     // an expression might be a global lvalue.
    946     return true;
    947   }
    948 }
    949 
    950 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
    951   assert(Base && "no location for a null lvalue");
    952   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
    953   if (VD)
    954     Info.Note(VD->getLocation(), diag::note_declared_at);
    955   else
    956     Info.Note(Base.get<const Expr*>()->getExprLoc(),
    957               diag::note_constexpr_temporary_here);
    958 }
    959 
    960 /// Check that this reference or pointer core constant expression is a valid
    961 /// value for an address or reference constant expression. Return true if we
    962 /// can fold this expression, whether or not it's a constant expression.
    963 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
    964                                           QualType Type, const LValue &LVal) {
    965   bool IsReferenceType = Type->isReferenceType();
    966 
    967   APValue::LValueBase Base = LVal.getLValueBase();
    968   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
    969 
    970   // Check that the object is a global. Note that the fake 'this' object we
    971   // manufacture when checking potential constant expressions is conservatively
    972   // assumed to be global here.
    973   if (!IsGlobalLValue(Base)) {
    974     if (Info.getLangOpts().CPlusPlus0x) {
    975       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
    976       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
    977         << IsReferenceType << !Designator.Entries.empty()
    978         << !!VD << VD;
    979       NoteLValueLocation(Info, Base);
    980     } else {
    981       Info.Diag(Loc);
    982     }
    983     // Don't allow references to temporaries to escape.
    984     return false;
    985   }
    986   assert((Info.CheckingPotentialConstantExpression ||
    987           LVal.getLValueCallIndex() == 0) &&
    988          "have call index for global lvalue");
    989 
    990   // Check if this is a thread-local variable.
    991   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
    992     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
    993       if (Var->isThreadSpecified())
    994         return false;
    995     }
    996   }
    997 
    998   // Allow address constant expressions to be past-the-end pointers. This is
    999   // an extension: the standard requires them to point to an object.
   1000   if (!IsReferenceType)
   1001     return true;
   1002 
   1003   // A reference constant expression must refer to an object.
   1004   if (!Base) {
   1005     // FIXME: diagnostic
   1006     Info.CCEDiag(Loc);
   1007     return true;
   1008   }
   1009 
   1010   // Does this refer one past the end of some object?
   1011   if (Designator.isOnePastTheEnd()) {
   1012     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1013     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
   1014       << !Designator.Entries.empty() << !!VD << VD;
   1015     NoteLValueLocation(Info, Base);
   1016   }
   1017 
   1018   return true;
   1019 }
   1020 
   1021 /// Check that this core constant expression is of literal type, and if not,
   1022 /// produce an appropriate diagnostic.
   1023 static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
   1024   if (!E->isRValue() || E->getType()->isLiteralType())
   1025     return true;
   1026 
   1027   // Prvalue constant expressions must be of literal types.
   1028   if (Info.getLangOpts().CPlusPlus0x)
   1029     Info.Diag(E, diag::note_constexpr_nonliteral)
   1030       << E->getType();
   1031   else
   1032     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1033   return false;
   1034 }
   1035 
   1036 /// Check that this core constant expression value is a valid value for a
   1037 /// constant expression. If not, report an appropriate diagnostic. Does not
   1038 /// check that the expression is of literal type.
   1039 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
   1040                                     QualType Type, const APValue &Value) {
   1041   // Core issue 1454: For a literal constant expression of array or class type,
   1042   // each subobject of its value shall have been initialized by a constant
   1043   // expression.
   1044   if (Value.isArray()) {
   1045     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
   1046     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
   1047       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
   1048                                    Value.getArrayInitializedElt(I)))
   1049         return false;
   1050     }
   1051     if (!Value.hasArrayFiller())
   1052       return true;
   1053     return CheckConstantExpression(Info, DiagLoc, EltTy,
   1054                                    Value.getArrayFiller());
   1055   }
   1056   if (Value.isUnion() && Value.getUnionField()) {
   1057     return CheckConstantExpression(Info, DiagLoc,
   1058                                    Value.getUnionField()->getType(),
   1059                                    Value.getUnionValue());
   1060   }
   1061   if (Value.isStruct()) {
   1062     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
   1063     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
   1064       unsigned BaseIndex = 0;
   1065       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   1066              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
   1067         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1068                                      Value.getStructBase(BaseIndex)))
   1069           return false;
   1070       }
   1071     }
   1072     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   1073          I != E; ++I) {
   1074       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1075                                    Value.getStructField(I->getFieldIndex())))
   1076         return false;
   1077     }
   1078   }
   1079 
   1080   if (Value.isLValue()) {
   1081     LValue LVal;
   1082     LVal.setFrom(Info.Ctx, Value);
   1083     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
   1084   }
   1085 
   1086   // Everything else is fine.
   1087   return true;
   1088 }
   1089 
   1090 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
   1091   return LVal.Base.dyn_cast<const ValueDecl*>();
   1092 }
   1093 
   1094 static bool IsLiteralLValue(const LValue &Value) {
   1095   return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
   1096 }
   1097 
   1098 static bool IsWeakLValue(const LValue &Value) {
   1099   const ValueDecl *Decl = GetLValueBaseDecl(Value);
   1100   return Decl && Decl->isWeak();
   1101 }
   1102 
   1103 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
   1104   // A null base expression indicates a null pointer.  These are always
   1105   // evaluatable, and they are false unless the offset is zero.
   1106   if (!Value.getLValueBase()) {
   1107     Result = !Value.getLValueOffset().isZero();
   1108     return true;
   1109   }
   1110 
   1111   // We have a non-null base.  These are generally known to be true, but if it's
   1112   // a weak declaration it can be null at runtime.
   1113   Result = true;
   1114   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
   1115   return !Decl || !Decl->isWeak();
   1116 }
   1117 
   1118 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
   1119   switch (Val.getKind()) {
   1120   case APValue::Uninitialized:
   1121     return false;
   1122   case APValue::Int:
   1123     Result = Val.getInt().getBoolValue();
   1124     return true;
   1125   case APValue::Float:
   1126     Result = !Val.getFloat().isZero();
   1127     return true;
   1128   case APValue::ComplexInt:
   1129     Result = Val.getComplexIntReal().getBoolValue() ||
   1130              Val.getComplexIntImag().getBoolValue();
   1131     return true;
   1132   case APValue::ComplexFloat:
   1133     Result = !Val.getComplexFloatReal().isZero() ||
   1134              !Val.getComplexFloatImag().isZero();
   1135     return true;
   1136   case APValue::LValue:
   1137     return EvalPointerValueAsBool(Val, Result);
   1138   case APValue::MemberPointer:
   1139     Result = Val.getMemberPointerDecl();
   1140     return true;
   1141   case APValue::Vector:
   1142   case APValue::Array:
   1143   case APValue::Struct:
   1144   case APValue::Union:
   1145   case APValue::AddrLabelDiff:
   1146     return false;
   1147   }
   1148 
   1149   llvm_unreachable("unknown APValue kind");
   1150 }
   1151 
   1152 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
   1153                                        EvalInfo &Info) {
   1154   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
   1155   APValue Val;
   1156   if (!Evaluate(Val, Info, E))
   1157     return false;
   1158   return HandleConversionToBool(Val, Result);
   1159 }
   1160 
   1161 template<typename T>
   1162 static void HandleOverflow(EvalInfo &Info, const Expr *E,
   1163                            const T &SrcValue, QualType DestType) {
   1164   Info.CCEDiag(E, diag::note_constexpr_overflow)
   1165     << SrcValue << DestType;
   1166 }
   1167 
   1168 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
   1169                                  QualType SrcType, const APFloat &Value,
   1170                                  QualType DestType, APSInt &Result) {
   1171   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1172   // Determine whether we are converting to unsigned or signed.
   1173   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
   1174 
   1175   Result = APSInt(DestWidth, !DestSigned);
   1176   bool ignored;
   1177   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
   1178       & APFloat::opInvalidOp)
   1179     HandleOverflow(Info, E, Value, DestType);
   1180   return true;
   1181 }
   1182 
   1183 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
   1184                                    QualType SrcType, QualType DestType,
   1185                                    APFloat &Result) {
   1186   APFloat Value = Result;
   1187   bool ignored;
   1188   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
   1189                      APFloat::rmNearestTiesToEven, &ignored)
   1190       & APFloat::opOverflow)
   1191     HandleOverflow(Info, E, Value, DestType);
   1192   return true;
   1193 }
   1194 
   1195 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
   1196                                  QualType DestType, QualType SrcType,
   1197                                  APSInt &Value) {
   1198   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1199   APSInt Result = Value;
   1200   // Figure out if this is a truncate, extend or noop cast.
   1201   // If the input is signed, do a sign extend, noop, or truncate.
   1202   Result = Result.extOrTrunc(DestWidth);
   1203   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
   1204   return Result;
   1205 }
   1206 
   1207 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
   1208                                  QualType SrcType, const APSInt &Value,
   1209                                  QualType DestType, APFloat &Result) {
   1210   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
   1211   if (Result.convertFromAPInt(Value, Value.isSigned(),
   1212                               APFloat::rmNearestTiesToEven)
   1213       & APFloat::opOverflow)
   1214     HandleOverflow(Info, E, Value, DestType);
   1215   return true;
   1216 }
   1217 
   1218 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
   1219                                   llvm::APInt &Res) {
   1220   APValue SVal;
   1221   if (!Evaluate(SVal, Info, E))
   1222     return false;
   1223   if (SVal.isInt()) {
   1224     Res = SVal.getInt();
   1225     return true;
   1226   }
   1227   if (SVal.isFloat()) {
   1228     Res = SVal.getFloat().bitcastToAPInt();
   1229     return true;
   1230   }
   1231   if (SVal.isVector()) {
   1232     QualType VecTy = E->getType();
   1233     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
   1234     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
   1235     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   1236     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   1237     Res = llvm::APInt::getNullValue(VecSize);
   1238     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
   1239       APValue &Elt = SVal.getVectorElt(i);
   1240       llvm::APInt EltAsInt;
   1241       if (Elt.isInt()) {
   1242         EltAsInt = Elt.getInt();
   1243       } else if (Elt.isFloat()) {
   1244         EltAsInt = Elt.getFloat().bitcastToAPInt();
   1245       } else {
   1246         // Don't try to handle vectors of anything other than int or float
   1247         // (not sure if it's possible to hit this case).
   1248         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1249         return false;
   1250       }
   1251       unsigned BaseEltSize = EltAsInt.getBitWidth();
   1252       if (BigEndian)
   1253         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
   1254       else
   1255         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
   1256     }
   1257     return true;
   1258   }
   1259   // Give up if the input isn't an int, float, or vector.  For example, we
   1260   // reject "(v4i16)(intptr_t)&a".
   1261   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1262   return false;
   1263 }
   1264 
   1265 /// Cast an lvalue referring to a base subobject to a derived class, by
   1266 /// truncating the lvalue's path to the given length.
   1267 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
   1268                                const RecordDecl *TruncatedType,
   1269                                unsigned TruncatedElements) {
   1270   SubobjectDesignator &D = Result.Designator;
   1271 
   1272   // Check we actually point to a derived class object.
   1273   if (TruncatedElements == D.Entries.size())
   1274     return true;
   1275   assert(TruncatedElements >= D.MostDerivedPathLength &&
   1276          "not casting to a derived class");
   1277   if (!Result.checkSubobject(Info, E, CSK_Derived))
   1278     return false;
   1279 
   1280   // Truncate the path to the subobject, and remove any derived-to-base offsets.
   1281   const RecordDecl *RD = TruncatedType;
   1282   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
   1283     if (RD->isInvalidDecl()) return false;
   1284     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   1285     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
   1286     if (isVirtualBaseClass(D.Entries[I]))
   1287       Result.Offset -= Layout.getVBaseClassOffset(Base);
   1288     else
   1289       Result.Offset -= Layout.getBaseClassOffset(Base);
   1290     RD = Base;
   1291   }
   1292   D.Entries.resize(TruncatedElements);
   1293   return true;
   1294 }
   1295 
   1296 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1297                                    const CXXRecordDecl *Derived,
   1298                                    const CXXRecordDecl *Base,
   1299                                    const ASTRecordLayout *RL = 0) {
   1300   if (!RL) {
   1301     if (Derived->isInvalidDecl()) return false;
   1302     RL = &Info.Ctx.getASTRecordLayout(Derived);
   1303   }
   1304 
   1305   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
   1306   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
   1307   return true;
   1308 }
   1309 
   1310 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1311                              const CXXRecordDecl *DerivedDecl,
   1312                              const CXXBaseSpecifier *Base) {
   1313   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
   1314 
   1315   if (!Base->isVirtual())
   1316     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
   1317 
   1318   SubobjectDesignator &D = Obj.Designator;
   1319   if (D.Invalid)
   1320     return false;
   1321 
   1322   // Extract most-derived object and corresponding type.
   1323   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
   1324   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
   1325     return false;
   1326 
   1327   // Find the virtual base class.
   1328   if (DerivedDecl->isInvalidDecl()) return false;
   1329   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
   1330   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
   1331   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
   1332   return true;
   1333 }
   1334 
   1335 /// Update LVal to refer to the given field, which must be a member of the type
   1336 /// currently described by LVal.
   1337 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
   1338                                const FieldDecl *FD,
   1339                                const ASTRecordLayout *RL = 0) {
   1340   if (!RL) {
   1341     if (FD->getParent()->isInvalidDecl()) return false;
   1342     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
   1343   }
   1344 
   1345   unsigned I = FD->getFieldIndex();
   1346   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
   1347   LVal.addDecl(Info, E, FD);
   1348   return true;
   1349 }
   1350 
   1351 /// Update LVal to refer to the given indirect field.
   1352 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
   1353                                        LValue &LVal,
   1354                                        const IndirectFieldDecl *IFD) {
   1355   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   1356                                          CE = IFD->chain_end(); C != CE; ++C)
   1357     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
   1358       return false;
   1359   return true;
   1360 }
   1361 
   1362 /// Get the size of the given type in char units.
   1363 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
   1364                          QualType Type, CharUnits &Size) {
   1365   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
   1366   // extension.
   1367   if (Type->isVoidType() || Type->isFunctionType()) {
   1368     Size = CharUnits::One();
   1369     return true;
   1370   }
   1371 
   1372   if (!Type->isConstantSizeType()) {
   1373     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
   1374     // FIXME: Better diagnostic.
   1375     Info.Diag(Loc);
   1376     return false;
   1377   }
   1378 
   1379   Size = Info.Ctx.getTypeSizeInChars(Type);
   1380   return true;
   1381 }
   1382 
   1383 /// Update a pointer value to model pointer arithmetic.
   1384 /// \param Info - Information about the ongoing evaluation.
   1385 /// \param E - The expression being evaluated, for diagnostic purposes.
   1386 /// \param LVal - The pointer value to be updated.
   1387 /// \param EltTy - The pointee type represented by LVal.
   1388 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
   1389 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
   1390                                         LValue &LVal, QualType EltTy,
   1391                                         int64_t Adjustment) {
   1392   CharUnits SizeOfPointee;
   1393   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
   1394     return false;
   1395 
   1396   // Compute the new offset in the appropriate width.
   1397   LVal.Offset += Adjustment * SizeOfPointee;
   1398   LVal.adjustIndex(Info, E, Adjustment);
   1399   return true;
   1400 }
   1401 
   1402 /// Update an lvalue to refer to a component of a complex number.
   1403 /// \param Info - Information about the ongoing evaluation.
   1404 /// \param LVal - The lvalue to be updated.
   1405 /// \param EltTy - The complex number's component type.
   1406 /// \param Imag - False for the real component, true for the imaginary.
   1407 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
   1408                                        LValue &LVal, QualType EltTy,
   1409                                        bool Imag) {
   1410   if (Imag) {
   1411     CharUnits SizeOfComponent;
   1412     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
   1413       return false;
   1414     LVal.Offset += SizeOfComponent;
   1415   }
   1416   LVal.addComplex(Info, E, EltTy, Imag);
   1417   return true;
   1418 }
   1419 
   1420 /// Try to evaluate the initializer for a variable declaration.
   1421 static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
   1422                                 const VarDecl *VD,
   1423                                 CallStackFrame *Frame, APValue &Result) {
   1424   // If this is a parameter to an active constexpr function call, perform
   1425   // argument substitution.
   1426   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
   1427     // Assume arguments of a potential constant expression are unknown
   1428     // constant expressions.
   1429     if (Info.CheckingPotentialConstantExpression)
   1430       return false;
   1431     if (!Frame || !Frame->Arguments) {
   1432       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1433       return false;
   1434     }
   1435     Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
   1436     return true;
   1437   }
   1438 
   1439   // Dig out the initializer, and use the declaration which it's attached to.
   1440   const Expr *Init = VD->getAnyInitializer(VD);
   1441   if (!Init || Init->isValueDependent()) {
   1442     // If we're checking a potential constant expression, the variable could be
   1443     // initialized later.
   1444     if (!Info.CheckingPotentialConstantExpression)
   1445       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1446     return false;
   1447   }
   1448 
   1449   // If we're currently evaluating the initializer of this declaration, use that
   1450   // in-flight value.
   1451   if (Info.EvaluatingDecl == VD) {
   1452     Result = *Info.EvaluatingDeclValue;
   1453     return !Result.isUninit();
   1454   }
   1455 
   1456   // Never evaluate the initializer of a weak variable. We can't be sure that
   1457   // this is the definition which will be used.
   1458   if (VD->isWeak()) {
   1459     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1460     return false;
   1461   }
   1462 
   1463   // Check that we can fold the initializer. In C++, we will have already done
   1464   // this in the cases where it matters for conformance.
   1465   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   1466   if (!VD->evaluateValue(Notes)) {
   1467     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
   1468               Notes.size() + 1) << VD;
   1469     Info.Note(VD->getLocation(), diag::note_declared_at);
   1470     Info.addNotes(Notes);
   1471     return false;
   1472   } else if (!VD->checkInitIsICE()) {
   1473     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
   1474                  Notes.size() + 1) << VD;
   1475     Info.Note(VD->getLocation(), diag::note_declared_at);
   1476     Info.addNotes(Notes);
   1477   }
   1478 
   1479   Result = *VD->getEvaluatedValue();
   1480   return true;
   1481 }
   1482 
   1483 static bool IsConstNonVolatile(QualType T) {
   1484   Qualifiers Quals = T.getQualifiers();
   1485   return Quals.hasConst() && !Quals.hasVolatile();
   1486 }
   1487 
   1488 /// Get the base index of the given base class within an APValue representing
   1489 /// the given derived class.
   1490 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
   1491                              const CXXRecordDecl *Base) {
   1492   Base = Base->getCanonicalDecl();
   1493   unsigned Index = 0;
   1494   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
   1495          E = Derived->bases_end(); I != E; ++I, ++Index) {
   1496     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
   1497       return Index;
   1498   }
   1499 
   1500   llvm_unreachable("base class missing from derived class's bases list");
   1501 }
   1502 
   1503 /// Extract the value of a character from a string literal. CharType is used to
   1504 /// determine the expected signedness of the result -- a string literal used to
   1505 /// initialize an array of 'signed char' or 'unsigned char' might contain chars
   1506 /// of the wrong signedness.
   1507 static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
   1508                                             uint64_t Index, QualType CharType) {
   1509   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   1510   const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
   1511   assert(S && "unexpected string literal expression kind");
   1512   assert(CharType->isIntegerType() && "unexpected character type");
   1513 
   1514   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   1515                CharType->isUnsignedIntegerType());
   1516   if (Index < S->getLength())
   1517     Value = S->getCodeUnit(Index);
   1518   return Value;
   1519 }
   1520 
   1521 /// Extract the designated sub-object of an rvalue.
   1522 static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
   1523                              APValue &Obj, QualType ObjType,
   1524                              const SubobjectDesignator &Sub, QualType SubType) {
   1525   if (Sub.Invalid)
   1526     // A diagnostic will have already been produced.
   1527     return false;
   1528   if (Sub.isOnePastTheEnd()) {
   1529     Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
   1530                 (unsigned)diag::note_constexpr_read_past_end :
   1531                 (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1532     return false;
   1533   }
   1534   if (Sub.Entries.empty())
   1535     return true;
   1536   if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
   1537     // This object might be initialized later.
   1538     return false;
   1539 
   1540   APValue *O = &Obj;
   1541   // Walk the designator's path to find the subobject.
   1542   for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
   1543     if (ObjType->isArrayType()) {
   1544       // Next subobject is an array element.
   1545       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
   1546       assert(CAT && "vla in literal type?");
   1547       uint64_t Index = Sub.Entries[I].ArrayIndex;
   1548       if (CAT->getSize().ule(Index)) {
   1549         // Note, it should not be possible to form a pointer with a valid
   1550         // designator which points more than one past the end of the array.
   1551         Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
   1552                     (unsigned)diag::note_constexpr_read_past_end :
   1553                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1554         return false;
   1555       }
   1556       // An array object is represented as either an Array APValue or as an
   1557       // LValue which refers to a string literal.
   1558       if (O->isLValue()) {
   1559         assert(I == N - 1 && "extracting subobject of character?");
   1560         assert(!O->hasLValuePath() || O->getLValuePath().empty());
   1561         Obj = APValue(ExtractStringLiteralCharacter(
   1562           Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
   1563         return true;
   1564       } else if (O->getArrayInitializedElts() > Index)
   1565         O = &O->getArrayInitializedElt(Index);
   1566       else
   1567         O = &O->getArrayFiller();
   1568       ObjType = CAT->getElementType();
   1569     } else if (ObjType->isAnyComplexType()) {
   1570       // Next subobject is a complex number.
   1571       uint64_t Index = Sub.Entries[I].ArrayIndex;
   1572       if (Index > 1) {
   1573         Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
   1574                     (unsigned)diag::note_constexpr_read_past_end :
   1575                     (unsigned)diag::note_invalid_subexpr_in_const_expr);
   1576         return false;
   1577       }
   1578       assert(I == N - 1 && "extracting subobject of scalar?");
   1579       if (O->isComplexInt()) {
   1580         Obj = APValue(Index ? O->getComplexIntImag()
   1581                             : O->getComplexIntReal());
   1582       } else {
   1583         assert(O->isComplexFloat());
   1584         Obj = APValue(Index ? O->getComplexFloatImag()
   1585                             : O->getComplexFloatReal());
   1586       }
   1587       return true;
   1588     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
   1589       if (Field->isMutable()) {
   1590         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
   1591           << Field;
   1592         Info.Note(Field->getLocation(), diag::note_declared_at);
   1593         return false;
   1594       }
   1595 
   1596       // Next subobject is a class, struct or union field.
   1597       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
   1598       if (RD->isUnion()) {
   1599         const FieldDecl *UnionField = O->getUnionField();
   1600         if (!UnionField ||
   1601             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
   1602           Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
   1603             << Field << !UnionField << UnionField;
   1604           return false;
   1605         }
   1606         O = &O->getUnionValue();
   1607       } else
   1608         O = &O->getStructField(Field->getFieldIndex());
   1609       ObjType = Field->getType();
   1610 
   1611       if (ObjType.isVolatileQualified()) {
   1612         if (Info.getLangOpts().CPlusPlus) {
   1613           // FIXME: Include a description of the path to the volatile subobject.
   1614           Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
   1615             << 2 << Field;
   1616           Info.Note(Field->getLocation(), diag::note_declared_at);
   1617         } else {
   1618           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1619         }
   1620         return false;
   1621       }
   1622     } else {
   1623       // Next subobject is a base class.
   1624       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
   1625       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
   1626       O = &O->getStructBase(getBaseIndex(Derived, Base));
   1627       ObjType = Info.Ctx.getRecordType(Base);
   1628     }
   1629 
   1630     if (O->isUninit()) {
   1631       if (!Info.CheckingPotentialConstantExpression)
   1632         Info.Diag(E, diag::note_constexpr_read_uninit);
   1633       return false;
   1634     }
   1635   }
   1636 
   1637   // This may look super-stupid, but it serves an important purpose: if we just
   1638   // swapped Obj and *O, we'd create an object which had itself as a subobject.
   1639   // To avoid the leak, we ensure that Tmp ends up owning the original complete
   1640   // object, which is destroyed by Tmp's destructor.
   1641   APValue Tmp;
   1642   O->swap(Tmp);
   1643   Obj.swap(Tmp);
   1644   return true;
   1645 }
   1646 
   1647 /// Find the position where two subobject designators diverge, or equivalently
   1648 /// the length of the common initial subsequence.
   1649 static unsigned FindDesignatorMismatch(QualType ObjType,
   1650                                        const SubobjectDesignator &A,
   1651                                        const SubobjectDesignator &B,
   1652                                        bool &WasArrayIndex) {
   1653   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
   1654   for (/**/; I != N; ++I) {
   1655     if (!ObjType.isNull() &&
   1656         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
   1657       // Next subobject is an array element.
   1658       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
   1659         WasArrayIndex = true;
   1660         return I;
   1661       }
   1662       if (ObjType->isAnyComplexType())
   1663         ObjType = ObjType->castAs<ComplexType>()->getElementType();
   1664       else
   1665         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
   1666     } else {
   1667       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
   1668         WasArrayIndex = false;
   1669         return I;
   1670       }
   1671       if (const FieldDecl *FD = getAsField(A.Entries[I]))
   1672         // Next subobject is a field.
   1673         ObjType = FD->getType();
   1674       else
   1675         // Next subobject is a base class.
   1676         ObjType = QualType();
   1677     }
   1678   }
   1679   WasArrayIndex = false;
   1680   return I;
   1681 }
   1682 
   1683 /// Determine whether the given subobject designators refer to elements of the
   1684 /// same array object.
   1685 static bool AreElementsOfSameArray(QualType ObjType,
   1686                                    const SubobjectDesignator &A,
   1687                                    const SubobjectDesignator &B) {
   1688   if (A.Entries.size() != B.Entries.size())
   1689     return false;
   1690 
   1691   bool IsArray = A.MostDerivedArraySize != 0;
   1692   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
   1693     // A is a subobject of the array element.
   1694     return false;
   1695 
   1696   // If A (and B) designates an array element, the last entry will be the array
   1697   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
   1698   // of length 1' case, and the entire path must match.
   1699   bool WasArrayIndex;
   1700   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
   1701   return CommonLength >= A.Entries.size() - IsArray;
   1702 }
   1703 
   1704 /// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
   1705 /// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
   1706 /// for looking up the glvalue referred to by an entity of reference type.
   1707 ///
   1708 /// \param Info - Information about the ongoing evaluation.
   1709 /// \param Conv - The expression for which we are performing the conversion.
   1710 ///               Used for diagnostics.
   1711 /// \param Type - The type we expect this conversion to produce, before
   1712 ///               stripping cv-qualifiers in the case of a non-clas type.
   1713 /// \param LVal - The glvalue on which we are attempting to perform this action.
   1714 /// \param RVal - The produced value will be placed here.
   1715 static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
   1716                                            QualType Type,
   1717                                            const LValue &LVal, APValue &RVal) {
   1718   if (LVal.Designator.Invalid)
   1719     // A diagnostic will have already been produced.
   1720     return false;
   1721 
   1722   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   1723 
   1724   if (!LVal.Base) {
   1725     // FIXME: Indirection through a null pointer deserves a specific diagnostic.
   1726     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
   1727     return false;
   1728   }
   1729 
   1730   CallStackFrame *Frame = 0;
   1731   if (LVal.CallIndex) {
   1732     Frame = Info.getCallFrame(LVal.CallIndex);
   1733     if (!Frame) {
   1734       Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
   1735       NoteLValueLocation(Info, LVal.Base);
   1736       return false;
   1737     }
   1738   }
   1739 
   1740   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
   1741   // is not a constant expression (even if the object is non-volatile). We also
   1742   // apply this rule to C++98, in order to conform to the expected 'volatile'
   1743   // semantics.
   1744   if (Type.isVolatileQualified()) {
   1745     if (Info.getLangOpts().CPlusPlus)
   1746       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
   1747     else
   1748       Info.Diag(Conv);
   1749     return false;
   1750   }
   1751 
   1752   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
   1753     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
   1754     // In C++11, constexpr, non-volatile variables initialized with constant
   1755     // expressions are constant expressions too. Inside constexpr functions,
   1756     // parameters are constant expressions even if they're non-const.
   1757     // In C, such things can also be folded, although they are not ICEs.
   1758     const VarDecl *VD = dyn_cast<VarDecl>(D);
   1759     if (VD) {
   1760       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
   1761         VD = VDef;
   1762     }
   1763     if (!VD || VD->isInvalidDecl()) {
   1764       Info.Diag(Conv);
   1765       return false;
   1766     }
   1767 
   1768     // DR1313: If the object is volatile-qualified but the glvalue was not,
   1769     // behavior is undefined so the result is not a constant expression.
   1770     QualType VT = VD->getType();
   1771     if (VT.isVolatileQualified()) {
   1772       if (Info.getLangOpts().CPlusPlus) {
   1773         Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
   1774         Info.Note(VD->getLocation(), diag::note_declared_at);
   1775       } else {
   1776         Info.Diag(Conv);
   1777       }
   1778       return false;
   1779     }
   1780 
   1781     if (!isa<ParmVarDecl>(VD)) {
   1782       if (VD->isConstexpr()) {
   1783         // OK, we can read this variable.
   1784       } else if (VT->isIntegralOrEnumerationType()) {
   1785         if (!VT.isConstQualified()) {
   1786           if (Info.getLangOpts().CPlusPlus) {
   1787             Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
   1788             Info.Note(VD->getLocation(), diag::note_declared_at);
   1789           } else {
   1790             Info.Diag(Conv);
   1791           }
   1792           return false;
   1793         }
   1794       } else if (VT->isFloatingType() && VT.isConstQualified()) {
   1795         // We support folding of const floating-point types, in order to make
   1796         // static const data members of such types (supported as an extension)
   1797         // more useful.
   1798         if (Info.getLangOpts().CPlusPlus0x) {
   1799           Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   1800           Info.Note(VD->getLocation(), diag::note_declared_at);
   1801         } else {
   1802           Info.CCEDiag(Conv);
   1803         }
   1804       } else {
   1805         // FIXME: Allow folding of values of any literal type in all languages.
   1806         if (Info.getLangOpts().CPlusPlus0x) {
   1807           Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   1808           Info.Note(VD->getLocation(), diag::note_declared_at);
   1809         } else {
   1810           Info.Diag(Conv);
   1811         }
   1812         return false;
   1813       }
   1814     }
   1815 
   1816     if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
   1817       return false;
   1818 
   1819     if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
   1820       return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
   1821 
   1822     // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
   1823     // conversion. This happens when the declaration and the lvalue should be
   1824     // considered synonymous, for instance when initializing an array of char
   1825     // from a string literal. Continue as if the initializer lvalue was the
   1826     // value we were originally given.
   1827     assert(RVal.getLValueOffset().isZero() &&
   1828            "offset for lvalue init of non-reference");
   1829     Base = RVal.getLValueBase().get<const Expr*>();
   1830 
   1831     if (unsigned CallIndex = RVal.getLValueCallIndex()) {
   1832       Frame = Info.getCallFrame(CallIndex);
   1833       if (!Frame) {
   1834         Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
   1835         NoteLValueLocation(Info, RVal.getLValueBase());
   1836         return false;
   1837       }
   1838     } else {
   1839       Frame = 0;
   1840     }
   1841   }
   1842 
   1843   // Volatile temporary objects cannot be read in constant expressions.
   1844   if (Base->getType().isVolatileQualified()) {
   1845     if (Info.getLangOpts().CPlusPlus) {
   1846       Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
   1847       Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
   1848     } else {
   1849       Info.Diag(Conv);
   1850     }
   1851     return false;
   1852   }
   1853 
   1854   if (Frame) {
   1855     // If this is a temporary expression with a nontrivial initializer, grab the
   1856     // value from the relevant stack frame.
   1857     RVal = Frame->Temporaries[Base];
   1858   } else if (const CompoundLiteralExpr *CLE
   1859              = dyn_cast<CompoundLiteralExpr>(Base)) {
   1860     // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
   1861     // initializer until now for such expressions. Such an expression can't be
   1862     // an ICE in C, so this only matters for fold.
   1863     assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   1864     if (!Evaluate(RVal, Info, CLE->getInitializer()))
   1865       return false;
   1866   } else if (isa<StringLiteral>(Base)) {
   1867     // We represent a string literal array as an lvalue pointing at the
   1868     // corresponding expression, rather than building an array of chars.
   1869     // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   1870     RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
   1871   } else {
   1872     Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
   1873     return false;
   1874   }
   1875 
   1876   return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
   1877                           Type);
   1878 }
   1879 
   1880 /// Build an lvalue for the object argument of a member function call.
   1881 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
   1882                                    LValue &This) {
   1883   if (Object->getType()->isPointerType())
   1884     return EvaluatePointer(Object, This, Info);
   1885 
   1886   if (Object->isGLValue())
   1887     return EvaluateLValue(Object, This, Info);
   1888 
   1889   if (Object->getType()->isLiteralType())
   1890     return EvaluateTemporary(Object, This, Info);
   1891 
   1892   return false;
   1893 }
   1894 
   1895 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
   1896 /// lvalue referring to the result.
   1897 ///
   1898 /// \param Info - Information about the ongoing evaluation.
   1899 /// \param BO - The member pointer access operation.
   1900 /// \param LV - Filled in with a reference to the resulting object.
   1901 /// \param IncludeMember - Specifies whether the member itself is included in
   1902 ///        the resulting LValue subobject designator. This is not possible when
   1903 ///        creating a bound member function.
   1904 /// \return The field or method declaration to which the member pointer refers,
   1905 ///         or 0 if evaluation fails.
   1906 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   1907                                                   const BinaryOperator *BO,
   1908                                                   LValue &LV,
   1909                                                   bool IncludeMember = true) {
   1910   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
   1911 
   1912   bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
   1913   if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
   1914     return 0;
   1915 
   1916   MemberPtr MemPtr;
   1917   if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
   1918     return 0;
   1919 
   1920   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
   1921   // member value, the behavior is undefined.
   1922   if (!MemPtr.getDecl())
   1923     return 0;
   1924 
   1925   if (!EvalObjOK)
   1926     return 0;
   1927 
   1928   if (MemPtr.isDerivedMember()) {
   1929     // This is a member of some derived class. Truncate LV appropriately.
   1930     // The end of the derived-to-base path for the base object must match the
   1931     // derived-to-base path for the member pointer.
   1932     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
   1933         LV.Designator.Entries.size())
   1934       return 0;
   1935     unsigned PathLengthToMember =
   1936         LV.Designator.Entries.size() - MemPtr.Path.size();
   1937     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
   1938       const CXXRecordDecl *LVDecl = getAsBaseClass(
   1939           LV.Designator.Entries[PathLengthToMember + I]);
   1940       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
   1941       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
   1942         return 0;
   1943     }
   1944 
   1945     // Truncate the lvalue to the appropriate derived class.
   1946     if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
   1947                             PathLengthToMember))
   1948       return 0;
   1949   } else if (!MemPtr.Path.empty()) {
   1950     // Extend the LValue path with the member pointer's path.
   1951     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
   1952                                   MemPtr.Path.size() + IncludeMember);
   1953 
   1954     // Walk down to the appropriate base class.
   1955     QualType LVType = BO->getLHS()->getType();
   1956     if (const PointerType *PT = LVType->getAs<PointerType>())
   1957       LVType = PT->getPointeeType();
   1958     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
   1959     assert(RD && "member pointer access on non-class-type expression");
   1960     // The first class in the path is that of the lvalue.
   1961     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
   1962       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
   1963       if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
   1964         return 0;
   1965       RD = Base;
   1966     }
   1967     // Finally cast to the class containing the member.
   1968     if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
   1969       return 0;
   1970   }
   1971 
   1972   // Add the member. Note that we cannot build bound member functions here.
   1973   if (IncludeMember) {
   1974     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
   1975       if (!HandleLValueMember(Info, BO, LV, FD))
   1976         return 0;
   1977     } else if (const IndirectFieldDecl *IFD =
   1978                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
   1979       if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
   1980         return 0;
   1981     } else {
   1982       llvm_unreachable("can't construct reference to bound member function");
   1983     }
   1984   }
   1985 
   1986   return MemPtr.getDecl();
   1987 }
   1988 
   1989 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
   1990 /// the provided lvalue, which currently refers to the base object.
   1991 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
   1992                                     LValue &Result) {
   1993   SubobjectDesignator &D = Result.Designator;
   1994   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
   1995     return false;
   1996 
   1997   QualType TargetQT = E->getType();
   1998   if (const PointerType *PT = TargetQT->getAs<PointerType>())
   1999     TargetQT = PT->getPointeeType();
   2000 
   2001   // Check this cast lands within the final derived-to-base subobject path.
   2002   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
   2003     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2004       << D.MostDerivedType << TargetQT;
   2005     return false;
   2006   }
   2007 
   2008   // Check the type of the final cast. We don't need to check the path,
   2009   // since a cast can only be formed if the path is unique.
   2010   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
   2011   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
   2012   const CXXRecordDecl *FinalType;
   2013   if (NewEntriesSize == D.MostDerivedPathLength)
   2014     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
   2015   else
   2016     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
   2017   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
   2018     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2019       << D.MostDerivedType << TargetQT;
   2020     return false;
   2021   }
   2022 
   2023   // Truncate the lvalue to the appropriate derived class.
   2024   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
   2025 }
   2026 
   2027 namespace {
   2028 enum EvalStmtResult {
   2029   /// Evaluation failed.
   2030   ESR_Failed,
   2031   /// Hit a 'return' statement.
   2032   ESR_Returned,
   2033   /// Evaluation succeeded.
   2034   ESR_Succeeded
   2035 };
   2036 }
   2037 
   2038 // Evaluate a statement.
   2039 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
   2040                                    const Stmt *S) {
   2041   switch (S->getStmtClass()) {
   2042   default:
   2043     return ESR_Failed;
   2044 
   2045   case Stmt::NullStmtClass:
   2046   case Stmt::DeclStmtClass:
   2047     return ESR_Succeeded;
   2048 
   2049   case Stmt::ReturnStmtClass: {
   2050     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
   2051     if (!Evaluate(Result, Info, RetExpr))
   2052       return ESR_Failed;
   2053     return ESR_Returned;
   2054   }
   2055 
   2056   case Stmt::CompoundStmtClass: {
   2057     const CompoundStmt *CS = cast<CompoundStmt>(S);
   2058     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
   2059            BE = CS->body_end(); BI != BE; ++BI) {
   2060       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
   2061       if (ESR != ESR_Succeeded)
   2062         return ESR;
   2063     }
   2064     return ESR_Succeeded;
   2065   }
   2066   }
   2067 }
   2068 
   2069 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
   2070 /// default constructor. If so, we'll fold it whether or not it's marked as
   2071 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
   2072 /// so we need special handling.
   2073 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
   2074                                            const CXXConstructorDecl *CD,
   2075                                            bool IsValueInitialization) {
   2076   if (!CD->isTrivial() || !CD->isDefaultConstructor())
   2077     return false;
   2078 
   2079   // Value-initialization does not call a trivial default constructor, so such a
   2080   // call is a core constant expression whether or not the constructor is
   2081   // constexpr.
   2082   if (!CD->isConstexpr() && !IsValueInitialization) {
   2083     if (Info.getLangOpts().CPlusPlus0x) {
   2084       // FIXME: If DiagDecl is an implicitly-declared special member function,
   2085       // we should be much more explicit about why it's not constexpr.
   2086       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
   2087         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
   2088       Info.Note(CD->getLocation(), diag::note_declared_at);
   2089     } else {
   2090       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
   2091     }
   2092   }
   2093   return true;
   2094 }
   2095 
   2096 /// CheckConstexprFunction - Check that a function can be called in a constant
   2097 /// expression.
   2098 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
   2099                                    const FunctionDecl *Declaration,
   2100                                    const FunctionDecl *Definition) {
   2101   // Potential constant expressions can contain calls to declared, but not yet
   2102   // defined, constexpr functions.
   2103   if (Info.CheckingPotentialConstantExpression && !Definition &&
   2104       Declaration->isConstexpr())
   2105     return false;
   2106 
   2107   // Can we evaluate this function call?
   2108   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
   2109     return true;
   2110 
   2111   if (Info.getLangOpts().CPlusPlus0x) {
   2112     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
   2113     // FIXME: If DiagDecl is an implicitly-declared special member function, we
   2114     // should be much more explicit about why it's not constexpr.
   2115     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
   2116       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
   2117       << DiagDecl;
   2118     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
   2119   } else {
   2120     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
   2121   }
   2122   return false;
   2123 }
   2124 
   2125 namespace {
   2126 typedef SmallVector<APValue, 8> ArgVector;
   2127 }
   2128 
   2129 /// EvaluateArgs - Evaluate the arguments to a function call.
   2130 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
   2131                          EvalInfo &Info) {
   2132   bool Success = true;
   2133   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
   2134        I != E; ++I) {
   2135     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
   2136       // If we're checking for a potential constant expression, evaluate all
   2137       // initializers even if some of them fail.
   2138       if (!Info.keepEvaluatingAfterFailure())
   2139         return false;
   2140       Success = false;
   2141     }
   2142   }
   2143   return Success;
   2144 }
   2145 
   2146 /// Evaluate a function call.
   2147 static bool HandleFunctionCall(SourceLocation CallLoc,
   2148                                const FunctionDecl *Callee, const LValue *This,
   2149                                ArrayRef<const Expr*> Args, const Stmt *Body,
   2150                                EvalInfo &Info, APValue &Result) {
   2151   ArgVector ArgValues(Args.size());
   2152   if (!EvaluateArgs(Args, ArgValues, Info))
   2153     return false;
   2154 
   2155   if (!Info.CheckCallLimit(CallLoc))
   2156     return false;
   2157 
   2158   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
   2159   return EvaluateStmt(Result, Info, Body) == ESR_Returned;
   2160 }
   2161 
   2162 /// Evaluate a constructor call.
   2163 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
   2164                                   ArrayRef<const Expr*> Args,
   2165                                   const CXXConstructorDecl *Definition,
   2166                                   EvalInfo &Info, APValue &Result) {
   2167   ArgVector ArgValues(Args.size());
   2168   if (!EvaluateArgs(Args, ArgValues, Info))
   2169     return false;
   2170 
   2171   if (!Info.CheckCallLimit(CallLoc))
   2172     return false;
   2173 
   2174   const CXXRecordDecl *RD = Definition->getParent();
   2175   if (RD->getNumVBases()) {
   2176     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
   2177     return false;
   2178   }
   2179 
   2180   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
   2181 
   2182   // If it's a delegating constructor, just delegate.
   2183   if (Definition->isDelegatingConstructor()) {
   2184     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
   2185     return EvaluateInPlace(Result, Info, This, (*I)->getInit());
   2186   }
   2187 
   2188   // For a trivial copy or move constructor, perform an APValue copy. This is
   2189   // essential for unions, where the operations performed by the constructor
   2190   // cannot be represented by ctor-initializers.
   2191   if (Definition->isDefaulted() &&
   2192       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
   2193        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
   2194     LValue RHS;
   2195     RHS.setFrom(Info.Ctx, ArgValues[0]);
   2196     return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   2197                                           RHS, Result);
   2198   }
   2199 
   2200   // Reserve space for the struct members.
   2201   if (!RD->isUnion() && Result.isUninit())
   2202     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   2203                      std::distance(RD->field_begin(), RD->field_end()));
   2204 
   2205   if (RD->isInvalidDecl()) return false;
   2206   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   2207 
   2208   bool Success = true;
   2209   unsigned BasesSeen = 0;
   2210 #ifndef NDEBUG
   2211   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
   2212 #endif
   2213   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
   2214        E = Definition->init_end(); I != E; ++I) {
   2215     LValue Subobject = This;
   2216     APValue *Value = &Result;
   2217 
   2218     // Determine the subobject to initialize.
   2219     if ((*I)->isBaseInitializer()) {
   2220       QualType BaseType((*I)->getBaseClass(), 0);
   2221 #ifndef NDEBUG
   2222       // Non-virtual base classes are initialized in the order in the class
   2223       // definition. We have already checked for virtual base classes.
   2224       assert(!BaseIt->isVirtual() && "virtual base for literal type");
   2225       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
   2226              "base class initializers not in expected order");
   2227       ++BaseIt;
   2228 #endif
   2229       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
   2230                                   BaseType->getAsCXXRecordDecl(), &Layout))
   2231         return false;
   2232       Value = &Result.getStructBase(BasesSeen++);
   2233     } else if (FieldDecl *FD = (*I)->getMember()) {
   2234       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
   2235         return false;
   2236       if (RD->isUnion()) {
   2237         Result = APValue(FD);
   2238         Value = &Result.getUnionValue();
   2239       } else {
   2240         Value = &Result.getStructField(FD->getFieldIndex());
   2241       }
   2242     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
   2243       // Walk the indirect field decl's chain to find the object to initialize,
   2244       // and make sure we've initialized every step along it.
   2245       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   2246                                              CE = IFD->chain_end();
   2247            C != CE; ++C) {
   2248         FieldDecl *FD = cast<FieldDecl>(*C);
   2249         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
   2250         // Switch the union field if it differs. This happens if we had
   2251         // preceding zero-initialization, and we're now initializing a union
   2252         // subobject other than the first.
   2253         // FIXME: In this case, the values of the other subobjects are
   2254         // specified, since zero-initialization sets all padding bits to zero.
   2255         if (Value->isUninit() ||
   2256             (Value->isUnion() && Value->getUnionField() != FD)) {
   2257           if (CD->isUnion())
   2258             *Value = APValue(FD);
   2259           else
   2260             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
   2261                              std::distance(CD->field_begin(), CD->field_end()));
   2262         }
   2263         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
   2264           return false;
   2265         if (CD->isUnion())
   2266           Value = &Value->getUnionValue();
   2267         else
   2268           Value = &Value->getStructField(FD->getFieldIndex());
   2269       }
   2270     } else {
   2271       llvm_unreachable("unknown base initializer kind");
   2272     }
   2273 
   2274     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
   2275                          (*I)->isBaseInitializer()
   2276                                       ? CCEK_Constant : CCEK_MemberInit)) {
   2277       // If we're checking for a potential constant expression, evaluate all
   2278       // initializers even if some of them fail.
   2279       if (!Info.keepEvaluatingAfterFailure())
   2280         return false;
   2281       Success = false;
   2282     }
   2283   }
   2284 
   2285   return Success;
   2286 }
   2287 
   2288 //===----------------------------------------------------------------------===//
   2289 // Generic Evaluation
   2290 //===----------------------------------------------------------------------===//
   2291 namespace {
   2292 
   2293 // FIXME: RetTy is always bool. Remove it.
   2294 template <class Derived, typename RetTy=bool>
   2295 class ExprEvaluatorBase
   2296   : public ConstStmtVisitor<Derived, RetTy> {
   2297 private:
   2298   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
   2299     return static_cast<Derived*>(this)->Success(V, E);
   2300   }
   2301   RetTy DerivedZeroInitialization(const Expr *E) {
   2302     return static_cast<Derived*>(this)->ZeroInitialization(E);
   2303   }
   2304 
   2305   // Check whether a conditional operator with a non-constant condition is a
   2306   // potential constant expression. If neither arm is a potential constant
   2307   // expression, then the conditional operator is not either.
   2308   template<typename ConditionalOperator>
   2309   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
   2310     assert(Info.CheckingPotentialConstantExpression);
   2311 
   2312     // Speculatively evaluate both arms.
   2313     {
   2314       llvm::SmallVector<PartialDiagnosticAt, 8> Diag;
   2315       SpeculativeEvaluationRAII Speculate(Info, &Diag);
   2316 
   2317       StmtVisitorTy::Visit(E->getFalseExpr());
   2318       if (Diag.empty())
   2319         return;
   2320 
   2321       Diag.clear();
   2322       StmtVisitorTy::Visit(E->getTrueExpr());
   2323       if (Diag.empty())
   2324         return;
   2325     }
   2326 
   2327     Error(E, diag::note_constexpr_conditional_never_const);
   2328   }
   2329 
   2330 
   2331   template<typename ConditionalOperator>
   2332   bool HandleConditionalOperator(const ConditionalOperator *E) {
   2333     bool BoolResult;
   2334     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
   2335       if (Info.CheckingPotentialConstantExpression)
   2336         CheckPotentialConstantConditional(E);
   2337       return false;
   2338     }
   2339 
   2340     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
   2341     return StmtVisitorTy::Visit(EvalExpr);
   2342   }
   2343 
   2344 protected:
   2345   EvalInfo &Info;
   2346   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
   2347   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
   2348 
   2349   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   2350     return Info.CCEDiag(E, D);
   2351   }
   2352 
   2353   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
   2354 
   2355 public:
   2356   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
   2357 
   2358   EvalInfo &getEvalInfo() { return Info; }
   2359 
   2360   /// Report an evaluation error. This should only be called when an error is
   2361   /// first discovered. When propagating an error, just return false.
   2362   bool Error(const Expr *E, diag::kind D) {
   2363     Info.Diag(E, D);
   2364     return false;
   2365   }
   2366   bool Error(const Expr *E) {
   2367     return Error(E, diag::note_invalid_subexpr_in_const_expr);
   2368   }
   2369 
   2370   RetTy VisitStmt(const Stmt *) {
   2371     llvm_unreachable("Expression evaluator should not be called on stmts");
   2372   }
   2373   RetTy VisitExpr(const Expr *E) {
   2374     return Error(E);
   2375   }
   2376 
   2377   RetTy VisitParenExpr(const ParenExpr *E)
   2378     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2379   RetTy VisitUnaryExtension(const UnaryOperator *E)
   2380     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2381   RetTy VisitUnaryPlus(const UnaryOperator *E)
   2382     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2383   RetTy VisitChooseExpr(const ChooseExpr *E)
   2384     { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
   2385   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
   2386     { return StmtVisitorTy::Visit(E->getResultExpr()); }
   2387   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
   2388     { return StmtVisitorTy::Visit(E->getReplacement()); }
   2389   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
   2390     { return StmtVisitorTy::Visit(E->getExpr()); }
   2391   // We cannot create any objects for which cleanups are required, so there is
   2392   // nothing to do here; all cleanups must come from unevaluated subexpressions.
   2393   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
   2394     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   2395 
   2396   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
   2397     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
   2398     return static_cast<Derived*>(this)->VisitCastExpr(E);
   2399   }
   2400   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
   2401     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
   2402     return static_cast<Derived*>(this)->VisitCastExpr(E);
   2403   }
   2404 
   2405   RetTy VisitBinaryOperator(const BinaryOperator *E) {
   2406     switch (E->getOpcode()) {
   2407     default:
   2408       return Error(E);
   2409 
   2410     case BO_Comma:
   2411       VisitIgnoredValue(E->getLHS());
   2412       return StmtVisitorTy::Visit(E->getRHS());
   2413 
   2414     case BO_PtrMemD:
   2415     case BO_PtrMemI: {
   2416       LValue Obj;
   2417       if (!HandleMemberPointerAccess(Info, E, Obj))
   2418         return false;
   2419       APValue Result;
   2420       if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
   2421         return false;
   2422       return DerivedSuccess(Result, E);
   2423     }
   2424     }
   2425   }
   2426 
   2427   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
   2428     // Evaluate and cache the common expression. We treat it as a temporary,
   2429     // even though it's not quite the same thing.
   2430     if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
   2431                   Info, E->getCommon()))
   2432       return false;
   2433 
   2434     return HandleConditionalOperator(E);
   2435   }
   2436 
   2437   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
   2438     bool IsBcpCall = false;
   2439     // If the condition (ignoring parens) is a __builtin_constant_p call,
   2440     // the result is a constant expression if it can be folded without
   2441     // side-effects. This is an important GNU extension. See GCC PR38377
   2442     // for discussion.
   2443     if (const CallExpr *CallCE =
   2444           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
   2445       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   2446         IsBcpCall = true;
   2447 
   2448     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
   2449     // constant expression; we can't check whether it's potentially foldable.
   2450     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
   2451       return false;
   2452 
   2453     FoldConstant Fold(Info);
   2454 
   2455     if (!HandleConditionalOperator(E))
   2456       return false;
   2457 
   2458     if (IsBcpCall)
   2459       Fold.Fold(Info);
   2460 
   2461     return true;
   2462   }
   2463 
   2464   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
   2465     APValue &Value = Info.CurrentCall->Temporaries[E];
   2466     if (Value.isUninit()) {
   2467       const Expr *Source = E->getSourceExpr();
   2468       if (!Source)
   2469         return Error(E);
   2470       if (Source == E) { // sanity checking.
   2471         assert(0 && "OpaqueValueExpr recursively refers to itself");
   2472         return Error(E);
   2473       }
   2474       return StmtVisitorTy::Visit(Source);
   2475     }
   2476     return DerivedSuccess(Value, E);
   2477   }
   2478 
   2479   RetTy VisitCallExpr(const CallExpr *E) {
   2480     const Expr *Callee = E->getCallee()->IgnoreParens();
   2481     QualType CalleeType = Callee->getType();
   2482 
   2483     const FunctionDecl *FD = 0;
   2484     LValue *This = 0, ThisVal;
   2485     llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
   2486     bool HasQualifier = false;
   2487 
   2488     // Extract function decl and 'this' pointer from the callee.
   2489     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
   2490       const ValueDecl *Member = 0;
   2491       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
   2492         // Explicit bound member calls, such as x.f() or p->g();
   2493         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
   2494           return false;
   2495         Member = ME->getMemberDecl();
   2496         This = &ThisVal;
   2497         HasQualifier = ME->hasQualifier();
   2498       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
   2499         // Indirect bound member calls ('.*' or '->*').
   2500         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
   2501         if (!Member) return false;
   2502         This = &ThisVal;
   2503       } else
   2504         return Error(Callee);
   2505 
   2506       FD = dyn_cast<FunctionDecl>(Member);
   2507       if (!FD)
   2508         return Error(Callee);
   2509     } else if (CalleeType->isFunctionPointerType()) {
   2510       LValue Call;
   2511       if (!EvaluatePointer(Callee, Call, Info))
   2512         return false;
   2513 
   2514       if (!Call.getLValueOffset().isZero())
   2515         return Error(Callee);
   2516       FD = dyn_cast_or_null<FunctionDecl>(
   2517                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
   2518       if (!FD)
   2519         return Error(Callee);
   2520 
   2521       // Overloaded operator calls to member functions are represented as normal
   2522       // calls with '*this' as the first argument.
   2523       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   2524       if (MD && !MD->isStatic()) {
   2525         // FIXME: When selecting an implicit conversion for an overloaded
   2526         // operator delete, we sometimes try to evaluate calls to conversion
   2527         // operators without a 'this' parameter!
   2528         if (Args.empty())
   2529           return Error(E);
   2530 
   2531         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
   2532           return false;
   2533         This = &ThisVal;
   2534         Args = Args.slice(1);
   2535       }
   2536 
   2537       // Don't call function pointers which have been cast to some other type.
   2538       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
   2539         return Error(E);
   2540     } else
   2541       return Error(E);
   2542 
   2543     if (This && !This->checkSubobject(Info, E, CSK_This))
   2544       return false;
   2545 
   2546     // DR1358 allows virtual constexpr functions in some cases. Don't allow
   2547     // calls to such functions in constant expressions.
   2548     if (This && !HasQualifier &&
   2549         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
   2550       return Error(E, diag::note_constexpr_virtual_call);
   2551 
   2552     const FunctionDecl *Definition = 0;
   2553     Stmt *Body = FD->getBody(Definition);
   2554     APValue Result;
   2555 
   2556     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
   2557         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
   2558                             Info, Result))
   2559       return false;
   2560 
   2561     return DerivedSuccess(Result, E);
   2562   }
   2563 
   2564   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   2565     return StmtVisitorTy::Visit(E->getInitializer());
   2566   }
   2567   RetTy VisitInitListExpr(const InitListExpr *E) {
   2568     if (E->getNumInits() == 0)
   2569       return DerivedZeroInitialization(E);
   2570     if (E->getNumInits() == 1)
   2571       return StmtVisitorTy::Visit(E->getInit(0));
   2572     return Error(E);
   2573   }
   2574   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
   2575     return DerivedZeroInitialization(E);
   2576   }
   2577   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
   2578     return DerivedZeroInitialization(E);
   2579   }
   2580   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
   2581     return DerivedZeroInitialization(E);
   2582   }
   2583 
   2584   /// A member expression where the object is a prvalue is itself a prvalue.
   2585   RetTy VisitMemberExpr(const MemberExpr *E) {
   2586     assert(!E->isArrow() && "missing call to bound member function?");
   2587 
   2588     APValue Val;
   2589     if (!Evaluate(Val, Info, E->getBase()))
   2590       return false;
   2591 
   2592     QualType BaseTy = E->getBase()->getType();
   2593 
   2594     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
   2595     if (!FD) return Error(E);
   2596     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
   2597     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   2598            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   2599 
   2600     SubobjectDesignator Designator(BaseTy);
   2601     Designator.addDeclUnchecked(FD);
   2602 
   2603     return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
   2604            DerivedSuccess(Val, E);
   2605   }
   2606 
   2607   RetTy VisitCastExpr(const CastExpr *E) {
   2608     switch (E->getCastKind()) {
   2609     default:
   2610       break;
   2611 
   2612     case CK_AtomicToNonAtomic:
   2613     case CK_NonAtomicToAtomic:
   2614     case CK_NoOp:
   2615     case CK_UserDefinedConversion:
   2616       return StmtVisitorTy::Visit(E->getSubExpr());
   2617 
   2618     case CK_LValueToRValue: {
   2619       LValue LVal;
   2620       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
   2621         return false;
   2622       APValue RVal;
   2623       // Note, we use the subexpression's type in order to retain cv-qualifiers.
   2624       if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
   2625                                           LVal, RVal))
   2626         return false;
   2627       return DerivedSuccess(RVal, E);
   2628     }
   2629     }
   2630 
   2631     return Error(E);
   2632   }
   2633 
   2634   /// Visit a value which is evaluated, but whose value is ignored.
   2635   void VisitIgnoredValue(const Expr *E) {
   2636     APValue Scratch;
   2637     if (!Evaluate(Scratch, Info, E))
   2638       Info.EvalStatus.HasSideEffects = true;
   2639   }
   2640 };
   2641 
   2642 }
   2643 
   2644 //===----------------------------------------------------------------------===//
   2645 // Common base class for lvalue and temporary evaluation.
   2646 //===----------------------------------------------------------------------===//
   2647 namespace {
   2648 template<class Derived>
   2649 class LValueExprEvaluatorBase
   2650   : public ExprEvaluatorBase<Derived, bool> {
   2651 protected:
   2652   LValue &Result;
   2653   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
   2654   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
   2655 
   2656   bool Success(APValue::LValueBase B) {
   2657     Result.set(B);
   2658     return true;
   2659   }
   2660 
   2661 public:
   2662   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
   2663     ExprEvaluatorBaseTy(Info), Result(Result) {}
   2664 
   2665   bool Success(const APValue &V, const Expr *E) {
   2666     Result.setFrom(this->Info.Ctx, V);
   2667     return true;
   2668   }
   2669 
   2670   bool VisitMemberExpr(const MemberExpr *E) {
   2671     // Handle non-static data members.
   2672     QualType BaseTy;
   2673     if (E->isArrow()) {
   2674       if (!EvaluatePointer(E->getBase(), Result, this->Info))
   2675         return false;
   2676       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
   2677     } else if (E->getBase()->isRValue()) {
   2678       assert(E->getBase()->getType()->isRecordType());
   2679       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
   2680         return false;
   2681       BaseTy = E->getBase()->getType();
   2682     } else {
   2683       if (!this->Visit(E->getBase()))
   2684         return false;
   2685       BaseTy = E->getBase()->getType();
   2686     }
   2687 
   2688     const ValueDecl *MD = E->getMemberDecl();
   2689     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
   2690       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   2691              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   2692       (void)BaseTy;
   2693       if (!HandleLValueMember(this->Info, E, Result, FD))
   2694         return false;
   2695     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
   2696       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
   2697         return false;
   2698     } else
   2699       return this->Error(E);
   2700 
   2701     if (MD->getType()->isReferenceType()) {
   2702       APValue RefValue;
   2703       if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
   2704                                           RefValue))
   2705         return false;
   2706       return Success(RefValue, E);
   2707     }
   2708     return true;
   2709   }
   2710 
   2711   bool VisitBinaryOperator(const BinaryOperator *E) {
   2712     switch (E->getOpcode()) {
   2713     default:
   2714       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   2715 
   2716     case BO_PtrMemD:
   2717     case BO_PtrMemI:
   2718       return HandleMemberPointerAccess(this->Info, E, Result);
   2719     }
   2720   }
   2721 
   2722   bool VisitCastExpr(const CastExpr *E) {
   2723     switch (E->getCastKind()) {
   2724     default:
   2725       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   2726 
   2727     case CK_DerivedToBase:
   2728     case CK_UncheckedDerivedToBase: {
   2729       if (!this->Visit(E->getSubExpr()))
   2730         return false;
   2731 
   2732       // Now figure out the necessary offset to add to the base LV to get from
   2733       // the derived class to the base class.
   2734       QualType Type = E->getSubExpr()->getType();
   2735 
   2736       for (CastExpr::path_const_iterator PathI = E->path_begin(),
   2737            PathE = E->path_end(); PathI != PathE; ++PathI) {
   2738         if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
   2739                               *PathI))
   2740           return false;
   2741         Type = (*PathI)->getType();
   2742       }
   2743 
   2744       return true;
   2745     }
   2746     }
   2747   }
   2748 };
   2749 }
   2750 
   2751 //===----------------------------------------------------------------------===//
   2752 // LValue Evaluation
   2753 //
   2754 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
   2755 // function designators (in C), decl references to void objects (in C), and
   2756 // temporaries (if building with -Wno-address-of-temporary).
   2757 //
   2758 // LValue evaluation produces values comprising a base expression of one of the
   2759 // following types:
   2760 // - Declarations
   2761 //  * VarDecl
   2762 //  * FunctionDecl
   2763 // - Literals
   2764 //  * CompoundLiteralExpr in C
   2765 //  * StringLiteral
   2766 //  * CXXTypeidExpr
   2767 //  * PredefinedExpr
   2768 //  * ObjCStringLiteralExpr
   2769 //  * ObjCEncodeExpr
   2770 //  * AddrLabelExpr
   2771 //  * BlockExpr
   2772 //  * CallExpr for a MakeStringConstant builtin
   2773 // - Locals and temporaries
   2774 //  * Any Expr, with a CallIndex indicating the function in which the temporary
   2775 //    was evaluated.
   2776 // plus an offset in bytes.
   2777 //===----------------------------------------------------------------------===//
   2778 namespace {
   2779 class LValueExprEvaluator
   2780   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
   2781 public:
   2782   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
   2783     LValueExprEvaluatorBaseTy(Info, Result) {}
   2784 
   2785   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
   2786 
   2787   bool VisitDeclRefExpr(const DeclRefExpr *E);
   2788   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
   2789   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2790   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
   2791   bool VisitMemberExpr(const MemberExpr *E);
   2792   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
   2793   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
   2794   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
   2795   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
   2796   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
   2797   bool VisitUnaryDeref(const UnaryOperator *E);
   2798   bool VisitUnaryReal(const UnaryOperator *E);
   2799   bool VisitUnaryImag(const UnaryOperator *E);
   2800 
   2801   bool VisitCastExpr(const CastExpr *E) {
   2802     switch (E->getCastKind()) {
   2803     default:
   2804       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   2805 
   2806     case CK_LValueBitCast:
   2807       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   2808       if (!Visit(E->getSubExpr()))
   2809         return false;
   2810       Result.Designator.setInvalid();
   2811       return true;
   2812 
   2813     case CK_BaseToDerived:
   2814       if (!Visit(E->getSubExpr()))
   2815         return false;
   2816       return HandleBaseToDerivedCast(Info, E, Result);
   2817     }
   2818   }
   2819 };
   2820 } // end anonymous namespace
   2821 
   2822 /// Evaluate an expression as an lvalue. This can be legitimately called on
   2823 /// expressions which are not glvalues, in a few cases:
   2824 ///  * function designators in C,
   2825 ///  * "extern void" objects,
   2826 ///  * temporaries, if building with -Wno-address-of-temporary.
   2827 static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
   2828   assert((E->isGLValue() || E->getType()->isFunctionType() ||
   2829           E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
   2830          "can't evaluate expression as an lvalue");
   2831   return LValueExprEvaluator(Info, Result).Visit(E);
   2832 }
   2833 
   2834 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
   2835   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
   2836     return Success(FD);
   2837   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   2838     return VisitVarDecl(E, VD);
   2839   return Error(E);
   2840 }
   2841 
   2842 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
   2843   if (!VD->getType()->isReferenceType()) {
   2844     if (isa<ParmVarDecl>(VD)) {
   2845       Result.set(VD, Info.CurrentCall->Index);
   2846       return true;
   2847     }
   2848     return Success(VD);
   2849   }
   2850 
   2851   APValue V;
   2852   if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
   2853     return false;
   2854   return Success(V, E);
   2855 }
   2856 
   2857 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
   2858     const MaterializeTemporaryExpr *E) {
   2859   if (E->GetTemporaryExpr()->isRValue()) {
   2860     if (E->getType()->isRecordType())
   2861       return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
   2862 
   2863     Result.set(E, Info.CurrentCall->Index);
   2864     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
   2865                            Result, E->GetTemporaryExpr());
   2866   }
   2867 
   2868   // Materialization of an lvalue temporary occurs when we need to force a copy
   2869   // (for instance, if it's a bitfield).
   2870   // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
   2871   if (!Visit(E->GetTemporaryExpr()))
   2872     return false;
   2873   if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
   2874                                       Info.CurrentCall->Temporaries[E]))
   2875     return false;
   2876   Result.set(E, Info.CurrentCall->Index);
   2877   return true;
   2878 }
   2879 
   2880 bool
   2881 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   2882   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   2883   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
   2884   // only see this when folding in C, so there's no standard to follow here.
   2885   return Success(E);
   2886 }
   2887 
   2888 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
   2889   if (E->isTypeOperand())
   2890     return Success(E);
   2891   CXXRecordDecl *RD = E->getExprOperand()->getType()->getAsCXXRecordDecl();
   2892   // FIXME: The standard says "a typeid expression whose operand is of a
   2893   // polymorphic class type" is not a constant expression, but it probably
   2894   // means "a typeid expression whose operand is potentially evaluated".
   2895   if (RD && RD->isPolymorphic()) {
   2896     Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
   2897       << E->getExprOperand()->getType()
   2898       << E->getExprOperand()->getSourceRange();
   2899     return false;
   2900   }
   2901   return Success(E);
   2902 }
   2903 
   2904 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
   2905   return Success(E);
   2906 }
   2907 
   2908 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
   2909   // Handle static data members.
   2910   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
   2911     VisitIgnoredValue(E->getBase());
   2912     return VisitVarDecl(E, VD);
   2913   }
   2914 
   2915   // Handle static member functions.
   2916   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
   2917     if (MD->isStatic()) {
   2918       VisitIgnoredValue(E->getBase());
   2919       return Success(MD);
   2920     }
   2921   }
   2922 
   2923   // Handle non-static data members.
   2924   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
   2925 }
   2926 
   2927 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
   2928   // FIXME: Deal with vectors as array subscript bases.
   2929   if (E->getBase()->getType()->isVectorType())
   2930     return Error(E);
   2931 
   2932   if (!EvaluatePointer(E->getBase(), Result, Info))
   2933     return false;
   2934 
   2935   APSInt Index;
   2936   if (!EvaluateInteger(E->getIdx(), Index, Info))
   2937     return false;
   2938   int64_t IndexValue
   2939     = Index.isSigned() ? Index.getSExtValue()
   2940                        : static_cast<int64_t>(Index.getZExtValue());
   2941 
   2942   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
   2943 }
   2944 
   2945 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
   2946   return EvaluatePointer(E->getSubExpr(), Result, Info);
   2947 }
   2948 
   2949 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   2950   if (!Visit(E->getSubExpr()))
   2951     return false;
   2952   // __real is a no-op on scalar lvalues.
   2953   if (E->getSubExpr()->getType()->isAnyComplexType())
   2954     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
   2955   return true;
   2956 }
   2957 
   2958 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   2959   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
   2960          "lvalue __imag__ on scalar?");
   2961   if (!Visit(E->getSubExpr()))
   2962     return false;
   2963   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
   2964   return true;
   2965 }
   2966 
   2967 //===----------------------------------------------------------------------===//
   2968 // Pointer Evaluation
   2969 //===----------------------------------------------------------------------===//
   2970 
   2971 namespace {
   2972 class PointerExprEvaluator
   2973   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
   2974   LValue &Result;
   2975 
   2976   bool Success(const Expr *E) {
   2977     Result.set(E);
   2978     return true;
   2979   }
   2980 public:
   2981 
   2982   PointerExprEvaluator(EvalInfo &info, LValue &Result)
   2983     : ExprEvaluatorBaseTy(info), Result(Result) {}
   2984 
   2985   bool Success(const APValue &V, const Expr *E) {
   2986     Result.setFrom(Info.Ctx, V);
   2987     return true;
   2988   }
   2989   bool ZeroInitialization(const Expr *E) {
   2990     return Success((Expr*)0);
   2991   }
   2992 
   2993   bool VisitBinaryOperator(const BinaryOperator *E);
   2994   bool VisitCastExpr(const CastExpr* E);
   2995   bool VisitUnaryAddrOf(const UnaryOperator *E);
   2996   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
   2997       { return Success(E); }
   2998   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
   2999       { return Success(E); }
   3000   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
   3001       { return Success(E); }
   3002   bool VisitCallExpr(const CallExpr *E);
   3003   bool VisitBlockExpr(const BlockExpr *E) {
   3004     if (!E->getBlockDecl()->hasCaptures())
   3005       return Success(E);
   3006     return Error(E);
   3007   }
   3008   bool VisitCXXThisExpr(const CXXThisExpr *E) {
   3009     if (!Info.CurrentCall->This)
   3010       return Error(E);
   3011     Result = *Info.CurrentCall->This;
   3012     return true;
   3013   }
   3014 
   3015   // FIXME: Missing: @protocol, @selector
   3016 };
   3017 } // end anonymous namespace
   3018 
   3019 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
   3020   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
   3021   return PointerExprEvaluator(Info, Result).Visit(E);
   3022 }
   3023 
   3024 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   3025   if (E->getOpcode() != BO_Add &&
   3026       E->getOpcode() != BO_Sub)
   3027     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   3028 
   3029   const Expr *PExp = E->getLHS();
   3030   const Expr *IExp = E->getRHS();
   3031   if (IExp->getType()->isPointerType())
   3032     std::swap(PExp, IExp);
   3033 
   3034   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
   3035   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
   3036     return false;
   3037 
   3038   llvm::APSInt Offset;
   3039   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
   3040     return false;
   3041   int64_t AdditionalOffset
   3042     = Offset.isSigned() ? Offset.getSExtValue()
   3043                         : static_cast<int64_t>(Offset.getZExtValue());
   3044   if (E->getOpcode() == BO_Sub)
   3045     AdditionalOffset = -AdditionalOffset;
   3046 
   3047   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
   3048   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
   3049                                      AdditionalOffset);
   3050 }
   3051 
   3052 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   3053   return EvaluateLValue(E->getSubExpr(), Result, Info);
   3054 }
   3055 
   3056 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
   3057   const Expr* SubExpr = E->getSubExpr();
   3058 
   3059   switch (E->getCastKind()) {
   3060   default:
   3061     break;
   3062 
   3063   case CK_BitCast:
   3064   case CK_CPointerToObjCPointerCast:
   3065   case CK_BlockPointerToObjCPointerCast:
   3066   case CK_AnyPointerToBlockPointerCast:
   3067     if (!Visit(SubExpr))
   3068       return false;
   3069     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
   3070     // permitted in constant expressions in C++11. Bitcasts from cv void* are
   3071     // also static_casts, but we disallow them as a resolution to DR1312.
   3072     if (!E->getType()->isVoidPointerType()) {
   3073       Result.Designator.setInvalid();
   3074       if (SubExpr->getType()->isVoidPointerType())
   3075         CCEDiag(E, diag::note_constexpr_invalid_cast)
   3076           << 3 << SubExpr->getType();
   3077       else
   3078         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   3079     }
   3080     return true;
   3081 
   3082   case CK_DerivedToBase:
   3083   case CK_UncheckedDerivedToBase: {
   3084     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
   3085       return false;
   3086     if (!Result.Base && Result.Offset.isZero())
   3087       return true;
   3088 
   3089     // Now figure out the necessary offset to add to the base LV to get from
   3090     // the derived class to the base class.
   3091     QualType Type =
   3092         E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   3093 
   3094     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3095          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3096       if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
   3097                             *PathI))
   3098         return false;
   3099       Type = (*PathI)->getType();
   3100     }
   3101 
   3102     return true;
   3103   }
   3104 
   3105   case CK_BaseToDerived:
   3106     if (!Visit(E->getSubExpr()))
   3107       return false;
   3108     if (!Result.Base && Result.Offset.isZero())
   3109       return true;
   3110     return HandleBaseToDerivedCast(Info, E, Result);
   3111 
   3112   case CK_NullToPointer:
   3113     VisitIgnoredValue(E->getSubExpr());
   3114     return ZeroInitialization(E);
   3115 
   3116   case CK_IntegralToPointer: {
   3117     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   3118 
   3119     APValue Value;
   3120     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
   3121       break;
   3122 
   3123     if (Value.isInt()) {
   3124       unsigned Size = Info.Ctx.getTypeSize(E->getType());
   3125       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
   3126       Result.Base = (Expr*)0;
   3127       Result.Offset = CharUnits::fromQuantity(N);
   3128       Result.CallIndex = 0;
   3129       Result.Designator.setInvalid();
   3130       return true;
   3131     } else {
   3132       // Cast is of an lvalue, no need to change value.
   3133       Result.setFrom(Info.Ctx, Value);
   3134       return true;
   3135     }
   3136   }
   3137   case CK_ArrayToPointerDecay:
   3138     if (SubExpr->isGLValue()) {
   3139       if (!EvaluateLValue(SubExpr, Result, Info))
   3140         return false;
   3141     } else {
   3142       Result.set(SubExpr, Info.CurrentCall->Index);
   3143       if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
   3144                            Info, Result, SubExpr))
   3145         return false;
   3146     }
   3147     // The result is a pointer to the first element of the array.
   3148     if (const ConstantArrayType *CAT
   3149           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
   3150       Result.addArray(Info, E, CAT);
   3151     else
   3152       Result.Designator.setInvalid();
   3153     return true;
   3154 
   3155   case CK_FunctionToPointerDecay:
   3156     return EvaluateLValue(SubExpr, Result, Info);
   3157   }
   3158 
   3159   return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3160 }
   3161 
   3162 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
   3163   if (IsStringLiteralCall(E))
   3164     return Success(E);
   3165 
   3166   return ExprEvaluatorBaseTy::VisitCallExpr(E);
   3167 }
   3168 
   3169 //===----------------------------------------------------------------------===//
   3170 // Member Pointer Evaluation
   3171 //===----------------------------------------------------------------------===//
   3172 
   3173 namespace {
   3174 class MemberPointerExprEvaluator
   3175   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
   3176   MemberPtr &Result;
   3177 
   3178   bool Success(const ValueDecl *D) {
   3179     Result = MemberPtr(D);
   3180     return true;
   3181   }
   3182 public:
   3183 
   3184   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
   3185     : ExprEvaluatorBaseTy(Info), Result(Result) {}
   3186 
   3187   bool Success(const APValue &V, const Expr *E) {
   3188     Result.setFrom(V);
   3189     return true;
   3190   }
   3191   bool ZeroInitialization(const Expr *E) {
   3192     return Success((const ValueDecl*)0);
   3193   }
   3194 
   3195   bool VisitCastExpr(const CastExpr *E);
   3196   bool VisitUnaryAddrOf(const UnaryOperator *E);
   3197 };
   3198 } // end anonymous namespace
   3199 
   3200 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
   3201                                   EvalInfo &Info) {
   3202   assert(E->isRValue() && E->getType()->isMemberPointerType());
   3203   return MemberPointerExprEvaluator(Info, Result).Visit(E);
   3204 }
   3205 
   3206 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
   3207   switch (E->getCastKind()) {
   3208   default:
   3209     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3210 
   3211   case CK_NullToMemberPointer:
   3212     VisitIgnoredValue(E->getSubExpr());
   3213     return ZeroInitialization(E);
   3214 
   3215   case CK_BaseToDerivedMemberPointer: {
   3216     if (!Visit(E->getSubExpr()))
   3217       return false;
   3218     if (E->path_empty())
   3219       return true;
   3220     // Base-to-derived member pointer casts store the path in derived-to-base
   3221     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
   3222     // the wrong end of the derived->base arc, so stagger the path by one class.
   3223     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
   3224     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
   3225          PathI != PathE; ++PathI) {
   3226       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   3227       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
   3228       if (!Result.castToDerived(Derived))
   3229         return Error(E);
   3230     }
   3231     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
   3232     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
   3233       return Error(E);
   3234     return true;
   3235   }
   3236 
   3237   case CK_DerivedToBaseMemberPointer:
   3238     if (!Visit(E->getSubExpr()))
   3239       return false;
   3240     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3241          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3242       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   3243       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   3244       if (!Result.castToBase(Base))
   3245         return Error(E);
   3246     }
   3247     return true;
   3248   }
   3249 }
   3250 
   3251 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   3252   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
   3253   // member can be formed.
   3254   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
   3255 }
   3256 
   3257 //===----------------------------------------------------------------------===//
   3258 // Record Evaluation
   3259 //===----------------------------------------------------------------------===//
   3260 
   3261 namespace {
   3262   class RecordExprEvaluator
   3263   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
   3264     const LValue &This;
   3265     APValue &Result;
   3266   public:
   3267 
   3268     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
   3269       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
   3270 
   3271     bool Success(const APValue &V, const Expr *E) {
   3272       Result = V;
   3273       return true;
   3274     }
   3275     bool ZeroInitialization(const Expr *E);
   3276 
   3277     bool VisitCastExpr(const CastExpr *E);
   3278     bool VisitInitListExpr(const InitListExpr *E);
   3279     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   3280   };
   3281 }
   3282 
   3283 /// Perform zero-initialization on an object of non-union class type.
   3284 /// C++11 [dcl.init]p5:
   3285 ///  To zero-initialize an object or reference of type T means:
   3286 ///    [...]
   3287 ///    -- if T is a (possibly cv-qualified) non-union class type,
   3288 ///       each non-static data member and each base-class subobject is
   3289 ///       zero-initialized
   3290 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
   3291                                           const RecordDecl *RD,
   3292                                           const LValue &This, APValue &Result) {
   3293   assert(!RD->isUnion() && "Expected non-union class type");
   3294   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
   3295   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
   3296                    std::distance(RD->field_begin(), RD->field_end()));
   3297 
   3298   if (RD->isInvalidDecl()) return false;
   3299   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3300 
   3301   if (CD) {
   3302     unsigned Index = 0;
   3303     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   3304            End = CD->bases_end(); I != End; ++I, ++Index) {
   3305       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
   3306       LValue Subobject = This;
   3307       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
   3308         return false;
   3309       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
   3310                                          Result.getStructBase(Index)))
   3311         return false;
   3312     }
   3313   }
   3314 
   3315   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
   3316        I != End; ++I) {
   3317     // -- if T is a reference type, no initialization is performed.
   3318     if (I->getType()->isReferenceType())
   3319       continue;
   3320 
   3321     LValue Subobject = This;
   3322     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
   3323       return false;
   3324 
   3325     ImplicitValueInitExpr VIE(I->getType());
   3326     if (!EvaluateInPlace(
   3327           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
   3328       return false;
   3329   }
   3330 
   3331   return true;
   3332 }
   3333 
   3334 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
   3335   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   3336   if (RD->isInvalidDecl()) return false;
   3337   if (RD->isUnion()) {
   3338     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
   3339     // object's first non-static named data member is zero-initialized
   3340     RecordDecl::field_iterator I = RD->field_begin();
   3341     if (I == RD->field_end()) {
   3342       Result = APValue((const FieldDecl*)0);
   3343       return true;
   3344     }
   3345 
   3346     LValue Subobject = This;
   3347     if (!HandleLValueMember(Info, E, Subobject, *I))
   3348       return false;
   3349     Result = APValue(*I);
   3350     ImplicitValueInitExpr VIE(I->getType());
   3351     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
   3352   }
   3353 
   3354   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
   3355     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
   3356     return false;
   3357   }
   3358 
   3359   return HandleClassZeroInitialization(Info, E, RD, This, Result);
   3360 }
   3361 
   3362 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
   3363   switch (E->getCastKind()) {
   3364   default:
   3365     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3366 
   3367   case CK_ConstructorConversion:
   3368     return Visit(E->getSubExpr());
   3369 
   3370   case CK_DerivedToBase:
   3371   case CK_UncheckedDerivedToBase: {
   3372     APValue DerivedObject;
   3373     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
   3374       return false;
   3375     if (!DerivedObject.isStruct())
   3376       return Error(E->getSubExpr());
   3377 
   3378     // Derived-to-base rvalue conversion: just slice off the derived part.
   3379     APValue *Value = &DerivedObject;
   3380     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
   3381     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   3382          PathE = E->path_end(); PathI != PathE; ++PathI) {
   3383       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
   3384       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   3385       Value = &Value->getStructBase(getBaseIndex(RD, Base));
   3386       RD = Base;
   3387     }
   3388     Result = *Value;
   3389     return true;
   3390   }
   3391   }
   3392 }
   3393 
   3394 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3395   // Cannot constant-evaluate std::initializer_list inits.
   3396   if (E->initializesStdInitializerList())
   3397     return false;
   3398 
   3399   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   3400   if (RD->isInvalidDecl()) return false;
   3401   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3402 
   3403   if (RD->isUnion()) {
   3404     const FieldDecl *Field = E->getInitializedFieldInUnion();
   3405     Result = APValue(Field);
   3406     if (!Field)
   3407       return true;
   3408 
   3409     // If the initializer list for a union does not contain any elements, the
   3410     // first element of the union is value-initialized.
   3411     ImplicitValueInitExpr VIE(Field->getType());
   3412     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
   3413 
   3414     LValue Subobject = This;
   3415     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
   3416       return false;
   3417     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
   3418   }
   3419 
   3420   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
   3421          "initializer list for class with base classes");
   3422   Result = APValue(APValue::UninitStruct(), 0,
   3423                    std::distance(RD->field_begin(), RD->field_end()));
   3424   unsigned ElementNo = 0;
   3425   bool Success = true;
   3426   for (RecordDecl::field_iterator Field = RD->field_begin(),
   3427        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
   3428     // Anonymous bit-fields are not considered members of the class for
   3429     // purposes of aggregate initialization.
   3430     if (Field->isUnnamedBitfield())
   3431       continue;
   3432 
   3433     LValue Subobject = This;
   3434 
   3435     bool HaveInit = ElementNo < E->getNumInits();
   3436 
   3437     // FIXME: Diagnostics here should point to the end of the initializer
   3438     // list, not the start.
   3439     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
   3440                             Subobject, *Field, &Layout))
   3441       return false;
   3442 
   3443     // Perform an implicit value-initialization for members beyond the end of
   3444     // the initializer list.
   3445     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
   3446 
   3447     if (!EvaluateInPlace(
   3448           Result.getStructField(Field->getFieldIndex()),
   3449           Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
   3450       if (!Info.keepEvaluatingAfterFailure())
   3451         return false;
   3452       Success = false;
   3453     }
   3454   }
   3455 
   3456   return Success;
   3457 }
   3458 
   3459 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3460   const CXXConstructorDecl *FD = E->getConstructor();
   3461   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
   3462 
   3463   bool ZeroInit = E->requiresZeroInitialization();
   3464   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   3465     // If we've already performed zero-initialization, we're already done.
   3466     if (!Result.isUninit())
   3467       return true;
   3468 
   3469     if (ZeroInit)
   3470       return ZeroInitialization(E);
   3471 
   3472     const CXXRecordDecl *RD = FD->getParent();
   3473     if (RD->isUnion())
   3474       Result = APValue((FieldDecl*)0);
   3475     else
   3476       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   3477                        std::distance(RD->field_begin(), RD->field_end()));
   3478     return true;
   3479   }
   3480 
   3481   const FunctionDecl *Definition = 0;
   3482   FD->getBody(Definition);
   3483 
   3484   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   3485     return false;
   3486 
   3487   // Avoid materializing a temporary for an elidable copy/move constructor.
   3488   if (E->isElidable() && !ZeroInit)
   3489     if (const MaterializeTemporaryExpr *ME
   3490           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
   3491       return Visit(ME->GetTemporaryExpr());
   3492 
   3493   if (ZeroInit && !ZeroInitialization(E))
   3494     return false;
   3495 
   3496   llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
   3497   return HandleConstructorCall(E->getExprLoc(), This, Args,
   3498                                cast<CXXConstructorDecl>(Definition), Info,
   3499                                Result);
   3500 }
   3501 
   3502 static bool EvaluateRecord(const Expr *E, const LValue &This,
   3503                            APValue &Result, EvalInfo &Info) {
   3504   assert(E->isRValue() && E->getType()->isRecordType() &&
   3505          "can't evaluate expression as a record rvalue");
   3506   return RecordExprEvaluator(Info, This, Result).Visit(E);
   3507 }
   3508 
   3509 //===----------------------------------------------------------------------===//
   3510 // Temporary Evaluation
   3511 //
   3512 // Temporaries are represented in the AST as rvalues, but generally behave like
   3513 // lvalues. The full-object of which the temporary is a subobject is implicitly
   3514 // materialized so that a reference can bind to it.
   3515 //===----------------------------------------------------------------------===//
   3516 namespace {
   3517 class TemporaryExprEvaluator
   3518   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
   3519 public:
   3520   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
   3521     LValueExprEvaluatorBaseTy(Info, Result) {}
   3522 
   3523   /// Visit an expression which constructs the value of this temporary.
   3524   bool VisitConstructExpr(const Expr *E) {
   3525     Result.set(E, Info.CurrentCall->Index);
   3526     return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
   3527   }
   3528 
   3529   bool VisitCastExpr(const CastExpr *E) {
   3530     switch (E->getCastKind()) {
   3531     default:
   3532       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   3533 
   3534     case CK_ConstructorConversion:
   3535       return VisitConstructExpr(E->getSubExpr());
   3536     }
   3537   }
   3538   bool VisitInitListExpr(const InitListExpr *E) {
   3539     return VisitConstructExpr(E);
   3540   }
   3541   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3542     return VisitConstructExpr(E);
   3543   }
   3544   bool VisitCallExpr(const CallExpr *E) {
   3545     return VisitConstructExpr(E);
   3546   }
   3547 };
   3548 } // end anonymous namespace
   3549 
   3550 /// Evaluate an expression of record type as a temporary.
   3551 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
   3552   assert(E->isRValue() && E->getType()->isRecordType());
   3553   return TemporaryExprEvaluator(Info, Result).Visit(E);
   3554 }
   3555 
   3556 //===----------------------------------------------------------------------===//
   3557 // Vector Evaluation
   3558 //===----------------------------------------------------------------------===//
   3559 
   3560 namespace {
   3561   class VectorExprEvaluator
   3562   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
   3563     APValue &Result;
   3564   public:
   3565 
   3566     VectorExprEvaluator(EvalInfo &info, APValue &Result)
   3567       : ExprEvaluatorBaseTy(info), Result(Result) {}
   3568 
   3569     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
   3570       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
   3571       // FIXME: remove this APValue copy.
   3572       Result = APValue(V.data(), V.size());
   3573       return true;
   3574     }
   3575     bool Success(const APValue &V, const Expr *E) {
   3576       assert(V.isVector());
   3577       Result = V;
   3578       return true;
   3579     }
   3580     bool ZeroInitialization(const Expr *E);
   3581 
   3582     bool VisitUnaryReal(const UnaryOperator *E)
   3583       { return Visit(E->getSubExpr()); }
   3584     bool VisitCastExpr(const CastExpr* E);
   3585     bool VisitInitListExpr(const InitListExpr *E);
   3586     bool VisitUnaryImag(const UnaryOperator *E);
   3587     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
   3588     //                 binary comparisons, binary and/or/xor,
   3589     //                 shufflevector, ExtVectorElementExpr
   3590   };
   3591 } // end anonymous namespace
   3592 
   3593 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
   3594   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
   3595   return VectorExprEvaluator(Info, Result).Visit(E);
   3596 }
   3597 
   3598 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
   3599   const VectorType *VTy = E->getType()->castAs<VectorType>();
   3600   unsigned NElts = VTy->getNumElements();
   3601 
   3602   const Expr *SE = E->getSubExpr();
   3603   QualType SETy = SE->getType();
   3604 
   3605   switch (E->getCastKind()) {
   3606   case CK_VectorSplat: {
   3607     APValue Val = APValue();
   3608     if (SETy->isIntegerType()) {
   3609       APSInt IntResult;
   3610       if (!EvaluateInteger(SE, IntResult, Info))
   3611          return false;
   3612       Val = APValue(IntResult);
   3613     } else if (SETy->isRealFloatingType()) {
   3614        APFloat F(0.0);
   3615        if (!EvaluateFloat(SE, F, Info))
   3616          return false;
   3617        Val = APValue(F);
   3618     } else {
   3619       return Error(E);
   3620     }
   3621 
   3622     // Splat and create vector APValue.
   3623     SmallVector<APValue, 4> Elts(NElts, Val);
   3624     return Success(Elts, E);
   3625   }
   3626   case CK_BitCast: {
   3627     // Evaluate the operand into an APInt we can extract from.
   3628     llvm::APInt SValInt;
   3629     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
   3630       return false;
   3631     // Extract the elements
   3632     QualType EltTy = VTy->getElementType();
   3633     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   3634     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   3635     SmallVector<APValue, 4> Elts;
   3636     if (EltTy->isRealFloatingType()) {
   3637       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
   3638       bool isIEESem = &Sem != &APFloat::PPCDoubleDouble;
   3639       unsigned FloatEltSize = EltSize;
   3640       if (&Sem == &APFloat::x87DoubleExtended)
   3641         FloatEltSize = 80;
   3642       for (unsigned i = 0; i < NElts; i++) {
   3643         llvm::APInt Elt;
   3644         if (BigEndian)
   3645           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
   3646         else
   3647           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
   3648         Elts.push_back(APValue(APFloat(Elt, isIEESem)));
   3649       }
   3650     } else if (EltTy->isIntegerType()) {
   3651       for (unsigned i = 0; i < NElts; i++) {
   3652         llvm::APInt Elt;
   3653         if (BigEndian)
   3654           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
   3655         else
   3656           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
   3657         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
   3658       }
   3659     } else {
   3660       return Error(E);
   3661     }
   3662     return Success(Elts, E);
   3663   }
   3664   default:
   3665     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   3666   }
   3667 }
   3668 
   3669 bool
   3670 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3671   const VectorType *VT = E->getType()->castAs<VectorType>();
   3672   unsigned NumInits = E->getNumInits();
   3673   unsigned NumElements = VT->getNumElements();
   3674 
   3675   QualType EltTy = VT->getElementType();
   3676   SmallVector<APValue, 4> Elements;
   3677 
   3678   // The number of initializers can be less than the number of
   3679   // vector elements. For OpenCL, this can be due to nested vector
   3680   // initialization. For GCC compatibility, missing trailing elements
   3681   // should be initialized with zeroes.
   3682   unsigned CountInits = 0, CountElts = 0;
   3683   while (CountElts < NumElements) {
   3684     // Handle nested vector initialization.
   3685     if (CountInits < NumInits
   3686         && E->getInit(CountInits)->getType()->isExtVectorType()) {
   3687       APValue v;
   3688       if (!EvaluateVector(E->getInit(CountInits), v, Info))
   3689         return Error(E);
   3690       unsigned vlen = v.getVectorLength();
   3691       for (unsigned j = 0; j < vlen; j++)
   3692         Elements.push_back(v.getVectorElt(j));
   3693       CountElts += vlen;
   3694     } else if (EltTy->isIntegerType()) {
   3695       llvm::APSInt sInt(32);
   3696       if (CountInits < NumInits) {
   3697         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
   3698           return false;
   3699       } else // trailing integer zero.
   3700         sInt = Info.Ctx.MakeIntValue(0, EltTy);
   3701       Elements.push_back(APValue(sInt));
   3702       CountElts++;
   3703     } else {
   3704       llvm::APFloat f(0.0);
   3705       if (CountInits < NumInits) {
   3706         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
   3707           return false;
   3708       } else // trailing float zero.
   3709         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
   3710       Elements.push_back(APValue(f));
   3711       CountElts++;
   3712     }
   3713     CountInits++;
   3714   }
   3715   return Success(Elements, E);
   3716 }
   3717 
   3718 bool
   3719 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
   3720   const VectorType *VT = E->getType()->getAs<VectorType>();
   3721   QualType EltTy = VT->getElementType();
   3722   APValue ZeroElement;
   3723   if (EltTy->isIntegerType())
   3724     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
   3725   else
   3726     ZeroElement =
   3727         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
   3728 
   3729   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
   3730   return Success(Elements, E);
   3731 }
   3732 
   3733 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   3734   VisitIgnoredValue(E->getSubExpr());
   3735   return ZeroInitialization(E);
   3736 }
   3737 
   3738 //===----------------------------------------------------------------------===//
   3739 // Array Evaluation
   3740 //===----------------------------------------------------------------------===//
   3741 
   3742 namespace {
   3743   class ArrayExprEvaluator
   3744   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
   3745     const LValue &This;
   3746     APValue &Result;
   3747   public:
   3748 
   3749     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
   3750       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
   3751 
   3752     bool Success(const APValue &V, const Expr *E) {
   3753       assert((V.isArray() || V.isLValue()) &&
   3754              "expected array or string literal");
   3755       Result = V;
   3756       return true;
   3757     }
   3758 
   3759     bool ZeroInitialization(const Expr *E) {
   3760       const ConstantArrayType *CAT =
   3761           Info.Ctx.getAsConstantArrayType(E->getType());
   3762       if (!CAT)
   3763         return Error(E);
   3764 
   3765       Result = APValue(APValue::UninitArray(), 0,
   3766                        CAT->getSize().getZExtValue());
   3767       if (!Result.hasArrayFiller()) return true;
   3768 
   3769       // Zero-initialize all elements.
   3770       LValue Subobject = This;
   3771       Subobject.addArray(Info, E, CAT);
   3772       ImplicitValueInitExpr VIE(CAT->getElementType());
   3773       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
   3774     }
   3775 
   3776     bool VisitInitListExpr(const InitListExpr *E);
   3777     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   3778   };
   3779 } // end anonymous namespace
   3780 
   3781 static bool EvaluateArray(const Expr *E, const LValue &This,
   3782                           APValue &Result, EvalInfo &Info) {
   3783   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
   3784   return ArrayExprEvaluator(Info, This, Result).Visit(E);
   3785 }
   3786 
   3787 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   3788   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
   3789   if (!CAT)
   3790     return Error(E);
   3791 
   3792   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
   3793   // an appropriately-typed string literal enclosed in braces.
   3794   if (E->isStringLiteralInit()) {
   3795     LValue LV;
   3796     if (!EvaluateLValue(E->getInit(0), LV, Info))
   3797       return false;
   3798     APValue Val;
   3799     LV.moveInto(Val);
   3800     return Success(Val, E);
   3801   }
   3802 
   3803   bool Success = true;
   3804 
   3805   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
   3806          "zero-initialized array shouldn't have any initialized elts");
   3807   APValue Filler;
   3808   if (Result.isArray() && Result.hasArrayFiller())
   3809     Filler = Result.getArrayFiller();
   3810 
   3811   Result = APValue(APValue::UninitArray(), E->getNumInits(),
   3812                    CAT->getSize().getZExtValue());
   3813 
   3814   // If the array was previously zero-initialized, preserve the
   3815   // zero-initialized values.
   3816   if (!Filler.isUninit()) {
   3817     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
   3818       Result.getArrayInitializedElt(I) = Filler;
   3819     if (Result.hasArrayFiller())
   3820       Result.getArrayFiller() = Filler;
   3821   }
   3822 
   3823   LValue Subobject = This;
   3824   Subobject.addArray(Info, E, CAT);
   3825   unsigned Index = 0;
   3826   for (InitListExpr::const_iterator I = E->begin(), End = E->end();
   3827        I != End; ++I, ++Index) {
   3828     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
   3829                          Info, Subobject, cast<Expr>(*I)) ||
   3830         !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
   3831                                      CAT->getElementType(), 1)) {
   3832       if (!Info.keepEvaluatingAfterFailure())
   3833         return false;
   3834       Success = false;
   3835     }
   3836   }
   3837 
   3838   if (!Result.hasArrayFiller()) return Success;
   3839   assert(E->hasArrayFiller() && "no array filler for incomplete init list");
   3840   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
   3841   // but sometimes does:
   3842   //   struct S { constexpr S() : p(&p) {} void *p; };
   3843   //   S s[10] = {};
   3844   return EvaluateInPlace(Result.getArrayFiller(), Info,
   3845                          Subobject, E->getArrayFiller()) && Success;
   3846 }
   3847 
   3848 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3849   // FIXME: The Subobject here isn't necessarily right. This rarely matters,
   3850   // but sometimes does:
   3851   //   struct S { constexpr S() : p(&p) {} void *p; };
   3852   //   S s[10];
   3853   LValue Subobject = This;
   3854 
   3855   APValue *Value = &Result;
   3856   bool HadZeroInit = true;
   3857   QualType ElemTy = E->getType();
   3858   while (const ConstantArrayType *CAT =
   3859            Info.Ctx.getAsConstantArrayType(ElemTy)) {
   3860     Subobject.addArray(Info, E, CAT);
   3861     HadZeroInit &= !Value->isUninit();
   3862     if (!HadZeroInit)
   3863       *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
   3864     if (!Value->hasArrayFiller())
   3865       return true;
   3866     Value = &Value->getArrayFiller();
   3867     ElemTy = CAT->getElementType();
   3868   }
   3869 
   3870   if (!ElemTy->isRecordType())
   3871     return Error(E);
   3872 
   3873   const CXXConstructorDecl *FD = E->getConstructor();
   3874 
   3875   bool ZeroInit = E->requiresZeroInitialization();
   3876   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   3877     if (HadZeroInit)
   3878       return true;
   3879 
   3880     if (ZeroInit) {
   3881       ImplicitValueInitExpr VIE(ElemTy);
   3882       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
   3883     }
   3884 
   3885     const CXXRecordDecl *RD = FD->getParent();
   3886     if (RD->isUnion())
   3887       *Value = APValue((FieldDecl*)0);
   3888     else
   3889       *Value =
   3890           APValue(APValue::UninitStruct(), RD->getNumBases(),
   3891                   std::distance(RD->field_begin(), RD->field_end()));
   3892     return true;
   3893   }
   3894 
   3895   const FunctionDecl *Definition = 0;
   3896   FD->getBody(Definition);
   3897 
   3898   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   3899     return false;
   3900 
   3901   if (ZeroInit && !HadZeroInit) {
   3902     ImplicitValueInitExpr VIE(ElemTy);
   3903     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
   3904       return false;
   3905   }
   3906 
   3907   llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
   3908   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
   3909                                cast<CXXConstructorDecl>(Definition),
   3910                                Info, *Value);
   3911 }
   3912 
   3913 //===----------------------------------------------------------------------===//
   3914 // Integer Evaluation
   3915 //
   3916 // As a GNU extension, we support casting pointers to sufficiently-wide integer
   3917 // types and back in constant folding. Integer values are thus represented
   3918 // either as an integer-valued APValue, or as an lvalue-valued APValue.
   3919 //===----------------------------------------------------------------------===//
   3920 
   3921 namespace {
   3922 class IntExprEvaluator
   3923   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
   3924   APValue &Result;
   3925 public:
   3926   IntExprEvaluator(EvalInfo &info, APValue &result)
   3927     : ExprEvaluatorBaseTy(info), Result(result) {}
   3928 
   3929   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
   3930     assert(E->getType()->isIntegralOrEnumerationType() &&
   3931            "Invalid evaluation result.");
   3932     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
   3933            "Invalid evaluation result.");
   3934     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   3935            "Invalid evaluation result.");
   3936     Result = APValue(SI);
   3937     return true;
   3938   }
   3939   bool Success(const llvm::APSInt &SI, const Expr *E) {
   3940     return Success(SI, E, Result);
   3941   }
   3942 
   3943   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
   3944     assert(E->getType()->isIntegralOrEnumerationType() &&
   3945            "Invalid evaluation result.");
   3946     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   3947            "Invalid evaluation result.");
   3948     Result = APValue(APSInt(I));
   3949     Result.getInt().setIsUnsigned(
   3950                             E->getType()->isUnsignedIntegerOrEnumerationType());
   3951     return true;
   3952   }
   3953   bool Success(const llvm::APInt &I, const Expr *E) {
   3954     return Success(I, E, Result);
   3955   }
   3956 
   3957   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   3958     assert(E->getType()->isIntegralOrEnumerationType() &&
   3959            "Invalid evaluation result.");
   3960     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
   3961     return true;
   3962   }
   3963   bool Success(uint64_t Value, const Expr *E) {
   3964     return Success(Value, E, Result);
   3965   }
   3966 
   3967   bool Success(CharUnits Size, const Expr *E) {
   3968     return Success(Size.getQuantity(), E);
   3969   }
   3970 
   3971   bool Success(const APValue &V, const Expr *E) {
   3972     if (V.isLValue() || V.isAddrLabelDiff()) {
   3973       Result = V;
   3974       return true;
   3975     }
   3976     return Success(V.getInt(), E);
   3977   }
   3978 
   3979   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
   3980 
   3981   //===--------------------------------------------------------------------===//
   3982   //                            Visitor Methods
   3983   //===--------------------------------------------------------------------===//
   3984 
   3985   bool VisitIntegerLiteral(const IntegerLiteral *E) {
   3986     return Success(E->getValue(), E);
   3987   }
   3988   bool VisitCharacterLiteral(const CharacterLiteral *E) {
   3989     return Success(E->getValue(), E);
   3990   }
   3991 
   3992   bool CheckReferencedDecl(const Expr *E, const Decl *D);
   3993   bool VisitDeclRefExpr(const DeclRefExpr *E) {
   3994     if (CheckReferencedDecl(E, E->getDecl()))
   3995       return true;
   3996 
   3997     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
   3998   }
   3999   bool VisitMemberExpr(const MemberExpr *E) {
   4000     if (CheckReferencedDecl(E, E->getMemberDecl())) {
   4001       VisitIgnoredValue(E->getBase());
   4002       return true;
   4003     }
   4004 
   4005     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
   4006   }
   4007 
   4008   bool VisitCallExpr(const CallExpr *E);
   4009   bool VisitBinaryOperator(const BinaryOperator *E);
   4010   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
   4011   bool VisitUnaryOperator(const UnaryOperator *E);
   4012 
   4013   bool VisitCastExpr(const CastExpr* E);
   4014   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
   4015 
   4016   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
   4017     return Success(E->getValue(), E);
   4018   }
   4019 
   4020   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
   4021     return Success(E->getValue(), E);
   4022   }
   4023 
   4024   // Note, GNU defines __null as an integer, not a pointer.
   4025   bool VisitGNUNullExpr(const GNUNullExpr *E) {
   4026     return ZeroInitialization(E);
   4027   }
   4028 
   4029   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
   4030     return Success(E->getValue(), E);
   4031   }
   4032 
   4033   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
   4034     return Success(E->getValue(), E);
   4035   }
   4036 
   4037   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
   4038     return Success(E->getValue(), E);
   4039   }
   4040 
   4041   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
   4042     return Success(E->getValue(), E);
   4043   }
   4044 
   4045   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
   4046     return Success(E->getValue(), E);
   4047   }
   4048 
   4049   bool VisitUnaryReal(const UnaryOperator *E);
   4050   bool VisitUnaryImag(const UnaryOperator *E);
   4051 
   4052   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
   4053   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
   4054 
   4055 private:
   4056   CharUnits GetAlignOfExpr(const Expr *E);
   4057   CharUnits GetAlignOfType(QualType T);
   4058   static QualType GetObjectType(APValue::LValueBase B);
   4059   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
   4060   // FIXME: Missing: array subscript of vector, member of vector
   4061 };
   4062 } // end anonymous namespace
   4063 
   4064 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
   4065 /// produce either the integer value or a pointer.
   4066 ///
   4067 /// GCC has a heinous extension which folds casts between pointer types and
   4068 /// pointer-sized integral types. We support this by allowing the evaluation of
   4069 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
   4070 /// Some simple arithmetic on such values is supported (they are treated much
   4071 /// like char*).
   4072 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
   4073                                     EvalInfo &Info) {
   4074   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
   4075   return IntExprEvaluator(Info, Result).Visit(E);
   4076 }
   4077 
   4078 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
   4079   APValue Val;
   4080   if (!EvaluateIntegerOrLValue(E, Val, Info))
   4081     return false;
   4082   if (!Val.isInt()) {
   4083     // FIXME: It would be better to produce the diagnostic for casting
   4084     //        a pointer to an integer.
   4085     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   4086     return false;
   4087   }
   4088   Result = Val.getInt();
   4089   return true;
   4090 }
   4091 
   4092 /// Check whether the given declaration can be directly converted to an integral
   4093 /// rvalue. If not, no diagnostic is produced; there are other things we can
   4094 /// try.
   4095 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
   4096   // Enums are integer constant exprs.
   4097   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
   4098     // Check for signedness/width mismatches between E type and ECD value.
   4099     bool SameSign = (ECD->getInitVal().isSigned()
   4100                      == E->getType()->isSignedIntegerOrEnumerationType());
   4101     bool SameWidth = (ECD->getInitVal().getBitWidth()
   4102                       == Info.Ctx.getIntWidth(E->getType()));
   4103     if (SameSign && SameWidth)
   4104       return Success(ECD->getInitVal(), E);
   4105     else {
   4106       // Get rid of mismatch (otherwise Success assertions will fail)
   4107       // by computing a new value matching the type of E.
   4108       llvm::APSInt Val = ECD->getInitVal();
   4109       if (!SameSign)
   4110         Val.setIsSigned(!ECD->getInitVal().isSigned());
   4111       if (!SameWidth)
   4112         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
   4113       return Success(Val, E);
   4114     }
   4115   }
   4116   return false;
   4117 }
   4118 
   4119 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
   4120 /// as GCC.
   4121 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
   4122   // The following enum mimics the values returned by GCC.
   4123   // FIXME: Does GCC differ between lvalue and rvalue references here?
   4124   enum gcc_type_class {
   4125     no_type_class = -1,
   4126     void_type_class, integer_type_class, char_type_class,
   4127     enumeral_type_class, boolean_type_class,
   4128     pointer_type_class, reference_type_class, offset_type_class,
   4129     real_type_class, complex_type_class,
   4130     function_type_class, method_type_class,
   4131     record_type_class, union_type_class,
   4132     array_type_class, string_type_class,
   4133     lang_type_class
   4134   };
   4135 
   4136   // If no argument was supplied, default to "no_type_class". This isn't
   4137   // ideal, however it is what gcc does.
   4138   if (E->getNumArgs() == 0)
   4139     return no_type_class;
   4140 
   4141   QualType ArgTy = E->getArg(0)->getType();
   4142   if (ArgTy->isVoidType())
   4143     return void_type_class;
   4144   else if (ArgTy->isEnumeralType())
   4145     return enumeral_type_class;
   4146   else if (ArgTy->isBooleanType())
   4147     return boolean_type_class;
   4148   else if (ArgTy->isCharType())
   4149     return string_type_class; // gcc doesn't appear to use char_type_class
   4150   else if (ArgTy->isIntegerType())
   4151     return integer_type_class;
   4152   else if (ArgTy->isPointerType())
   4153     return pointer_type_class;
   4154   else if (ArgTy->isReferenceType())
   4155     return reference_type_class;
   4156   else if (ArgTy->isRealType())
   4157     return real_type_class;
   4158   else if (ArgTy->isComplexType())
   4159     return complex_type_class;
   4160   else if (ArgTy->isFunctionType())
   4161     return function_type_class;
   4162   else if (ArgTy->isStructureOrClassType())
   4163     return record_type_class;
   4164   else if (ArgTy->isUnionType())
   4165     return union_type_class;
   4166   else if (ArgTy->isArrayType())
   4167     return array_type_class;
   4168   else if (ArgTy->isUnionType())
   4169     return union_type_class;
   4170   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
   4171     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
   4172 }
   4173 
   4174 /// EvaluateBuiltinConstantPForLValue - Determine the result of
   4175 /// __builtin_constant_p when applied to the given lvalue.
   4176 ///
   4177 /// An lvalue is only "constant" if it is a pointer or reference to the first
   4178 /// character of a string literal.
   4179 template<typename LValue>
   4180 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
   4181   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
   4182   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
   4183 }
   4184 
   4185 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
   4186 /// GCC as we can manage.
   4187 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
   4188   QualType ArgType = Arg->getType();
   4189 
   4190   // __builtin_constant_p always has one operand. The rules which gcc follows
   4191   // are not precisely documented, but are as follows:
   4192   //
   4193   //  - If the operand is of integral, floating, complex or enumeration type,
   4194   //    and can be folded to a known value of that type, it returns 1.
   4195   //  - If the operand and can be folded to a pointer to the first character
   4196   //    of a string literal (or such a pointer cast to an integral type), it
   4197   //    returns 1.
   4198   //
   4199   // Otherwise, it returns 0.
   4200   //
   4201   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
   4202   // its support for this does not currently work.
   4203   if (ArgType->isIntegralOrEnumerationType()) {
   4204     Expr::EvalResult Result;
   4205     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
   4206       return false;
   4207 
   4208     APValue &V = Result.Val;
   4209     if (V.getKind() == APValue::Int)
   4210       return true;
   4211 
   4212     return EvaluateBuiltinConstantPForLValue(V);
   4213   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
   4214     return Arg->isEvaluatable(Ctx);
   4215   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
   4216     LValue LV;
   4217     Expr::EvalStatus Status;
   4218     EvalInfo Info(Ctx, Status);
   4219     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
   4220                           : EvaluatePointer(Arg, LV, Info)) &&
   4221         !Status.HasSideEffects)
   4222       return EvaluateBuiltinConstantPForLValue(LV);
   4223   }
   4224 
   4225   // Anything else isn't considered to be sufficiently constant.
   4226   return false;
   4227 }
   4228 
   4229 /// Retrieves the "underlying object type" of the given expression,
   4230 /// as used by __builtin_object_size.
   4231 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
   4232   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   4233     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   4234       return VD->getType();
   4235   } else if (const Expr *E = B.get<const Expr*>()) {
   4236     if (isa<CompoundLiteralExpr>(E))
   4237       return E->getType();
   4238   }
   4239 
   4240   return QualType();
   4241 }
   4242 
   4243 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
   4244   LValue Base;
   4245 
   4246   {
   4247     // The operand of __builtin_object_size is never evaluated for side-effects.
   4248     // If there are any, but we can determine the pointed-to object anyway, then
   4249     // ignore the side-effects.
   4250     SpeculativeEvaluationRAII SpeculativeEval(Info);
   4251     if (!EvaluatePointer(E->getArg(0), Base, Info))
   4252       return false;
   4253   }
   4254 
   4255   // If we can prove the base is null, lower to zero now.
   4256   if (!Base.getLValueBase()) return Success(0, E);
   4257 
   4258   QualType T = GetObjectType(Base.getLValueBase());
   4259   if (T.isNull() ||
   4260       T->isIncompleteType() ||
   4261       T->isFunctionType() ||
   4262       T->isVariablyModifiedType() ||
   4263       T->isDependentType())
   4264     return Error(E);
   4265 
   4266   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
   4267   CharUnits Offset = Base.getLValueOffset();
   4268 
   4269   if (!Offset.isNegative() && Offset <= Size)
   4270     Size -= Offset;
   4271   else
   4272     Size = CharUnits::Zero();
   4273   return Success(Size, E);
   4274 }
   4275 
   4276 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
   4277   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
   4278   default:
   4279     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   4280 
   4281   case Builtin::BI__builtin_object_size: {
   4282     if (TryEvaluateBuiltinObjectSize(E))
   4283       return true;
   4284 
   4285     // If evaluating the argument has side-effects, we can't determine the size
   4286     // of the object, and so we lower it to unknown now. CodeGen relies on us to
   4287     // handle all cases where the expression has side-effects.
   4288     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
   4289       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
   4290         return Success(-1ULL, E);
   4291       return Success(0, E);
   4292     }
   4293 
   4294     // Expression had no side effects, but we couldn't statically determine the
   4295     // size of the referenced object.
   4296     return Error(E);
   4297   }
   4298 
   4299   case Builtin::BI__builtin_classify_type:
   4300     return Success(EvaluateBuiltinClassifyType(E), E);
   4301 
   4302   case Builtin::BI__builtin_constant_p:
   4303     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
   4304 
   4305   case Builtin::BI__builtin_eh_return_data_regno: {
   4306     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
   4307     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
   4308     return Success(Operand, E);
   4309   }
   4310 
   4311   case Builtin::BI__builtin_expect:
   4312     return Visit(E->getArg(0));
   4313 
   4314   case Builtin::BIstrlen:
   4315     // A call to strlen is not a constant expression.
   4316     if (Info.getLangOpts().CPlusPlus0x)
   4317       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
   4318         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
   4319     else
   4320       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
   4321     // Fall through.
   4322   case Builtin::BI__builtin_strlen:
   4323     // As an extension, we support strlen() and __builtin_strlen() as constant
   4324     // expressions when the argument is a string literal.
   4325     if (const StringLiteral *S
   4326                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
   4327       // The string literal may have embedded null characters. Find the first
   4328       // one and truncate there.
   4329       StringRef Str = S->getString();
   4330       StringRef::size_type Pos = Str.find(0);
   4331       if (Pos != StringRef::npos)
   4332         Str = Str.substr(0, Pos);
   4333 
   4334       return Success(Str.size(), E);
   4335     }
   4336 
   4337     return Error(E);
   4338 
   4339   case Builtin::BI__atomic_always_lock_free:
   4340   case Builtin::BI__atomic_is_lock_free:
   4341   case Builtin::BI__c11_atomic_is_lock_free: {
   4342     APSInt SizeVal;
   4343     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
   4344       return false;
   4345 
   4346     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
   4347     // of two less than the maximum inline atomic width, we know it is
   4348     // lock-free.  If the size isn't a power of two, or greater than the
   4349     // maximum alignment where we promote atomics, we know it is not lock-free
   4350     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
   4351     // the answer can only be determined at runtime; for example, 16-byte
   4352     // atomics have lock-free implementations on some, but not all,
   4353     // x86-64 processors.
   4354 
   4355     // Check power-of-two.
   4356     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
   4357     if (Size.isPowerOfTwo()) {
   4358       // Check against inlining width.
   4359       unsigned InlineWidthBits =
   4360           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
   4361       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
   4362         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
   4363             Size == CharUnits::One() ||
   4364             E->getArg(1)->isNullPointerConstant(Info.Ctx,
   4365                                                 Expr::NPC_NeverValueDependent))
   4366           // OK, we will inline appropriately-aligned operations of this size,
   4367           // and _Atomic(T) is appropriately-aligned.
   4368           return Success(1, E);
   4369 
   4370         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
   4371           castAs<PointerType>()->getPointeeType();
   4372         if (!PointeeType->isIncompleteType() &&
   4373             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
   4374           // OK, we will inline operations on this object.
   4375           return Success(1, E);
   4376         }
   4377       }
   4378     }
   4379 
   4380     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
   4381         Success(0, E) : Error(E);
   4382   }
   4383   }
   4384 }
   4385 
   4386 static bool HasSameBase(const LValue &A, const LValue &B) {
   4387   if (!A.getLValueBase())
   4388     return !B.getLValueBase();
   4389   if (!B.getLValueBase())
   4390     return false;
   4391 
   4392   if (A.getLValueBase().getOpaqueValue() !=
   4393       B.getLValueBase().getOpaqueValue()) {
   4394     const Decl *ADecl = GetLValueBaseDecl(A);
   4395     if (!ADecl)
   4396       return false;
   4397     const Decl *BDecl = GetLValueBaseDecl(B);
   4398     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
   4399       return false;
   4400   }
   4401 
   4402   return IsGlobalLValue(A.getLValueBase()) ||
   4403          A.getLValueCallIndex() == B.getLValueCallIndex();
   4404 }
   4405 
   4406 /// Perform the given integer operation, which is known to need at most BitWidth
   4407 /// bits, and check for overflow in the original type (if that type was not an
   4408 /// unsigned type).
   4409 template<typename Operation>
   4410 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
   4411                                    const APSInt &LHS, const APSInt &RHS,
   4412                                    unsigned BitWidth, Operation Op) {
   4413   if (LHS.isUnsigned())
   4414     return Op(LHS, RHS);
   4415 
   4416   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
   4417   APSInt Result = Value.trunc(LHS.getBitWidth());
   4418   if (Result.extend(BitWidth) != Value)
   4419     HandleOverflow(Info, E, Value, E->getType());
   4420   return Result;
   4421 }
   4422 
   4423 namespace {
   4424 
   4425 /// \brief Data recursive integer evaluator of certain binary operators.
   4426 ///
   4427 /// We use a data recursive algorithm for binary operators so that we are able
   4428 /// to handle extreme cases of chained binary operators without causing stack
   4429 /// overflow.
   4430 class DataRecursiveIntBinOpEvaluator {
   4431   struct EvalResult {
   4432     APValue Val;
   4433     bool Failed;
   4434 
   4435     EvalResult() : Failed(false) { }
   4436 
   4437     void swap(EvalResult &RHS) {
   4438       Val.swap(RHS.Val);
   4439       Failed = RHS.Failed;
   4440       RHS.Failed = false;
   4441     }
   4442   };
   4443 
   4444   struct Job {
   4445     const Expr *E;
   4446     EvalResult LHSResult; // meaningful only for binary operator expression.
   4447     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
   4448 
   4449     Job() : StoredInfo(0) { }
   4450     void startSpeculativeEval(EvalInfo &Info) {
   4451       OldEvalStatus = Info.EvalStatus;
   4452       Info.EvalStatus.Diag = 0;
   4453       StoredInfo = &Info;
   4454     }
   4455     ~Job() {
   4456       if (StoredInfo) {
   4457         StoredInfo->EvalStatus = OldEvalStatus;
   4458       }
   4459     }
   4460   private:
   4461     EvalInfo *StoredInfo; // non-null if status changed.
   4462     Expr::EvalStatus OldEvalStatus;
   4463   };
   4464 
   4465   SmallVector<Job, 16> Queue;
   4466 
   4467   IntExprEvaluator &IntEval;
   4468   EvalInfo &Info;
   4469   APValue &FinalResult;
   4470 
   4471 public:
   4472   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
   4473     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
   4474 
   4475   /// \brief True if \param E is a binary operator that we are going to handle
   4476   /// data recursively.
   4477   /// We handle binary operators that are comma, logical, or that have operands
   4478   /// with integral or enumeration type.
   4479   static bool shouldEnqueue(const BinaryOperator *E) {
   4480     return E->getOpcode() == BO_Comma ||
   4481            E->isLogicalOp() ||
   4482            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4483             E->getRHS()->getType()->isIntegralOrEnumerationType());
   4484   }
   4485 
   4486   bool Traverse(const BinaryOperator *E) {
   4487     enqueue(E);
   4488     EvalResult PrevResult;
   4489     while (!Queue.empty())
   4490       process(PrevResult);
   4491 
   4492     if (PrevResult.Failed) return false;
   4493 
   4494     FinalResult.swap(PrevResult.Val);
   4495     return true;
   4496   }
   4497 
   4498 private:
   4499   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   4500     return IntEval.Success(Value, E, Result);
   4501   }
   4502   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
   4503     return IntEval.Success(Value, E, Result);
   4504   }
   4505   bool Error(const Expr *E) {
   4506     return IntEval.Error(E);
   4507   }
   4508   bool Error(const Expr *E, diag::kind D) {
   4509     return IntEval.Error(E, D);
   4510   }
   4511 
   4512   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   4513     return Info.CCEDiag(E, D);
   4514   }
   4515 
   4516   // \brief Returns true if visiting the RHS is necessary, false otherwise.
   4517   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   4518                          bool &SuppressRHSDiags);
   4519 
   4520   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   4521                   const BinaryOperator *E, APValue &Result);
   4522 
   4523   void EvaluateExpr(const Expr *E, EvalResult &Result) {
   4524     Result.Failed = !Evaluate(Result.Val, Info, E);
   4525     if (Result.Failed)
   4526       Result.Val = APValue();
   4527   }
   4528 
   4529   void process(EvalResult &Result);
   4530 
   4531   void enqueue(const Expr *E) {
   4532     E = E->IgnoreParens();
   4533     Queue.resize(Queue.size()+1);
   4534     Queue.back().E = E;
   4535     Queue.back().Kind = Job::AnyExprKind;
   4536   }
   4537 };
   4538 
   4539 }
   4540 
   4541 bool DataRecursiveIntBinOpEvaluator::
   4542        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   4543                          bool &SuppressRHSDiags) {
   4544   if (E->getOpcode() == BO_Comma) {
   4545     // Ignore LHS but note if we could not evaluate it.
   4546     if (LHSResult.Failed)
   4547       Info.EvalStatus.HasSideEffects = true;
   4548     return true;
   4549   }
   4550 
   4551   if (E->isLogicalOp()) {
   4552     bool lhsResult;
   4553     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
   4554       // We were able to evaluate the LHS, see if we can get away with not
   4555       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
   4556       if (lhsResult == (E->getOpcode() == BO_LOr)) {
   4557         Success(lhsResult, E, LHSResult.Val);
   4558         return false; // Ignore RHS
   4559       }
   4560     } else {
   4561       // Since we weren't able to evaluate the left hand side, it
   4562       // must have had side effects.
   4563       Info.EvalStatus.HasSideEffects = true;
   4564 
   4565       // We can't evaluate the LHS; however, sometimes the result
   4566       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   4567       // Don't ignore RHS and suppress diagnostics from this arm.
   4568       SuppressRHSDiags = true;
   4569     }
   4570 
   4571     return true;
   4572   }
   4573 
   4574   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4575          E->getRHS()->getType()->isIntegralOrEnumerationType());
   4576 
   4577   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
   4578     return false; // Ignore RHS;
   4579 
   4580   return true;
   4581 }
   4582 
   4583 bool DataRecursiveIntBinOpEvaluator::
   4584        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   4585                   const BinaryOperator *E, APValue &Result) {
   4586   if (E->getOpcode() == BO_Comma) {
   4587     if (RHSResult.Failed)
   4588       return false;
   4589     Result = RHSResult.Val;
   4590     return true;
   4591   }
   4592 
   4593   if (E->isLogicalOp()) {
   4594     bool lhsResult, rhsResult;
   4595     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
   4596     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
   4597 
   4598     if (LHSIsOK) {
   4599       if (RHSIsOK) {
   4600         if (E->getOpcode() == BO_LOr)
   4601           return Success(lhsResult || rhsResult, E, Result);
   4602         else
   4603           return Success(lhsResult && rhsResult, E, Result);
   4604       }
   4605     } else {
   4606       if (RHSIsOK) {
   4607         // We can't evaluate the LHS; however, sometimes the result
   4608         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   4609         if (rhsResult == (E->getOpcode() == BO_LOr))
   4610           return Success(rhsResult, E, Result);
   4611       }
   4612     }
   4613 
   4614     return false;
   4615   }
   4616 
   4617   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   4618          E->getRHS()->getType()->isIntegralOrEnumerationType());
   4619 
   4620   if (LHSResult.Failed || RHSResult.Failed)
   4621     return false;
   4622 
   4623   const APValue &LHSVal = LHSResult.Val;
   4624   const APValue &RHSVal = RHSResult.Val;
   4625 
   4626   // Handle cases like (unsigned long)&a + 4.
   4627   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
   4628     Result = LHSVal;
   4629     CharUnits AdditionalOffset = CharUnits::fromQuantity(
   4630                                                          RHSVal.getInt().getZExtValue());
   4631     if (E->getOpcode() == BO_Add)
   4632       Result.getLValueOffset() += AdditionalOffset;
   4633     else
   4634       Result.getLValueOffset() -= AdditionalOffset;
   4635     return true;
   4636   }
   4637 
   4638   // Handle cases like 4 + (unsigned long)&a
   4639   if (E->getOpcode() == BO_Add &&
   4640       RHSVal.isLValue() && LHSVal.isInt()) {
   4641     Result = RHSVal;
   4642     Result.getLValueOffset() += CharUnits::fromQuantity(
   4643                                                         LHSVal.getInt().getZExtValue());
   4644     return true;
   4645   }
   4646 
   4647   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
   4648     // Handle (intptr_t)&&A - (intptr_t)&&B.
   4649     if (!LHSVal.getLValueOffset().isZero() ||
   4650         !RHSVal.getLValueOffset().isZero())
   4651       return false;
   4652     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
   4653     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
   4654     if (!LHSExpr || !RHSExpr)
   4655       return false;
   4656     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   4657     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   4658     if (!LHSAddrExpr || !RHSAddrExpr)
   4659       return false;
   4660     // Make sure both labels come from the same function.
   4661     if (LHSAddrExpr->getLabel()->getDeclContext() !=
   4662         RHSAddrExpr->getLabel()->getDeclContext())
   4663       return false;
   4664     Result = APValue(LHSAddrExpr, RHSAddrExpr);
   4665     return true;
   4666   }
   4667 
   4668   // All the following cases expect both operands to be an integer
   4669   if (!LHSVal.isInt() || !RHSVal.isInt())
   4670     return Error(E);
   4671 
   4672   const APSInt &LHS = LHSVal.getInt();
   4673   APSInt RHS = RHSVal.getInt();
   4674 
   4675   switch (E->getOpcode()) {
   4676     default:
   4677       return Error(E);
   4678     case BO_Mul:
   4679       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4680                                           LHS.getBitWidth() * 2,
   4681                                           std::multiplies<APSInt>()), E,
   4682                      Result);
   4683     case BO_Add:
   4684       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4685                                           LHS.getBitWidth() + 1,
   4686                                           std::plus<APSInt>()), E, Result);
   4687     case BO_Sub:
   4688       return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
   4689                                           LHS.getBitWidth() + 1,
   4690                                           std::minus<APSInt>()), E, Result);
   4691     case BO_And: return Success(LHS & RHS, E, Result);
   4692     case BO_Xor: return Success(LHS ^ RHS, E, Result);
   4693     case BO_Or:  return Success(LHS | RHS, E, Result);
   4694     case BO_Div:
   4695     case BO_Rem:
   4696       if (RHS == 0)
   4697         return Error(E, diag::note_expr_divide_by_zero);
   4698       // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
   4699       // not actually undefined behavior in C++11 due to a language defect.
   4700       if (RHS.isNegative() && RHS.isAllOnesValue() &&
   4701           LHS.isSigned() && LHS.isMinSignedValue())
   4702         HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
   4703       return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
   4704                      Result);
   4705     case BO_Shl: {
   4706       // During constant-folding, a negative shift is an opposite shift. Such
   4707       // a shift is not a constant expression.
   4708       if (RHS.isSigned() && RHS.isNegative()) {
   4709         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   4710         RHS = -RHS;
   4711         goto shift_right;
   4712       }
   4713 
   4714     shift_left:
   4715       // C++11 [expr.shift]p1: Shift width must be less than the bit width of
   4716       // the shifted type.
   4717       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   4718       if (SA != RHS) {
   4719         CCEDiag(E, diag::note_constexpr_large_shift)
   4720         << RHS << E->getType() << LHS.getBitWidth();
   4721       } else if (LHS.isSigned()) {
   4722         // C++11 [expr.shift]p2: A signed left shift must have a non-negative
   4723         // operand, and must not overflow the corresponding unsigned type.
   4724         if (LHS.isNegative())
   4725           CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
   4726         else if (LHS.countLeadingZeros() < SA)
   4727           CCEDiag(E, diag::note_constexpr_lshift_discards);
   4728       }
   4729 
   4730       return Success(LHS << SA, E, Result);
   4731     }
   4732     case BO_Shr: {
   4733       // During constant-folding, a negative shift is an opposite shift. Such a
   4734       // shift is not a constant expression.
   4735       if (RHS.isSigned() && RHS.isNegative()) {
   4736         CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   4737         RHS = -RHS;
   4738         goto shift_left;
   4739       }
   4740 
   4741     shift_right:
   4742       // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
   4743       // shifted type.
   4744       unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   4745       if (SA != RHS)
   4746         CCEDiag(E, diag::note_constexpr_large_shift)
   4747         << RHS << E->getType() << LHS.getBitWidth();
   4748 
   4749       return Success(LHS >> SA, E, Result);
   4750     }
   4751 
   4752     case BO_LT: return Success(LHS < RHS, E, Result);
   4753     case BO_GT: return Success(LHS > RHS, E, Result);
   4754     case BO_LE: return Success(LHS <= RHS, E, Result);
   4755     case BO_GE: return Success(LHS >= RHS, E, Result);
   4756     case BO_EQ: return Success(LHS == RHS, E, Result);
   4757     case BO_NE: return Success(LHS != RHS, E, Result);
   4758   }
   4759 }
   4760 
   4761 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
   4762   Job &job = Queue.back();
   4763 
   4764   switch (job.Kind) {
   4765     case Job::AnyExprKind: {
   4766       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
   4767         if (shouldEnqueue(Bop)) {
   4768           job.Kind = Job::BinOpKind;
   4769           enqueue(Bop->getLHS());
   4770           return;
   4771         }
   4772       }
   4773 
   4774       EvaluateExpr(job.E, Result);
   4775       Queue.pop_back();
   4776       return;
   4777     }
   4778 
   4779     case Job::BinOpKind: {
   4780       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   4781       bool SuppressRHSDiags = false;
   4782       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
   4783         Queue.pop_back();
   4784         return;
   4785       }
   4786       if (SuppressRHSDiags)
   4787         job.startSpeculativeEval(Info);
   4788       job.LHSResult.swap(Result);
   4789       job.Kind = Job::BinOpVisitedLHSKind;
   4790       enqueue(Bop->getRHS());
   4791       return;
   4792     }
   4793 
   4794     case Job::BinOpVisitedLHSKind: {
   4795       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   4796       EvalResult RHS;
   4797       RHS.swap(Result);
   4798       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
   4799       Queue.pop_back();
   4800       return;
   4801     }
   4802   }
   4803 
   4804   llvm_unreachable("Invalid Job::Kind!");
   4805 }
   4806 
   4807 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   4808   if (E->isAssignmentOp())
   4809     return Error(E);
   4810 
   4811   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
   4812     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
   4813 
   4814   QualType LHSTy = E->getLHS()->getType();
   4815   QualType RHSTy = E->getRHS()->getType();
   4816 
   4817   if (LHSTy->isAnyComplexType()) {
   4818     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
   4819     ComplexValue LHS, RHS;
   4820 
   4821     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
   4822     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   4823       return false;
   4824 
   4825     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   4826       return false;
   4827 
   4828     if (LHS.isComplexFloat()) {
   4829       APFloat::cmpResult CR_r =
   4830         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
   4831       APFloat::cmpResult CR_i =
   4832         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
   4833 
   4834       if (E->getOpcode() == BO_EQ)
   4835         return Success((CR_r == APFloat::cmpEqual &&
   4836                         CR_i == APFloat::cmpEqual), E);
   4837       else {
   4838         assert(E->getOpcode() == BO_NE &&
   4839                "Invalid complex comparison.");
   4840         return Success(((CR_r == APFloat::cmpGreaterThan ||
   4841                          CR_r == APFloat::cmpLessThan ||
   4842                          CR_r == APFloat::cmpUnordered) ||
   4843                         (CR_i == APFloat::cmpGreaterThan ||
   4844                          CR_i == APFloat::cmpLessThan ||
   4845                          CR_i == APFloat::cmpUnordered)), E);
   4846       }
   4847     } else {
   4848       if (E->getOpcode() == BO_EQ)
   4849         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
   4850                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
   4851       else {
   4852         assert(E->getOpcode() == BO_NE &&
   4853                "Invalid compex comparison.");
   4854         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
   4855                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
   4856       }
   4857     }
   4858   }
   4859 
   4860   if (LHSTy->isRealFloatingType() &&
   4861       RHSTy->isRealFloatingType()) {
   4862     APFloat RHS(0.0), LHS(0.0);
   4863 
   4864     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
   4865     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   4866       return false;
   4867 
   4868     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
   4869       return false;
   4870 
   4871     APFloat::cmpResult CR = LHS.compare(RHS);
   4872 
   4873     switch (E->getOpcode()) {
   4874     default:
   4875       llvm_unreachable("Invalid binary operator!");
   4876     case BO_LT:
   4877       return Success(CR == APFloat::cmpLessThan, E);
   4878     case BO_GT:
   4879       return Success(CR == APFloat::cmpGreaterThan, E);
   4880     case BO_LE:
   4881       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
   4882     case BO_GE:
   4883       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
   4884                      E);
   4885     case BO_EQ:
   4886       return Success(CR == APFloat::cmpEqual, E);
   4887     case BO_NE:
   4888       return Success(CR == APFloat::cmpGreaterThan
   4889                      || CR == APFloat::cmpLessThan
   4890                      || CR == APFloat::cmpUnordered, E);
   4891     }
   4892   }
   4893 
   4894   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
   4895     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
   4896       LValue LHSValue, RHSValue;
   4897 
   4898       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
   4899       if (!LHSOK && Info.keepEvaluatingAfterFailure())
   4900         return false;
   4901 
   4902       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   4903         return false;
   4904 
   4905       // Reject differing bases from the normal codepath; we special-case
   4906       // comparisons to null.
   4907       if (!HasSameBase(LHSValue, RHSValue)) {
   4908         if (E->getOpcode() == BO_Sub) {
   4909           // Handle &&A - &&B.
   4910           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
   4911             return false;
   4912           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
   4913           const Expr *RHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
   4914           if (!LHSExpr || !RHSExpr)
   4915             return false;
   4916           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   4917           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   4918           if (!LHSAddrExpr || !RHSAddrExpr)
   4919             return false;
   4920           // Make sure both labels come from the same function.
   4921           if (LHSAddrExpr->getLabel()->getDeclContext() !=
   4922               RHSAddrExpr->getLabel()->getDeclContext())
   4923             return false;
   4924           Result = APValue(LHSAddrExpr, RHSAddrExpr);
   4925           return true;
   4926         }
   4927         // Inequalities and subtractions between unrelated pointers have
   4928         // unspecified or undefined behavior.
   4929         if (!E->isEqualityOp())
   4930           return Error(E);
   4931         // A constant address may compare equal to the address of a symbol.
   4932         // The one exception is that address of an object cannot compare equal
   4933         // to a null pointer constant.
   4934         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
   4935             (!RHSValue.Base && !RHSValue.Offset.isZero()))
   4936           return Error(E);
   4937         // It's implementation-defined whether distinct literals will have
   4938         // distinct addresses. In clang, the result of such a comparison is
   4939         // unspecified, so it is not a constant expression. However, we do know
   4940         // that the address of a literal will be non-null.
   4941         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
   4942             LHSValue.Base && RHSValue.Base)
   4943           return Error(E);
   4944         // We can't tell whether weak symbols will end up pointing to the same
   4945         // object.
   4946         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
   4947           return Error(E);
   4948         // Pointers with different bases cannot represent the same object.
   4949         // (Note that clang defaults to -fmerge-all-constants, which can
   4950         // lead to inconsistent results for comparisons involving the address
   4951         // of a constant; this generally doesn't matter in practice.)
   4952         return Success(E->getOpcode() == BO_NE, E);
   4953       }
   4954 
   4955       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
   4956       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
   4957 
   4958       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
   4959       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
   4960 
   4961       if (E->getOpcode() == BO_Sub) {
   4962         // C++11 [expr.add]p6:
   4963         //   Unless both pointers point to elements of the same array object, or
   4964         //   one past the last element of the array object, the behavior is
   4965         //   undefined.
   4966         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   4967             !AreElementsOfSameArray(getType(LHSValue.Base),
   4968                                     LHSDesignator, RHSDesignator))
   4969           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
   4970 
   4971         QualType Type = E->getLHS()->getType();
   4972         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
   4973 
   4974         CharUnits ElementSize;
   4975         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
   4976           return false;
   4977 
   4978         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
   4979         // and produce incorrect results when it overflows. Such behavior
   4980         // appears to be non-conforming, but is common, so perhaps we should
   4981         // assume the standard intended for such cases to be undefined behavior
   4982         // and check for them.
   4983 
   4984         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
   4985         // overflow in the final conversion to ptrdiff_t.
   4986         APSInt LHS(
   4987           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
   4988         APSInt RHS(
   4989           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
   4990         APSInt ElemSize(
   4991           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
   4992         APSInt TrueResult = (LHS - RHS) / ElemSize;
   4993         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
   4994 
   4995         if (Result.extend(65) != TrueResult)
   4996           HandleOverflow(Info, E, TrueResult, E->getType());
   4997         return Success(Result, E);
   4998       }
   4999 
   5000       // C++11 [expr.rel]p3:
   5001       //   Pointers to void (after pointer conversions) can be compared, with a
   5002       //   result defined as follows: If both pointers represent the same
   5003       //   address or are both the null pointer value, the result is true if the
   5004       //   operator is <= or >= and false otherwise; otherwise the result is
   5005       //   unspecified.
   5006       // We interpret this as applying to pointers to *cv* void.
   5007       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
   5008           E->isRelationalOp())
   5009         CCEDiag(E, diag::note_constexpr_void_comparison);
   5010 
   5011       // C++11 [expr.rel]p2:
   5012       // - If two pointers point to non-static data members of the same object,
   5013       //   or to subobjects or array elements fo such members, recursively, the
   5014       //   pointer to the later declared member compares greater provided the
   5015       //   two members have the same access control and provided their class is
   5016       //   not a union.
   5017       //   [...]
   5018       // - Otherwise pointer comparisons are unspecified.
   5019       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   5020           E->isRelationalOp()) {
   5021         bool WasArrayIndex;
   5022         unsigned Mismatch =
   5023           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
   5024                                  RHSDesignator, WasArrayIndex);
   5025         // At the point where the designators diverge, the comparison has a
   5026         // specified value if:
   5027         //  - we are comparing array indices
   5028         //  - we are comparing fields of a union, or fields with the same access
   5029         // Otherwise, the result is unspecified and thus the comparison is not a
   5030         // constant expression.
   5031         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
   5032             Mismatch < RHSDesignator.Entries.size()) {
   5033           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
   5034           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
   5035           if (!LF && !RF)
   5036             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
   5037           else if (!LF)
   5038             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   5039               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
   5040               << RF->getParent() << RF;
   5041           else if (!RF)
   5042             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   5043               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
   5044               << LF->getParent() << LF;
   5045           else if (!LF->getParent()->isUnion() &&
   5046                    LF->getAccess() != RF->getAccess())
   5047             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
   5048               << LF << LF->getAccess() << RF << RF->getAccess()
   5049               << LF->getParent();
   5050         }
   5051       }
   5052 
   5053       // The comparison here must be unsigned, and performed with the same
   5054       // width as the pointer.
   5055       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
   5056       uint64_t CompareLHS = LHSOffset.getQuantity();
   5057       uint64_t CompareRHS = RHSOffset.getQuantity();
   5058       assert(PtrSize <= 64 && "Unexpected pointer width");
   5059       uint64_t Mask = ~0ULL >> (64 - PtrSize);
   5060       CompareLHS &= Mask;
   5061       CompareRHS &= Mask;
   5062 
   5063       // If there is a base and this is a relational operator, we can only
   5064       // compare pointers within the object in question; otherwise, the result
   5065       // depends on where the object is located in memory.
   5066       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
   5067         QualType BaseTy = getType(LHSValue.Base);
   5068         if (BaseTy->isIncompleteType())
   5069           return Error(E);
   5070         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
   5071         uint64_t OffsetLimit = Size.getQuantity();
   5072         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
   5073           return Error(E);
   5074       }
   5075 
   5076       switch (E->getOpcode()) {
   5077       default: llvm_unreachable("missing comparison operator");
   5078       case BO_LT: return Success(CompareLHS < CompareRHS, E);
   5079       case BO_GT: return Success(CompareLHS > CompareRHS, E);
   5080       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
   5081       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
   5082       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
   5083       case BO_NE: return Success(CompareLHS != CompareRHS, E);
   5084       }
   5085     }
   5086   }
   5087 
   5088   if (LHSTy->isMemberPointerType()) {
   5089     assert(E->isEqualityOp() && "unexpected member pointer operation");
   5090     assert(RHSTy->isMemberPointerType() && "invalid comparison");
   5091 
   5092     MemberPtr LHSValue, RHSValue;
   5093 
   5094     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
   5095     if (!LHSOK && Info.keepEvaluatingAfterFailure())
   5096       return false;
   5097 
   5098     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   5099       return false;
   5100 
   5101     // C++11 [expr.eq]p2:
   5102     //   If both operands are null, they compare equal. Otherwise if only one is
   5103     //   null, they compare unequal.
   5104     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
   5105       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
   5106       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   5107     }
   5108 
   5109     //   Otherwise if either is a pointer to a virtual member function, the
   5110     //   result is unspecified.
   5111     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
   5112       if (MD->isVirtual())
   5113         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   5114     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
   5115       if (MD->isVirtual())
   5116         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   5117 
   5118     //   Otherwise they compare equal if and only if they would refer to the
   5119     //   same member of the same most derived object or the same subobject if
   5120     //   they were dereferenced with a hypothetical object of the associated
   5121     //   class type.
   5122     bool Equal = LHSValue == RHSValue;
   5123     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   5124   }
   5125 
   5126   if (LHSTy->isNullPtrType()) {
   5127     assert(E->isComparisonOp() && "unexpected nullptr operation");
   5128     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
   5129     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
   5130     // are compared, the result is true of the operator is <=, >= or ==, and
   5131     // false otherwise.
   5132     BinaryOperator::Opcode Opcode = E->getOpcode();
   5133     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
   5134   }
   5135 
   5136   assert((!LHSTy->isIntegralOrEnumerationType() ||
   5137           !RHSTy->isIntegralOrEnumerationType()) &&
   5138          "DataRecursiveIntBinOpEvaluator should have handled integral types");
   5139   // We can't continue from here for non-integral types.
   5140   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5141 }
   5142 
   5143 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
   5144   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   5145   //   result shall be the alignment of the referenced type."
   5146   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   5147     T = Ref->getPointeeType();
   5148 
   5149   // __alignof is defined to return the preferred alignment.
   5150   return Info.Ctx.toCharUnitsFromBits(
   5151     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
   5152 }
   5153 
   5154 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
   5155   E = E->IgnoreParens();
   5156 
   5157   // alignof decl is always accepted, even if it doesn't make sense: we default
   5158   // to 1 in those cases.
   5159   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   5160     return Info.Ctx.getDeclAlign(DRE->getDecl(),
   5161                                  /*RefAsPointee*/true);
   5162 
   5163   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
   5164     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
   5165                                  /*RefAsPointee*/true);
   5166 
   5167   return GetAlignOfType(E->getType());
   5168 }
   5169 
   5170 
   5171 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
   5172 /// a result as the expression's type.
   5173 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
   5174                                     const UnaryExprOrTypeTraitExpr *E) {
   5175   switch(E->getKind()) {
   5176   case UETT_AlignOf: {
   5177     if (E->isArgumentType())
   5178       return Success(GetAlignOfType(E->getArgumentType()), E);
   5179     else
   5180       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
   5181   }
   5182 
   5183   case UETT_VecStep: {
   5184     QualType Ty = E->getTypeOfArgument();
   5185 
   5186     if (Ty->isVectorType()) {
   5187       unsigned n = Ty->castAs<VectorType>()->getNumElements();
   5188 
   5189       // The vec_step built-in functions that take a 3-component
   5190       // vector return 4. (OpenCL 1.1 spec 6.11.12)
   5191       if (n == 3)
   5192         n = 4;
   5193 
   5194       return Success(n, E);
   5195     } else
   5196       return Success(1, E);
   5197   }
   5198 
   5199   case UETT_SizeOf: {
   5200     QualType SrcTy = E->getTypeOfArgument();
   5201     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   5202     //   the result is the size of the referenced type."
   5203     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
   5204       SrcTy = Ref->getPointeeType();
   5205 
   5206     CharUnits Sizeof;
   5207     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
   5208       return false;
   5209     return Success(Sizeof, E);
   5210   }
   5211   }
   5212 
   5213   llvm_unreachable("unknown expr/type trait");
   5214 }
   5215 
   5216 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
   5217   CharUnits Result;
   5218   unsigned n = OOE->getNumComponents();
   5219   if (n == 0)
   5220     return Error(OOE);
   5221   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
   5222   for (unsigned i = 0; i != n; ++i) {
   5223     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
   5224     switch (ON.getKind()) {
   5225     case OffsetOfExpr::OffsetOfNode::Array: {
   5226       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
   5227       APSInt IdxResult;
   5228       if (!EvaluateInteger(Idx, IdxResult, Info))
   5229         return false;
   5230       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
   5231       if (!AT)
   5232         return Error(OOE);
   5233       CurrentType = AT->getElementType();
   5234       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
   5235       Result += IdxResult.getSExtValue() * ElementSize;
   5236         break;
   5237     }
   5238 
   5239     case OffsetOfExpr::OffsetOfNode::Field: {
   5240       FieldDecl *MemberDecl = ON.getField();
   5241       const RecordType *RT = CurrentType->getAs<RecordType>();
   5242       if (!RT)
   5243         return Error(OOE);
   5244       RecordDecl *RD = RT->getDecl();
   5245       if (RD->isInvalidDecl()) return false;
   5246       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   5247       unsigned i = MemberDecl->getFieldIndex();
   5248       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   5249       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
   5250       CurrentType = MemberDecl->getType().getNonReferenceType();
   5251       break;
   5252     }
   5253 
   5254     case OffsetOfExpr::OffsetOfNode::Identifier:
   5255       llvm_unreachable("dependent __builtin_offsetof");
   5256 
   5257     case OffsetOfExpr::OffsetOfNode::Base: {
   5258       CXXBaseSpecifier *BaseSpec = ON.getBase();
   5259       if (BaseSpec->isVirtual())
   5260         return Error(OOE);
   5261 
   5262       // Find the layout of the class whose base we are looking into.
   5263       const RecordType *RT = CurrentType->getAs<RecordType>();
   5264       if (!RT)
   5265         return Error(OOE);
   5266       RecordDecl *RD = RT->getDecl();
   5267       if (RD->isInvalidDecl()) return false;
   5268       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   5269 
   5270       // Find the base class itself.
   5271       CurrentType = BaseSpec->getType();
   5272       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   5273       if (!BaseRT)
   5274         return Error(OOE);
   5275 
   5276       // Add the offset to the base.
   5277       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
   5278       break;
   5279     }
   5280     }
   5281   }
   5282   return Success(Result, OOE);
   5283 }
   5284 
   5285 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   5286   switch (E->getOpcode()) {
   5287   default:
   5288     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
   5289     // See C99 6.6p3.
   5290     return Error(E);
   5291   case UO_Extension:
   5292     // FIXME: Should extension allow i-c-e extension expressions in its scope?
   5293     // If so, we could clear the diagnostic ID.
   5294     return Visit(E->getSubExpr());
   5295   case UO_Plus:
   5296     // The result is just the value.
   5297     return Visit(E->getSubExpr());
   5298   case UO_Minus: {
   5299     if (!Visit(E->getSubExpr()))
   5300       return false;
   5301     if (!Result.isInt()) return Error(E);
   5302     const APSInt &Value = Result.getInt();
   5303     if (Value.isSigned() && Value.isMinSignedValue())
   5304       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
   5305                      E->getType());
   5306     return Success(-Value, E);
   5307   }
   5308   case UO_Not: {
   5309     if (!Visit(E->getSubExpr()))
   5310       return false;
   5311     if (!Result.isInt()) return Error(E);
   5312     return Success(~Result.getInt(), E);
   5313   }
   5314   case UO_LNot: {
   5315     bool bres;
   5316     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
   5317       return false;
   5318     return Success(!bres, E);
   5319   }
   5320   }
   5321 }
   5322 
   5323 /// HandleCast - This is used to evaluate implicit or explicit casts where the
   5324 /// result type is integer.
   5325 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5326   const Expr *SubExpr = E->getSubExpr();
   5327   QualType DestType = E->getType();
   5328   QualType SrcType = SubExpr->getType();
   5329 
   5330   switch (E->getCastKind()) {
   5331   case CK_BaseToDerived:
   5332   case CK_DerivedToBase:
   5333   case CK_UncheckedDerivedToBase:
   5334   case CK_Dynamic:
   5335   case CK_ToUnion:
   5336   case CK_ArrayToPointerDecay:
   5337   case CK_FunctionToPointerDecay:
   5338   case CK_NullToPointer:
   5339   case CK_NullToMemberPointer:
   5340   case CK_BaseToDerivedMemberPointer:
   5341   case CK_DerivedToBaseMemberPointer:
   5342   case CK_ReinterpretMemberPointer:
   5343   case CK_ConstructorConversion:
   5344   case CK_IntegralToPointer:
   5345   case CK_ToVoid:
   5346   case CK_VectorSplat:
   5347   case CK_IntegralToFloating:
   5348   case CK_FloatingCast:
   5349   case CK_CPointerToObjCPointerCast:
   5350   case CK_BlockPointerToObjCPointerCast:
   5351   case CK_AnyPointerToBlockPointerCast:
   5352   case CK_ObjCObjectLValueCast:
   5353   case CK_FloatingRealToComplex:
   5354   case CK_FloatingComplexToReal:
   5355   case CK_FloatingComplexCast:
   5356   case CK_FloatingComplexToIntegralComplex:
   5357   case CK_IntegralRealToComplex:
   5358   case CK_IntegralComplexCast:
   5359   case CK_IntegralComplexToFloatingComplex:
   5360   case CK_BuiltinFnToFnPtr:
   5361     llvm_unreachable("invalid cast kind for integral value");
   5362 
   5363   case CK_BitCast:
   5364   case CK_Dependent:
   5365   case CK_LValueBitCast:
   5366   case CK_ARCProduceObject:
   5367   case CK_ARCConsumeObject:
   5368   case CK_ARCReclaimReturnedObject:
   5369   case CK_ARCExtendBlockObject:
   5370   case CK_CopyAndAutoreleaseBlockObject:
   5371     return Error(E);
   5372 
   5373   case CK_UserDefinedConversion:
   5374   case CK_LValueToRValue:
   5375   case CK_AtomicToNonAtomic:
   5376   case CK_NonAtomicToAtomic:
   5377   case CK_NoOp:
   5378     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5379 
   5380   case CK_MemberPointerToBoolean:
   5381   case CK_PointerToBoolean:
   5382   case CK_IntegralToBoolean:
   5383   case CK_FloatingToBoolean:
   5384   case CK_FloatingComplexToBoolean:
   5385   case CK_IntegralComplexToBoolean: {
   5386     bool BoolResult;
   5387     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
   5388       return false;
   5389     return Success(BoolResult, E);
   5390   }
   5391 
   5392   case CK_IntegralCast: {
   5393     if (!Visit(SubExpr))
   5394       return false;
   5395 
   5396     if (!Result.isInt()) {
   5397       // Allow casts of address-of-label differences if they are no-ops
   5398       // or narrowing.  (The narrowing case isn't actually guaranteed to
   5399       // be constant-evaluatable except in some narrow cases which are hard
   5400       // to detect here.  We let it through on the assumption the user knows
   5401       // what they are doing.)
   5402       if (Result.isAddrLabelDiff())
   5403         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
   5404       // Only allow casts of lvalues if they are lossless.
   5405       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
   5406     }
   5407 
   5408     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
   5409                                       Result.getInt()), E);
   5410   }
   5411 
   5412   case CK_PointerToIntegral: {
   5413     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   5414 
   5415     LValue LV;
   5416     if (!EvaluatePointer(SubExpr, LV, Info))
   5417       return false;
   5418 
   5419     if (LV.getLValueBase()) {
   5420       // Only allow based lvalue casts if they are lossless.
   5421       // FIXME: Allow a larger integer size than the pointer size, and allow
   5422       // narrowing back down to pointer width in subsequent integral casts.
   5423       // FIXME: Check integer type's active bits, not its type size.
   5424       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
   5425         return Error(E);
   5426 
   5427       LV.Designator.setInvalid();
   5428       LV.moveInto(Result);
   5429       return true;
   5430     }
   5431 
   5432     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
   5433                                          SrcType);
   5434     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
   5435   }
   5436 
   5437   case CK_IntegralComplexToReal: {
   5438     ComplexValue C;
   5439     if (!EvaluateComplex(SubExpr, C, Info))
   5440       return false;
   5441     return Success(C.getComplexIntReal(), E);
   5442   }
   5443 
   5444   case CK_FloatingToIntegral: {
   5445     APFloat F(0.0);
   5446     if (!EvaluateFloat(SubExpr, F, Info))
   5447       return false;
   5448 
   5449     APSInt Value;
   5450     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
   5451       return false;
   5452     return Success(Value, E);
   5453   }
   5454   }
   5455 
   5456   llvm_unreachable("unknown cast resulting in integral value");
   5457 }
   5458 
   5459 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   5460   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5461     ComplexValue LV;
   5462     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   5463       return false;
   5464     if (!LV.isComplexInt())
   5465       return Error(E);
   5466     return Success(LV.getComplexIntReal(), E);
   5467   }
   5468 
   5469   return Visit(E->getSubExpr());
   5470 }
   5471 
   5472 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5473   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
   5474     ComplexValue LV;
   5475     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   5476       return false;
   5477     if (!LV.isComplexInt())
   5478       return Error(E);
   5479     return Success(LV.getComplexIntImag(), E);
   5480   }
   5481 
   5482   VisitIgnoredValue(E->getSubExpr());
   5483   return Success(0, E);
   5484 }
   5485 
   5486 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
   5487   return Success(E->getPackLength(), E);
   5488 }
   5489 
   5490 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
   5491   return Success(E->getValue(), E);
   5492 }
   5493 
   5494 //===----------------------------------------------------------------------===//
   5495 // Float Evaluation
   5496 //===----------------------------------------------------------------------===//
   5497 
   5498 namespace {
   5499 class FloatExprEvaluator
   5500   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
   5501   APFloat &Result;
   5502 public:
   5503   FloatExprEvaluator(EvalInfo &info, APFloat &result)
   5504     : ExprEvaluatorBaseTy(info), Result(result) {}
   5505 
   5506   bool Success(const APValue &V, const Expr *e) {
   5507     Result = V.getFloat();
   5508     return true;
   5509   }
   5510 
   5511   bool ZeroInitialization(const Expr *E) {
   5512     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
   5513     return true;
   5514   }
   5515 
   5516   bool VisitCallExpr(const CallExpr *E);
   5517 
   5518   bool VisitUnaryOperator(const UnaryOperator *E);
   5519   bool VisitBinaryOperator(const BinaryOperator *E);
   5520   bool VisitFloatingLiteral(const FloatingLiteral *E);
   5521   bool VisitCastExpr(const CastExpr *E);
   5522 
   5523   bool VisitUnaryReal(const UnaryOperator *E);
   5524   bool VisitUnaryImag(const UnaryOperator *E);
   5525 
   5526   // FIXME: Missing: array subscript of vector, member of vector
   5527 };
   5528 } // end anonymous namespace
   5529 
   5530 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
   5531   assert(E->isRValue() && E->getType()->isRealFloatingType());
   5532   return FloatExprEvaluator(Info, Result).Visit(E);
   5533 }
   5534 
   5535 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
   5536                                   QualType ResultTy,
   5537                                   const Expr *Arg,
   5538                                   bool SNaN,
   5539                                   llvm::APFloat &Result) {
   5540   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
   5541   if (!S) return false;
   5542 
   5543   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
   5544 
   5545   llvm::APInt fill;
   5546 
   5547   // Treat empty strings as if they were zero.
   5548   if (S->getString().empty())
   5549     fill = llvm::APInt(32, 0);
   5550   else if (S->getString().getAsInteger(0, fill))
   5551     return false;
   5552 
   5553   if (SNaN)
   5554     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
   5555   else
   5556     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
   5557   return true;
   5558 }
   5559 
   5560 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
   5561   switch (E->isBuiltinCall()) {
   5562   default:
   5563     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   5564 
   5565   case Builtin::BI__builtin_huge_val:
   5566   case Builtin::BI__builtin_huge_valf:
   5567   case Builtin::BI__builtin_huge_vall:
   5568   case Builtin::BI__builtin_inf:
   5569   case Builtin::BI__builtin_inff:
   5570   case Builtin::BI__builtin_infl: {
   5571     const llvm::fltSemantics &Sem =
   5572       Info.Ctx.getFloatTypeSemantics(E->getType());
   5573     Result = llvm::APFloat::getInf(Sem);
   5574     return true;
   5575   }
   5576 
   5577   case Builtin::BI__builtin_nans:
   5578   case Builtin::BI__builtin_nansf:
   5579   case Builtin::BI__builtin_nansl:
   5580     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   5581                                true, Result))
   5582       return Error(E);
   5583     return true;
   5584 
   5585   case Builtin::BI__builtin_nan:
   5586   case Builtin::BI__builtin_nanf:
   5587   case Builtin::BI__builtin_nanl:
   5588     // If this is __builtin_nan() turn this into a nan, otherwise we
   5589     // can't constant fold it.
   5590     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   5591                                false, Result))
   5592       return Error(E);
   5593     return true;
   5594 
   5595   case Builtin::BI__builtin_fabs:
   5596   case Builtin::BI__builtin_fabsf:
   5597   case Builtin::BI__builtin_fabsl:
   5598     if (!EvaluateFloat(E->getArg(0), Result, Info))
   5599       return false;
   5600 
   5601     if (Result.isNegative())
   5602       Result.changeSign();
   5603     return true;
   5604 
   5605   case Builtin::BI__builtin_copysign:
   5606   case Builtin::BI__builtin_copysignf:
   5607   case Builtin::BI__builtin_copysignl: {
   5608     APFloat RHS(0.);
   5609     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
   5610         !EvaluateFloat(E->getArg(1), RHS, Info))
   5611       return false;
   5612     Result.copySign(RHS);
   5613     return true;
   5614   }
   5615   }
   5616 }
   5617 
   5618 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   5619   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5620     ComplexValue CV;
   5621     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   5622       return false;
   5623     Result = CV.FloatReal;
   5624     return true;
   5625   }
   5626 
   5627   return Visit(E->getSubExpr());
   5628 }
   5629 
   5630 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5631   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   5632     ComplexValue CV;
   5633     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   5634       return false;
   5635     Result = CV.FloatImag;
   5636     return true;
   5637   }
   5638 
   5639   VisitIgnoredValue(E->getSubExpr());
   5640   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
   5641   Result = llvm::APFloat::getZero(Sem);
   5642   return true;
   5643 }
   5644 
   5645 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   5646   switch (E->getOpcode()) {
   5647   default: return Error(E);
   5648   case UO_Plus:
   5649     return EvaluateFloat(E->getSubExpr(), Result, Info);
   5650   case UO_Minus:
   5651     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
   5652       return false;
   5653     Result.changeSign();
   5654     return true;
   5655   }
   5656 }
   5657 
   5658 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   5659   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   5660     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5661 
   5662   APFloat RHS(0.0);
   5663   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
   5664   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   5665     return false;
   5666   if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
   5667     return false;
   5668 
   5669   switch (E->getOpcode()) {
   5670   default: return Error(E);
   5671   case BO_Mul:
   5672     Result.multiply(RHS, APFloat::rmNearestTiesToEven);
   5673     break;
   5674   case BO_Add:
   5675     Result.add(RHS, APFloat::rmNearestTiesToEven);
   5676     break;
   5677   case BO_Sub:
   5678     Result.subtract(RHS, APFloat::rmNearestTiesToEven);
   5679     break;
   5680   case BO_Div:
   5681     Result.divide(RHS, APFloat::rmNearestTiesToEven);
   5682     break;
   5683   }
   5684 
   5685   if (Result.isInfinity() || Result.isNaN())
   5686     CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
   5687   return true;
   5688 }
   5689 
   5690 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
   5691   Result = E->getValue();
   5692   return true;
   5693 }
   5694 
   5695 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5696   const Expr* SubExpr = E->getSubExpr();
   5697 
   5698   switch (E->getCastKind()) {
   5699   default:
   5700     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5701 
   5702   case CK_IntegralToFloating: {
   5703     APSInt IntResult;
   5704     return EvaluateInteger(SubExpr, IntResult, Info) &&
   5705            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
   5706                                 E->getType(), Result);
   5707   }
   5708 
   5709   case CK_FloatingCast: {
   5710     if (!Visit(SubExpr))
   5711       return false;
   5712     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
   5713                                   Result);
   5714   }
   5715 
   5716   case CK_FloatingComplexToReal: {
   5717     ComplexValue V;
   5718     if (!EvaluateComplex(SubExpr, V, Info))
   5719       return false;
   5720     Result = V.getComplexFloatReal();
   5721     return true;
   5722   }
   5723   }
   5724 }
   5725 
   5726 //===----------------------------------------------------------------------===//
   5727 // Complex Evaluation (for float and integer)
   5728 //===----------------------------------------------------------------------===//
   5729 
   5730 namespace {
   5731 class ComplexExprEvaluator
   5732   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
   5733   ComplexValue &Result;
   5734 
   5735 public:
   5736   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
   5737     : ExprEvaluatorBaseTy(info), Result(Result) {}
   5738 
   5739   bool Success(const APValue &V, const Expr *e) {
   5740     Result.setFrom(V);
   5741     return true;
   5742   }
   5743 
   5744   bool ZeroInitialization(const Expr *E);
   5745 
   5746   //===--------------------------------------------------------------------===//
   5747   //                            Visitor Methods
   5748   //===--------------------------------------------------------------------===//
   5749 
   5750   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
   5751   bool VisitCastExpr(const CastExpr *E);
   5752   bool VisitBinaryOperator(const BinaryOperator *E);
   5753   bool VisitUnaryOperator(const UnaryOperator *E);
   5754   bool VisitInitListExpr(const InitListExpr *E);
   5755 };
   5756 } // end anonymous namespace
   5757 
   5758 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
   5759                             EvalInfo &Info) {
   5760   assert(E->isRValue() && E->getType()->isAnyComplexType());
   5761   return ComplexExprEvaluator(Info, Result).Visit(E);
   5762 }
   5763 
   5764 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
   5765   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
   5766   if (ElemTy->isRealFloatingType()) {
   5767     Result.makeComplexFloat();
   5768     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
   5769     Result.FloatReal = Zero;
   5770     Result.FloatImag = Zero;
   5771   } else {
   5772     Result.makeComplexInt();
   5773     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
   5774     Result.IntReal = Zero;
   5775     Result.IntImag = Zero;
   5776   }
   5777   return true;
   5778 }
   5779 
   5780 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
   5781   const Expr* SubExpr = E->getSubExpr();
   5782 
   5783   if (SubExpr->getType()->isRealFloatingType()) {
   5784     Result.makeComplexFloat();
   5785     APFloat &Imag = Result.FloatImag;
   5786     if (!EvaluateFloat(SubExpr, Imag, Info))
   5787       return false;
   5788 
   5789     Result.FloatReal = APFloat(Imag.getSemantics());
   5790     return true;
   5791   } else {
   5792     assert(SubExpr->getType()->isIntegerType() &&
   5793            "Unexpected imaginary literal.");
   5794 
   5795     Result.makeComplexInt();
   5796     APSInt &Imag = Result.IntImag;
   5797     if (!EvaluateInteger(SubExpr, Imag, Info))
   5798       return false;
   5799 
   5800     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
   5801     return true;
   5802   }
   5803 }
   5804 
   5805 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5806 
   5807   switch (E->getCastKind()) {
   5808   case CK_BitCast:
   5809   case CK_BaseToDerived:
   5810   case CK_DerivedToBase:
   5811   case CK_UncheckedDerivedToBase:
   5812   case CK_Dynamic:
   5813   case CK_ToUnion:
   5814   case CK_ArrayToPointerDecay:
   5815   case CK_FunctionToPointerDecay:
   5816   case CK_NullToPointer:
   5817   case CK_NullToMemberPointer:
   5818   case CK_BaseToDerivedMemberPointer:
   5819   case CK_DerivedToBaseMemberPointer:
   5820   case CK_MemberPointerToBoolean:
   5821   case CK_ReinterpretMemberPointer:
   5822   case CK_ConstructorConversion:
   5823   case CK_IntegralToPointer:
   5824   case CK_PointerToIntegral:
   5825   case CK_PointerToBoolean:
   5826   case CK_ToVoid:
   5827   case CK_VectorSplat:
   5828   case CK_IntegralCast:
   5829   case CK_IntegralToBoolean:
   5830   case CK_IntegralToFloating:
   5831   case CK_FloatingToIntegral:
   5832   case CK_FloatingToBoolean:
   5833   case CK_FloatingCast:
   5834   case CK_CPointerToObjCPointerCast:
   5835   case CK_BlockPointerToObjCPointerCast:
   5836   case CK_AnyPointerToBlockPointerCast:
   5837   case CK_ObjCObjectLValueCast:
   5838   case CK_FloatingComplexToReal:
   5839   case CK_FloatingComplexToBoolean:
   5840   case CK_IntegralComplexToReal:
   5841   case CK_IntegralComplexToBoolean:
   5842   case CK_ARCProduceObject:
   5843   case CK_ARCConsumeObject:
   5844   case CK_ARCReclaimReturnedObject:
   5845   case CK_ARCExtendBlockObject:
   5846   case CK_CopyAndAutoreleaseBlockObject:
   5847   case CK_BuiltinFnToFnPtr:
   5848     llvm_unreachable("invalid cast kind for complex value");
   5849 
   5850   case CK_LValueToRValue:
   5851   case CK_AtomicToNonAtomic:
   5852   case CK_NonAtomicToAtomic:
   5853   case CK_NoOp:
   5854     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5855 
   5856   case CK_Dependent:
   5857   case CK_LValueBitCast:
   5858   case CK_UserDefinedConversion:
   5859     return Error(E);
   5860 
   5861   case CK_FloatingRealToComplex: {
   5862     APFloat &Real = Result.FloatReal;
   5863     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
   5864       return false;
   5865 
   5866     Result.makeComplexFloat();
   5867     Result.FloatImag = APFloat(Real.getSemantics());
   5868     return true;
   5869   }
   5870 
   5871   case CK_FloatingComplexCast: {
   5872     if (!Visit(E->getSubExpr()))
   5873       return false;
   5874 
   5875     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5876     QualType From
   5877       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5878 
   5879     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
   5880            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
   5881   }
   5882 
   5883   case CK_FloatingComplexToIntegralComplex: {
   5884     if (!Visit(E->getSubExpr()))
   5885       return false;
   5886 
   5887     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5888     QualType From
   5889       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5890     Result.makeComplexInt();
   5891     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
   5892                                 To, Result.IntReal) &&
   5893            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
   5894                                 To, Result.IntImag);
   5895   }
   5896 
   5897   case CK_IntegralRealToComplex: {
   5898     APSInt &Real = Result.IntReal;
   5899     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
   5900       return false;
   5901 
   5902     Result.makeComplexInt();
   5903     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
   5904     return true;
   5905   }
   5906 
   5907   case CK_IntegralComplexCast: {
   5908     if (!Visit(E->getSubExpr()))
   5909       return false;
   5910 
   5911     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   5912     QualType From
   5913       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   5914 
   5915     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
   5916     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
   5917     return true;
   5918   }
   5919 
   5920   case CK_IntegralComplexToFloatingComplex: {
   5921     if (!Visit(E->getSubExpr()))
   5922       return false;
   5923 
   5924     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
   5925     QualType From
   5926       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
   5927     Result.makeComplexFloat();
   5928     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
   5929                                 To, Result.FloatReal) &&
   5930            HandleIntToFloatCast(Info, E, From, Result.IntImag,
   5931                                 To, Result.FloatImag);
   5932   }
   5933   }
   5934 
   5935   llvm_unreachable("unknown cast resulting in complex value");
   5936 }
   5937 
   5938 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   5939   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   5940     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   5941 
   5942   bool LHSOK = Visit(E->getLHS());
   5943   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   5944     return false;
   5945 
   5946   ComplexValue RHS;
   5947   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   5948     return false;
   5949 
   5950   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
   5951          "Invalid operands to binary operator.");
   5952   switch (E->getOpcode()) {
   5953   default: return Error(E);
   5954   case BO_Add:
   5955     if (Result.isComplexFloat()) {
   5956       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
   5957                                        APFloat::rmNearestTiesToEven);
   5958       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
   5959                                        APFloat::rmNearestTiesToEven);
   5960     } else {
   5961       Result.getComplexIntReal() += RHS.getComplexIntReal();
   5962       Result.getComplexIntImag() += RHS.getComplexIntImag();
   5963     }
   5964     break;
   5965   case BO_Sub:
   5966     if (Result.isComplexFloat()) {
   5967       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
   5968                                             APFloat::rmNearestTiesToEven);
   5969       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
   5970                                             APFloat::rmNearestTiesToEven);
   5971     } else {
   5972       Result.getComplexIntReal() -= RHS.getComplexIntReal();
   5973       Result.getComplexIntImag() -= RHS.getComplexIntImag();
   5974     }
   5975     break;
   5976   case BO_Mul:
   5977     if (Result.isComplexFloat()) {
   5978       ComplexValue LHS = Result;
   5979       APFloat &LHS_r = LHS.getComplexFloatReal();
   5980       APFloat &LHS_i = LHS.getComplexFloatImag();
   5981       APFloat &RHS_r = RHS.getComplexFloatReal();
   5982       APFloat &RHS_i = RHS.getComplexFloatImag();
   5983 
   5984       APFloat Tmp = LHS_r;
   5985       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   5986       Result.getComplexFloatReal() = Tmp;
   5987       Tmp = LHS_i;
   5988       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   5989       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
   5990 
   5991       Tmp = LHS_r;
   5992       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   5993       Result.getComplexFloatImag() = Tmp;
   5994       Tmp = LHS_i;
   5995       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   5996       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
   5997     } else {
   5998       ComplexValue LHS = Result;
   5999       Result.getComplexIntReal() =
   6000         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
   6001          LHS.getComplexIntImag() * RHS.getComplexIntImag());
   6002       Result.getComplexIntImag() =
   6003         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
   6004          LHS.getComplexIntImag() * RHS.getComplexIntReal());
   6005     }
   6006     break;
   6007   case BO_Div:
   6008     if (Result.isComplexFloat()) {
   6009       ComplexValue LHS = Result;
   6010       APFloat &LHS_r = LHS.getComplexFloatReal();
   6011       APFloat &LHS_i = LHS.getComplexFloatImag();
   6012       APFloat &RHS_r = RHS.getComplexFloatReal();
   6013       APFloat &RHS_i = RHS.getComplexFloatImag();
   6014       APFloat &Res_r = Result.getComplexFloatReal();
   6015       APFloat &Res_i = Result.getComplexFloatImag();
   6016 
   6017       APFloat Den = RHS_r;
   6018       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6019       APFloat Tmp = RHS_i;
   6020       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6021       Den.add(Tmp, APFloat::rmNearestTiesToEven);
   6022 
   6023       Res_r = LHS_r;
   6024       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6025       Tmp = LHS_i;
   6026       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6027       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
   6028       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
   6029 
   6030       Res_i = LHS_i;
   6031       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   6032       Tmp = LHS_r;
   6033       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   6034       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
   6035       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
   6036     } else {
   6037       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
   6038         return Error(E, diag::note_expr_divide_by_zero);
   6039 
   6040       ComplexValue LHS = Result;
   6041       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
   6042         RHS.getComplexIntImag() * RHS.getComplexIntImag();
   6043       Result.getComplexIntReal() =
   6044         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
   6045          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
   6046       Result.getComplexIntImag() =
   6047         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
   6048          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
   6049     }
   6050     break;
   6051   }
   6052 
   6053   return true;
   6054 }
   6055 
   6056 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   6057   // Get the operand value into 'Result'.
   6058   if (!Visit(E->getSubExpr()))
   6059     return false;
   6060 
   6061   switch (E->getOpcode()) {
   6062   default:
   6063     return Error(E);
   6064   case UO_Extension:
   6065     return true;
   6066   case UO_Plus:
   6067     // The result is always just the subexpr.
   6068     return true;
   6069   case UO_Minus:
   6070     if (Result.isComplexFloat()) {
   6071       Result.getComplexFloatReal().changeSign();
   6072       Result.getComplexFloatImag().changeSign();
   6073     }
   6074     else {
   6075       Result.getComplexIntReal() = -Result.getComplexIntReal();
   6076       Result.getComplexIntImag() = -Result.getComplexIntImag();
   6077     }
   6078     return true;
   6079   case UO_Not:
   6080     if (Result.isComplexFloat())
   6081       Result.getComplexFloatImag().changeSign();
   6082     else
   6083       Result.getComplexIntImag() = -Result.getComplexIntImag();
   6084     return true;
   6085   }
   6086 }
   6087 
   6088 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   6089   if (E->getNumInits() == 2) {
   6090     if (E->getType()->isComplexType()) {
   6091       Result.makeComplexFloat();
   6092       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
   6093         return false;
   6094       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
   6095         return false;
   6096     } else {
   6097       Result.makeComplexInt();
   6098       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
   6099         return false;
   6100       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
   6101         return false;
   6102     }
   6103     return true;
   6104   }
   6105   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
   6106 }
   6107 
   6108 //===----------------------------------------------------------------------===//
   6109 // Void expression evaluation, primarily for a cast to void on the LHS of a
   6110 // comma operator
   6111 //===----------------------------------------------------------------------===//
   6112 
   6113 namespace {
   6114 class VoidExprEvaluator
   6115   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
   6116 public:
   6117   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
   6118 
   6119   bool Success(const APValue &V, const Expr *e) { return true; }
   6120 
   6121   bool VisitCastExpr(const CastExpr *E) {
   6122     switch (E->getCastKind()) {
   6123     default:
   6124       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   6125     case CK_ToVoid:
   6126       VisitIgnoredValue(E->getSubExpr());
   6127       return true;
   6128     }
   6129   }
   6130 };
   6131 } // end anonymous namespace
   6132 
   6133 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
   6134   assert(E->isRValue() && E->getType()->isVoidType());
   6135   return VoidExprEvaluator(Info).Visit(E);
   6136 }
   6137 
   6138 //===----------------------------------------------------------------------===//
   6139 // Top level Expr::EvaluateAsRValue method.
   6140 //===----------------------------------------------------------------------===//
   6141 
   6142 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
   6143   // In C, function designators are not lvalues, but we evaluate them as if they
   6144   // are.
   6145   if (E->isGLValue() || E->getType()->isFunctionType()) {
   6146     LValue LV;
   6147     if (!EvaluateLValue(E, LV, Info))
   6148       return false;
   6149     LV.moveInto(Result);
   6150   } else if (E->getType()->isVectorType()) {
   6151     if (!EvaluateVector(E, Result, Info))
   6152       return false;
   6153   } else if (E->getType()->isIntegralOrEnumerationType()) {
   6154     if (!IntExprEvaluator(Info, Result).Visit(E))
   6155       return false;
   6156   } else if (E->getType()->hasPointerRepresentation()) {
   6157     LValue LV;
   6158     if (!EvaluatePointer(E, LV, Info))
   6159       return false;
   6160     LV.moveInto(Result);
   6161   } else if (E->getType()->isRealFloatingType()) {
   6162     llvm::APFloat F(0.0);
   6163     if (!EvaluateFloat(E, F, Info))
   6164       return false;
   6165     Result = APValue(F);
   6166   } else if (E->getType()->isAnyComplexType()) {
   6167     ComplexValue C;
   6168     if (!EvaluateComplex(E, C, Info))
   6169       return false;
   6170     C.moveInto(Result);
   6171   } else if (E->getType()->isMemberPointerType()) {
   6172     MemberPtr P;
   6173     if (!EvaluateMemberPointer(E, P, Info))
   6174       return false;
   6175     P.moveInto(Result);
   6176     return true;
   6177   } else if (E->getType()->isArrayType()) {
   6178     LValue LV;
   6179     LV.set(E, Info.CurrentCall->Index);
   6180     if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
   6181       return false;
   6182     Result = Info.CurrentCall->Temporaries[E];
   6183   } else if (E->getType()->isRecordType()) {
   6184     LValue LV;
   6185     LV.set(E, Info.CurrentCall->Index);
   6186     if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
   6187       return false;
   6188     Result = Info.CurrentCall->Temporaries[E];
   6189   } else if (E->getType()->isVoidType()) {
   6190     if (Info.getLangOpts().CPlusPlus0x)
   6191       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
   6192         << E->getType();
   6193     else
   6194       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
   6195     if (!EvaluateVoid(E, Info))
   6196       return false;
   6197   } else if (Info.getLangOpts().CPlusPlus0x) {
   6198     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
   6199     return false;
   6200   } else {
   6201     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   6202     return false;
   6203   }
   6204 
   6205   return true;
   6206 }
   6207 
   6208 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
   6209 /// cases, the in-place evaluation is essential, since later initializers for
   6210 /// an object can indirectly refer to subobjects which were initialized earlier.
   6211 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
   6212                             const Expr *E, CheckConstantExpressionKind CCEK,
   6213                             bool AllowNonLiteralTypes) {
   6214   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
   6215     return false;
   6216 
   6217   if (E->isRValue()) {
   6218     // Evaluate arrays and record types in-place, so that later initializers can
   6219     // refer to earlier-initialized members of the object.
   6220     if (E->getType()->isArrayType())
   6221       return EvaluateArray(E, This, Result, Info);
   6222     else if (E->getType()->isRecordType())
   6223       return EvaluateRecord(E, This, Result, Info);
   6224   }
   6225 
   6226   // For any other type, in-place evaluation is unimportant.
   6227   return Evaluate(Result, Info, E);
   6228 }
   6229 
   6230 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
   6231 /// lvalue-to-rvalue cast if it is an lvalue.
   6232 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
   6233   if (!CheckLiteralType(Info, E))
   6234     return false;
   6235 
   6236   if (!::Evaluate(Result, Info, E))
   6237     return false;
   6238 
   6239   if (E->isGLValue()) {
   6240     LValue LV;
   6241     LV.setFrom(Info.Ctx, Result);
   6242     if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
   6243       return false;
   6244   }
   6245 
   6246   // Check this core constant expression is a constant expression.
   6247   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
   6248 }
   6249 
   6250 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
   6251 /// any crazy technique (that has nothing to do with language standards) that
   6252 /// we want to.  If this function returns true, it returns the folded constant
   6253 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
   6254 /// will be applied to the result.
   6255 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
   6256   // Fast-path evaluations of integer literals, since we sometimes see files
   6257   // containing vast quantities of these.
   6258   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
   6259     Result.Val = APValue(APSInt(L->getValue(),
   6260                                 L->getType()->isUnsignedIntegerType()));
   6261     return true;
   6262   }
   6263 
   6264   // FIXME: Evaluating values of large array and record types can cause
   6265   // performance problems. Only do so in C++11 for now.
   6266   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
   6267       !Ctx.getLangOpts().CPlusPlus0x)
   6268     return false;
   6269 
   6270   EvalInfo Info(Ctx, Result);
   6271   return ::EvaluateAsRValue(Info, this, Result.Val);
   6272 }
   6273 
   6274 bool Expr::EvaluateAsBooleanCondition(bool &Result,
   6275                                       const ASTContext &Ctx) const {
   6276   EvalResult Scratch;
   6277   return EvaluateAsRValue(Scratch, Ctx) &&
   6278          HandleConversionToBool(Scratch.Val, Result);
   6279 }
   6280 
   6281 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
   6282                          SideEffectsKind AllowSideEffects) const {
   6283   if (!getType()->isIntegralOrEnumerationType())
   6284     return false;
   6285 
   6286   EvalResult ExprResult;
   6287   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
   6288       (!AllowSideEffects && ExprResult.HasSideEffects))
   6289     return false;
   6290 
   6291   Result = ExprResult.Val.getInt();
   6292   return true;
   6293 }
   6294 
   6295 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
   6296   EvalInfo Info(Ctx, Result);
   6297 
   6298   LValue LV;
   6299   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
   6300       !CheckLValueConstantExpression(Info, getExprLoc(),
   6301                                      Ctx.getLValueReferenceType(getType()), LV))
   6302     return false;
   6303 
   6304   LV.moveInto(Result.Val);
   6305   return true;
   6306 }
   6307 
   6308 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
   6309                                  const VarDecl *VD,
   6310                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   6311   // FIXME: Evaluating initializers for large array and record types can cause
   6312   // performance problems. Only do so in C++11 for now.
   6313   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
   6314       !Ctx.getLangOpts().CPlusPlus0x)
   6315     return false;
   6316 
   6317   Expr::EvalStatus EStatus;
   6318   EStatus.Diag = &Notes;
   6319 
   6320   EvalInfo InitInfo(Ctx, EStatus);
   6321   InitInfo.setEvaluatingDecl(VD, Value);
   6322 
   6323   LValue LVal;
   6324   LVal.set(VD);
   6325 
   6326   // C++11 [basic.start.init]p2:
   6327   //  Variables with static storage duration or thread storage duration shall be
   6328   //  zero-initialized before any other initialization takes place.
   6329   // This behavior is not present in C.
   6330   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
   6331       !VD->getType()->isReferenceType()) {
   6332     ImplicitValueInitExpr VIE(VD->getType());
   6333     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
   6334                          /*AllowNonLiteralTypes=*/true))
   6335       return false;
   6336   }
   6337 
   6338   if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
   6339                          /*AllowNonLiteralTypes=*/true) ||
   6340       EStatus.HasSideEffects)
   6341     return false;
   6342 
   6343   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
   6344                                  Value);
   6345 }
   6346 
   6347 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
   6348 /// constant folded, but discard the result.
   6349 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
   6350   EvalResult Result;
   6351   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
   6352 }
   6353 
   6354 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
   6355   EvalResult EvalResult;
   6356   bool Result = EvaluateAsRValue(EvalResult, Ctx);
   6357   (void)Result;
   6358   assert(Result && "Could not evaluate expression");
   6359   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
   6360 
   6361   return EvalResult.Val.getInt();
   6362 }
   6363 
   6364  bool Expr::EvalResult::isGlobalLValue() const {
   6365    assert(Val.isLValue());
   6366    return IsGlobalLValue(Val.getLValueBase());
   6367  }
   6368 
   6369 
   6370 /// isIntegerConstantExpr - this recursive routine will test if an expression is
   6371 /// an integer constant expression.
   6372 
   6373 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
   6374 /// comma, etc
   6375 ///
   6376 /// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
   6377 /// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
   6378 /// cast+dereference.
   6379 
   6380 // CheckICE - This function does the fundamental ICE checking: the returned
   6381 // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
   6382 // Note that to reduce code duplication, this helper does no evaluation
   6383 // itself; the caller checks whether the expression is evaluatable, and
   6384 // in the rare cases where CheckICE actually cares about the evaluated
   6385 // value, it calls into Evalute.
   6386 //
   6387 // Meanings of Val:
   6388 // 0: This expression is an ICE.
   6389 // 1: This expression is not an ICE, but if it isn't evaluated, it's
   6390 //    a legal subexpression for an ICE. This return value is used to handle
   6391 //    the comma operator in C99 mode.
   6392 // 2: This expression is not an ICE, and is not a legal subexpression for one.
   6393 
   6394 namespace {
   6395 
   6396 struct ICEDiag {
   6397   unsigned Val;
   6398   SourceLocation Loc;
   6399 
   6400   public:
   6401   ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
   6402   ICEDiag() : Val(0) {}
   6403 };
   6404 
   6405 }
   6406 
   6407 static ICEDiag NoDiag() { return ICEDiag(); }
   6408 
   6409 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
   6410   Expr::EvalResult EVResult;
   6411   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
   6412       !EVResult.Val.isInt()) {
   6413     return ICEDiag(2, E->getLocStart());
   6414   }
   6415   return NoDiag();
   6416 }
   6417 
   6418 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
   6419   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
   6420   if (!E->getType()->isIntegralOrEnumerationType()) {
   6421     return ICEDiag(2, E->getLocStart());
   6422   }
   6423 
   6424   switch (E->getStmtClass()) {
   6425 #define ABSTRACT_STMT(Node)
   6426 #define STMT(Node, Base) case Expr::Node##Class:
   6427 #define EXPR(Node, Base)
   6428 #include "clang/AST/StmtNodes.inc"
   6429   case Expr::PredefinedExprClass:
   6430   case Expr::FloatingLiteralClass:
   6431   case Expr::ImaginaryLiteralClass:
   6432   case Expr::StringLiteralClass:
   6433   case Expr::ArraySubscriptExprClass:
   6434   case Expr::MemberExprClass:
   6435   case Expr::CompoundAssignOperatorClass:
   6436   case Expr::CompoundLiteralExprClass:
   6437   case Expr::ExtVectorElementExprClass:
   6438   case Expr::DesignatedInitExprClass:
   6439   case Expr::ImplicitValueInitExprClass:
   6440   case Expr::ParenListExprClass:
   6441   case Expr::VAArgExprClass:
   6442   case Expr::AddrLabelExprClass:
   6443   case Expr::StmtExprClass:
   6444   case Expr::CXXMemberCallExprClass:
   6445   case Expr::CUDAKernelCallExprClass:
   6446   case Expr::CXXDynamicCastExprClass:
   6447   case Expr::CXXTypeidExprClass:
   6448   case Expr::CXXUuidofExprClass:
   6449   case Expr::CXXNullPtrLiteralExprClass:
   6450   case Expr::UserDefinedLiteralClass:
   6451   case Expr::CXXThisExprClass:
   6452   case Expr::CXXThrowExprClass:
   6453   case Expr::CXXNewExprClass:
   6454   case Expr::CXXDeleteExprClass:
   6455   case Expr::CXXPseudoDestructorExprClass:
   6456   case Expr::UnresolvedLookupExprClass:
   6457   case Expr::DependentScopeDeclRefExprClass:
   6458   case Expr::CXXConstructExprClass:
   6459   case Expr::CXXBindTemporaryExprClass:
   6460   case Expr::ExprWithCleanupsClass:
   6461   case Expr::CXXTemporaryObjectExprClass:
   6462   case Expr::CXXUnresolvedConstructExprClass:
   6463   case Expr::CXXDependentScopeMemberExprClass:
   6464   case Expr::UnresolvedMemberExprClass:
   6465   case Expr::ObjCStringLiteralClass:
   6466   case Expr::ObjCBoxedExprClass:
   6467   case Expr::ObjCArrayLiteralClass:
   6468   case Expr::ObjCDictionaryLiteralClass:
   6469   case Expr::ObjCEncodeExprClass:
   6470   case Expr::ObjCMessageExprClass:
   6471   case Expr::ObjCSelectorExprClass:
   6472   case Expr::ObjCProtocolExprClass:
   6473   case Expr::ObjCIvarRefExprClass:
   6474   case Expr::ObjCPropertyRefExprClass:
   6475   case Expr::ObjCSubscriptRefExprClass:
   6476   case Expr::ObjCIsaExprClass:
   6477   case Expr::ShuffleVectorExprClass:
   6478   case Expr::BlockExprClass:
   6479   case Expr::NoStmtClass:
   6480   case Expr::OpaqueValueExprClass:
   6481   case Expr::PackExpansionExprClass:
   6482   case Expr::SubstNonTypeTemplateParmPackExprClass:
   6483   case Expr::AsTypeExprClass:
   6484   case Expr::ObjCIndirectCopyRestoreExprClass:
   6485   case Expr::MaterializeTemporaryExprClass:
   6486   case Expr::PseudoObjectExprClass:
   6487   case Expr::AtomicExprClass:
   6488   case Expr::InitListExprClass:
   6489   case Expr::LambdaExprClass:
   6490     return ICEDiag(2, E->getLocStart());
   6491 
   6492   case Expr::SizeOfPackExprClass:
   6493   case Expr::GNUNullExprClass:
   6494     // GCC considers the GNU __null value to be an integral constant expression.
   6495     return NoDiag();
   6496 
   6497   case Expr::SubstNonTypeTemplateParmExprClass:
   6498     return
   6499       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
   6500 
   6501   case Expr::ParenExprClass:
   6502     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
   6503   case Expr::GenericSelectionExprClass:
   6504     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
   6505   case Expr::IntegerLiteralClass:
   6506   case Expr::CharacterLiteralClass:
   6507   case Expr::ObjCBoolLiteralExprClass:
   6508   case Expr::CXXBoolLiteralExprClass:
   6509   case Expr::CXXScalarValueInitExprClass:
   6510   case Expr::UnaryTypeTraitExprClass:
   6511   case Expr::BinaryTypeTraitExprClass:
   6512   case Expr::TypeTraitExprClass:
   6513   case Expr::ArrayTypeTraitExprClass:
   6514   case Expr::ExpressionTraitExprClass:
   6515   case Expr::CXXNoexceptExprClass:
   6516     return NoDiag();
   6517   case Expr::CallExprClass:
   6518   case Expr::CXXOperatorCallExprClass: {
   6519     // C99 6.6/3 allows function calls within unevaluated subexpressions of
   6520     // constant expressions, but they can never be ICEs because an ICE cannot
   6521     // contain an operand of (pointer to) function type.
   6522     const CallExpr *CE = cast<CallExpr>(E);
   6523     if (CE->isBuiltinCall())
   6524       return CheckEvalInICE(E, Ctx);
   6525     return ICEDiag(2, E->getLocStart());
   6526   }
   6527   case Expr::DeclRefExprClass: {
   6528     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
   6529       return NoDiag();
   6530     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
   6531     if (Ctx.getLangOpts().CPlusPlus &&
   6532         D && IsConstNonVolatile(D->getType())) {
   6533       // Parameter variables are never constants.  Without this check,
   6534       // getAnyInitializer() can find a default argument, which leads
   6535       // to chaos.
   6536       if (isa<ParmVarDecl>(D))
   6537         return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
   6538 
   6539       // C++ 7.1.5.1p2
   6540       //   A variable of non-volatile const-qualified integral or enumeration
   6541       //   type initialized by an ICE can be used in ICEs.
   6542       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
   6543         if (!Dcl->getType()->isIntegralOrEnumerationType())
   6544           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
   6545 
   6546         const VarDecl *VD;
   6547         // Look for a declaration of this variable that has an initializer, and
   6548         // check whether it is an ICE.
   6549         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
   6550           return NoDiag();
   6551         else
   6552           return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
   6553       }
   6554     }
   6555     return ICEDiag(2, E->getLocStart());
   6556   }
   6557   case Expr::UnaryOperatorClass: {
   6558     const UnaryOperator *Exp = cast<UnaryOperator>(E);
   6559     switch (Exp->getOpcode()) {
   6560     case UO_PostInc:
   6561     case UO_PostDec:
   6562     case UO_PreInc:
   6563     case UO_PreDec:
   6564     case UO_AddrOf:
   6565     case UO_Deref:
   6566       // C99 6.6/3 allows increment and decrement within unevaluated
   6567       // subexpressions of constant expressions, but they can never be ICEs
   6568       // because an ICE cannot contain an lvalue operand.
   6569       return ICEDiag(2, E->getLocStart());
   6570     case UO_Extension:
   6571     case UO_LNot:
   6572     case UO_Plus:
   6573     case UO_Minus:
   6574     case UO_Not:
   6575     case UO_Real:
   6576     case UO_Imag:
   6577       return CheckICE(Exp->getSubExpr(), Ctx);
   6578     }
   6579 
   6580     // OffsetOf falls through here.
   6581   }
   6582   case Expr::OffsetOfExprClass: {
   6583       // Note that per C99, offsetof must be an ICE. And AFAIK, using
   6584       // EvaluateAsRValue matches the proposed gcc behavior for cases like
   6585       // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
   6586       // compliance: we should warn earlier for offsetof expressions with
   6587       // array subscripts that aren't ICEs, and if the array subscripts
   6588       // are ICEs, the value of the offsetof must be an integer constant.
   6589       return CheckEvalInICE(E, Ctx);
   6590   }
   6591   case Expr::UnaryExprOrTypeTraitExprClass: {
   6592     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
   6593     if ((Exp->getKind() ==  UETT_SizeOf) &&
   6594         Exp->getTypeOfArgument()->isVariableArrayType())
   6595       return ICEDiag(2, E->getLocStart());
   6596     return NoDiag();
   6597   }
   6598   case Expr::BinaryOperatorClass: {
   6599     const BinaryOperator *Exp = cast<BinaryOperator>(E);
   6600     switch (Exp->getOpcode()) {
   6601     case BO_PtrMemD:
   6602     case BO_PtrMemI:
   6603     case BO_Assign:
   6604     case BO_MulAssign:
   6605     case BO_DivAssign:
   6606     case BO_RemAssign:
   6607     case BO_AddAssign:
   6608     case BO_SubAssign:
   6609     case BO_ShlAssign:
   6610     case BO_ShrAssign:
   6611     case BO_AndAssign:
   6612     case BO_XorAssign:
   6613     case BO_OrAssign:
   6614       // C99 6.6/3 allows assignments within unevaluated subexpressions of
   6615       // constant expressions, but they can never be ICEs because an ICE cannot
   6616       // contain an lvalue operand.
   6617       return ICEDiag(2, E->getLocStart());
   6618 
   6619     case BO_Mul:
   6620     case BO_Div:
   6621     case BO_Rem:
   6622     case BO_Add:
   6623     case BO_Sub:
   6624     case BO_Shl:
   6625     case BO_Shr:
   6626     case BO_LT:
   6627     case BO_GT:
   6628     case BO_LE:
   6629     case BO_GE:
   6630     case BO_EQ:
   6631     case BO_NE:
   6632     case BO_And:
   6633     case BO_Xor:
   6634     case BO_Or:
   6635     case BO_Comma: {
   6636       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   6637       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   6638       if (Exp->getOpcode() == BO_Div ||
   6639           Exp->getOpcode() == BO_Rem) {
   6640         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
   6641         // we don't evaluate one.
   6642         if (LHSResult.Val == 0 && RHSResult.Val == 0) {
   6643           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
   6644           if (REval == 0)
   6645             return ICEDiag(1, E->getLocStart());
   6646           if (REval.isSigned() && REval.isAllOnesValue()) {
   6647             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
   6648             if (LEval.isMinSignedValue())
   6649               return ICEDiag(1, E->getLocStart());
   6650           }
   6651         }
   6652       }
   6653       if (Exp->getOpcode() == BO_Comma) {
   6654         if (Ctx.getLangOpts().C99) {
   6655           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
   6656           // if it isn't evaluated.
   6657           if (LHSResult.Val == 0 && RHSResult.Val == 0)
   6658             return ICEDiag(1, E->getLocStart());
   6659         } else {
   6660           // In both C89 and C++, commas in ICEs are illegal.
   6661           return ICEDiag(2, E->getLocStart());
   6662         }
   6663       }
   6664       if (LHSResult.Val >= RHSResult.Val)
   6665         return LHSResult;
   6666       return RHSResult;
   6667     }
   6668     case BO_LAnd:
   6669     case BO_LOr: {
   6670       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   6671       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   6672       if (LHSResult.Val == 0 && RHSResult.Val == 1) {
   6673         // Rare case where the RHS has a comma "side-effect"; we need
   6674         // to actually check the condition to see whether the side
   6675         // with the comma is evaluated.
   6676         if ((Exp->getOpcode() == BO_LAnd) !=
   6677             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
   6678           return RHSResult;
   6679         return NoDiag();
   6680       }
   6681 
   6682       if (LHSResult.Val >= RHSResult.Val)
   6683         return LHSResult;
   6684       return RHSResult;
   6685     }
   6686     }
   6687   }
   6688   case Expr::ImplicitCastExprClass:
   6689   case Expr::CStyleCastExprClass:
   6690   case Expr::CXXFunctionalCastExprClass:
   6691   case Expr::CXXStaticCastExprClass:
   6692   case Expr::CXXReinterpretCastExprClass:
   6693   case Expr::CXXConstCastExprClass:
   6694   case Expr::ObjCBridgedCastExprClass: {
   6695     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
   6696     if (isa<ExplicitCastExpr>(E)) {
   6697       if (const FloatingLiteral *FL
   6698             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
   6699         unsigned DestWidth = Ctx.getIntWidth(E->getType());
   6700         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
   6701         APSInt IgnoredVal(DestWidth, !DestSigned);
   6702         bool Ignored;
   6703         // If the value does not fit in the destination type, the behavior is
   6704         // undefined, so we are not required to treat it as a constant
   6705         // expression.
   6706         if (FL->getValue().convertToInteger(IgnoredVal,
   6707                                             llvm::APFloat::rmTowardZero,
   6708                                             &Ignored) & APFloat::opInvalidOp)
   6709           return ICEDiag(2, E->getLocStart());
   6710         return NoDiag();
   6711       }
   6712     }
   6713     switch (cast<CastExpr>(E)->getCastKind()) {
   6714     case CK_LValueToRValue:
   6715     case CK_AtomicToNonAtomic:
   6716     case CK_NonAtomicToAtomic:
   6717     case CK_NoOp:
   6718     case CK_IntegralToBoolean:
   6719     case CK_IntegralCast:
   6720       return CheckICE(SubExpr, Ctx);
   6721     default:
   6722       return ICEDiag(2, E->getLocStart());
   6723     }
   6724   }
   6725   case Expr::BinaryConditionalOperatorClass: {
   6726     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
   6727     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
   6728     if (CommonResult.Val == 2) return CommonResult;
   6729     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   6730     if (FalseResult.Val == 2) return FalseResult;
   6731     if (CommonResult.Val == 1) return CommonResult;
   6732     if (FalseResult.Val == 1 &&
   6733         Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
   6734     return FalseResult;
   6735   }
   6736   case Expr::ConditionalOperatorClass: {
   6737     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
   6738     // If the condition (ignoring parens) is a __builtin_constant_p call,
   6739     // then only the true side is actually considered in an integer constant
   6740     // expression, and it is fully evaluated.  This is an important GNU
   6741     // extension.  See GCC PR38377 for discussion.
   6742     if (const CallExpr *CallCE
   6743         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
   6744       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   6745         return CheckEvalInICE(E, Ctx);
   6746     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
   6747     if (CondResult.Val == 2)
   6748       return CondResult;
   6749 
   6750     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
   6751     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   6752 
   6753     if (TrueResult.Val == 2)
   6754       return TrueResult;
   6755     if (FalseResult.Val == 2)
   6756       return FalseResult;
   6757     if (CondResult.Val == 1)
   6758       return CondResult;
   6759     if (TrueResult.Val == 0 && FalseResult.Val == 0)
   6760       return NoDiag();
   6761     // Rare case where the diagnostics depend on which side is evaluated
   6762     // Note that if we get here, CondResult is 0, and at least one of
   6763     // TrueResult and FalseResult is non-zero.
   6764     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
   6765       return FalseResult;
   6766     }
   6767     return TrueResult;
   6768   }
   6769   case Expr::CXXDefaultArgExprClass:
   6770     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
   6771   case Expr::ChooseExprClass: {
   6772     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
   6773   }
   6774   }
   6775 
   6776   llvm_unreachable("Invalid StmtClass!");
   6777 }
   6778 
   6779 /// Evaluate an expression as a C++11 integral constant expression.
   6780 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
   6781                                                     const Expr *E,
   6782                                                     llvm::APSInt *Value,
   6783                                                     SourceLocation *Loc) {
   6784   if (!E->getType()->isIntegralOrEnumerationType()) {
   6785     if (Loc) *Loc = E->getExprLoc();
   6786     return false;
   6787   }
   6788 
   6789   APValue Result;
   6790   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
   6791     return false;
   6792 
   6793   assert(Result.isInt() && "pointer cast to int is not an ICE");
   6794   if (Value) *Value = Result.getInt();
   6795   return true;
   6796 }
   6797 
   6798 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
   6799   if (Ctx.getLangOpts().CPlusPlus0x)
   6800     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
   6801 
   6802   ICEDiag d = CheckICE(this, Ctx);
   6803   if (d.Val != 0) {
   6804     if (Loc) *Loc = d.Loc;
   6805     return false;
   6806   }
   6807   return true;
   6808 }
   6809 
   6810 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
   6811                                  SourceLocation *Loc, bool isEvaluated) const {
   6812   if (Ctx.getLangOpts().CPlusPlus0x)
   6813     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
   6814 
   6815   if (!isIntegerConstantExpr(Ctx, Loc))
   6816     return false;
   6817   if (!EvaluateAsInt(Value, Ctx))
   6818     llvm_unreachable("ICE cannot be evaluated!");
   6819   return true;
   6820 }
   6821 
   6822 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
   6823   return CheckICE(this, Ctx).Val == 0;
   6824 }
   6825 
   6826 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
   6827                                SourceLocation *Loc) const {
   6828   // We support this checking in C++98 mode in order to diagnose compatibility
   6829   // issues.
   6830   assert(Ctx.getLangOpts().CPlusPlus);
   6831 
   6832   // Build evaluation settings.
   6833   Expr::EvalStatus Status;
   6834   llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
   6835   Status.Diag = &Diags;
   6836   EvalInfo Info(Ctx, Status);
   6837 
   6838   APValue Scratch;
   6839   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
   6840 
   6841   if (!Diags.empty()) {
   6842     IsConstExpr = false;
   6843     if (Loc) *Loc = Diags[0].first;
   6844   } else if (!IsConstExpr) {
   6845     // FIXME: This shouldn't happen.
   6846     if (Loc) *Loc = getExprLoc();
   6847   }
   6848 
   6849   return IsConstExpr;
   6850 }
   6851 
   6852 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
   6853                                    llvm::SmallVectorImpl<
   6854                                      PartialDiagnosticAt> &Diags) {
   6855   // FIXME: It would be useful to check constexpr function templates, but at the
   6856   // moment the constant expression evaluator cannot cope with the non-rigorous
   6857   // ASTs which we build for dependent expressions.
   6858   if (FD->isDependentContext())
   6859     return true;
   6860 
   6861   Expr::EvalStatus Status;
   6862   Status.Diag = &Diags;
   6863 
   6864   EvalInfo Info(FD->getASTContext(), Status);
   6865   Info.CheckingPotentialConstantExpression = true;
   6866 
   6867   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   6868   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
   6869 
   6870   // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
   6871   // is a temporary being used as the 'this' pointer.
   6872   LValue This;
   6873   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
   6874   This.set(&VIE, Info.CurrentCall->Index);
   6875 
   6876   ArrayRef<const Expr*> Args;
   6877 
   6878   SourceLocation Loc = FD->getLocation();
   6879 
   6880   APValue Scratch;
   6881   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
   6882     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
   6883   else
   6884     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
   6885                        Args, FD->getBody(), Info, Scratch);
   6886 
   6887   return Diags.empty();
   6888 }
   6889