Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Builder implementation for CGRecordLayout objects.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGRecordLayout.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "CodeGenTypes.h"
     23 #include "CGCXXABI.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Type.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetData.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 namespace {
     33 
     34 class CGRecordLayoutBuilder {
     35 public:
     36   /// FieldTypes - Holds the LLVM types that the struct is created from.
     37   ///
     38   SmallVector<llvm::Type *, 16> FieldTypes;
     39 
     40   /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
     41   /// of the struct. For example, consider:
     42   ///
     43   /// struct A { int i; };
     44   /// struct B { void *v; };
     45   /// struct C : virtual A, B { };
     46   ///
     47   /// The LLVM type of C will be
     48   /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
     49   ///
     50   /// And the LLVM type of the non-virtual base struct will be
     51   /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
     52   ///
     53   /// This only gets initialized if the base subobject type is
     54   /// different from the complete-object type.
     55   llvm::StructType *BaseSubobjectType;
     56 
     57   /// FieldInfo - Holds a field and its corresponding LLVM field number.
     58   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
     59 
     60   /// BitFieldInfo - Holds location and size information about a bit field.
     61   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
     62 
     63   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
     64   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
     65 
     66   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
     67   /// primary base classes for some other direct or indirect base class.
     68   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
     69 
     70   /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
     71   /// avoid laying out virtual bases more than once.
     72   llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
     73 
     74   /// IsZeroInitializable - Whether this struct can be C++
     75   /// zero-initialized with an LLVM zeroinitializer.
     76   bool IsZeroInitializable;
     77   bool IsZeroInitializableAsBase;
     78 
     79   /// Packed - Whether the resulting LLVM struct will be packed or not.
     80   bool Packed;
     81 
     82   /// IsMsStruct - Whether ms_struct is in effect or not
     83   bool IsMsStruct;
     84 
     85 private:
     86   CodeGenTypes &Types;
     87 
     88   /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
     89   /// last base laid out. Used so that we can replace the last laid out base
     90   /// type with an i8 array if needed.
     91   struct LastLaidOutBaseInfo {
     92     CharUnits Offset;
     93     CharUnits NonVirtualSize;
     94 
     95     bool isValid() const { return !NonVirtualSize.isZero(); }
     96     void invalidate() { NonVirtualSize = CharUnits::Zero(); }
     97 
     98   } LastLaidOutBase;
     99 
    100   /// Alignment - Contains the alignment of the RecordDecl.
    101   CharUnits Alignment;
    102 
    103   /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
    104   /// this will have the number of bits still available in the field.
    105   char BitsAvailableInLastField;
    106 
    107   /// NextFieldOffset - Holds the next field offset.
    108   CharUnits NextFieldOffset;
    109 
    110   /// LayoutUnionField - Will layout a field in an union and return the type
    111   /// that the field will have.
    112   llvm::Type *LayoutUnionField(const FieldDecl *Field,
    113                                const ASTRecordLayout &Layout);
    114 
    115   /// LayoutUnion - Will layout a union RecordDecl.
    116   void LayoutUnion(const RecordDecl *D);
    117 
    118   /// LayoutField - try to layout all fields in the record decl.
    119   /// Returns false if the operation failed because the struct is not packed.
    120   bool LayoutFields(const RecordDecl *D);
    121 
    122   /// Layout a single base, virtual or non-virtual
    123   bool LayoutBase(const CXXRecordDecl *base,
    124                   const CGRecordLayout &baseLayout,
    125                   CharUnits baseOffset);
    126 
    127   /// LayoutVirtualBase - layout a single virtual base.
    128   bool LayoutVirtualBase(const CXXRecordDecl *base,
    129                          CharUnits baseOffset);
    130 
    131   /// LayoutVirtualBases - layout the virtual bases of a record decl.
    132   bool LayoutVirtualBases(const CXXRecordDecl *RD,
    133                           const ASTRecordLayout &Layout);
    134 
    135   /// MSLayoutVirtualBases - layout the virtual bases of a record decl,
    136   /// like MSVC.
    137   bool MSLayoutVirtualBases(const CXXRecordDecl *RD,
    138                             const ASTRecordLayout &Layout);
    139 
    140   /// LayoutNonVirtualBase - layout a single non-virtual base.
    141   bool LayoutNonVirtualBase(const CXXRecordDecl *base,
    142                             CharUnits baseOffset);
    143 
    144   /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
    145   bool LayoutNonVirtualBases(const CXXRecordDecl *RD,
    146                              const ASTRecordLayout &Layout);
    147 
    148   /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
    149   bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
    150 
    151   /// LayoutField - layout a single field. Returns false if the operation failed
    152   /// because the current struct is not packed.
    153   bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
    154 
    155   /// LayoutBitField - layout a single bit field.
    156   void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
    157 
    158   /// AppendField - Appends a field with the given offset and type.
    159   void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
    160 
    161   /// AppendPadding - Appends enough padding bytes so that the total
    162   /// struct size is a multiple of the field alignment.
    163   void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
    164 
    165   /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
    166   /// tail padding of a previous base. If this happens, the type of the previous
    167   /// base needs to be changed to an array of i8. Returns true if the last
    168   /// laid out base was resized.
    169   bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
    170 
    171   /// getByteArrayType - Returns a byte array type with the given number of
    172   /// elements.
    173   llvm::Type *getByteArrayType(CharUnits NumBytes);
    174 
    175   /// AppendBytes - Append a given number of bytes to the record.
    176   void AppendBytes(CharUnits numBytes);
    177 
    178   /// AppendTailPadding - Append enough tail padding so that the type will have
    179   /// the passed size.
    180   void AppendTailPadding(CharUnits RecordSize);
    181 
    182   CharUnits getTypeAlignment(llvm::Type *Ty) const;
    183 
    184   /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
    185   /// LLVM element types.
    186   CharUnits getAlignmentAsLLVMStruct() const;
    187 
    188   /// CheckZeroInitializable - Check if the given type contains a pointer
    189   /// to data member.
    190   void CheckZeroInitializable(QualType T);
    191 
    192 public:
    193   CGRecordLayoutBuilder(CodeGenTypes &Types)
    194     : BaseSubobjectType(0),
    195       IsZeroInitializable(true), IsZeroInitializableAsBase(true),
    196       Packed(false), IsMsStruct(false),
    197       Types(Types), BitsAvailableInLastField(0) { }
    198 
    199   /// Layout - Will layout a RecordDecl.
    200   void Layout(const RecordDecl *D);
    201 };
    202 
    203 }
    204 
    205 void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
    206   Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
    207   Packed = D->hasAttr<PackedAttr>();
    208 
    209   IsMsStruct = D->hasAttr<MsStructAttr>();
    210 
    211   if (D->isUnion()) {
    212     LayoutUnion(D);
    213     return;
    214   }
    215 
    216   if (LayoutFields(D))
    217     return;
    218 
    219   // We weren't able to layout the struct. Try again with a packed struct
    220   Packed = true;
    221   LastLaidOutBase.invalidate();
    222   NextFieldOffset = CharUnits::Zero();
    223   FieldTypes.clear();
    224   Fields.clear();
    225   BitFields.clear();
    226   NonVirtualBases.clear();
    227   VirtualBases.clear();
    228 
    229   LayoutFields(D);
    230 }
    231 
    232 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    233                                const FieldDecl *FD,
    234                                uint64_t FieldOffset,
    235                                uint64_t FieldSize,
    236                                uint64_t ContainingTypeSizeInBits,
    237                                unsigned ContainingTypeAlign) {
    238   assert(ContainingTypeAlign && "Expected alignment to be specified");
    239 
    240   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
    241   CharUnits TypeSizeInBytes =
    242     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
    243   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
    244 
    245   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
    246 
    247   if (FieldSize > TypeSizeInBits) {
    248     // We have a wide bit-field. The extra bits are only used for padding, so
    249     // if we have a bitfield of type T, with size N:
    250     //
    251     // T t : N;
    252     //
    253     // We can just assume that it's:
    254     //
    255     // T t : sizeof(T);
    256     //
    257     FieldSize = TypeSizeInBits;
    258   }
    259 
    260   // in big-endian machines the first fields are in higher bit positions,
    261   // so revert the offset. The byte offsets are reversed(back) later.
    262   if (Types.getTargetData().isBigEndian()) {
    263     FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
    264   }
    265 
    266   // Compute the access components. The policy we use is to start by attempting
    267   // to access using the width of the bit-field type itself and to always access
    268   // at aligned indices of that type. If such an access would fail because it
    269   // extends past the bound of the type, then we reduce size to the next smaller
    270   // power of two and retry. The current algorithm assumes pow2 sized types,
    271   // although this is easy to fix.
    272   //
    273   assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
    274   CGBitFieldInfo::AccessInfo Components[3];
    275   unsigned NumComponents = 0;
    276   unsigned AccessedTargetBits = 0;       // The number of target bits accessed.
    277   unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
    278 
    279   // If requested, widen the initial bit-field access to be register sized. The
    280   // theory is that this is most likely to allow multiple accesses into the same
    281   // structure to be coalesced, and that the backend should be smart enough to
    282   // narrow the store if no coalescing is ever done.
    283   //
    284   // The subsequent code will handle align these access to common boundaries and
    285   // guaranteeing that we do not access past the end of the structure.
    286   if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
    287     if (AccessWidth < Types.getTarget().getRegisterWidth())
    288       AccessWidth = Types.getTarget().getRegisterWidth();
    289   }
    290 
    291   // Round down from the field offset to find the first access position that is
    292   // at an aligned offset of the initial access type.
    293   uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    294 
    295   // Adjust initial access size to fit within record.
    296   while (AccessWidth > Types.getTarget().getCharWidth() &&
    297          AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    298     AccessWidth >>= 1;
    299     AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    300   }
    301 
    302   while (AccessedTargetBits < FieldSize) {
    303     // Check that we can access using a type of this size, without reading off
    304     // the end of the structure. This can occur with packed structures and
    305     // -fno-bitfield-type-align, for example.
    306     if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    307       // If so, reduce access size to the next smaller power-of-two and retry.
    308       AccessWidth >>= 1;
    309       assert(AccessWidth >= Types.getTarget().getCharWidth()
    310              && "Cannot access under byte size!");
    311       continue;
    312     }
    313 
    314     // Otherwise, add an access component.
    315 
    316     // First, compute the bits inside this access which are part of the
    317     // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
    318     // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
    319     // in the target that we are reading.
    320     assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
    321     assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
    322     uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
    323     uint64_t AccessBitsInFieldSize =
    324       std::min(AccessWidth + AccessStart,
    325                FieldOffset + FieldSize) - AccessBitsInFieldStart;
    326 
    327     assert(NumComponents < 3 && "Unexpected number of components!");
    328     CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
    329     AI.FieldIndex = 0;
    330     // FIXME: We still follow the old access pattern of only using the field
    331     // byte offset. We should switch this once we fix the struct layout to be
    332     // pretty.
    333 
    334     // on big-endian machines we reverted the bit offset because first fields are
    335     // in higher bits. But this also reverts the bytes, so fix this here by reverting
    336     // the byte offset on big-endian machines.
    337     if (Types.getTargetData().isBigEndian()) {
    338       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
    339           ContainingTypeSizeInBits - AccessStart - AccessWidth);
    340     } else {
    341       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
    342     }
    343     AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
    344     AI.AccessWidth = AccessWidth;
    345     AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
    346         llvm::MinAlign(ContainingTypeAlign, AccessStart));
    347     AI.TargetBitOffset = AccessedTargetBits;
    348     AI.TargetBitWidth = AccessBitsInFieldSize;
    349 
    350     AccessStart += AccessWidth;
    351     AccessedTargetBits += AI.TargetBitWidth;
    352   }
    353 
    354   assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
    355   return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
    356 }
    357 
    358 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    359                                         const FieldDecl *FD,
    360                                         uint64_t FieldOffset,
    361                                         uint64_t FieldSize) {
    362   const RecordDecl *RD = FD->getParent();
    363   const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
    364   uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
    365   unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());
    366 
    367   return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
    368                   ContainingTypeAlign);
    369 }
    370 
    371 void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
    372                                            uint64_t fieldOffset) {
    373   uint64_t fieldSize = D->getBitWidthValue(Types.getContext());
    374 
    375   if (fieldSize == 0)
    376     return;
    377 
    378   uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    379   CharUnits numBytesToAppend;
    380   unsigned charAlign = Types.getContext().getTargetInfo().getCharAlign();
    381 
    382   if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
    383     assert(fieldOffset % charAlign == 0 &&
    384            "Field offset not aligned correctly");
    385 
    386     CharUnits fieldOffsetInCharUnits =
    387       Types.getContext().toCharUnitsFromBits(fieldOffset);
    388 
    389     // Try to resize the last base field.
    390     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
    391       nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    392   }
    393 
    394   if (fieldOffset < nextFieldOffsetInBits) {
    395     assert(BitsAvailableInLastField && "Bitfield size mismatch!");
    396     assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");
    397 
    398     // The bitfield begins in the previous bit-field.
    399     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    400       llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField,
    401                                charAlign));
    402   } else {
    403     assert(fieldOffset % charAlign == 0 &&
    404            "Field offset not aligned correctly");
    405 
    406     // Append padding if necessary.
    407     AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset),
    408                   CharUnits::One());
    409 
    410     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    411         llvm::RoundUpToAlignment(fieldSize, charAlign));
    412 
    413     assert(!numBytesToAppend.isZero() && "No bytes to append!");
    414   }
    415 
    416   // Add the bit field info.
    417   BitFields.insert(std::make_pair(D,
    418                    CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));
    419 
    420   AppendBytes(numBytesToAppend);
    421 
    422   BitsAvailableInLastField =
    423     Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
    424 }
    425 
    426 bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
    427                                         uint64_t fieldOffset) {
    428   // If the field is packed, then we need a packed struct.
    429   if (!Packed && D->hasAttr<PackedAttr>())
    430     return false;
    431 
    432   if (D->isBitField()) {
    433     // We must use packed structs for unnamed bit fields since they
    434     // don't affect the struct alignment.
    435     if (!Packed && !D->getDeclName())
    436       return false;
    437 
    438     LayoutBitField(D, fieldOffset);
    439     return true;
    440   }
    441 
    442   CheckZeroInitializable(D->getType());
    443 
    444   assert(fieldOffset % Types.getTarget().getCharWidth() == 0
    445          && "field offset is not on a byte boundary!");
    446   CharUnits fieldOffsetInBytes
    447     = Types.getContext().toCharUnitsFromBits(fieldOffset);
    448 
    449   llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
    450   CharUnits typeAlignment = getTypeAlignment(Ty);
    451 
    452   // If the type alignment is larger then the struct alignment, we must use
    453   // a packed struct.
    454   if (typeAlignment > Alignment) {
    455     assert(!Packed && "Alignment is wrong even with packed struct!");
    456     return false;
    457   }
    458 
    459   if (!Packed) {
    460     if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
    461       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
    462       if (const MaxFieldAlignmentAttr *MFAA =
    463             RD->getAttr<MaxFieldAlignmentAttr>()) {
    464         if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
    465           return false;
    466       }
    467     }
    468   }
    469 
    470   // Round up the field offset to the alignment of the field type.
    471   CharUnits alignedNextFieldOffsetInBytes =
    472     NextFieldOffset.RoundUpToAlignment(typeAlignment);
    473 
    474   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    475     // Try to resize the last base field.
    476     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
    477       alignedNextFieldOffsetInBytes =
    478         NextFieldOffset.RoundUpToAlignment(typeAlignment);
    479     }
    480   }
    481 
    482   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    483     assert(!Packed && "Could not place field even with packed struct!");
    484     return false;
    485   }
    486 
    487   AppendPadding(fieldOffsetInBytes, typeAlignment);
    488 
    489   // Now append the field.
    490   Fields[D] = FieldTypes.size();
    491   AppendField(fieldOffsetInBytes, Ty);
    492 
    493   LastLaidOutBase.invalidate();
    494   return true;
    495 }
    496 
    497 llvm::Type *
    498 CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
    499                                         const ASTRecordLayout &Layout) {
    500   if (Field->isBitField()) {
    501     uint64_t FieldSize = Field->getBitWidthValue(Types.getContext());
    502 
    503     // Ignore zero sized bit fields.
    504     if (FieldSize == 0)
    505       return 0;
    506 
    507     llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
    508     CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
    509       llvm::RoundUpToAlignment(FieldSize,
    510                                Types.getContext().getTargetInfo().getCharAlign()));
    511 
    512     if (NumBytesToAppend > CharUnits::One())
    513       FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
    514 
    515     // Add the bit field info.
    516     BitFields.insert(std::make_pair(Field,
    517                          CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
    518     return FieldTy;
    519   }
    520 
    521   // This is a regular union field.
    522   Fields[Field] = 0;
    523   return Types.ConvertTypeForMem(Field->getType());
    524 }
    525 
    526 void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
    527   assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
    528 
    529   const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
    530 
    531   llvm::Type *unionType = 0;
    532   CharUnits unionSize = CharUnits::Zero();
    533   CharUnits unionAlign = CharUnits::Zero();
    534 
    535   bool hasOnlyZeroSizedBitFields = true;
    536   bool checkedFirstFieldZeroInit = false;
    537 
    538   unsigned fieldNo = 0;
    539   for (RecordDecl::field_iterator field = D->field_begin(),
    540        fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
    541     assert(layout.getFieldOffset(fieldNo) == 0 &&
    542           "Union field offset did not start at the beginning of record!");
    543     llvm::Type *fieldType = LayoutUnionField(*field, layout);
    544 
    545     if (!fieldType)
    546       continue;
    547 
    548     if (field->getDeclName() && !checkedFirstFieldZeroInit) {
    549       CheckZeroInitializable(field->getType());
    550       checkedFirstFieldZeroInit = true;
    551     }
    552 
    553     hasOnlyZeroSizedBitFields = false;
    554 
    555     CharUnits fieldAlign = CharUnits::fromQuantity(
    556                           Types.getTargetData().getABITypeAlignment(fieldType));
    557     CharUnits fieldSize = CharUnits::fromQuantity(
    558                              Types.getTargetData().getTypeAllocSize(fieldType));
    559 
    560     if (fieldAlign < unionAlign)
    561       continue;
    562 
    563     if (fieldAlign > unionAlign || fieldSize > unionSize) {
    564       unionType = fieldType;
    565       unionAlign = fieldAlign;
    566       unionSize = fieldSize;
    567     }
    568   }
    569 
    570   // Now add our field.
    571   if (unionType) {
    572     AppendField(CharUnits::Zero(), unionType);
    573 
    574     if (getTypeAlignment(unionType) > layout.getAlignment()) {
    575       // We need a packed struct.
    576       Packed = true;
    577       unionAlign = CharUnits::One();
    578     }
    579   }
    580   if (unionAlign.isZero()) {
    581     (void)hasOnlyZeroSizedBitFields;
    582     assert(hasOnlyZeroSizedBitFields &&
    583            "0-align record did not have all zero-sized bit-fields!");
    584     unionAlign = CharUnits::One();
    585   }
    586 
    587   // Append tail padding.
    588   CharUnits recordSize = layout.getSize();
    589   if (recordSize > unionSize)
    590     AppendPadding(recordSize, unionAlign);
    591 }
    592 
    593 bool CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
    594                                        const CGRecordLayout &baseLayout,
    595                                        CharUnits baseOffset) {
    596   ResizeLastBaseFieldIfNecessary(baseOffset);
    597 
    598   AppendPadding(baseOffset, CharUnits::One());
    599 
    600   const ASTRecordLayout &baseASTLayout
    601     = Types.getContext().getASTRecordLayout(base);
    602 
    603   LastLaidOutBase.Offset = NextFieldOffset;
    604   LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
    605 
    606   llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
    607   if (getTypeAlignment(subobjectType) > Alignment)
    608     return false;
    609 
    610   AppendField(baseOffset, subobjectType);
    611   return true;
    612 }
    613 
    614 bool CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
    615                                                  CharUnits baseOffset) {
    616   // Ignore empty bases.
    617   if (base->isEmpty()) return true;
    618 
    619   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    620   if (IsZeroInitializableAsBase) {
    621     assert(IsZeroInitializable &&
    622            "class zero-initializable as base but not as complete object");
    623 
    624     IsZeroInitializable = IsZeroInitializableAsBase =
    625       baseLayout.isZeroInitializableAsBase();
    626   }
    627 
    628   if (!LayoutBase(base, baseLayout, baseOffset))
    629     return false;
    630   NonVirtualBases[base] = (FieldTypes.size() - 1);
    631   return true;
    632 }
    633 
    634 bool
    635 CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
    636                                          CharUnits baseOffset) {
    637   // Ignore empty bases.
    638   if (base->isEmpty()) return true;
    639 
    640   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    641   if (IsZeroInitializable)
    642     IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
    643 
    644   if (!LayoutBase(base, baseLayout, baseOffset))
    645     return false;
    646   VirtualBases[base] = (FieldTypes.size() - 1);
    647   return true;
    648 }
    649 
    650 bool
    651 CGRecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD,
    652                                           const ASTRecordLayout &Layout) {
    653   if (!RD->getNumVBases())
    654     return true;
    655 
    656   // The vbases list is uniqued and ordered by a depth-first
    657   // traversal, which is what we need here.
    658   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    659         E = RD->vbases_end(); I != E; ++I) {
    660 
    661     const CXXRecordDecl *BaseDecl =
    662       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
    663 
    664     CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
    665     if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
    666       return false;
    667   }
    668   return true;
    669 }
    670 
    671 /// LayoutVirtualBases - layout the non-virtual bases of a record decl.
    672 bool
    673 CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
    674                                           const ASTRecordLayout &Layout) {
    675   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    676        E = RD->bases_end(); I != E; ++I) {
    677     const CXXRecordDecl *BaseDecl =
    678       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    679 
    680     // We only want to lay out virtual bases that aren't indirect primary bases
    681     // of some other base.
    682     if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
    683       // Only lay out the base once.
    684       if (!LaidOutVirtualBases.insert(BaseDecl))
    685         continue;
    686 
    687       CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
    688       if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
    689         return false;
    690     }
    691 
    692     if (!BaseDecl->getNumVBases()) {
    693       // This base isn't interesting since it doesn't have any virtual bases.
    694       continue;
    695     }
    696 
    697     if (!LayoutVirtualBases(BaseDecl, Layout))
    698       return false;
    699   }
    700   return true;
    701 }
    702 
    703 bool
    704 CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
    705                                              const ASTRecordLayout &Layout) {
    706   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
    707 
    708   // If we have a primary base, lay it out first.
    709   if (PrimaryBase) {
    710     if (!Layout.isPrimaryBaseVirtual()) {
    711       if (!LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero()))
    712         return false;
    713     } else {
    714       if (!LayoutVirtualBase(PrimaryBase, CharUnits::Zero()))
    715         return false;
    716     }
    717 
    718   // Otherwise, add a vtable / vf-table if the layout says to do so.
    719   } else if (Layout.hasOwnVFPtr()) {
    720     llvm::Type *FunctionType =
    721       llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
    722                               /*isVarArg=*/true);
    723     llvm::Type *VTableTy = FunctionType->getPointerTo();
    724 
    725     if (getTypeAlignment(VTableTy) > Alignment) {
    726       // FIXME: Should we allow this to happen in Sema?
    727       assert(!Packed && "Alignment is wrong even with packed struct!");
    728       return false;
    729     }
    730 
    731     assert(NextFieldOffset.isZero() &&
    732            "VTable pointer must come first!");
    733     AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
    734   }
    735 
    736   // Layout the non-virtual bases.
    737   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    738        E = RD->bases_end(); I != E; ++I) {
    739     if (I->isVirtual())
    740       continue;
    741 
    742     const CXXRecordDecl *BaseDecl =
    743       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    744 
    745     // We've already laid out the primary base.
    746     if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
    747       continue;
    748 
    749     if (!LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl)))
    750       return false;
    751   }
    752 
    753   // Add a vb-table pointer if the layout insists.
    754   if (Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1)) {
    755     CharUnits VBPtrOffset = Layout.getVBPtrOffset();
    756     llvm::Type *Vbptr = llvm::Type::getInt32PtrTy(Types.getLLVMContext());
    757     AppendPadding(VBPtrOffset, getTypeAlignment(Vbptr));
    758     AppendField(VBPtrOffset, Vbptr);
    759   }
    760 
    761   return true;
    762 }
    763 
    764 bool
    765 CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
    766   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
    767 
    768   CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    769   CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
    770   CharUnits AlignedNonVirtualTypeSize =
    771     NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
    772 
    773   // First check if we can use the same fields as for the complete class.
    774   CharUnits RecordSize = Layout.getSize();
    775   if (AlignedNonVirtualTypeSize == RecordSize)
    776     return true;
    777 
    778   // Check if we need padding.
    779   CharUnits AlignedNextFieldOffset =
    780     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    781 
    782   if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
    783     assert(!Packed && "cannot layout even as packed struct");
    784     return false; // Needs packing.
    785   }
    786 
    787   bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
    788   if (needsPadding) {
    789     CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
    790     FieldTypes.push_back(getByteArrayType(NumBytes));
    791   }
    792 
    793   BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(),
    794                                                FieldTypes, "", Packed);
    795   Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
    796 
    797   // Pull the padding back off.
    798   if (needsPadding)
    799     FieldTypes.pop_back();
    800 
    801   return true;
    802 }
    803 
    804 bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
    805   assert(!D->isUnion() && "Can't call LayoutFields on a union!");
    806   assert(!Alignment.isZero() && "Did not set alignment!");
    807 
    808   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
    809 
    810   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
    811   if (RD)
    812     if (!LayoutNonVirtualBases(RD, Layout))
    813       return false;
    814 
    815   unsigned FieldNo = 0;
    816   const FieldDecl *LastFD = 0;
    817 
    818   for (RecordDecl::field_iterator Field = D->field_begin(),
    819        FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    820     if (IsMsStruct) {
    821       // Zero-length bitfields following non-bitfield members are
    822       // ignored:
    823       const FieldDecl *FD = *Field;
    824       if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
    825         --FieldNo;
    826         continue;
    827       }
    828       LastFD = FD;
    829     }
    830 
    831     if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
    832       assert(!Packed &&
    833              "Could not layout fields even with a packed LLVM struct!");
    834       return false;
    835     }
    836   }
    837 
    838   if (RD) {
    839     // We've laid out the non-virtual bases and the fields, now compute the
    840     // non-virtual base field types.
    841     if (!ComputeNonVirtualBaseType(RD)) {
    842       assert(!Packed && "Could not layout even with a packed LLVM struct!");
    843       return false;
    844     }
    845 
    846     // Lay out the virtual bases.  The MS ABI uses a different
    847     // algorithm here due to the lack of primary virtual bases.
    848     if (Types.getContext().getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
    849       RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    850       if (Layout.isPrimaryBaseVirtual())
    851         IndirectPrimaryBases.insert(Layout.getPrimaryBase());
    852 
    853       if (!LayoutVirtualBases(RD, Layout))
    854         return false;
    855     } else {
    856       if (!MSLayoutVirtualBases(RD, Layout))
    857         return false;
    858     }
    859   }
    860 
    861   // Append tail padding if necessary.
    862   AppendTailPadding(Layout.getSize());
    863 
    864   return true;
    865 }
    866 
    867 void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
    868   ResizeLastBaseFieldIfNecessary(RecordSize);
    869 
    870   assert(NextFieldOffset <= RecordSize && "Size mismatch!");
    871 
    872   CharUnits AlignedNextFieldOffset =
    873     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    874 
    875   if (AlignedNextFieldOffset == RecordSize) {
    876     // We don't need any padding.
    877     return;
    878   }
    879 
    880   CharUnits NumPadBytes = RecordSize - NextFieldOffset;
    881   AppendBytes(NumPadBytes);
    882 }
    883 
    884 void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
    885                                         llvm::Type *fieldType) {
    886   CharUnits fieldSize =
    887     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));
    888 
    889   FieldTypes.push_back(fieldType);
    890 
    891   NextFieldOffset = fieldOffset + fieldSize;
    892   BitsAvailableInLastField = 0;
    893 }
    894 
    895 void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
    896                                           CharUnits fieldAlignment) {
    897   assert(NextFieldOffset <= fieldOffset &&
    898          "Incorrect field layout!");
    899 
    900   // Do nothing if we're already at the right offset.
    901   if (fieldOffset == NextFieldOffset) return;
    902 
    903   // If we're not emitting a packed LLVM type, try to avoid adding
    904   // unnecessary padding fields.
    905   if (!Packed) {
    906     // Round up the field offset to the alignment of the field type.
    907     CharUnits alignedNextFieldOffset =
    908       NextFieldOffset.RoundUpToAlignment(fieldAlignment);
    909     assert(alignedNextFieldOffset <= fieldOffset);
    910 
    911     // If that's the right offset, we're done.
    912     if (alignedNextFieldOffset == fieldOffset) return;
    913   }
    914 
    915   // Otherwise we need explicit padding.
    916   CharUnits padding = fieldOffset - NextFieldOffset;
    917   AppendBytes(padding);
    918 }
    919 
    920 bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
    921   // Check if we have a base to resize.
    922   if (!LastLaidOutBase.isValid())
    923     return false;
    924 
    925   // This offset does not overlap with the tail padding.
    926   if (offset >= NextFieldOffset)
    927     return false;
    928 
    929   // Restore the field offset and append an i8 array instead.
    930   FieldTypes.pop_back();
    931   NextFieldOffset = LastLaidOutBase.Offset;
    932   AppendBytes(LastLaidOutBase.NonVirtualSize);
    933   LastLaidOutBase.invalidate();
    934 
    935   return true;
    936 }
    937 
    938 llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
    939   assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
    940 
    941   llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
    942   if (numBytes > CharUnits::One())
    943     Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
    944 
    945   return Ty;
    946 }
    947 
    948 void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
    949   if (numBytes.isZero())
    950     return;
    951 
    952   // Append the padding field
    953   AppendField(NextFieldOffset, getByteArrayType(numBytes));
    954 }
    955 
    956 CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const {
    957   if (Packed)
    958     return CharUnits::One();
    959 
    960   return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
    961 }
    962 
    963 CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
    964   if (Packed)
    965     return CharUnits::One();
    966 
    967   CharUnits maxAlignment = CharUnits::One();
    968   for (size_t i = 0; i != FieldTypes.size(); ++i)
    969     maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
    970 
    971   return maxAlignment;
    972 }
    973 
    974 /// Merge in whether a field of the given type is zero-initializable.
    975 void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
    976   // This record already contains a member pointer.
    977   if (!IsZeroInitializableAsBase)
    978     return;
    979 
    980   // Can only have member pointers if we're compiling C++.
    981   if (!Types.getContext().getLangOpts().CPlusPlus)
    982     return;
    983 
    984   const Type *elementType = T->getBaseElementTypeUnsafe();
    985 
    986   if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
    987     if (!Types.getCXXABI().isZeroInitializable(MPT))
    988       IsZeroInitializable = IsZeroInitializableAsBase = false;
    989   } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
    990     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    991     const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
    992     if (!Layout.isZeroInitializable())
    993       IsZeroInitializable = IsZeroInitializableAsBase = false;
    994   }
    995 }
    996 
    997 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
    998                                                   llvm::StructType *Ty) {
    999   CGRecordLayoutBuilder Builder(*this);
   1000 
   1001   Builder.Layout(D);
   1002 
   1003   Ty->setBody(Builder.FieldTypes, Builder.Packed);
   1004 
   1005   // If we're in C++, compute the base subobject type.
   1006   llvm::StructType *BaseTy = 0;
   1007   if (isa<CXXRecordDecl>(D) && !D->isUnion()) {
   1008     BaseTy = Builder.BaseSubobjectType;
   1009     if (!BaseTy) BaseTy = Ty;
   1010   }
   1011 
   1012   CGRecordLayout *RL =
   1013     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
   1014                        Builder.IsZeroInitializableAsBase);
   1015 
   1016   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
   1017   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
   1018 
   1019   // Add all the field numbers.
   1020   RL->FieldInfo.swap(Builder.Fields);
   1021 
   1022   // Add bitfield info.
   1023   RL->BitFields.swap(Builder.BitFields);
   1024 
   1025   // Dump the layout, if requested.
   1026   if (getContext().getLangOpts().DumpRecordLayouts) {
   1027     llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
   1028     llvm::errs() << "Record: ";
   1029     D->dump();
   1030     llvm::errs() << "\nLayout: ";
   1031     RL->dump();
   1032   }
   1033 
   1034 #ifndef NDEBUG
   1035   // Verify that the computed LLVM struct size matches the AST layout size.
   1036   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
   1037 
   1038   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
   1039   assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
   1040          "Type size mismatch!");
   1041 
   1042   if (BaseTy) {
   1043     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
   1044     CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
   1045     CharUnits AlignedNonVirtualTypeSize =
   1046       NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
   1047 
   1048     uint64_t AlignedNonVirtualTypeSizeInBits =
   1049       getContext().toBits(AlignedNonVirtualTypeSize);
   1050 
   1051     assert(AlignedNonVirtualTypeSizeInBits ==
   1052            getTargetData().getTypeAllocSizeInBits(BaseTy) &&
   1053            "Type size mismatch!");
   1054   }
   1055 
   1056   // Verify that the LLVM and AST field offsets agree.
   1057   llvm::StructType *ST =
   1058     dyn_cast<llvm::StructType>(RL->getLLVMType());
   1059   const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
   1060 
   1061   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
   1062   RecordDecl::field_iterator it = D->field_begin();
   1063   const FieldDecl *LastFD = 0;
   1064   bool IsMsStruct = D->hasAttr<MsStructAttr>();
   1065   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
   1066     const FieldDecl *FD = *it;
   1067 
   1068     // For non-bit-fields, just check that the LLVM struct offset matches the
   1069     // AST offset.
   1070     if (!FD->isBitField()) {
   1071       unsigned FieldNo = RL->getLLVMFieldNo(FD);
   1072       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
   1073              "Invalid field offset!");
   1074       LastFD = FD;
   1075       continue;
   1076     }
   1077 
   1078     if (IsMsStruct) {
   1079       // Zero-length bitfields following non-bitfield members are
   1080       // ignored:
   1081       if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
   1082         --i;
   1083         continue;
   1084       }
   1085       LastFD = FD;
   1086     }
   1087 
   1088     // Ignore unnamed bit-fields.
   1089     if (!FD->getDeclName()) {
   1090       LastFD = FD;
   1091       continue;
   1092     }
   1093 
   1094     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
   1095     for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
   1096       const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
   1097 
   1098       // Verify that every component access is within the structure.
   1099       uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
   1100       uint64_t AccessBitOffset = FieldOffset +
   1101         getContext().toBits(AI.FieldByteOffset);
   1102       assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
   1103              "Invalid bit-field access (out of range)!");
   1104     }
   1105   }
   1106 #endif
   1107 
   1108   return RL;
   1109 }
   1110 
   1111 void CGRecordLayout::print(raw_ostream &OS) const {
   1112   OS << "<CGRecordLayout\n";
   1113   OS << "  LLVMType:" << *CompleteObjectType << "\n";
   1114   if (BaseSubobjectType)
   1115     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
   1116   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
   1117   OS << "  BitFields:[\n";
   1118 
   1119   // Print bit-field infos in declaration order.
   1120   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
   1121   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
   1122          it = BitFields.begin(), ie = BitFields.end();
   1123        it != ie; ++it) {
   1124     const RecordDecl *RD = it->first->getParent();
   1125     unsigned Index = 0;
   1126     for (RecordDecl::field_iterator
   1127            it2 = RD->field_begin(); *it2 != it->first; ++it2)
   1128       ++Index;
   1129     BFIs.push_back(std::make_pair(Index, &it->second));
   1130   }
   1131   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
   1132   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
   1133     OS.indent(4);
   1134     BFIs[i].second->print(OS);
   1135     OS << "\n";
   1136   }
   1137 
   1138   OS << "]>\n";
   1139 }
   1140 
   1141 void CGRecordLayout::dump() const {
   1142   print(llvm::errs());
   1143 }
   1144 
   1145 void CGBitFieldInfo::print(raw_ostream &OS) const {
   1146   OS << "<CGBitFieldInfo";
   1147   OS << " Size:" << Size;
   1148   OS << " IsSigned:" << IsSigned << "\n";
   1149 
   1150   OS.indent(4 + strlen("<CGBitFieldInfo"));
   1151   OS << " NumComponents:" << getNumComponents();
   1152   OS << " Components: [";
   1153   if (getNumComponents()) {
   1154     OS << "\n";
   1155     for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
   1156       const AccessInfo &AI = getComponent(i);
   1157       OS.indent(8);
   1158       OS << "<AccessInfo"
   1159          << " FieldIndex:" << AI.FieldIndex
   1160          << " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
   1161          << " FieldBitStart:" << AI.FieldBitStart
   1162          << " AccessWidth:" << AI.AccessWidth << "\n";
   1163       OS.indent(8 + strlen("<AccessInfo"));
   1164       OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
   1165          << " TargetBitOffset:" << AI.TargetBitOffset
   1166          << " TargetBitWidth:" << AI.TargetBitWidth
   1167          << ">\n";
   1168     }
   1169     OS.indent(4);
   1170   }
   1171   OS << "]>";
   1172 }
   1173 
   1174 void CGBitFieldInfo::dump() const {
   1175   print(llvm::errs());
   1176 }
   1177