Home | History | Annotate | Download | only in IPO
      1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms simple global variables that never have their address
     11 // taken.  If obviously true, it marks read/write globals as constant, deletes
     12 // variables only stored to, etc.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "globalopt"
     17 #include "llvm/Transforms/IPO.h"
     18 #include "llvm/CallingConv.h"
     19 #include "llvm/Constants.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/IntrinsicInst.h"
     23 #include "llvm/Module.h"
     24 #include "llvm/Operator.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetLibraryInfo.h"
     30 #include "llvm/Support/CallSite.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/GetElementPtrTypeIterator.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/SmallPtrSet.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 STATISTIC(NumMarked    , "Number of globals marked constant");
     45 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
     46 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
     47 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
     48 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
     49 STATISTIC(NumDeleted   , "Number of globals deleted");
     50 STATISTIC(NumFnDeleted , "Number of functions deleted");
     51 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
     52 STATISTIC(NumLocalized , "Number of globals localized");
     53 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
     54 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
     55 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
     56 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
     57 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
     58 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
     59 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
     60 
     61 namespace {
     62   struct GlobalStatus;
     63   struct GlobalOpt : public ModulePass {
     64     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     65       AU.addRequired<TargetLibraryInfo>();
     66     }
     67     static char ID; // Pass identification, replacement for typeid
     68     GlobalOpt() : ModulePass(ID) {
     69       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
     70     }
     71 
     72     bool runOnModule(Module &M);
     73 
     74   private:
     75     GlobalVariable *FindGlobalCtors(Module &M);
     76     bool OptimizeFunctions(Module &M);
     77     bool OptimizeGlobalVars(Module &M);
     78     bool OptimizeGlobalAliases(Module &M);
     79     bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
     80     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
     81     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
     82                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
     83                                const GlobalStatus &GS);
     84     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
     85 
     86     TargetData *TD;
     87     TargetLibraryInfo *TLI;
     88   };
     89 }
     90 
     91 char GlobalOpt::ID = 0;
     92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
     93                 "Global Variable Optimizer", false, false)
     94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     95 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
     96                 "Global Variable Optimizer", false, false)
     97 
     98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
     99 
    100 namespace {
    101 
    102 /// GlobalStatus - As we analyze each global, keep track of some information
    103 /// about it.  If we find out that the address of the global is taken, none of
    104 /// this info will be accurate.
    105 struct GlobalStatus {
    106   /// isCompared - True if the global's address is used in a comparison.
    107   bool isCompared;
    108 
    109   /// isLoaded - True if the global is ever loaded.  If the global isn't ever
    110   /// loaded it can be deleted.
    111   bool isLoaded;
    112 
    113   /// StoredType - Keep track of what stores to the global look like.
    114   ///
    115   enum StoredType {
    116     /// NotStored - There is no store to this global.  It can thus be marked
    117     /// constant.
    118     NotStored,
    119 
    120     /// isInitializerStored - This global is stored to, but the only thing
    121     /// stored is the constant it was initialized with.  This is only tracked
    122     /// for scalar globals.
    123     isInitializerStored,
    124 
    125     /// isStoredOnce - This global is stored to, but only its initializer and
    126     /// one other value is ever stored to it.  If this global isStoredOnce, we
    127     /// track the value stored to it in StoredOnceValue below.  This is only
    128     /// tracked for scalar globals.
    129     isStoredOnce,
    130 
    131     /// isStored - This global is stored to by multiple values or something else
    132     /// that we cannot track.
    133     isStored
    134   } StoredType;
    135 
    136   /// StoredOnceValue - If only one value (besides the initializer constant) is
    137   /// ever stored to this global, keep track of what value it is.
    138   Value *StoredOnceValue;
    139 
    140   /// AccessingFunction/HasMultipleAccessingFunctions - These start out
    141   /// null/false.  When the first accessing function is noticed, it is recorded.
    142   /// When a second different accessing function is noticed,
    143   /// HasMultipleAccessingFunctions is set to true.
    144   const Function *AccessingFunction;
    145   bool HasMultipleAccessingFunctions;
    146 
    147   /// HasNonInstructionUser - Set to true if this global has a user that is not
    148   /// an instruction (e.g. a constant expr or GV initializer).
    149   bool HasNonInstructionUser;
    150 
    151   /// HasPHIUser - Set to true if this global has a user that is a PHI node.
    152   bool HasPHIUser;
    153 
    154   /// AtomicOrdering - Set to the strongest atomic ordering requirement.
    155   AtomicOrdering Ordering;
    156 
    157   GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
    158                    StoredOnceValue(0), AccessingFunction(0),
    159                    HasMultipleAccessingFunctions(false),
    160                    HasNonInstructionUser(false), HasPHIUser(false),
    161                    Ordering(NotAtomic) {}
    162 };
    163 
    164 }
    165 
    166 /// StrongerOrdering - Return the stronger of the two ordering. If the two
    167 /// orderings are acquire and release, then return AcquireRelease.
    168 ///
    169 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
    170   if (X == Acquire && Y == Release) return AcquireRelease;
    171   if (Y == Acquire && X == Release) return AcquireRelease;
    172   return (AtomicOrdering)std::max(X, Y);
    173 }
    174 
    175 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
    176 /// by constants itself.  Note that constants cannot be cyclic, so this test is
    177 /// pretty easy to implement recursively.
    178 ///
    179 static bool SafeToDestroyConstant(const Constant *C) {
    180   if (isa<GlobalValue>(C)) return false;
    181 
    182   for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
    183        ++UI)
    184     if (const Constant *CU = dyn_cast<Constant>(*UI)) {
    185       if (!SafeToDestroyConstant(CU)) return false;
    186     } else
    187       return false;
    188   return true;
    189 }
    190 
    191 
    192 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
    193 /// structure.  If the global has its address taken, return true to indicate we
    194 /// can't do anything with it.
    195 ///
    196 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
    197                           SmallPtrSet<const PHINode*, 16> &PHIUsers) {
    198   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
    199        ++UI) {
    200     const User *U = *UI;
    201     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    202       GS.HasNonInstructionUser = true;
    203 
    204       // If the result of the constantexpr isn't pointer type, then we won't
    205       // know to expect it in various places.  Just reject early.
    206       if (!isa<PointerType>(CE->getType())) return true;
    207 
    208       if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
    209     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
    210       if (!GS.HasMultipleAccessingFunctions) {
    211         const Function *F = I->getParent()->getParent();
    212         if (GS.AccessingFunction == 0)
    213           GS.AccessingFunction = F;
    214         else if (GS.AccessingFunction != F)
    215           GS.HasMultipleAccessingFunctions = true;
    216       }
    217       if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
    218         GS.isLoaded = true;
    219         // Don't hack on volatile loads.
    220         if (LI->isVolatile()) return true;
    221         GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
    222       } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
    223         // Don't allow a store OF the address, only stores TO the address.
    224         if (SI->getOperand(0) == V) return true;
    225 
    226         // Don't hack on volatile stores.
    227         if (SI->isVolatile()) return true;
    228         GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
    229 
    230         // If this is a direct store to the global (i.e., the global is a scalar
    231         // value, not an aggregate), keep more specific information about
    232         // stores.
    233         if (GS.StoredType != GlobalStatus::isStored) {
    234           if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
    235                                                            SI->getOperand(1))) {
    236             Value *StoredVal = SI->getOperand(0);
    237             if (StoredVal == GV->getInitializer()) {
    238               if (GS.StoredType < GlobalStatus::isInitializerStored)
    239                 GS.StoredType = GlobalStatus::isInitializerStored;
    240             } else if (isa<LoadInst>(StoredVal) &&
    241                        cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
    242               if (GS.StoredType < GlobalStatus::isInitializerStored)
    243                 GS.StoredType = GlobalStatus::isInitializerStored;
    244             } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
    245               GS.StoredType = GlobalStatus::isStoredOnce;
    246               GS.StoredOnceValue = StoredVal;
    247             } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
    248                        GS.StoredOnceValue == StoredVal) {
    249               // noop.
    250             } else {
    251               GS.StoredType = GlobalStatus::isStored;
    252             }
    253           } else {
    254             GS.StoredType = GlobalStatus::isStored;
    255           }
    256         }
    257       } else if (isa<BitCastInst>(I)) {
    258         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    259       } else if (isa<GetElementPtrInst>(I)) {
    260         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    261       } else if (isa<SelectInst>(I)) {
    262         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    263       } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
    264         // PHI nodes we can check just like select or GEP instructions, but we
    265         // have to be careful about infinite recursion.
    266         if (PHIUsers.insert(PN))  // Not already visited.
    267           if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
    268         GS.HasPHIUser = true;
    269       } else if (isa<CmpInst>(I)) {
    270         GS.isCompared = true;
    271       } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
    272         if (MTI->isVolatile()) return true;
    273         if (MTI->getArgOperand(0) == V)
    274           GS.StoredType = GlobalStatus::isStored;
    275         if (MTI->getArgOperand(1) == V)
    276           GS.isLoaded = true;
    277       } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
    278         assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
    279         if (MSI->isVolatile()) return true;
    280         GS.StoredType = GlobalStatus::isStored;
    281       } else {
    282         return true;  // Any other non-load instruction might take address!
    283       }
    284     } else if (const Constant *C = dyn_cast<Constant>(U)) {
    285       GS.HasNonInstructionUser = true;
    286       // We might have a dead and dangling constant hanging off of here.
    287       if (!SafeToDestroyConstant(C))
    288         return true;
    289     } else {
    290       GS.HasNonInstructionUser = true;
    291       // Otherwise must be some other user.
    292       return true;
    293     }
    294   }
    295 
    296   return false;
    297 }
    298 
    299 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
    300 /// as a root?  If so, we might not really want to eliminate the stores to it.
    301 static bool isLeakCheckerRoot(GlobalVariable *GV) {
    302   // A global variable is a root if it is a pointer, or could plausibly contain
    303   // a pointer.  There are two challenges; one is that we could have a struct
    304   // the has an inner member which is a pointer.  We recurse through the type to
    305   // detect these (up to a point).  The other is that we may actually be a union
    306   // of a pointer and another type, and so our LLVM type is an integer which
    307   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
    308   // potentially contained here.
    309 
    310   if (GV->hasPrivateLinkage())
    311     return false;
    312 
    313   SmallVector<Type *, 4> Types;
    314   Types.push_back(cast<PointerType>(GV->getType())->getElementType());
    315 
    316   unsigned Limit = 20;
    317   do {
    318     Type *Ty = Types.pop_back_val();
    319     switch (Ty->getTypeID()) {
    320       default: break;
    321       case Type::PointerTyID: return true;
    322       case Type::ArrayTyID:
    323       case Type::VectorTyID: {
    324         SequentialType *STy = cast<SequentialType>(Ty);
    325         Types.push_back(STy->getElementType());
    326         break;
    327       }
    328       case Type::StructTyID: {
    329         StructType *STy = cast<StructType>(Ty);
    330         if (STy->isOpaque()) return true;
    331         for (StructType::element_iterator I = STy->element_begin(),
    332                  E = STy->element_end(); I != E; ++I) {
    333           Type *InnerTy = *I;
    334           if (isa<PointerType>(InnerTy)) return true;
    335           if (isa<CompositeType>(InnerTy))
    336             Types.push_back(InnerTy);
    337         }
    338         break;
    339       }
    340     }
    341     if (--Limit == 0) return true;
    342   } while (!Types.empty());
    343   return false;
    344 }
    345 
    346 /// Given a value that is stored to a global but never read, determine whether
    347 /// it's safe to remove the store and the chain of computation that feeds the
    348 /// store.
    349 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
    350   do {
    351     if (isa<Constant>(V))
    352       return true;
    353     if (!V->hasOneUse())
    354       return false;
    355     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
    356         isa<GlobalValue>(V))
    357       return false;
    358     if (isAllocationFn(V, TLI))
    359       return true;
    360 
    361     Instruction *I = cast<Instruction>(V);
    362     if (I->mayHaveSideEffects())
    363       return false;
    364     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    365       if (!GEP->hasAllConstantIndices())
    366         return false;
    367     } else if (I->getNumOperands() != 1) {
    368       return false;
    369     }
    370 
    371     V = I->getOperand(0);
    372   } while (1);
    373 }
    374 
    375 /// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
    376 /// of the global and clean up any that obviously don't assign the global a
    377 /// value that isn't dynamically allocated.
    378 ///
    379 static bool CleanupPointerRootUsers(GlobalVariable *GV,
    380                                     const TargetLibraryInfo *TLI) {
    381   // A brief explanation of leak checkers.  The goal is to find bugs where
    382   // pointers are forgotten, causing an accumulating growth in memory
    383   // usage over time.  The common strategy for leak checkers is to whitelist the
    384   // memory pointed to by globals at exit.  This is popular because it also
    385   // solves another problem where the main thread of a C++ program may shut down
    386   // before other threads that are still expecting to use those globals.  To
    387   // handle that case, we expect the program may create a singleton and never
    388   // destroy it.
    389 
    390   bool Changed = false;
    391 
    392   // If Dead[n].first is the only use of a malloc result, we can delete its
    393   // chain of computation and the store to the global in Dead[n].second.
    394   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
    395 
    396   // Constants can't be pointers to dynamically allocated memory.
    397   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
    398        UI != E;) {
    399     User *U = *UI++;
    400     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    401       Value *V = SI->getValueOperand();
    402       if (isa<Constant>(V)) {
    403         Changed = true;
    404         SI->eraseFromParent();
    405       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
    406         if (I->hasOneUse())
    407           Dead.push_back(std::make_pair(I, SI));
    408       }
    409     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
    410       if (isa<Constant>(MSI->getValue())) {
    411         Changed = true;
    412         MSI->eraseFromParent();
    413       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
    414         if (I->hasOneUse())
    415           Dead.push_back(std::make_pair(I, MSI));
    416       }
    417     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
    418       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
    419       if (MemSrc && MemSrc->isConstant()) {
    420         Changed = true;
    421         MTI->eraseFromParent();
    422       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
    423         if (I->hasOneUse())
    424           Dead.push_back(std::make_pair(I, MTI));
    425       }
    426     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    427       if (CE->use_empty()) {
    428         CE->destroyConstant();
    429         Changed = true;
    430       }
    431     } else if (Constant *C = dyn_cast<Constant>(U)) {
    432       if (SafeToDestroyConstant(C)) {
    433         C->destroyConstant();
    434         // This could have invalidated UI, start over from scratch.
    435         Dead.clear();
    436         CleanupPointerRootUsers(GV, TLI);
    437         return true;
    438       }
    439     }
    440   }
    441 
    442   for (int i = 0, e = Dead.size(); i != e; ++i) {
    443     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
    444       Dead[i].second->eraseFromParent();
    445       Instruction *I = Dead[i].first;
    446       do {
    447 	if (isAllocationFn(I, TLI))
    448 	  break;
    449         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
    450         if (!J)
    451           break;
    452         I->eraseFromParent();
    453         I = J;
    454       } while (1);
    455       I->eraseFromParent();
    456     }
    457   }
    458 
    459   return Changed;
    460 }
    461 
    462 /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
    463 /// users of the global, cleaning up the obvious ones.  This is largely just a
    464 /// quick scan over the use list to clean up the easy and obvious cruft.  This
    465 /// returns true if it made a change.
    466 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
    467                                        TargetData *TD, TargetLibraryInfo *TLI) {
    468   bool Changed = false;
    469   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
    470     User *U = *UI++;
    471 
    472     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    473       if (Init) {
    474         // Replace the load with the initializer.
    475         LI->replaceAllUsesWith(Init);
    476         LI->eraseFromParent();
    477         Changed = true;
    478       }
    479     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    480       // Store must be unreachable or storing Init into the global.
    481       SI->eraseFromParent();
    482       Changed = true;
    483     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    484       if (CE->getOpcode() == Instruction::GetElementPtr) {
    485         Constant *SubInit = 0;
    486         if (Init)
    487           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    488         Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
    489       } else if (CE->getOpcode() == Instruction::BitCast &&
    490                  CE->getType()->isPointerTy()) {
    491         // Pointer cast, delete any stores and memsets to the global.
    492         Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
    493       }
    494 
    495       if (CE->use_empty()) {
    496         CE->destroyConstant();
    497         Changed = true;
    498       }
    499     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    500       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
    501       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
    502       // and will invalidate our notion of what Init is.
    503       Constant *SubInit = 0;
    504       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
    505         ConstantExpr *CE =
    506           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
    507         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
    508           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    509 
    510         // If the initializer is an all-null value and we have an inbounds GEP,
    511         // we already know what the result of any load from that GEP is.
    512         // TODO: Handle splats.
    513         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
    514           SubInit = Constant::getNullValue(GEP->getType()->getElementType());
    515       }
    516       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
    517 
    518       if (GEP->use_empty()) {
    519         GEP->eraseFromParent();
    520         Changed = true;
    521       }
    522     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
    523       if (MI->getRawDest() == V) {
    524         MI->eraseFromParent();
    525         Changed = true;
    526       }
    527 
    528     } else if (Constant *C = dyn_cast<Constant>(U)) {
    529       // If we have a chain of dead constantexprs or other things dangling from
    530       // us, and if they are all dead, nuke them without remorse.
    531       if (SafeToDestroyConstant(C)) {
    532         C->destroyConstant();
    533         // This could have invalidated UI, start over from scratch.
    534         CleanupConstantGlobalUsers(V, Init, TD, TLI);
    535         return true;
    536       }
    537     }
    538   }
    539   return Changed;
    540 }
    541 
    542 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
    543 /// user of a derived expression from a global that we want to SROA.
    544 static bool isSafeSROAElementUse(Value *V) {
    545   // We might have a dead and dangling constant hanging off of here.
    546   if (Constant *C = dyn_cast<Constant>(V))
    547     return SafeToDestroyConstant(C);
    548 
    549   Instruction *I = dyn_cast<Instruction>(V);
    550   if (!I) return false;
    551 
    552   // Loads are ok.
    553   if (isa<LoadInst>(I)) return true;
    554 
    555   // Stores *to* the pointer are ok.
    556   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    557     return SI->getOperand(0) != V;
    558 
    559   // Otherwise, it must be a GEP.
    560   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
    561   if (GEPI == 0) return false;
    562 
    563   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
    564       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    565     return false;
    566 
    567   for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
    568        I != E; ++I)
    569     if (!isSafeSROAElementUse(*I))
    570       return false;
    571   return true;
    572 }
    573 
    574 
    575 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
    576 /// Look at it and its uses and decide whether it is safe to SROA this global.
    577 ///
    578 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
    579   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    580   if (!isa<GetElementPtrInst>(U) &&
    581       (!isa<ConstantExpr>(U) ||
    582        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    583     return false;
    584 
    585   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
    586   // don't like < 3 operand CE's, and we don't like non-constant integer
    587   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
    588   // value of C.
    589   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
    590       !cast<Constant>(U->getOperand(1))->isNullValue() ||
    591       !isa<ConstantInt>(U->getOperand(2)))
    592     return false;
    593 
    594   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
    595   ++GEPI;  // Skip over the pointer index.
    596 
    597   // If this is a use of an array allocation, do a bit more checking for sanity.
    598   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
    599     uint64_t NumElements = AT->getNumElements();
    600     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
    601 
    602     // Check to make sure that index falls within the array.  If not,
    603     // something funny is going on, so we won't do the optimization.
    604     //
    605     if (Idx->getZExtValue() >= NumElements)
    606       return false;
    607 
    608     // We cannot scalar repl this level of the array unless any array
    609     // sub-indices are in-range constants.  In particular, consider:
    610     // A[0][i].  We cannot know that the user isn't doing invalid things like
    611     // allowing i to index an out-of-range subscript that accesses A[1].
    612     //
    613     // Scalar replacing *just* the outer index of the array is probably not
    614     // going to be a win anyway, so just give up.
    615     for (++GEPI; // Skip array index.
    616          GEPI != E;
    617          ++GEPI) {
    618       uint64_t NumElements;
    619       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
    620         NumElements = SubArrayTy->getNumElements();
    621       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
    622         NumElements = SubVectorTy->getNumElements();
    623       else {
    624         assert((*GEPI)->isStructTy() &&
    625                "Indexed GEP type is not array, vector, or struct!");
    626         continue;
    627       }
    628 
    629       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    630       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
    631         return false;
    632     }
    633   }
    634 
    635   for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
    636     if (!isSafeSROAElementUse(*I))
    637       return false;
    638   return true;
    639 }
    640 
    641 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
    642 /// is safe for us to perform this transformation.
    643 ///
    644 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
    645   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
    646        UI != E; ++UI) {
    647     if (!IsUserOfGlobalSafeForSRA(*UI, GV))
    648       return false;
    649   }
    650   return true;
    651 }
    652 
    653 
    654 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
    655 /// variable.  This opens the door for other optimizations by exposing the
    656 /// behavior of the program in a more fine-grained way.  We have determined that
    657 /// this transformation is safe already.  We return the first global variable we
    658 /// insert so that the caller can reprocess it.
    659 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
    660   // Make sure this global only has simple uses that we can SRA.
    661   if (!GlobalUsersSafeToSRA(GV))
    662     return 0;
    663 
    664   assert(GV->hasLocalLinkage() && !GV->isConstant());
    665   Constant *Init = GV->getInitializer();
    666   Type *Ty = Init->getType();
    667 
    668   std::vector<GlobalVariable*> NewGlobals;
    669   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
    670 
    671   // Get the alignment of the global, either explicit or target-specific.
    672   unsigned StartAlignment = GV->getAlignment();
    673   if (StartAlignment == 0)
    674     StartAlignment = TD.getABITypeAlignment(GV->getType());
    675 
    676   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    677     NewGlobals.reserve(STy->getNumElements());
    678     const StructLayout &Layout = *TD.getStructLayout(STy);
    679     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    680       Constant *In = Init->getAggregateElement(i);
    681       assert(In && "Couldn't get element of initializer?");
    682       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
    683                                                GlobalVariable::InternalLinkage,
    684                                                In, GV->getName()+"."+Twine(i),
    685                                                GV->getThreadLocalMode(),
    686                                               GV->getType()->getAddressSpace());
    687       Globals.insert(GV, NGV);
    688       NewGlobals.push_back(NGV);
    689 
    690       // Calculate the known alignment of the field.  If the original aggregate
    691       // had 256 byte alignment for example, something might depend on that:
    692       // propagate info to each field.
    693       uint64_t FieldOffset = Layout.getElementOffset(i);
    694       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
    695       if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
    696         NGV->setAlignment(NewAlign);
    697     }
    698   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    699     unsigned NumElements = 0;
    700     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
    701       NumElements = ATy->getNumElements();
    702     else
    703       NumElements = cast<VectorType>(STy)->getNumElements();
    704 
    705     if (NumElements > 16 && GV->hasNUsesOrMore(16))
    706       return 0; // It's not worth it.
    707     NewGlobals.reserve(NumElements);
    708 
    709     uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
    710     unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
    711     for (unsigned i = 0, e = NumElements; i != e; ++i) {
    712       Constant *In = Init->getAggregateElement(i);
    713       assert(In && "Couldn't get element of initializer?");
    714 
    715       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
    716                                                GlobalVariable::InternalLinkage,
    717                                                In, GV->getName()+"."+Twine(i),
    718                                                GV->getThreadLocalMode(),
    719                                               GV->getType()->getAddressSpace());
    720       Globals.insert(GV, NGV);
    721       NewGlobals.push_back(NGV);
    722 
    723       // Calculate the known alignment of the field.  If the original aggregate
    724       // had 256 byte alignment for example, something might depend on that:
    725       // propagate info to each field.
    726       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
    727       if (NewAlign > EltAlign)
    728         NGV->setAlignment(NewAlign);
    729     }
    730   }
    731 
    732   if (NewGlobals.empty())
    733     return 0;
    734 
    735   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
    736 
    737   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
    738 
    739   // Loop over all of the uses of the global, replacing the constantexpr geps,
    740   // with smaller constantexpr geps or direct references.
    741   while (!GV->use_empty()) {
    742     User *GEP = GV->use_back();
    743     assert(((isa<ConstantExpr>(GEP) &&
    744              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
    745             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
    746 
    747     // Ignore the 1th operand, which has to be zero or else the program is quite
    748     // broken (undefined).  Get the 2nd operand, which is the structure or array
    749     // index.
    750     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    751     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
    752 
    753     Value *NewPtr = NewGlobals[Val];
    754 
    755     // Form a shorter GEP if needed.
    756     if (GEP->getNumOperands() > 3) {
    757       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
    758         SmallVector<Constant*, 8> Idxs;
    759         Idxs.push_back(NullInt);
    760         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
    761           Idxs.push_back(CE->getOperand(i));
    762         NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
    763       } else {
    764         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
    765         SmallVector<Value*, 8> Idxs;
    766         Idxs.push_back(NullInt);
    767         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
    768           Idxs.push_back(GEPI->getOperand(i));
    769         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
    770                                            GEPI->getName()+"."+Twine(Val),GEPI);
    771       }
    772     }
    773     GEP->replaceAllUsesWith(NewPtr);
    774 
    775     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
    776       GEPI->eraseFromParent();
    777     else
    778       cast<ConstantExpr>(GEP)->destroyConstant();
    779   }
    780 
    781   // Delete the old global, now that it is dead.
    782   Globals.erase(GV);
    783   ++NumSRA;
    784 
    785   // Loop over the new globals array deleting any globals that are obviously
    786   // dead.  This can arise due to scalarization of a structure or an array that
    787   // has elements that are dead.
    788   unsigned FirstGlobal = 0;
    789   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    790     if (NewGlobals[i]->use_empty()) {
    791       Globals.erase(NewGlobals[i]);
    792       if (FirstGlobal == i) ++FirstGlobal;
    793     }
    794 
    795   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
    796 }
    797 
    798 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
    799 /// value will trap if the value is dynamically null.  PHIs keeps track of any
    800 /// phi nodes we've seen to avoid reprocessing them.
    801 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
    802                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
    803   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
    804        ++UI) {
    805     const User *U = *UI;
    806 
    807     if (isa<LoadInst>(U)) {
    808       // Will trap.
    809     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    810       if (SI->getOperand(0) == V) {
    811         //cerr << "NONTRAPPING USE: " << *U;
    812         return false;  // Storing the value.
    813       }
    814     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    815       if (CI->getCalledValue() != V) {
    816         //cerr << "NONTRAPPING USE: " << *U;
    817         return false;  // Not calling the ptr
    818       }
    819     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    820       if (II->getCalledValue() != V) {
    821         //cerr << "NONTRAPPING USE: " << *U;
    822         return false;  // Not calling the ptr
    823       }
    824     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
    825       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    826     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    827       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    828     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    829       // If we've already seen this phi node, ignore it, it has already been
    830       // checked.
    831       if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
    832         return false;
    833     } else if (isa<ICmpInst>(U) &&
    834                isa<ConstantPointerNull>(UI->getOperand(1))) {
    835       // Ignore icmp X, null
    836     } else {
    837       //cerr << "NONTRAPPING USE: " << *U;
    838       return false;
    839     }
    840   }
    841   return true;
    842 }
    843 
    844 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
    845 /// from GV will trap if the loaded value is null.  Note that this also permits
    846 /// comparisons of the loaded value against null, as a special case.
    847 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
    848   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
    849        UI != E; ++UI) {
    850     const User *U = *UI;
    851 
    852     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
    853       SmallPtrSet<const PHINode*, 8> PHIs;
    854       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
    855         return false;
    856     } else if (isa<StoreInst>(U)) {
    857       // Ignore stores to the global.
    858     } else {
    859       // We don't know or understand this user, bail out.
    860       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
    861       return false;
    862     }
    863   }
    864   return true;
    865 }
    866 
    867 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
    868   bool Changed = false;
    869   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
    870     Instruction *I = cast<Instruction>(*UI++);
    871     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    872       LI->setOperand(0, NewV);
    873       Changed = true;
    874     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    875       if (SI->getOperand(1) == V) {
    876         SI->setOperand(1, NewV);
    877         Changed = true;
    878       }
    879     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    880       CallSite CS(I);
    881       if (CS.getCalledValue() == V) {
    882         // Calling through the pointer!  Turn into a direct call, but be careful
    883         // that the pointer is not also being passed as an argument.
    884         CS.setCalledFunction(NewV);
    885         Changed = true;
    886         bool PassedAsArg = false;
    887         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    888           if (CS.getArgument(i) == V) {
    889             PassedAsArg = true;
    890             CS.setArgument(i, NewV);
    891           }
    892 
    893         if (PassedAsArg) {
    894           // Being passed as an argument also.  Be careful to not invalidate UI!
    895           UI = V->use_begin();
    896         }
    897       }
    898     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    899       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
    900                                 ConstantExpr::getCast(CI->getOpcode(),
    901                                                       NewV, CI->getType()));
    902       if (CI->use_empty()) {
    903         Changed = true;
    904         CI->eraseFromParent();
    905       }
    906     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    907       // Should handle GEP here.
    908       SmallVector<Constant*, 8> Idxs;
    909       Idxs.reserve(GEPI->getNumOperands()-1);
    910       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
    911            i != e; ++i)
    912         if (Constant *C = dyn_cast<Constant>(*i))
    913           Idxs.push_back(C);
    914         else
    915           break;
    916       if (Idxs.size() == GEPI->getNumOperands()-1)
    917         Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
    918                           ConstantExpr::getGetElementPtr(NewV, Idxs));
    919       if (GEPI->use_empty()) {
    920         Changed = true;
    921         GEPI->eraseFromParent();
    922       }
    923     }
    924   }
    925 
    926   return Changed;
    927 }
    928 
    929 
    930 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
    931 /// value stored into it.  If there are uses of the loaded value that would trap
    932 /// if the loaded value is dynamically null, then we know that they cannot be
    933 /// reachable with a null optimize away the load.
    934 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
    935                                             TargetData *TD,
    936                                             TargetLibraryInfo *TLI) {
    937   bool Changed = false;
    938 
    939   // Keep track of whether we are able to remove all the uses of the global
    940   // other than the store that defines it.
    941   bool AllNonStoreUsesGone = true;
    942 
    943   // Replace all uses of loads with uses of uses of the stored value.
    944   for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
    945     User *GlobalUser = *GUI++;
    946     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
    947       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    948       // If we were able to delete all uses of the loads
    949       if (LI->use_empty()) {
    950         LI->eraseFromParent();
    951         Changed = true;
    952       } else {
    953         AllNonStoreUsesGone = false;
    954       }
    955     } else if (isa<StoreInst>(GlobalUser)) {
    956       // Ignore the store that stores "LV" to the global.
    957       assert(GlobalUser->getOperand(1) == GV &&
    958              "Must be storing *to* the global");
    959     } else {
    960       AllNonStoreUsesGone = false;
    961 
    962       // If we get here we could have other crazy uses that are transitively
    963       // loaded.
    964       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
    965               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
    966              "Only expect load and stores!");
    967     }
    968   }
    969 
    970   if (Changed) {
    971     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
    972     ++NumGlobUses;
    973   }
    974 
    975   // If we nuked all of the loads, then none of the stores are needed either,
    976   // nor is the global.
    977   if (AllNonStoreUsesGone) {
    978     if (isLeakCheckerRoot(GV)) {
    979       Changed |= CleanupPointerRootUsers(GV, TLI);
    980     } else {
    981       Changed = true;
    982       CleanupConstantGlobalUsers(GV, 0, TD, TLI);
    983     }
    984     if (GV->use_empty()) {
    985       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
    986       Changed = true;
    987       GV->eraseFromParent();
    988       ++NumDeleted;
    989     }
    990   }
    991   return Changed;
    992 }
    993 
    994 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
    995 /// instructions that are foldable.
    996 static void ConstantPropUsersOf(Value *V,
    997                                 TargetData *TD, TargetLibraryInfo *TLI) {
    998   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
    999     if (Instruction *I = dyn_cast<Instruction>(*UI++))
   1000       if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
   1001         I->replaceAllUsesWith(NewC);
   1002 
   1003         // Advance UI to the next non-I use to avoid invalidating it!
   1004         // Instructions could multiply use V.
   1005         while (UI != E && *UI == I)
   1006           ++UI;
   1007         I->eraseFromParent();
   1008       }
   1009 }
   1010 
   1011 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
   1012 /// variable, and transforms the program as if it always contained the result of
   1013 /// the specified malloc.  Because it is always the result of the specified
   1014 /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
   1015 /// malloc into a global, and any loads of GV as uses of the new global.
   1016 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
   1017                                                      CallInst *CI,
   1018                                                      Type *AllocTy,
   1019                                                      ConstantInt *NElements,
   1020                                                      TargetData *TD,
   1021                                                      TargetLibraryInfo *TLI) {
   1022   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
   1023 
   1024   Type *GlobalType;
   1025   if (NElements->getZExtValue() == 1)
   1026     GlobalType = AllocTy;
   1027   else
   1028     // If we have an array allocation, the global variable is of an array.
   1029     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
   1030 
   1031   // Create the new global variable.  The contents of the malloc'd memory is
   1032   // undefined, so initialize with an undef value.
   1033   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
   1034                                              GlobalType, false,
   1035                                              GlobalValue::InternalLinkage,
   1036                                              UndefValue::get(GlobalType),
   1037                                              GV->getName()+".body",
   1038                                              GV,
   1039                                              GV->getThreadLocalMode());
   1040 
   1041   // If there are bitcast users of the malloc (which is typical, usually we have
   1042   // a malloc + bitcast) then replace them with uses of the new global.  Update
   1043   // other users to use the global as well.
   1044   BitCastInst *TheBC = 0;
   1045   while (!CI->use_empty()) {
   1046     Instruction *User = cast<Instruction>(CI->use_back());
   1047     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
   1048       if (BCI->getType() == NewGV->getType()) {
   1049         BCI->replaceAllUsesWith(NewGV);
   1050         BCI->eraseFromParent();
   1051       } else {
   1052         BCI->setOperand(0, NewGV);
   1053       }
   1054     } else {
   1055       if (TheBC == 0)
   1056         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
   1057       User->replaceUsesOfWith(CI, TheBC);
   1058     }
   1059   }
   1060 
   1061   Constant *RepValue = NewGV;
   1062   if (NewGV->getType() != GV->getType()->getElementType())
   1063     RepValue = ConstantExpr::getBitCast(RepValue,
   1064                                         GV->getType()->getElementType());
   1065 
   1066   // If there is a comparison against null, we will insert a global bool to
   1067   // keep track of whether the global was initialized yet or not.
   1068   GlobalVariable *InitBool =
   1069     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
   1070                        GlobalValue::InternalLinkage,
   1071                        ConstantInt::getFalse(GV->getContext()),
   1072                        GV->getName()+".init", GV->getThreadLocalMode());
   1073   bool InitBoolUsed = false;
   1074 
   1075   // Loop over all uses of GV, processing them in turn.
   1076   while (!GV->use_empty()) {
   1077     if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
   1078       // The global is initialized when the store to it occurs.
   1079       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
   1080                     SI->getOrdering(), SI->getSynchScope(), SI);
   1081       SI->eraseFromParent();
   1082       continue;
   1083     }
   1084 
   1085     LoadInst *LI = cast<LoadInst>(GV->use_back());
   1086     while (!LI->use_empty()) {
   1087       Use &LoadUse = LI->use_begin().getUse();
   1088       if (!isa<ICmpInst>(LoadUse.getUser())) {
   1089         LoadUse = RepValue;
   1090         continue;
   1091       }
   1092 
   1093       ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
   1094       // Replace the cmp X, 0 with a use of the bool value.
   1095       // Sink the load to where the compare was, if atomic rules allow us to.
   1096       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
   1097                                LI->getOrdering(), LI->getSynchScope(),
   1098                                LI->isUnordered() ? (Instruction*)ICI : LI);
   1099       InitBoolUsed = true;
   1100       switch (ICI->getPredicate()) {
   1101       default: llvm_unreachable("Unknown ICmp Predicate!");
   1102       case ICmpInst::ICMP_ULT:
   1103       case ICmpInst::ICMP_SLT:   // X < null -> always false
   1104         LV = ConstantInt::getFalse(GV->getContext());
   1105         break;
   1106       case ICmpInst::ICMP_ULE:
   1107       case ICmpInst::ICMP_SLE:
   1108       case ICmpInst::ICMP_EQ:
   1109         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
   1110         break;
   1111       case ICmpInst::ICMP_NE:
   1112       case ICmpInst::ICMP_UGE:
   1113       case ICmpInst::ICMP_SGE:
   1114       case ICmpInst::ICMP_UGT:
   1115       case ICmpInst::ICMP_SGT:
   1116         break;  // no change.
   1117       }
   1118       ICI->replaceAllUsesWith(LV);
   1119       ICI->eraseFromParent();
   1120     }
   1121     LI->eraseFromParent();
   1122   }
   1123 
   1124   // If the initialization boolean was used, insert it, otherwise delete it.
   1125   if (!InitBoolUsed) {
   1126     while (!InitBool->use_empty())  // Delete initializations
   1127       cast<StoreInst>(InitBool->use_back())->eraseFromParent();
   1128     delete InitBool;
   1129   } else
   1130     GV->getParent()->getGlobalList().insert(GV, InitBool);
   1131 
   1132   // Now the GV is dead, nuke it and the malloc..
   1133   GV->eraseFromParent();
   1134   CI->eraseFromParent();
   1135 
   1136   // To further other optimizations, loop over all users of NewGV and try to
   1137   // constant prop them.  This will promote GEP instructions with constant
   1138   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
   1139   ConstantPropUsersOf(NewGV, TD, TLI);
   1140   if (RepValue != NewGV)
   1141     ConstantPropUsersOf(RepValue, TD, TLI);
   1142 
   1143   return NewGV;
   1144 }
   1145 
   1146 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
   1147 /// to make sure that there are no complex uses of V.  We permit simple things
   1148 /// like dereferencing the pointer, but not storing through the address, unless
   1149 /// it is to the specified global.
   1150 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
   1151                                                       const GlobalVariable *GV,
   1152                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
   1153   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
   1154        UI != E; ++UI) {
   1155     const Instruction *Inst = cast<Instruction>(*UI);
   1156 
   1157     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
   1158       continue; // Fine, ignore.
   1159     }
   1160 
   1161     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   1162       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
   1163         return false;  // Storing the pointer itself... bad.
   1164       continue; // Otherwise, storing through it, or storing into GV... fine.
   1165     }
   1166 
   1167     // Must index into the array and into the struct.
   1168     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
   1169       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
   1170         return false;
   1171       continue;
   1172     }
   1173 
   1174     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
   1175       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
   1176       // cycles.
   1177       if (PHIs.insert(PN))
   1178         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
   1179           return false;
   1180       continue;
   1181     }
   1182 
   1183     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
   1184       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
   1185         return false;
   1186       continue;
   1187     }
   1188 
   1189     return false;
   1190   }
   1191   return true;
   1192 }
   1193 
   1194 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
   1195 /// somewhere.  Transform all uses of the allocation into loads from the
   1196 /// global and uses of the resultant pointer.  Further, delete the store into
   1197 /// GV.  This assumes that these value pass the
   1198 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
   1199 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
   1200                                           GlobalVariable *GV) {
   1201   while (!Alloc->use_empty()) {
   1202     Instruction *U = cast<Instruction>(*Alloc->use_begin());
   1203     Instruction *InsertPt = U;
   1204     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1205       // If this is the store of the allocation into the global, remove it.
   1206       if (SI->getOperand(1) == GV) {
   1207         SI->eraseFromParent();
   1208         continue;
   1209       }
   1210     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1211       // Insert the load in the corresponding predecessor, not right before the
   1212       // PHI.
   1213       InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
   1214     } else if (isa<BitCastInst>(U)) {
   1215       // Must be bitcast between the malloc and store to initialize the global.
   1216       ReplaceUsesOfMallocWithGlobal(U, GV);
   1217       U->eraseFromParent();
   1218       continue;
   1219     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
   1220       // If this is a "GEP bitcast" and the user is a store to the global, then
   1221       // just process it as a bitcast.
   1222       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
   1223         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
   1224           if (SI->getOperand(1) == GV) {
   1225             // Must be bitcast GEP between the malloc and store to initialize
   1226             // the global.
   1227             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
   1228             GEPI->eraseFromParent();
   1229             continue;
   1230           }
   1231     }
   1232 
   1233     // Insert a load from the global, and use it instead of the malloc.
   1234     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
   1235     U->replaceUsesOfWith(Alloc, NL);
   1236   }
   1237 }
   1238 
   1239 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
   1240 /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
   1241 /// that index through the array and struct field, icmps of null, and PHIs.
   1242 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
   1243                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
   1244                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
   1245   // We permit two users of the load: setcc comparing against the null
   1246   // pointer, and a getelementptr of a specific form.
   1247   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
   1248        ++UI) {
   1249     const Instruction *User = cast<Instruction>(*UI);
   1250 
   1251     // Comparison against null is ok.
   1252     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
   1253       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
   1254         return false;
   1255       continue;
   1256     }
   1257 
   1258     // getelementptr is also ok, but only a simple form.
   1259     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1260       // Must index into the array and into the struct.
   1261       if (GEPI->getNumOperands() < 3)
   1262         return false;
   1263 
   1264       // Otherwise the GEP is ok.
   1265       continue;
   1266     }
   1267 
   1268     if (const PHINode *PN = dyn_cast<PHINode>(User)) {
   1269       if (!LoadUsingPHIsPerLoad.insert(PN))
   1270         // This means some phi nodes are dependent on each other.
   1271         // Avoid infinite looping!
   1272         return false;
   1273       if (!LoadUsingPHIs.insert(PN))
   1274         // If we have already analyzed this PHI, then it is safe.
   1275         continue;
   1276 
   1277       // Make sure all uses of the PHI are simple enough to transform.
   1278       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
   1279                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
   1280         return false;
   1281 
   1282       continue;
   1283     }
   1284 
   1285     // Otherwise we don't know what this is, not ok.
   1286     return false;
   1287   }
   1288 
   1289   return true;
   1290 }
   1291 
   1292 
   1293 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
   1294 /// GV are simple enough to perform HeapSRA, return true.
   1295 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
   1296                                                     Instruction *StoredVal) {
   1297   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
   1298   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
   1299   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1300        UI != E; ++UI)
   1301     if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
   1302       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
   1303                                           LoadUsingPHIsPerLoad))
   1304         return false;
   1305       LoadUsingPHIsPerLoad.clear();
   1306     }
   1307 
   1308   // If we reach here, we know that all uses of the loads and transitive uses
   1309   // (through PHI nodes) are simple enough to transform.  However, we don't know
   1310   // that all inputs the to the PHI nodes are in the same equivalence sets.
   1311   // Check to verify that all operands of the PHIs are either PHIS that can be
   1312   // transformed, loads from GV, or MI itself.
   1313   for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
   1314        , E = LoadUsingPHIs.end(); I != E; ++I) {
   1315     const PHINode *PN = *I;
   1316     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
   1317       Value *InVal = PN->getIncomingValue(op);
   1318 
   1319       // PHI of the stored value itself is ok.
   1320       if (InVal == StoredVal) continue;
   1321 
   1322       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
   1323         // One of the PHIs in our set is (optimistically) ok.
   1324         if (LoadUsingPHIs.count(InPN))
   1325           continue;
   1326         return false;
   1327       }
   1328 
   1329       // Load from GV is ok.
   1330       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
   1331         if (LI->getOperand(0) == GV)
   1332           continue;
   1333 
   1334       // UNDEF? NULL?
   1335 
   1336       // Anything else is rejected.
   1337       return false;
   1338     }
   1339   }
   1340 
   1341   return true;
   1342 }
   1343 
   1344 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
   1345                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1346                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1347   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
   1348 
   1349   if (FieldNo >= FieldVals.size())
   1350     FieldVals.resize(FieldNo+1);
   1351 
   1352   // If we already have this value, just reuse the previously scalarized
   1353   // version.
   1354   if (Value *FieldVal = FieldVals[FieldNo])
   1355     return FieldVal;
   1356 
   1357   // Depending on what instruction this is, we have several cases.
   1358   Value *Result;
   1359   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
   1360     // This is a scalarized version of the load from the global.  Just create
   1361     // a new Load of the scalarized global.
   1362     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
   1363                                            InsertedScalarizedValues,
   1364                                            PHIsToRewrite),
   1365                           LI->getName()+".f"+Twine(FieldNo), LI);
   1366   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1367     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
   1368     // field.
   1369     StructType *ST =
   1370       cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
   1371 
   1372     PHINode *NewPN =
   1373      PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
   1374                      PN->getNumIncomingValues(),
   1375                      PN->getName()+".f"+Twine(FieldNo), PN);
   1376     Result = NewPN;
   1377     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   1378   } else {
   1379     llvm_unreachable("Unknown usable value");
   1380   }
   1381 
   1382   return FieldVals[FieldNo] = Result;
   1383 }
   1384 
   1385 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
   1386 /// the load, rewrite the derived value to use the HeapSRoA'd load.
   1387 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
   1388              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1389                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1390   // If this is a comparison against null, handle it.
   1391   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
   1392     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
   1393     // If we have a setcc of the loaded pointer, we can use a setcc of any
   1394     // field.
   1395     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
   1396                                    InsertedScalarizedValues, PHIsToRewrite);
   1397 
   1398     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
   1399                               Constant::getNullValue(NPtr->getType()),
   1400                               SCI->getName());
   1401     SCI->replaceAllUsesWith(New);
   1402     SCI->eraseFromParent();
   1403     return;
   1404   }
   1405 
   1406   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   1407   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
   1408     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
   1409            && "Unexpected GEPI!");
   1410 
   1411     // Load the pointer for this field.
   1412     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
   1413     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
   1414                                      InsertedScalarizedValues, PHIsToRewrite);
   1415 
   1416     // Create the new GEP idx vector.
   1417     SmallVector<Value*, 8> GEPIdx;
   1418     GEPIdx.push_back(GEPI->getOperand(1));
   1419     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
   1420 
   1421     Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
   1422                                              GEPI->getName(), GEPI);
   1423     GEPI->replaceAllUsesWith(NGEPI);
   1424     GEPI->eraseFromParent();
   1425     return;
   1426   }
   1427 
   1428   // Recursively transform the users of PHI nodes.  This will lazily create the
   1429   // PHIs that are needed for individual elements.  Keep track of what PHIs we
   1430   // see in InsertedScalarizedValues so that we don't get infinite loops (very
   1431   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
   1432   // already been seen first by another load, so its uses have already been
   1433   // processed.
   1434   PHINode *PN = cast<PHINode>(LoadUser);
   1435   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
   1436                                               std::vector<Value*>())).second)
   1437     return;
   1438 
   1439   // If this is the first time we've seen this PHI, recursively process all
   1440   // users.
   1441   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
   1442     Instruction *User = cast<Instruction>(*UI++);
   1443     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1444   }
   1445 }
   1446 
   1447 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
   1448 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
   1449 /// use FieldGlobals instead.  All uses of loaded values satisfy
   1450 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
   1451 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
   1452                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1453                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1454   for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
   1455        UI != E; ) {
   1456     Instruction *User = cast<Instruction>(*UI++);
   1457     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1458   }
   1459 
   1460   if (Load->use_empty()) {
   1461     Load->eraseFromParent();
   1462     InsertedScalarizedValues.erase(Load);
   1463   }
   1464 }
   1465 
   1466 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
   1467 /// it up into multiple allocations of arrays of the fields.
   1468 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
   1469                                             Value *NElems, TargetData *TD,
   1470                                             const TargetLibraryInfo *TLI) {
   1471   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   1472   Type *MAT = getMallocAllocatedType(CI, TLI);
   1473   StructType *STy = cast<StructType>(MAT);
   1474 
   1475   // There is guaranteed to be at least one use of the malloc (storing
   1476   // it into GV).  If there are other uses, change them to be uses of
   1477   // the global to simplify later code.  This also deletes the store
   1478   // into GV.
   1479   ReplaceUsesOfMallocWithGlobal(CI, GV);
   1480 
   1481   // Okay, at this point, there are no users of the malloc.  Insert N
   1482   // new mallocs at the same place as CI, and N globals.
   1483   std::vector<Value*> FieldGlobals;
   1484   std::vector<Value*> FieldMallocs;
   1485 
   1486   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
   1487     Type *FieldTy = STy->getElementType(FieldNo);
   1488     PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
   1489 
   1490     GlobalVariable *NGV =
   1491       new GlobalVariable(*GV->getParent(),
   1492                          PFieldTy, false, GlobalValue::InternalLinkage,
   1493                          Constant::getNullValue(PFieldTy),
   1494                          GV->getName() + ".f" + Twine(FieldNo), GV,
   1495                          GV->getThreadLocalMode());
   1496     FieldGlobals.push_back(NGV);
   1497 
   1498     unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
   1499     if (StructType *ST = dyn_cast<StructType>(FieldTy))
   1500       TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
   1501     Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
   1502     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
   1503                                         ConstantInt::get(IntPtrTy, TypeSize),
   1504                                         NElems, 0,
   1505                                         CI->getName() + ".f" + Twine(FieldNo));
   1506     FieldMallocs.push_back(NMI);
   1507     new StoreInst(NMI, NGV, CI);
   1508   }
   1509 
   1510   // The tricky aspect of this transformation is handling the case when malloc
   1511   // fails.  In the original code, malloc failing would set the result pointer
   1512   // of malloc to null.  In this case, some mallocs could succeed and others
   1513   // could fail.  As such, we emit code that looks like this:
   1514   //    F0 = malloc(field0)
   1515   //    F1 = malloc(field1)
   1516   //    F2 = malloc(field2)
   1517   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
   1518   //      if (F0) { free(F0); F0 = 0; }
   1519   //      if (F1) { free(F1); F1 = 0; }
   1520   //      if (F2) { free(F2); F2 = 0; }
   1521   //    }
   1522   // The malloc can also fail if its argument is too large.
   1523   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
   1524   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
   1525                                   ConstantZero, "isneg");
   1526   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
   1527     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
   1528                              Constant::getNullValue(FieldMallocs[i]->getType()),
   1529                                "isnull");
   1530     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
   1531   }
   1532 
   1533   // Split the basic block at the old malloc.
   1534   BasicBlock *OrigBB = CI->getParent();
   1535   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
   1536 
   1537   // Create the block to check the first condition.  Put all these blocks at the
   1538   // end of the function as they are unlikely to be executed.
   1539   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
   1540                                                 "malloc_ret_null",
   1541                                                 OrigBB->getParent());
   1542 
   1543   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   1544   // branch on RunningOr.
   1545   OrigBB->getTerminator()->eraseFromParent();
   1546   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
   1547 
   1548   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   1549   // pointer, because some may be null while others are not.
   1550   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1551     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
   1552     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
   1553                               Constant::getNullValue(GVVal->getType()));
   1554     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
   1555                                                OrigBB->getParent());
   1556     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
   1557                                                OrigBB->getParent());
   1558     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
   1559                                          Cmp, NullPtrBlock);
   1560 
   1561     // Fill in FreeBlock.
   1562     CallInst::CreateFree(GVVal, BI);
   1563     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
   1564                   FreeBlock);
   1565     BranchInst::Create(NextBlock, FreeBlock);
   1566 
   1567     NullPtrBlock = NextBlock;
   1568   }
   1569 
   1570   BranchInst::Create(ContBB, NullPtrBlock);
   1571 
   1572   // CI is no longer needed, remove it.
   1573   CI->eraseFromParent();
   1574 
   1575   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
   1576   /// update all uses of the load, keep track of what scalarized loads are
   1577   /// inserted for a given load.
   1578   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   1579   InsertedScalarizedValues[GV] = FieldGlobals;
   1580 
   1581   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
   1582 
   1583   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   1584   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   1585   // of the per-field globals instead.
   1586   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
   1587     Instruction *User = cast<Instruction>(*UI++);
   1588 
   1589     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1590       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
   1591       continue;
   1592     }
   1593 
   1594     // Must be a store of null.
   1595     StoreInst *SI = cast<StoreInst>(User);
   1596     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
   1597            "Unexpected heap-sra user!");
   1598 
   1599     // Insert a store of null into each global.
   1600     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1601       PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
   1602       Constant *Null = Constant::getNullValue(PT->getElementType());
   1603       new StoreInst(Null, FieldGlobals[i], SI);
   1604     }
   1605     // Erase the original store.
   1606     SI->eraseFromParent();
   1607   }
   1608 
   1609   // While we have PHIs that are interesting to rewrite, do it.
   1610   while (!PHIsToRewrite.empty()) {
   1611     PHINode *PN = PHIsToRewrite.back().first;
   1612     unsigned FieldNo = PHIsToRewrite.back().second;
   1613     PHIsToRewrite.pop_back();
   1614     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
   1615     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
   1616 
   1617     // Add all the incoming values.  This can materialize more phis.
   1618     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1619       Value *InVal = PN->getIncomingValue(i);
   1620       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
   1621                                PHIsToRewrite);
   1622       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
   1623     }
   1624   }
   1625 
   1626   // Drop all inter-phi links and any loads that made it this far.
   1627   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1628        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1629        I != E; ++I) {
   1630     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1631       PN->dropAllReferences();
   1632     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1633       LI->dropAllReferences();
   1634   }
   1635 
   1636   // Delete all the phis and loads now that inter-references are dead.
   1637   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1638        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1639        I != E; ++I) {
   1640     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1641       PN->eraseFromParent();
   1642     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1643       LI->eraseFromParent();
   1644   }
   1645 
   1646   // The old global is now dead, remove it.
   1647   GV->eraseFromParent();
   1648 
   1649   ++NumHeapSRA;
   1650   return cast<GlobalVariable>(FieldGlobals[0]);
   1651 }
   1652 
   1653 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
   1654 /// pointer global variable with a single value stored it that is a malloc or
   1655 /// cast of malloc.
   1656 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
   1657                                                CallInst *CI,
   1658                                                Type *AllocTy,
   1659                                                AtomicOrdering Ordering,
   1660                                                Module::global_iterator &GVI,
   1661                                                TargetData *TD,
   1662                                                TargetLibraryInfo *TLI) {
   1663   if (!TD)
   1664     return false;
   1665 
   1666   // If this is a malloc of an abstract type, don't touch it.
   1667   if (!AllocTy->isSized())
   1668     return false;
   1669 
   1670   // We can't optimize this global unless all uses of it are *known* to be
   1671   // of the malloc value, not of the null initializer value (consider a use
   1672   // that compares the global's value against zero to see if the malloc has
   1673   // been reached).  To do this, we check to see if all uses of the global
   1674   // would trap if the global were null: this proves that they must all
   1675   // happen after the malloc.
   1676   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
   1677     return false;
   1678 
   1679   // We can't optimize this if the malloc itself is used in a complex way,
   1680   // for example, being stored into multiple globals.  This allows the
   1681   // malloc to be stored into the specified global, loaded icmp'd, and
   1682   // GEP'd.  These are all things we could transform to using the global
   1683   // for.
   1684   SmallPtrSet<const PHINode*, 8> PHIs;
   1685   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
   1686     return false;
   1687 
   1688   // If we have a global that is only initialized with a fixed size malloc,
   1689   // transform the program to use global memory instead of malloc'd memory.
   1690   // This eliminates dynamic allocation, avoids an indirection accessing the
   1691   // data, and exposes the resultant global to further GlobalOpt.
   1692   // We cannot optimize the malloc if we cannot determine malloc array size.
   1693   Value *NElems = getMallocArraySize(CI, TD, TLI, true);
   1694   if (!NElems)
   1695     return false;
   1696 
   1697   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
   1698     // Restrict this transformation to only working on small allocations
   1699     // (2048 bytes currently), as we don't want to introduce a 16M global or
   1700     // something.
   1701     if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
   1702       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
   1703       return true;
   1704     }
   1705 
   1706   // If the allocation is an array of structures, consider transforming this
   1707   // into multiple malloc'd arrays, one for each field.  This is basically
   1708   // SRoA for malloc'd memory.
   1709 
   1710   if (Ordering != NotAtomic)
   1711     return false;
   1712 
   1713   // If this is an allocation of a fixed size array of structs, analyze as a
   1714   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   1715   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
   1716     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
   1717       AllocTy = AT->getElementType();
   1718 
   1719   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
   1720   if (!AllocSTy)
   1721     return false;
   1722 
   1723   // This the structure has an unreasonable number of fields, leave it
   1724   // alone.
   1725   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
   1726       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
   1727 
   1728     // If this is a fixed size array, transform the Malloc to be an alloc of
   1729     // structs.  malloc [100 x struct],1 -> malloc struct, 100
   1730     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
   1731       Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
   1732       unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
   1733       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
   1734       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
   1735       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
   1736                                                    AllocSize, NumElements,
   1737                                                    0, CI->getName());
   1738       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
   1739       CI->replaceAllUsesWith(Cast);
   1740       CI->eraseFromParent();
   1741       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
   1742         CI = cast<CallInst>(BCI->getOperand(0));
   1743       else
   1744         CI = cast<CallInst>(Malloc);
   1745     }
   1746 
   1747     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true),
   1748                                TD, TLI);
   1749     return true;
   1750   }
   1751 
   1752   return false;
   1753 }
   1754 
   1755 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
   1756 // that only one value (besides its initializer) is ever stored to the global.
   1757 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
   1758                                      AtomicOrdering Ordering,
   1759                                      Module::global_iterator &GVI,
   1760                                      TargetData *TD, TargetLibraryInfo *TLI) {
   1761   // Ignore no-op GEPs and bitcasts.
   1762   StoredOnceVal = StoredOnceVal->stripPointerCasts();
   1763 
   1764   // If we are dealing with a pointer global that is initialized to null and
   1765   // only has one (non-null) value stored into it, then we can optimize any
   1766   // users of the loaded value (often calls and loads) that would trap if the
   1767   // value was null.
   1768   if (GV->getInitializer()->getType()->isPointerTy() &&
   1769       GV->getInitializer()->isNullValue()) {
   1770     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
   1771       if (GV->getInitializer()->getType() != SOVC->getType())
   1772         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
   1773 
   1774       // Optimize away any trapping uses of the loaded value.
   1775       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
   1776         return true;
   1777     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
   1778       Type *MallocType = getMallocAllocatedType(CI, TLI);
   1779       if (MallocType &&
   1780           TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
   1781                                              TD, TLI))
   1782         return true;
   1783     }
   1784   }
   1785 
   1786   return false;
   1787 }
   1788 
   1789 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
   1790 /// two values ever stored into GV are its initializer and OtherVal.  See if we
   1791 /// can shrink the global into a boolean and select between the two values
   1792 /// whenever it is used.  This exposes the values to other scalar optimizations.
   1793 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
   1794   Type *GVElType = GV->getType()->getElementType();
   1795 
   1796   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   1797   // an FP value, pointer or vector, don't do this optimization because a select
   1798   // between them is very expensive and unlikely to lead to later
   1799   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
   1800   // where v1 and v2 both require constant pool loads, a big loss.
   1801   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
   1802       GVElType->isFloatingPointTy() ||
   1803       GVElType->isPointerTy() || GVElType->isVectorTy())
   1804     return false;
   1805 
   1806   // Walk the use list of the global seeing if all the uses are load or store.
   1807   // If there is anything else, bail out.
   1808   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
   1809     User *U = *I;
   1810     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
   1811       return false;
   1812   }
   1813 
   1814   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
   1815 
   1816   // Create the new global, initializing it to false.
   1817   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
   1818                                              false,
   1819                                              GlobalValue::InternalLinkage,
   1820                                         ConstantInt::getFalse(GV->getContext()),
   1821                                              GV->getName()+".b",
   1822                                              GV->getThreadLocalMode());
   1823   GV->getParent()->getGlobalList().insert(GV, NewGV);
   1824 
   1825   Constant *InitVal = GV->getInitializer();
   1826   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
   1827          "No reason to shrink to bool!");
   1828 
   1829   // If initialized to zero and storing one into the global, we can use a cast
   1830   // instead of a select to synthesize the desired value.
   1831   bool IsOneZero = false;
   1832   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
   1833     IsOneZero = InitVal->isNullValue() && CI->isOne();
   1834 
   1835   while (!GV->use_empty()) {
   1836     Instruction *UI = cast<Instruction>(GV->use_back());
   1837     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
   1838       // Change the store into a boolean store.
   1839       bool StoringOther = SI->getOperand(0) == OtherVal;
   1840       // Only do this if we weren't storing a loaded value.
   1841       Value *StoreVal;
   1842       if (StoringOther || SI->getOperand(0) == InitVal)
   1843         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
   1844                                     StoringOther);
   1845       else {
   1846         // Otherwise, we are storing a previously loaded copy.  To do this,
   1847         // change the copy from copying the original value to just copying the
   1848         // bool.
   1849         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
   1850 
   1851         // If we've already replaced the input, StoredVal will be a cast or
   1852         // select instruction.  If not, it will be a load of the original
   1853         // global.
   1854         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
   1855           assert(LI->getOperand(0) == GV && "Not a copy!");
   1856           // Insert a new load, to preserve the saved value.
   1857           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1858                                   LI->getOrdering(), LI->getSynchScope(), LI);
   1859         } else {
   1860           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
   1861                  "This is not a form that we understand!");
   1862           StoreVal = StoredVal->getOperand(0);
   1863           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
   1864         }
   1865       }
   1866       new StoreInst(StoreVal, NewGV, false, 0,
   1867                     SI->getOrdering(), SI->getSynchScope(), SI);
   1868     } else {
   1869       // Change the load into a load of bool then a select.
   1870       LoadInst *LI = cast<LoadInst>(UI);
   1871       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1872                                    LI->getOrdering(), LI->getSynchScope(), LI);
   1873       Value *NSI;
   1874       if (IsOneZero)
   1875         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
   1876       else
   1877         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
   1878       NSI->takeName(LI);
   1879       LI->replaceAllUsesWith(NSI);
   1880     }
   1881     UI->eraseFromParent();
   1882   }
   1883 
   1884   GV->eraseFromParent();
   1885   return true;
   1886 }
   1887 
   1888 
   1889 /// ProcessGlobal - Analyze the specified global variable and optimize it if
   1890 /// possible.  If we make a change, return true.
   1891 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
   1892                               Module::global_iterator &GVI) {
   1893   if (!GV->isDiscardableIfUnused())
   1894     return false;
   1895 
   1896   // Do more involved optimizations if the global is internal.
   1897   GV->removeDeadConstantUsers();
   1898 
   1899   if (GV->use_empty()) {
   1900     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
   1901     GV->eraseFromParent();
   1902     ++NumDeleted;
   1903     return true;
   1904   }
   1905 
   1906   if (!GV->hasLocalLinkage())
   1907     return false;
   1908 
   1909   SmallPtrSet<const PHINode*, 16> PHIUsers;
   1910   GlobalStatus GS;
   1911 
   1912   if (AnalyzeGlobal(GV, GS, PHIUsers))
   1913     return false;
   1914 
   1915   if (!GS.isCompared && !GV->hasUnnamedAddr()) {
   1916     GV->setUnnamedAddr(true);
   1917     NumUnnamed++;
   1918   }
   1919 
   1920   if (GV->isConstant() || !GV->hasInitializer())
   1921     return false;
   1922 
   1923   return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
   1924 }
   1925 
   1926 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
   1927 /// it if possible.  If we make a change, return true.
   1928 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
   1929                                       Module::global_iterator &GVI,
   1930                                 const SmallPtrSet<const PHINode*, 16> &PHIUsers,
   1931                                       const GlobalStatus &GS) {
   1932   // If this is a first class global and has only one accessing function
   1933   // and this function is main (which we know is not recursive we can make
   1934   // this global a local variable) we replace the global with a local alloca
   1935   // in this function.
   1936   //
   1937   // NOTE: It doesn't make sense to promote non single-value types since we
   1938   // are just replacing static memory to stack memory.
   1939   //
   1940   // If the global is in different address space, don't bring it to stack.
   1941   if (!GS.HasMultipleAccessingFunctions &&
   1942       GS.AccessingFunction && !GS.HasNonInstructionUser &&
   1943       GV->getType()->getElementType()->isSingleValueType() &&
   1944       GS.AccessingFunction->getName() == "main" &&
   1945       GS.AccessingFunction->hasExternalLinkage() &&
   1946       GV->getType()->getAddressSpace() == 0) {
   1947     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
   1948     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
   1949                                                    ->getEntryBlock().begin());
   1950     Type *ElemTy = GV->getType()->getElementType();
   1951     // FIXME: Pass Global's alignment when globals have alignment
   1952     AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
   1953     if (!isa<UndefValue>(GV->getInitializer()))
   1954       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
   1955 
   1956     GV->replaceAllUsesWith(Alloca);
   1957     GV->eraseFromParent();
   1958     ++NumLocalized;
   1959     return true;
   1960   }
   1961 
   1962   // If the global is never loaded (but may be stored to), it is dead.
   1963   // Delete it now.
   1964   if (!GS.isLoaded) {
   1965     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
   1966 
   1967     bool Changed;
   1968     if (isLeakCheckerRoot(GV)) {
   1969       // Delete any constant stores to the global.
   1970       Changed = CleanupPointerRootUsers(GV, TLI);
   1971     } else {
   1972       // Delete any stores we can find to the global.  We may not be able to
   1973       // make it completely dead though.
   1974       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
   1975     }
   1976 
   1977     // If the global is dead now, delete it.
   1978     if (GV->use_empty()) {
   1979       GV->eraseFromParent();
   1980       ++NumDeleted;
   1981       Changed = true;
   1982     }
   1983     return Changed;
   1984 
   1985   } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
   1986     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
   1987     GV->setConstant(true);
   1988 
   1989     // Clean up any obviously simplifiable users now.
   1990     CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
   1991 
   1992     // If the global is dead now, just nuke it.
   1993     if (GV->use_empty()) {
   1994       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
   1995             << "all users and delete global!\n");
   1996       GV->eraseFromParent();
   1997       ++NumDeleted;
   1998     }
   1999 
   2000     ++NumMarked;
   2001     return true;
   2002   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
   2003     if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
   2004       if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
   2005         GVI = FirstNewGV;  // Don't skip the newly produced globals!
   2006         return true;
   2007       }
   2008   } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
   2009     // If the initial value for the global was an undef value, and if only
   2010     // one other value was stored into it, we can just change the
   2011     // initializer to be the stored value, then delete all stores to the
   2012     // global.  This allows us to mark it constant.
   2013     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   2014       if (isa<UndefValue>(GV->getInitializer())) {
   2015         // Change the initial value here.
   2016         GV->setInitializer(SOVConstant);
   2017 
   2018         // Clean up any obviously simplifiable users now.
   2019         CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
   2020 
   2021         if (GV->use_empty()) {
   2022           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
   2023                        << "simplify all users and delete global!\n");
   2024           GV->eraseFromParent();
   2025           ++NumDeleted;
   2026         } else {
   2027           GVI = GV;
   2028         }
   2029         ++NumSubstitute;
   2030         return true;
   2031       }
   2032 
   2033     // Try to optimize globals based on the knowledge that only one value
   2034     // (besides its initializer) is ever stored to the global.
   2035     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
   2036                                  TD, TLI))
   2037       return true;
   2038 
   2039     // Otherwise, if the global was not a boolean, we can shrink it to be a
   2040     // boolean.
   2041     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   2042       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
   2043         ++NumShrunkToBool;
   2044         return true;
   2045       }
   2046   }
   2047 
   2048   return false;
   2049 }
   2050 
   2051 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
   2052 /// function, changing them to FastCC.
   2053 static void ChangeCalleesToFastCall(Function *F) {
   2054   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
   2055     if (isa<BlockAddress>(*UI))
   2056       continue;
   2057     CallSite User(cast<Instruction>(*UI));
   2058     User.setCallingConv(CallingConv::Fast);
   2059   }
   2060 }
   2061 
   2062 static AttrListPtr StripNest(const AttrListPtr &Attrs) {
   2063   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   2064     if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
   2065       continue;
   2066 
   2067     // There can be only one.
   2068     return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
   2069   }
   2070 
   2071   return Attrs;
   2072 }
   2073 
   2074 static void RemoveNestAttribute(Function *F) {
   2075   F->setAttributes(StripNest(F->getAttributes()));
   2076   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
   2077     if (isa<BlockAddress>(*UI))
   2078       continue;
   2079     CallSite User(cast<Instruction>(*UI));
   2080     User.setAttributes(StripNest(User.getAttributes()));
   2081   }
   2082 }
   2083 
   2084 bool GlobalOpt::OptimizeFunctions(Module &M) {
   2085   bool Changed = false;
   2086   // Optimize functions.
   2087   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
   2088     Function *F = FI++;
   2089     // Functions without names cannot be referenced outside this module.
   2090     if (!F->hasName() && !F->isDeclaration())
   2091       F->setLinkage(GlobalValue::InternalLinkage);
   2092     F->removeDeadConstantUsers();
   2093     if (F->isDefTriviallyDead()) {
   2094       F->eraseFromParent();
   2095       Changed = true;
   2096       ++NumFnDeleted;
   2097     } else if (F->hasLocalLinkage()) {
   2098       if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
   2099           !F->hasAddressTaken()) {
   2100         // If this function has C calling conventions, is not a varargs
   2101         // function, and is only called directly, promote it to use the Fast
   2102         // calling convention.
   2103         F->setCallingConv(CallingConv::Fast);
   2104         ChangeCalleesToFastCall(F);
   2105         ++NumFastCallFns;
   2106         Changed = true;
   2107       }
   2108 
   2109       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
   2110           !F->hasAddressTaken()) {
   2111         // The function is not used by a trampoline intrinsic, so it is safe
   2112         // to remove the 'nest' attribute.
   2113         RemoveNestAttribute(F);
   2114         ++NumNestRemoved;
   2115         Changed = true;
   2116       }
   2117     }
   2118   }
   2119   return Changed;
   2120 }
   2121 
   2122 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
   2123   bool Changed = false;
   2124   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
   2125        GVI != E; ) {
   2126     GlobalVariable *GV = GVI++;
   2127     // Global variables without names cannot be referenced outside this module.
   2128     if (!GV->hasName() && !GV->isDeclaration())
   2129       GV->setLinkage(GlobalValue::InternalLinkage);
   2130     // Simplify the initializer.
   2131     if (GV->hasInitializer())
   2132       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
   2133         Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
   2134         if (New && New != CE)
   2135           GV->setInitializer(New);
   2136       }
   2137 
   2138     Changed |= ProcessGlobal(GV, GVI);
   2139   }
   2140   return Changed;
   2141 }
   2142 
   2143 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
   2144 /// initializers have an init priority of 65535.
   2145 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
   2146   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
   2147   if (GV == 0) return 0;
   2148 
   2149   // Verify that the initializer is simple enough for us to handle. We are
   2150   // only allowed to optimize the initializer if it is unique.
   2151   if (!GV->hasUniqueInitializer()) return 0;
   2152 
   2153   if (isa<ConstantAggregateZero>(GV->getInitializer()))
   2154     return GV;
   2155   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   2156 
   2157   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
   2158     if (isa<ConstantAggregateZero>(*i))
   2159       continue;
   2160     ConstantStruct *CS = cast<ConstantStruct>(*i);
   2161     if (isa<ConstantPointerNull>(CS->getOperand(1)))
   2162       continue;
   2163 
   2164     // Must have a function or null ptr.
   2165     if (!isa<Function>(CS->getOperand(1)))
   2166       return 0;
   2167 
   2168     // Init priority must be standard.
   2169     ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
   2170     if (CI->getZExtValue() != 65535)
   2171       return 0;
   2172   }
   2173 
   2174   return GV;
   2175 }
   2176 
   2177 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
   2178 /// return a list of the functions and null terminator as a vector.
   2179 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
   2180   if (GV->getInitializer()->isNullValue())
   2181     return std::vector<Function*>();
   2182   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   2183   std::vector<Function*> Result;
   2184   Result.reserve(CA->getNumOperands());
   2185   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
   2186     ConstantStruct *CS = cast<ConstantStruct>(*i);
   2187     Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
   2188   }
   2189   return Result;
   2190 }
   2191 
   2192 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
   2193 /// specified array, returning the new global to use.
   2194 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
   2195                                           const std::vector<Function*> &Ctors) {
   2196   // If we made a change, reassemble the initializer list.
   2197   Constant *CSVals[2];
   2198   CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
   2199   CSVals[1] = 0;
   2200 
   2201   StructType *StructTy =
   2202     cast <StructType>(
   2203     cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
   2204 
   2205   // Create the new init list.
   2206   std::vector<Constant*> CAList;
   2207   for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
   2208     if (Ctors[i]) {
   2209       CSVals[1] = Ctors[i];
   2210     } else {
   2211       Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
   2212                                           false);
   2213       PointerType *PFTy = PointerType::getUnqual(FTy);
   2214       CSVals[1] = Constant::getNullValue(PFTy);
   2215       CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
   2216                                    0x7fffffff);
   2217     }
   2218     CAList.push_back(ConstantStruct::get(StructTy, CSVals));
   2219   }
   2220 
   2221   // Create the array initializer.
   2222   Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
   2223                                                    CAList.size()), CAList);
   2224 
   2225   // If we didn't change the number of elements, don't create a new GV.
   2226   if (CA->getType() == GCL->getInitializer()->getType()) {
   2227     GCL->setInitializer(CA);
   2228     return GCL;
   2229   }
   2230 
   2231   // Create the new global and insert it next to the existing list.
   2232   GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
   2233                                            GCL->getLinkage(), CA, "",
   2234                                            GCL->getThreadLocalMode());
   2235   GCL->getParent()->getGlobalList().insert(GCL, NGV);
   2236   NGV->takeName(GCL);
   2237 
   2238   // Nuke the old list, replacing any uses with the new one.
   2239   if (!GCL->use_empty()) {
   2240     Constant *V = NGV;
   2241     if (V->getType() != GCL->getType())
   2242       V = ConstantExpr::getBitCast(V, GCL->getType());
   2243     GCL->replaceAllUsesWith(V);
   2244   }
   2245   GCL->eraseFromParent();
   2246 
   2247   if (Ctors.size())
   2248     return NGV;
   2249   else
   2250     return 0;
   2251 }
   2252 
   2253 
   2254 static inline bool
   2255 isSimpleEnoughValueToCommit(Constant *C,
   2256                             SmallPtrSet<Constant*, 8> &SimpleConstants,
   2257                             const TargetData *TD);
   2258 
   2259 
   2260 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
   2261 /// handled by the code generator.  We don't want to generate something like:
   2262 ///   void *X = &X/42;
   2263 /// because the code generator doesn't have a relocation that can handle that.
   2264 ///
   2265 /// This function should be called if C was not found (but just got inserted)
   2266 /// in SimpleConstants to avoid having to rescan the same constants all the
   2267 /// time.
   2268 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
   2269                                    SmallPtrSet<Constant*, 8> &SimpleConstants,
   2270                                    const TargetData *TD) {
   2271   // Simple integer, undef, constant aggregate zero, global addresses, etc are
   2272   // all supported.
   2273   if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
   2274       isa<GlobalValue>(C))
   2275     return true;
   2276 
   2277   // Aggregate values are safe if all their elements are.
   2278   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
   2279       isa<ConstantVector>(C)) {
   2280     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
   2281       Constant *Op = cast<Constant>(C->getOperand(i));
   2282       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
   2283         return false;
   2284     }
   2285     return true;
   2286   }
   2287 
   2288   // We don't know exactly what relocations are allowed in constant expressions,
   2289   // so we allow &global+constantoffset, which is safe and uniformly supported
   2290   // across targets.
   2291   ConstantExpr *CE = cast<ConstantExpr>(C);
   2292   switch (CE->getOpcode()) {
   2293   case Instruction::BitCast:
   2294     // Bitcast is fine if the casted value is fine.
   2295     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
   2296 
   2297   case Instruction::IntToPtr:
   2298   case Instruction::PtrToInt:
   2299     // int <=> ptr is fine if the int type is the same size as the
   2300     // pointer type.
   2301     if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
   2302                TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
   2303       return false;
   2304     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
   2305 
   2306   // GEP is fine if it is simple + constant offset.
   2307   case Instruction::GetElementPtr:
   2308     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
   2309       if (!isa<ConstantInt>(CE->getOperand(i)))
   2310         return false;
   2311     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
   2312 
   2313   case Instruction::Add:
   2314     // We allow simple+cst.
   2315     if (!isa<ConstantInt>(CE->getOperand(1)))
   2316       return false;
   2317     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
   2318   }
   2319   return false;
   2320 }
   2321 
   2322 static inline bool
   2323 isSimpleEnoughValueToCommit(Constant *C,
   2324                             SmallPtrSet<Constant*, 8> &SimpleConstants,
   2325                             const TargetData *TD) {
   2326   // If we already checked this constant, we win.
   2327   if (!SimpleConstants.insert(C)) return true;
   2328   // Check the constant.
   2329   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
   2330 }
   2331 
   2332 
   2333 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
   2334 /// enough for us to understand.  In particular, if it is a cast to anything
   2335 /// other than from one pointer type to another pointer type, we punt.
   2336 /// We basically just support direct accesses to globals and GEP's of
   2337 /// globals.  This should be kept up to date with CommitValueTo.
   2338 static bool isSimpleEnoughPointerToCommit(Constant *C) {
   2339   // Conservatively, avoid aggregate types. This is because we don't
   2340   // want to worry about them partially overlapping other stores.
   2341   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
   2342     return false;
   2343 
   2344   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
   2345     // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2346     // external globals.
   2347     return GV->hasUniqueInitializer();
   2348 
   2349   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2350     // Handle a constantexpr gep.
   2351     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2352         isa<GlobalVariable>(CE->getOperand(0)) &&
   2353         cast<GEPOperator>(CE)->isInBounds()) {
   2354       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2355       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2356       // external globals.
   2357       if (!GV->hasUniqueInitializer())
   2358         return false;
   2359 
   2360       // The first index must be zero.
   2361       ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
   2362       if (!CI || !CI->isZero()) return false;
   2363 
   2364       // The remaining indices must be compile-time known integers within the
   2365       // notional bounds of the corresponding static array types.
   2366       if (!CE->isGEPWithNoNotionalOverIndexing())
   2367         return false;
   2368 
   2369       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2370 
   2371     // A constantexpr bitcast from a pointer to another pointer is a no-op,
   2372     // and we know how to evaluate it by moving the bitcast from the pointer
   2373     // operand to the value operand.
   2374     } else if (CE->getOpcode() == Instruction::BitCast &&
   2375                isa<GlobalVariable>(CE->getOperand(0))) {
   2376       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2377       // external globals.
   2378       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
   2379     }
   2380   }
   2381 
   2382   return false;
   2383 }
   2384 
   2385 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
   2386 /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
   2387 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
   2388 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
   2389                                    ConstantExpr *Addr, unsigned OpNo) {
   2390   // Base case of the recursion.
   2391   if (OpNo == Addr->getNumOperands()) {
   2392     assert(Val->getType() == Init->getType() && "Type mismatch!");
   2393     return Val;
   2394   }
   2395 
   2396   SmallVector<Constant*, 32> Elts;
   2397   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   2398     // Break up the constant into its elements.
   2399     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2400       Elts.push_back(Init->getAggregateElement(i));
   2401 
   2402     // Replace the element that we are supposed to.
   2403     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
   2404     unsigned Idx = CU->getZExtValue();
   2405     assert(Idx < STy->getNumElements() && "Struct index out of range!");
   2406     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
   2407 
   2408     // Return the modified struct.
   2409     return ConstantStruct::get(STy, Elts);
   2410   }
   2411 
   2412   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
   2413   SequentialType *InitTy = cast<SequentialType>(Init->getType());
   2414 
   2415   uint64_t NumElts;
   2416   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
   2417     NumElts = ATy->getNumElements();
   2418   else
   2419     NumElts = InitTy->getVectorNumElements();
   2420 
   2421   // Break up the array into elements.
   2422   for (uint64_t i = 0, e = NumElts; i != e; ++i)
   2423     Elts.push_back(Init->getAggregateElement(i));
   2424 
   2425   assert(CI->getZExtValue() < NumElts);
   2426   Elts[CI->getZExtValue()] =
   2427     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
   2428 
   2429   if (Init->getType()->isArrayTy())
   2430     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
   2431   return ConstantVector::get(Elts);
   2432 }
   2433 
   2434 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
   2435 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
   2436 static void CommitValueTo(Constant *Val, Constant *Addr) {
   2437   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
   2438     assert(GV->hasInitializer());
   2439     GV->setInitializer(Val);
   2440     return;
   2441   }
   2442 
   2443   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   2444   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2445   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
   2446 }
   2447 
   2448 namespace {
   2449 
   2450 /// Evaluator - This class evaluates LLVM IR, producing the Constant
   2451 /// representing each SSA instruction.  Changes to global variables are stored
   2452 /// in a mapping that can be iterated over after the evaluation is complete.
   2453 /// Once an evaluation call fails, the evaluation object should not be reused.
   2454 class Evaluator {
   2455 public:
   2456   Evaluator(const TargetData *TD, const TargetLibraryInfo *TLI)
   2457     : TD(TD), TLI(TLI) {
   2458     ValueStack.push_back(new DenseMap<Value*, Constant*>);
   2459   }
   2460 
   2461   ~Evaluator() {
   2462     DeleteContainerPointers(ValueStack);
   2463     while (!AllocaTmps.empty()) {
   2464       GlobalVariable *Tmp = AllocaTmps.back();
   2465       AllocaTmps.pop_back();
   2466 
   2467       // If there are still users of the alloca, the program is doing something
   2468       // silly, e.g. storing the address of the alloca somewhere and using it
   2469       // later.  Since this is undefined, we'll just make it be null.
   2470       if (!Tmp->use_empty())
   2471         Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
   2472       delete Tmp;
   2473     }
   2474   }
   2475 
   2476   /// EvaluateFunction - Evaluate a call to function F, returning true if
   2477   /// successful, false if we can't evaluate it.  ActualArgs contains the formal
   2478   /// arguments for the function.
   2479   bool EvaluateFunction(Function *F, Constant *&RetVal,
   2480                         const SmallVectorImpl<Constant*> &ActualArgs);
   2481 
   2482   /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
   2483   /// successful, false if we can't evaluate it.  NewBB returns the next BB that
   2484   /// control flows into, or null upon return.
   2485   bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
   2486 
   2487   Constant *getVal(Value *V) {
   2488     if (Constant *CV = dyn_cast<Constant>(V)) return CV;
   2489     Constant *R = ValueStack.back()->lookup(V);
   2490     assert(R && "Reference to an uncomputed value!");
   2491     return R;
   2492   }
   2493 
   2494   void setVal(Value *V, Constant *C) {
   2495     ValueStack.back()->operator[](V) = C;
   2496   }
   2497 
   2498   const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
   2499     return MutatedMemory;
   2500   }
   2501 
   2502   const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
   2503     return Invariants;
   2504   }
   2505 
   2506 private:
   2507   Constant *ComputeLoadResult(Constant *P);
   2508 
   2509   /// ValueStack - As we compute SSA register values, we store their contents
   2510   /// here. The back of the vector contains the current function and the stack
   2511   /// contains the values in the calling frames.
   2512   SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
   2513 
   2514   /// CallStack - This is used to detect recursion.  In pathological situations
   2515   /// we could hit exponential behavior, but at least there is nothing
   2516   /// unbounded.
   2517   SmallVector<Function*, 4> CallStack;
   2518 
   2519   /// MutatedMemory - For each store we execute, we update this map.  Loads
   2520   /// check this to get the most up-to-date value.  If evaluation is successful,
   2521   /// this state is committed to the process.
   2522   DenseMap<Constant*, Constant*> MutatedMemory;
   2523 
   2524   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
   2525   /// to represent its body.  This vector is needed so we can delete the
   2526   /// temporary globals when we are done.
   2527   SmallVector<GlobalVariable*, 32> AllocaTmps;
   2528 
   2529   /// Invariants - These global variables have been marked invariant by the
   2530   /// static constructor.
   2531   SmallPtrSet<GlobalVariable*, 8> Invariants;
   2532 
   2533   /// SimpleConstants - These are constants we have checked and know to be
   2534   /// simple enough to live in a static initializer of a global.
   2535   SmallPtrSet<Constant*, 8> SimpleConstants;
   2536 
   2537   const TargetData *TD;
   2538   const TargetLibraryInfo *TLI;
   2539 };
   2540 
   2541 }  // anonymous namespace
   2542 
   2543 /// ComputeLoadResult - Return the value that would be computed by a load from
   2544 /// P after the stores reflected by 'memory' have been performed.  If we can't
   2545 /// decide, return null.
   2546 Constant *Evaluator::ComputeLoadResult(Constant *P) {
   2547   // If this memory location has been recently stored, use the stored value: it
   2548   // is the most up-to-date.
   2549   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
   2550   if (I != MutatedMemory.end()) return I->second;
   2551 
   2552   // Access it.
   2553   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
   2554     if (GV->hasDefinitiveInitializer())
   2555       return GV->getInitializer();
   2556     return 0;
   2557   }
   2558 
   2559   // Handle a constantexpr getelementptr.
   2560   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
   2561     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2562         isa<GlobalVariable>(CE->getOperand(0))) {
   2563       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2564       if (GV->hasDefinitiveInitializer())
   2565         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2566     }
   2567 
   2568   return 0;  // don't know how to evaluate.
   2569 }
   2570 
   2571 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
   2572 /// successful, false if we can't evaluate it.  NewBB returns the next BB that
   2573 /// control flows into, or null upon return.
   2574 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
   2575                               BasicBlock *&NextBB) {
   2576   // This is the main evaluation loop.
   2577   while (1) {
   2578     Constant *InstResult = 0;
   2579 
   2580     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
   2581       if (!SI->isSimple()) return false;  // no volatile/atomic accesses.
   2582       Constant *Ptr = getVal(SI->getOperand(1));
   2583       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2584         Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
   2585       if (!isSimpleEnoughPointerToCommit(Ptr))
   2586         // If this is too complex for us to commit, reject it.
   2587         return false;
   2588 
   2589       Constant *Val = getVal(SI->getOperand(0));
   2590 
   2591       // If this might be too difficult for the backend to handle (e.g. the addr
   2592       // of one global variable divided by another) then we can't commit it.
   2593       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
   2594         return false;
   2595 
   2596       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2597         if (CE->getOpcode() == Instruction::BitCast) {
   2598           // If we're evaluating a store through a bitcast, then we need
   2599           // to pull the bitcast off the pointer type and push it onto the
   2600           // stored value.
   2601           Ptr = CE->getOperand(0);
   2602 
   2603           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
   2604 
   2605           // In order to push the bitcast onto the stored value, a bitcast
   2606           // from NewTy to Val's type must be legal.  If it's not, we can try
   2607           // introspecting NewTy to find a legal conversion.
   2608           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
   2609             // If NewTy is a struct, we can convert the pointer to the struct
   2610             // into a pointer to its first member.
   2611             // FIXME: This could be extended to support arrays as well.
   2612             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
   2613               NewTy = STy->getTypeAtIndex(0U);
   2614 
   2615               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
   2616               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
   2617               Constant * const IdxList[] = {IdxZero, IdxZero};
   2618 
   2619               Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
   2620               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2621                 Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
   2622 
   2623             // If we can't improve the situation by introspecting NewTy,
   2624             // we have to give up.
   2625             } else {
   2626               return false;
   2627             }
   2628           }
   2629 
   2630           // If we found compatible types, go ahead and push the bitcast
   2631           // onto the stored value.
   2632           Val = ConstantExpr::getBitCast(Val, NewTy);
   2633         }
   2634 
   2635       MutatedMemory[Ptr] = Val;
   2636     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
   2637       InstResult = ConstantExpr::get(BO->getOpcode(),
   2638                                      getVal(BO->getOperand(0)),
   2639                                      getVal(BO->getOperand(1)));
   2640     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
   2641       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
   2642                                             getVal(CI->getOperand(0)),
   2643                                             getVal(CI->getOperand(1)));
   2644     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
   2645       InstResult = ConstantExpr::getCast(CI->getOpcode(),
   2646                                          getVal(CI->getOperand(0)),
   2647                                          CI->getType());
   2648     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
   2649       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
   2650                                            getVal(SI->getOperand(1)),
   2651                                            getVal(SI->getOperand(2)));
   2652     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
   2653       Constant *P = getVal(GEP->getOperand(0));
   2654       SmallVector<Constant*, 8> GEPOps;
   2655       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
   2656            i != e; ++i)
   2657         GEPOps.push_back(getVal(*i));
   2658       InstResult =
   2659         ConstantExpr::getGetElementPtr(P, GEPOps,
   2660                                        cast<GEPOperator>(GEP)->isInBounds());
   2661     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
   2662       if (!LI->isSimple()) return false;  // no volatile/atomic accesses.
   2663       Constant *Ptr = getVal(LI->getOperand(0));
   2664       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2665         Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
   2666       InstResult = ComputeLoadResult(Ptr);
   2667       if (InstResult == 0) return false; // Could not evaluate load.
   2668     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
   2669       if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
   2670       Type *Ty = AI->getType()->getElementType();
   2671       AllocaTmps.push_back(new GlobalVariable(Ty, false,
   2672                                               GlobalValue::InternalLinkage,
   2673                                               UndefValue::get(Ty),
   2674                                               AI->getName()));
   2675       InstResult = AllocaTmps.back();
   2676     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
   2677       CallSite CS(CurInst);
   2678 
   2679       // Debug info can safely be ignored here.
   2680       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
   2681         ++CurInst;
   2682         continue;
   2683       }
   2684 
   2685       // Cannot handle inline asm.
   2686       if (isa<InlineAsm>(CS.getCalledValue())) return false;
   2687 
   2688       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
   2689         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
   2690           if (MSI->isVolatile()) return false;
   2691           Constant *Ptr = getVal(MSI->getDest());
   2692           Constant *Val = getVal(MSI->getValue());
   2693           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
   2694           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
   2695             // This memset is a no-op.
   2696             ++CurInst;
   2697             continue;
   2698           }
   2699         }
   2700 
   2701         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   2702             II->getIntrinsicID() == Intrinsic::lifetime_end) {
   2703           ++CurInst;
   2704           continue;
   2705         }
   2706 
   2707         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
   2708           // We don't insert an entry into Values, as it doesn't have a
   2709           // meaningful return value.
   2710           if (!II->use_empty())
   2711             return false;
   2712           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
   2713           Value *PtrArg = getVal(II->getArgOperand(1));
   2714           Value *Ptr = PtrArg->stripPointerCasts();
   2715           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   2716             Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
   2717             if (!Size->isAllOnesValue() &&
   2718                 Size->getValue().getLimitedValue() >=
   2719                 TD->getTypeStoreSize(ElemTy))
   2720               Invariants.insert(GV);
   2721           }
   2722           // Continue even if we do nothing.
   2723           ++CurInst;
   2724           continue;
   2725         }
   2726         return false;
   2727       }
   2728 
   2729       // Resolve function pointers.
   2730       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
   2731       if (!Callee || Callee->mayBeOverridden())
   2732         return false;  // Cannot resolve.
   2733 
   2734       SmallVector<Constant*, 8> Formals;
   2735       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
   2736         Formals.push_back(getVal(*i));
   2737 
   2738       if (Callee->isDeclaration()) {
   2739         // If this is a function we can constant fold, do it.
   2740         if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
   2741           InstResult = C;
   2742         } else {
   2743           return false;
   2744         }
   2745       } else {
   2746         if (Callee->getFunctionType()->isVarArg())
   2747           return false;
   2748 
   2749         Constant *RetVal;
   2750         // Execute the call, if successful, use the return value.
   2751         ValueStack.push_back(new DenseMap<Value*, Constant*>);
   2752         if (!EvaluateFunction(Callee, RetVal, Formals))
   2753           return false;
   2754         delete ValueStack.pop_back_val();
   2755         InstResult = RetVal;
   2756       }
   2757     } else if (isa<TerminatorInst>(CurInst)) {
   2758       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
   2759         if (BI->isUnconditional()) {
   2760           NextBB = BI->getSuccessor(0);
   2761         } else {
   2762           ConstantInt *Cond =
   2763             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
   2764           if (!Cond) return false;  // Cannot determine.
   2765 
   2766           NextBB = BI->getSuccessor(!Cond->getZExtValue());
   2767         }
   2768       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
   2769         ConstantInt *Val =
   2770           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
   2771         if (!Val) return false;  // Cannot determine.
   2772         NextBB = SI->findCaseValue(Val).getCaseSuccessor();
   2773       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
   2774         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
   2775         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
   2776           NextBB = BA->getBasicBlock();
   2777         else
   2778           return false;  // Cannot determine.
   2779       } else if (isa<ReturnInst>(CurInst)) {
   2780         NextBB = 0;
   2781       } else {
   2782         // invoke, unwind, resume, unreachable.
   2783         return false;  // Cannot handle this terminator.
   2784       }
   2785 
   2786       // We succeeded at evaluating this block!
   2787       return true;
   2788     } else {
   2789       // Did not know how to evaluate this!
   2790       return false;
   2791     }
   2792 
   2793     if (!CurInst->use_empty()) {
   2794       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
   2795         InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
   2796 
   2797       setVal(CurInst, InstResult);
   2798     }
   2799 
   2800     // If we just processed an invoke, we finished evaluating the block.
   2801     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
   2802       NextBB = II->getNormalDest();
   2803       return true;
   2804     }
   2805 
   2806     // Advance program counter.
   2807     ++CurInst;
   2808   }
   2809 }
   2810 
   2811 /// EvaluateFunction - Evaluate a call to function F, returning true if
   2812 /// successful, false if we can't evaluate it.  ActualArgs contains the formal
   2813 /// arguments for the function.
   2814 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
   2815                                  const SmallVectorImpl<Constant*> &ActualArgs) {
   2816   // Check to see if this function is already executing (recursion).  If so,
   2817   // bail out.  TODO: we might want to accept limited recursion.
   2818   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
   2819     return false;
   2820 
   2821   CallStack.push_back(F);
   2822 
   2823   // Initialize arguments to the incoming values specified.
   2824   unsigned ArgNo = 0;
   2825   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
   2826        ++AI, ++ArgNo)
   2827     setVal(AI, ActualArgs[ArgNo]);
   2828 
   2829   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
   2830   // we can only evaluate any one basic block at most once.  This set keeps
   2831   // track of what we have executed so we can detect recursive cases etc.
   2832   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
   2833 
   2834   // CurBB - The current basic block we're evaluating.
   2835   BasicBlock *CurBB = F->begin();
   2836 
   2837   BasicBlock::iterator CurInst = CurBB->begin();
   2838 
   2839   while (1) {
   2840     BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
   2841     if (!EvaluateBlock(CurInst, NextBB))
   2842       return false;
   2843 
   2844     if (NextBB == 0) {
   2845       // Successfully running until there's no next block means that we found
   2846       // the return.  Fill it the return value and pop the call stack.
   2847       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
   2848       if (RI->getNumOperands())
   2849         RetVal = getVal(RI->getOperand(0));
   2850       CallStack.pop_back();
   2851       return true;
   2852     }
   2853 
   2854     // Okay, we succeeded in evaluating this control flow.  See if we have
   2855     // executed the new block before.  If so, we have a looping function,
   2856     // which we cannot evaluate in reasonable time.
   2857     if (!ExecutedBlocks.insert(NextBB))
   2858       return false;  // looped!
   2859 
   2860     // Okay, we have never been in this block before.  Check to see if there
   2861     // are any PHI nodes.  If so, evaluate them with information about where
   2862     // we came from.
   2863     PHINode *PN = 0;
   2864     for (CurInst = NextBB->begin();
   2865          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
   2866       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
   2867 
   2868     // Advance to the next block.
   2869     CurBB = NextBB;
   2870   }
   2871 }
   2872 
   2873 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
   2874 /// we can.  Return true if we can, false otherwise.
   2875 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD,
   2876                                       const TargetLibraryInfo *TLI) {
   2877   // Call the function.
   2878   Evaluator Eval(TD, TLI);
   2879   Constant *RetValDummy;
   2880   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
   2881                                            SmallVector<Constant*, 0>());
   2882 
   2883   if (EvalSuccess) {
   2884     // We succeeded at evaluation: commit the result.
   2885     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
   2886           << F->getName() << "' to " << Eval.getMutatedMemory().size()
   2887           << " stores.\n");
   2888     for (DenseMap<Constant*, Constant*>::const_iterator I =
   2889            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
   2890          I != E; ++I)
   2891       CommitValueTo(I->second, I->first);
   2892     for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
   2893            Eval.getInvariants().begin(), E = Eval.getInvariants().end();
   2894          I != E; ++I)
   2895       (*I)->setConstant(true);
   2896   }
   2897 
   2898   return EvalSuccess;
   2899 }
   2900 
   2901 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
   2902 /// Return true if anything changed.
   2903 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
   2904   std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
   2905   bool MadeChange = false;
   2906   if (Ctors.empty()) return false;
   2907 
   2908   // Loop over global ctors, optimizing them when we can.
   2909   for (unsigned i = 0; i != Ctors.size(); ++i) {
   2910     Function *F = Ctors[i];
   2911     // Found a null terminator in the middle of the list, prune off the rest of
   2912     // the list.
   2913     if (F == 0) {
   2914       if (i != Ctors.size()-1) {
   2915         Ctors.resize(i+1);
   2916         MadeChange = true;
   2917       }
   2918       break;
   2919     }
   2920 
   2921     // We cannot simplify external ctor functions.
   2922     if (F->empty()) continue;
   2923 
   2924     // If we can evaluate the ctor at compile time, do.
   2925     if (EvaluateStaticConstructor(F, TD, TLI)) {
   2926       Ctors.erase(Ctors.begin()+i);
   2927       MadeChange = true;
   2928       --i;
   2929       ++NumCtorsEvaluated;
   2930       continue;
   2931     }
   2932   }
   2933 
   2934   if (!MadeChange) return false;
   2935 
   2936   GCL = InstallGlobalCtors(GCL, Ctors);
   2937   return true;
   2938 }
   2939 
   2940 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
   2941   bool Changed = false;
   2942 
   2943   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
   2944        I != E;) {
   2945     Module::alias_iterator J = I++;
   2946     // Aliases without names cannot be referenced outside this module.
   2947     if (!J->hasName() && !J->isDeclaration())
   2948       J->setLinkage(GlobalValue::InternalLinkage);
   2949     // If the aliasee may change at link time, nothing can be done - bail out.
   2950     if (J->mayBeOverridden())
   2951       continue;
   2952 
   2953     Constant *Aliasee = J->getAliasee();
   2954     GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
   2955     Target->removeDeadConstantUsers();
   2956     bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
   2957 
   2958     // Make all users of the alias use the aliasee instead.
   2959     if (!J->use_empty()) {
   2960       J->replaceAllUsesWith(Aliasee);
   2961       ++NumAliasesResolved;
   2962       Changed = true;
   2963     }
   2964 
   2965     // If the alias is externally visible, we may still be able to simplify it.
   2966     if (!J->hasLocalLinkage()) {
   2967       // If the aliasee has internal linkage, give it the name and linkage
   2968       // of the alias, and delete the alias.  This turns:
   2969       //   define internal ... @f(...)
   2970       //   @a = alias ... @f
   2971       // into:
   2972       //   define ... @a(...)
   2973       if (!Target->hasLocalLinkage())
   2974         continue;
   2975 
   2976       // Do not perform the transform if multiple aliases potentially target the
   2977       // aliasee. This check also ensures that it is safe to replace the section
   2978       // and other attributes of the aliasee with those of the alias.
   2979       if (!hasOneUse)
   2980         continue;
   2981 
   2982       // Give the aliasee the name, linkage and other attributes of the alias.
   2983       Target->takeName(J);
   2984       Target->setLinkage(J->getLinkage());
   2985       Target->GlobalValue::copyAttributesFrom(J);
   2986     }
   2987 
   2988     // Delete the alias.
   2989     M.getAliasList().erase(J);
   2990     ++NumAliasesRemoved;
   2991     Changed = true;
   2992   }
   2993 
   2994   return Changed;
   2995 }
   2996 
   2997 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
   2998   if (!TLI->has(LibFunc::cxa_atexit))
   2999     return 0;
   3000 
   3001   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
   3002 
   3003   if (!Fn)
   3004     return 0;
   3005 
   3006   FunctionType *FTy = Fn->getFunctionType();
   3007 
   3008   // Checking that the function has the right return type, the right number of
   3009   // parameters and that they all have pointer types should be enough.
   3010   if (!FTy->getReturnType()->isIntegerTy() ||
   3011       FTy->getNumParams() != 3 ||
   3012       !FTy->getParamType(0)->isPointerTy() ||
   3013       !FTy->getParamType(1)->isPointerTy() ||
   3014       !FTy->getParamType(2)->isPointerTy())
   3015     return 0;
   3016 
   3017   return Fn;
   3018 }
   3019 
   3020 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
   3021 /// destructor and can therefore be eliminated.
   3022 /// Note that we assume that other optimization passes have already simplified
   3023 /// the code so we only look for a function with a single basic block, where
   3024 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
   3025 /// other side-effect free instructions.
   3026 static bool cxxDtorIsEmpty(const Function &Fn,
   3027                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
   3028   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
   3029   // nounwind, but that doesn't seem worth doing.
   3030   if (Fn.isDeclaration())
   3031     return false;
   3032 
   3033   if (++Fn.begin() != Fn.end())
   3034     return false;
   3035 
   3036   const BasicBlock &EntryBlock = Fn.getEntryBlock();
   3037   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
   3038        I != E; ++I) {
   3039     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
   3040       // Ignore debug intrinsics.
   3041       if (isa<DbgInfoIntrinsic>(CI))
   3042         continue;
   3043 
   3044       const Function *CalledFn = CI->getCalledFunction();
   3045 
   3046       if (!CalledFn)
   3047         return false;
   3048 
   3049       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
   3050 
   3051       // Don't treat recursive functions as empty.
   3052       if (!NewCalledFunctions.insert(CalledFn))
   3053         return false;
   3054 
   3055       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
   3056         return false;
   3057     } else if (isa<ReturnInst>(*I))
   3058       return true; // We're done.
   3059     else if (I->mayHaveSideEffects())
   3060       return false; // Destructor with side effects, bail.
   3061   }
   3062 
   3063   return false;
   3064 }
   3065 
   3066 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
   3067   /// Itanium C++ ABI p3.3.5:
   3068   ///
   3069   ///   After constructing a global (or local static) object, that will require
   3070   ///   destruction on exit, a termination function is registered as follows:
   3071   ///
   3072   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
   3073   ///
   3074   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
   3075   ///   call f(p) when DSO d is unloaded, before all such termination calls
   3076   ///   registered before this one. It returns zero if registration is
   3077   ///   successful, nonzero on failure.
   3078 
   3079   // This pass will look for calls to __cxa_atexit where the function is trivial
   3080   // and remove them.
   3081   bool Changed = false;
   3082 
   3083   for (Function::use_iterator I = CXAAtExitFn->use_begin(),
   3084        E = CXAAtExitFn->use_end(); I != E;) {
   3085     // We're only interested in calls. Theoretically, we could handle invoke
   3086     // instructions as well, but neither llvm-gcc nor clang generate invokes
   3087     // to __cxa_atexit.
   3088     CallInst *CI = dyn_cast<CallInst>(*I++);
   3089     if (!CI)
   3090       continue;
   3091 
   3092     Function *DtorFn =
   3093       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
   3094     if (!DtorFn)
   3095       continue;
   3096 
   3097     SmallPtrSet<const Function *, 8> CalledFunctions;
   3098     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
   3099       continue;
   3100 
   3101     // Just remove the call.
   3102     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
   3103     CI->eraseFromParent();
   3104 
   3105     ++NumCXXDtorsRemoved;
   3106 
   3107     Changed |= true;
   3108   }
   3109 
   3110   return Changed;
   3111 }
   3112 
   3113 bool GlobalOpt::runOnModule(Module &M) {
   3114   bool Changed = false;
   3115 
   3116   TD = getAnalysisIfAvailable<TargetData>();
   3117   TLI = &getAnalysis<TargetLibraryInfo>();
   3118 
   3119   // Try to find the llvm.globalctors list.
   3120   GlobalVariable *GlobalCtors = FindGlobalCtors(M);
   3121 
   3122   Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
   3123 
   3124   bool LocalChange = true;
   3125   while (LocalChange) {
   3126     LocalChange = false;
   3127 
   3128     // Delete functions that are trivially dead, ccc -> fastcc
   3129     LocalChange |= OptimizeFunctions(M);
   3130 
   3131     // Optimize global_ctors list.
   3132     if (GlobalCtors)
   3133       LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
   3134 
   3135     // Optimize non-address-taken globals.
   3136     LocalChange |= OptimizeGlobalVars(M);
   3137 
   3138     // Resolve aliases, when possible.
   3139     LocalChange |= OptimizeGlobalAliases(M);
   3140 
   3141     // Try to remove trivial global destructors.
   3142     if (CXAAtExitFn)
   3143       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
   3144 
   3145     Changed |= LocalChange;
   3146   }
   3147 
   3148   // TODO: Move all global ctors functions to the end of the module for code
   3149   // layout.
   3150 
   3151   return Changed;
   3152 }
   3153