Home | History | Annotate | Download | only in VMCore
      1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements all of the non-inline methods for the LLVM instruction
     11 // classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "LLVMContextImpl.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Operator.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/CallSite.h"
     24 #include "llvm/Support/ConstantRange.h"
     25 #include "llvm/Support/MathExtras.h"
     26 using namespace llvm;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                            CallSite Class
     30 //===----------------------------------------------------------------------===//
     31 
     32 User::op_iterator CallSite::getCallee() const {
     33   Instruction *II(getInstruction());
     34   return isCall()
     35     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
     36     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
     37 }
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                            TerminatorInst Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 // Out of line virtual method, so the vtable, etc has a home.
     44 TerminatorInst::~TerminatorInst() {
     45 }
     46 
     47 //===----------------------------------------------------------------------===//
     48 //                           UnaryInstruction Class
     49 //===----------------------------------------------------------------------===//
     50 
     51 // Out of line virtual method, so the vtable, etc has a home.
     52 UnaryInstruction::~UnaryInstruction() {
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //                              SelectInst Class
     57 //===----------------------------------------------------------------------===//
     58 
     59 /// areInvalidOperands - Return a string if the specified operands are invalid
     60 /// for a select operation, otherwise return null.
     61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
     62   if (Op1->getType() != Op2->getType())
     63     return "both values to select must have same type";
     64 
     65   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
     66     // Vector select.
     67     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
     68       return "vector select condition element type must be i1";
     69     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
     70     if (ET == 0)
     71       return "selected values for vector select must be vectors";
     72     if (ET->getNumElements() != VT->getNumElements())
     73       return "vector select requires selected vectors to have "
     74                    "the same vector length as select condition";
     75   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
     76     return "select condition must be i1 or <n x i1>";
     77   }
     78   return 0;
     79 }
     80 
     81 
     82 //===----------------------------------------------------------------------===//
     83 //                               PHINode Class
     84 //===----------------------------------------------------------------------===//
     85 
     86 PHINode::PHINode(const PHINode &PN)
     87   : Instruction(PN.getType(), Instruction::PHI,
     88                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
     89     ReservedSpace(PN.getNumOperands()) {
     90   std::copy(PN.op_begin(), PN.op_end(), op_begin());
     91   std::copy(PN.block_begin(), PN.block_end(), block_begin());
     92   SubclassOptionalData = PN.SubclassOptionalData;
     93 }
     94 
     95 PHINode::~PHINode() {
     96   dropHungoffUses();
     97 }
     98 
     99 Use *PHINode::allocHungoffUses(unsigned N) const {
    100   // Allocate the array of Uses of the incoming values, followed by a pointer
    101   // (with bottom bit set) to the User, followed by the array of pointers to
    102   // the incoming basic blocks.
    103   size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
    104     + N * sizeof(BasicBlock*);
    105   Use *Begin = static_cast<Use*>(::operator new(size));
    106   Use *End = Begin + N;
    107   (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
    108   return Use::initTags(Begin, End);
    109 }
    110 
    111 // removeIncomingValue - Remove an incoming value.  This is useful if a
    112 // predecessor basic block is deleted.
    113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
    114   Value *Removed = getIncomingValue(Idx);
    115 
    116   // Move everything after this operand down.
    117   //
    118   // FIXME: we could just swap with the end of the list, then erase.  However,
    119   // clients might not expect this to happen.  The code as it is thrashes the
    120   // use/def lists, which is kinda lame.
    121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
    122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
    123 
    124   // Nuke the last value.
    125   Op<-1>().set(0);
    126   --NumOperands;
    127 
    128   // If the PHI node is dead, because it has zero entries, nuke it now.
    129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
    130     // If anyone is using this PHI, make them use a dummy value instead...
    131     replaceAllUsesWith(UndefValue::get(getType()));
    132     eraseFromParent();
    133   }
    134   return Removed;
    135 }
    136 
    137 /// growOperands - grow operands - This grows the operand list in response
    138 /// to a push_back style of operation.  This grows the number of ops by 1.5
    139 /// times.
    140 ///
    141 void PHINode::growOperands() {
    142   unsigned e = getNumOperands();
    143   unsigned NumOps = e + e / 2;
    144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
    145 
    146   Use *OldOps = op_begin();
    147   BasicBlock **OldBlocks = block_begin();
    148 
    149   ReservedSpace = NumOps;
    150   OperandList = allocHungoffUses(ReservedSpace);
    151 
    152   std::copy(OldOps, OldOps + e, op_begin());
    153   std::copy(OldBlocks, OldBlocks + e, block_begin());
    154 
    155   Use::zap(OldOps, OldOps + e, true);
    156 }
    157 
    158 /// hasConstantValue - If the specified PHI node always merges together the same
    159 /// value, return the value, otherwise return null.
    160 Value *PHINode::hasConstantValue() const {
    161   // Exploit the fact that phi nodes always have at least one entry.
    162   Value *ConstantValue = getIncomingValue(0);
    163   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
    164     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
    165       if (ConstantValue != this)
    166         return 0; // Incoming values not all the same.
    167        // The case where the first value is this PHI.
    168       ConstantValue = getIncomingValue(i);
    169     }
    170   if (ConstantValue == this)
    171     return UndefValue::get(getType());
    172   return ConstantValue;
    173 }
    174 
    175 //===----------------------------------------------------------------------===//
    176 //                       LandingPadInst Implementation
    177 //===----------------------------------------------------------------------===//
    178 
    179 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    180                                unsigned NumReservedValues, const Twine &NameStr,
    181                                Instruction *InsertBefore)
    182   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
    183   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    184 }
    185 
    186 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
    187                                unsigned NumReservedValues, const Twine &NameStr,
    188                                BasicBlock *InsertAtEnd)
    189   : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
    190   init(PersonalityFn, 1 + NumReservedValues, NameStr);
    191 }
    192 
    193 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
    194   : Instruction(LP.getType(), Instruction::LandingPad,
    195                 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
    196     ReservedSpace(LP.getNumOperands()) {
    197   Use *OL = OperandList, *InOL = LP.OperandList;
    198   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
    199     OL[I] = InOL[I];
    200 
    201   setCleanup(LP.isCleanup());
    202 }
    203 
    204 LandingPadInst::~LandingPadInst() {
    205   dropHungoffUses();
    206 }
    207 
    208 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    209                                        unsigned NumReservedClauses,
    210                                        const Twine &NameStr,
    211                                        Instruction *InsertBefore) {
    212   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    213                             InsertBefore);
    214 }
    215 
    216 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
    217                                        unsigned NumReservedClauses,
    218                                        const Twine &NameStr,
    219                                        BasicBlock *InsertAtEnd) {
    220   return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
    221                             InsertAtEnd);
    222 }
    223 
    224 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
    225                           const Twine &NameStr) {
    226   ReservedSpace = NumReservedValues;
    227   NumOperands = 1;
    228   OperandList = allocHungoffUses(ReservedSpace);
    229   OperandList[0] = PersFn;
    230   setName(NameStr);
    231   setCleanup(false);
    232 }
    233 
    234 /// growOperands - grow operands - This grows the operand list in response to a
    235 /// push_back style of operation. This grows the number of ops by 2 times.
    236 void LandingPadInst::growOperands(unsigned Size) {
    237   unsigned e = getNumOperands();
    238   if (ReservedSpace >= e + Size) return;
    239   ReservedSpace = (e + Size / 2) * 2;
    240 
    241   Use *NewOps = allocHungoffUses(ReservedSpace);
    242   Use *OldOps = OperandList;
    243   for (unsigned i = 0; i != e; ++i)
    244       NewOps[i] = OldOps[i];
    245 
    246   OperandList = NewOps;
    247   Use::zap(OldOps, OldOps + e, true);
    248 }
    249 
    250 void LandingPadInst::addClause(Value *Val) {
    251   unsigned OpNo = getNumOperands();
    252   growOperands(1);
    253   assert(OpNo < ReservedSpace && "Growing didn't work!");
    254   ++NumOperands;
    255   OperandList[OpNo] = Val;
    256 }
    257 
    258 //===----------------------------------------------------------------------===//
    259 //                        CallInst Implementation
    260 //===----------------------------------------------------------------------===//
    261 
    262 CallInst::~CallInst() {
    263 }
    264 
    265 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
    266   assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
    267   Op<-1>() = Func;
    268 
    269 #ifndef NDEBUG
    270   FunctionType *FTy =
    271     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    272 
    273   assert((Args.size() == FTy->getNumParams() ||
    274           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    275          "Calling a function with bad signature!");
    276 
    277   for (unsigned i = 0; i != Args.size(); ++i)
    278     assert((i >= FTy->getNumParams() ||
    279             FTy->getParamType(i) == Args[i]->getType()) &&
    280            "Calling a function with a bad signature!");
    281 #endif
    282 
    283   std::copy(Args.begin(), Args.end(), op_begin());
    284   setName(NameStr);
    285 }
    286 
    287 void CallInst::init(Value *Func, const Twine &NameStr) {
    288   assert(NumOperands == 1 && "NumOperands not set up?");
    289   Op<-1>() = Func;
    290 
    291 #ifndef NDEBUG
    292   FunctionType *FTy =
    293     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
    294 
    295   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
    296 #endif
    297 
    298   setName(NameStr);
    299 }
    300 
    301 CallInst::CallInst(Value *Func, const Twine &Name,
    302                    Instruction *InsertBefore)
    303   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    304                                    ->getElementType())->getReturnType(),
    305                 Instruction::Call,
    306                 OperandTraits<CallInst>::op_end(this) - 1,
    307                 1, InsertBefore) {
    308   init(Func, Name);
    309 }
    310 
    311 CallInst::CallInst(Value *Func, const Twine &Name,
    312                    BasicBlock *InsertAtEnd)
    313   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
    314                                    ->getElementType())->getReturnType(),
    315                 Instruction::Call,
    316                 OperandTraits<CallInst>::op_end(this) - 1,
    317                 1, InsertAtEnd) {
    318   init(Func, Name);
    319 }
    320 
    321 CallInst::CallInst(const CallInst &CI)
    322   : Instruction(CI.getType(), Instruction::Call,
    323                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
    324                 CI.getNumOperands()) {
    325   setAttributes(CI.getAttributes());
    326   setTailCall(CI.isTailCall());
    327   setCallingConv(CI.getCallingConv());
    328 
    329   std::copy(CI.op_begin(), CI.op_end(), op_begin());
    330   SubclassOptionalData = CI.SubclassOptionalData;
    331 }
    332 
    333 void CallInst::addAttribute(unsigned i, Attributes attr) {
    334   AttrListPtr PAL = getAttributes();
    335   PAL = PAL.addAttr(i, attr);
    336   setAttributes(PAL);
    337 }
    338 
    339 void CallInst::removeAttribute(unsigned i, Attributes attr) {
    340   AttrListPtr PAL = getAttributes();
    341   PAL = PAL.removeAttr(i, attr);
    342   setAttributes(PAL);
    343 }
    344 
    345 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
    346   if (AttributeList.paramHasAttr(i, attr))
    347     return true;
    348   if (const Function *F = getCalledFunction())
    349     return F->paramHasAttr(i, attr);
    350   return false;
    351 }
    352 
    353 /// IsConstantOne - Return true only if val is constant int 1
    354 static bool IsConstantOne(Value *val) {
    355   assert(val && "IsConstantOne does not work with NULL val");
    356   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
    357 }
    358 
    359 static Instruction *createMalloc(Instruction *InsertBefore,
    360                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
    361                                  Type *AllocTy, Value *AllocSize,
    362                                  Value *ArraySize, Function *MallocF,
    363                                  const Twine &Name) {
    364   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    365          "createMalloc needs either InsertBefore or InsertAtEnd");
    366 
    367   // malloc(type) becomes:
    368   //       bitcast (i8* malloc(typeSize)) to type*
    369   // malloc(type, arraySize) becomes:
    370   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
    371   if (!ArraySize)
    372     ArraySize = ConstantInt::get(IntPtrTy, 1);
    373   else if (ArraySize->getType() != IntPtrTy) {
    374     if (InsertBefore)
    375       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    376                                               "", InsertBefore);
    377     else
    378       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
    379                                               "", InsertAtEnd);
    380   }
    381 
    382   if (!IsConstantOne(ArraySize)) {
    383     if (IsConstantOne(AllocSize)) {
    384       AllocSize = ArraySize;         // Operand * 1 = Operand
    385     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
    386       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
    387                                                      false /*ZExt*/);
    388       // Malloc arg is constant product of type size and array size
    389       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
    390     } else {
    391       // Multiply type size by the array size...
    392       if (InsertBefore)
    393         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    394                                               "mallocsize", InsertBefore);
    395       else
    396         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
    397                                               "mallocsize", InsertAtEnd);
    398     }
    399   }
    400 
    401   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
    402   // Create the call to Malloc.
    403   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    404   Module* M = BB->getParent()->getParent();
    405   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
    406   Value *MallocFunc = MallocF;
    407   if (!MallocFunc)
    408     // prototype malloc as "void *malloc(size_t)"
    409     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
    410   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
    411   CallInst *MCall = NULL;
    412   Instruction *Result = NULL;
    413   if (InsertBefore) {
    414     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
    415     Result = MCall;
    416     if (Result->getType() != AllocPtrType)
    417       // Create a cast instruction to convert to the right type...
    418       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
    419   } else {
    420     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
    421     Result = MCall;
    422     if (Result->getType() != AllocPtrType) {
    423       InsertAtEnd->getInstList().push_back(MCall);
    424       // Create a cast instruction to convert to the right type...
    425       Result = new BitCastInst(MCall, AllocPtrType, Name);
    426     }
    427   }
    428   MCall->setTailCall();
    429   if (Function *F = dyn_cast<Function>(MallocFunc)) {
    430     MCall->setCallingConv(F->getCallingConv());
    431     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
    432   }
    433   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
    434 
    435   return Result;
    436 }
    437 
    438 /// CreateMalloc - Generate the IR for a call to malloc:
    439 /// 1. Compute the malloc call's argument as the specified type's size,
    440 ///    possibly multiplied by the array size if the array size is not
    441 ///    constant 1.
    442 /// 2. Call malloc with that argument.
    443 /// 3. Bitcast the result of the malloc call to the specified type.
    444 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
    445                                     Type *IntPtrTy, Type *AllocTy,
    446                                     Value *AllocSize, Value *ArraySize,
    447                                     Function * MallocF,
    448                                     const Twine &Name) {
    449   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
    450                       ArraySize, MallocF, Name);
    451 }
    452 
    453 /// CreateMalloc - Generate the IR for a call to malloc:
    454 /// 1. Compute the malloc call's argument as the specified type's size,
    455 ///    possibly multiplied by the array size if the array size is not
    456 ///    constant 1.
    457 /// 2. Call malloc with that argument.
    458 /// 3. Bitcast the result of the malloc call to the specified type.
    459 /// Note: This function does not add the bitcast to the basic block, that is the
    460 /// responsibility of the caller.
    461 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
    462                                     Type *IntPtrTy, Type *AllocTy,
    463                                     Value *AllocSize, Value *ArraySize,
    464                                     Function *MallocF, const Twine &Name) {
    465   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
    466                       ArraySize, MallocF, Name);
    467 }
    468 
    469 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
    470                                BasicBlock *InsertAtEnd) {
    471   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
    472          "createFree needs either InsertBefore or InsertAtEnd");
    473   assert(Source->getType()->isPointerTy() &&
    474          "Can not free something of nonpointer type!");
    475 
    476   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
    477   Module* M = BB->getParent()->getParent();
    478 
    479   Type *VoidTy = Type::getVoidTy(M->getContext());
    480   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
    481   // prototype free as "void free(void*)"
    482   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
    483   CallInst* Result = NULL;
    484   Value *PtrCast = Source;
    485   if (InsertBefore) {
    486     if (Source->getType() != IntPtrTy)
    487       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
    488     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
    489   } else {
    490     if (Source->getType() != IntPtrTy)
    491       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
    492     Result = CallInst::Create(FreeFunc, PtrCast, "");
    493   }
    494   Result->setTailCall();
    495   if (Function *F = dyn_cast<Function>(FreeFunc))
    496     Result->setCallingConv(F->getCallingConv());
    497 
    498   return Result;
    499 }
    500 
    501 /// CreateFree - Generate the IR for a call to the builtin free function.
    502 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
    503   return createFree(Source, InsertBefore, NULL);
    504 }
    505 
    506 /// CreateFree - Generate the IR for a call to the builtin free function.
    507 /// Note: This function does not add the call to the basic block, that is the
    508 /// responsibility of the caller.
    509 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
    510   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
    511   assert(FreeCall && "CreateFree did not create a CallInst");
    512   return FreeCall;
    513 }
    514 
    515 //===----------------------------------------------------------------------===//
    516 //                        InvokeInst Implementation
    517 //===----------------------------------------------------------------------===//
    518 
    519 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
    520                       ArrayRef<Value *> Args, const Twine &NameStr) {
    521   assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
    522   Op<-3>() = Fn;
    523   Op<-2>() = IfNormal;
    524   Op<-1>() = IfException;
    525 
    526 #ifndef NDEBUG
    527   FunctionType *FTy =
    528     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
    529 
    530   assert(((Args.size() == FTy->getNumParams()) ||
    531           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
    532          "Invoking a function with bad signature");
    533 
    534   for (unsigned i = 0, e = Args.size(); i != e; i++)
    535     assert((i >= FTy->getNumParams() ||
    536             FTy->getParamType(i) == Args[i]->getType()) &&
    537            "Invoking a function with a bad signature!");
    538 #endif
    539 
    540   std::copy(Args.begin(), Args.end(), op_begin());
    541   setName(NameStr);
    542 }
    543 
    544 InvokeInst::InvokeInst(const InvokeInst &II)
    545   : TerminatorInst(II.getType(), Instruction::Invoke,
    546                    OperandTraits<InvokeInst>::op_end(this)
    547                    - II.getNumOperands(),
    548                    II.getNumOperands()) {
    549   setAttributes(II.getAttributes());
    550   setCallingConv(II.getCallingConv());
    551   std::copy(II.op_begin(), II.op_end(), op_begin());
    552   SubclassOptionalData = II.SubclassOptionalData;
    553 }
    554 
    555 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
    556   return getSuccessor(idx);
    557 }
    558 unsigned InvokeInst::getNumSuccessorsV() const {
    559   return getNumSuccessors();
    560 }
    561 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    562   return setSuccessor(idx, B);
    563 }
    564 
    565 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
    566   if (AttributeList.paramHasAttr(i, attr))
    567     return true;
    568   if (const Function *F = getCalledFunction())
    569     return F->paramHasAttr(i, attr);
    570   return false;
    571 }
    572 
    573 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
    574   AttrListPtr PAL = getAttributes();
    575   PAL = PAL.addAttr(i, attr);
    576   setAttributes(PAL);
    577 }
    578 
    579 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
    580   AttrListPtr PAL = getAttributes();
    581   PAL = PAL.removeAttr(i, attr);
    582   setAttributes(PAL);
    583 }
    584 
    585 LandingPadInst *InvokeInst::getLandingPadInst() const {
    586   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
    587 }
    588 
    589 //===----------------------------------------------------------------------===//
    590 //                        ReturnInst Implementation
    591 //===----------------------------------------------------------------------===//
    592 
    593 ReturnInst::ReturnInst(const ReturnInst &RI)
    594   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
    595                    OperandTraits<ReturnInst>::op_end(this) -
    596                      RI.getNumOperands(),
    597                    RI.getNumOperands()) {
    598   if (RI.getNumOperands())
    599     Op<0>() = RI.Op<0>();
    600   SubclassOptionalData = RI.SubclassOptionalData;
    601 }
    602 
    603 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
    604   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    605                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    606                    InsertBefore) {
    607   if (retVal)
    608     Op<0>() = retVal;
    609 }
    610 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
    611   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
    612                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
    613                    InsertAtEnd) {
    614   if (retVal)
    615     Op<0>() = retVal;
    616 }
    617 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    618   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
    619                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
    620 }
    621 
    622 unsigned ReturnInst::getNumSuccessorsV() const {
    623   return getNumSuccessors();
    624 }
    625 
    626 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
    627 /// emit the vtable for the class in this translation unit.
    628 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    629   llvm_unreachable("ReturnInst has no successors!");
    630 }
    631 
    632 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
    633   llvm_unreachable("ReturnInst has no successors!");
    634 }
    635 
    636 ReturnInst::~ReturnInst() {
    637 }
    638 
    639 //===----------------------------------------------------------------------===//
    640 //                        ResumeInst Implementation
    641 //===----------------------------------------------------------------------===//
    642 
    643 ResumeInst::ResumeInst(const ResumeInst &RI)
    644   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
    645                    OperandTraits<ResumeInst>::op_begin(this), 1) {
    646   Op<0>() = RI.Op<0>();
    647 }
    648 
    649 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
    650   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    651                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
    652   Op<0>() = Exn;
    653 }
    654 
    655 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
    656   : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
    657                    OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
    658   Op<0>() = Exn;
    659 }
    660 
    661 unsigned ResumeInst::getNumSuccessorsV() const {
    662   return getNumSuccessors();
    663 }
    664 
    665 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    666   llvm_unreachable("ResumeInst has no successors!");
    667 }
    668 
    669 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
    670   llvm_unreachable("ResumeInst has no successors!");
    671 }
    672 
    673 //===----------------------------------------------------------------------===//
    674 //                      UnreachableInst Implementation
    675 //===----------------------------------------------------------------------===//
    676 
    677 UnreachableInst::UnreachableInst(LLVMContext &Context,
    678                                  Instruction *InsertBefore)
    679   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    680                    0, 0, InsertBefore) {
    681 }
    682 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
    683   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
    684                    0, 0, InsertAtEnd) {
    685 }
    686 
    687 unsigned UnreachableInst::getNumSuccessorsV() const {
    688   return getNumSuccessors();
    689 }
    690 
    691 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
    692   llvm_unreachable("UnreachableInst has no successors!");
    693 }
    694 
    695 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
    696   llvm_unreachable("UnreachableInst has no successors!");
    697 }
    698 
    699 //===----------------------------------------------------------------------===//
    700 //                        BranchInst Implementation
    701 //===----------------------------------------------------------------------===//
    702 
    703 void BranchInst::AssertOK() {
    704   if (isConditional())
    705     assert(getCondition()->getType()->isIntegerTy(1) &&
    706            "May only branch on boolean predicates!");
    707 }
    708 
    709 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
    710   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    711                    OperandTraits<BranchInst>::op_end(this) - 1,
    712                    1, InsertBefore) {
    713   assert(IfTrue != 0 && "Branch destination may not be null!");
    714   Op<-1>() = IfTrue;
    715 }
    716 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    717                        Instruction *InsertBefore)
    718   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    719                    OperandTraits<BranchInst>::op_end(this) - 3,
    720                    3, InsertBefore) {
    721   Op<-1>() = IfTrue;
    722   Op<-2>() = IfFalse;
    723   Op<-3>() = Cond;
    724 #ifndef NDEBUG
    725   AssertOK();
    726 #endif
    727 }
    728 
    729 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
    730   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    731                    OperandTraits<BranchInst>::op_end(this) - 1,
    732                    1, InsertAtEnd) {
    733   assert(IfTrue != 0 && "Branch destination may not be null!");
    734   Op<-1>() = IfTrue;
    735 }
    736 
    737 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
    738            BasicBlock *InsertAtEnd)
    739   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
    740                    OperandTraits<BranchInst>::op_end(this) - 3,
    741                    3, InsertAtEnd) {
    742   Op<-1>() = IfTrue;
    743   Op<-2>() = IfFalse;
    744   Op<-3>() = Cond;
    745 #ifndef NDEBUG
    746   AssertOK();
    747 #endif
    748 }
    749 
    750 
    751 BranchInst::BranchInst(const BranchInst &BI) :
    752   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
    753                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
    754                  BI.getNumOperands()) {
    755   Op<-1>() = BI.Op<-1>();
    756   if (BI.getNumOperands() != 1) {
    757     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
    758     Op<-3>() = BI.Op<-3>();
    759     Op<-2>() = BI.Op<-2>();
    760   }
    761   SubclassOptionalData = BI.SubclassOptionalData;
    762 }
    763 
    764 void BranchInst::swapSuccessors() {
    765   assert(isConditional() &&
    766          "Cannot swap successors of an unconditional branch");
    767   Op<-1>().swap(Op<-2>());
    768 
    769   // Update profile metadata if present and it matches our structural
    770   // expectations.
    771   MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
    772   if (!ProfileData || ProfileData->getNumOperands() != 3)
    773     return;
    774 
    775   // The first operand is the name. Fetch them backwards and build a new one.
    776   Value *Ops[] = {
    777     ProfileData->getOperand(0),
    778     ProfileData->getOperand(2),
    779     ProfileData->getOperand(1)
    780   };
    781   setMetadata(LLVMContext::MD_prof,
    782               MDNode::get(ProfileData->getContext(), Ops));
    783 }
    784 
    785 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
    786   return getSuccessor(idx);
    787 }
    788 unsigned BranchInst::getNumSuccessorsV() const {
    789   return getNumSuccessors();
    790 }
    791 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
    792   setSuccessor(idx, B);
    793 }
    794 
    795 
    796 //===----------------------------------------------------------------------===//
    797 //                        AllocaInst Implementation
    798 //===----------------------------------------------------------------------===//
    799 
    800 static Value *getAISize(LLVMContext &Context, Value *Amt) {
    801   if (!Amt)
    802     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
    803   else {
    804     assert(!isa<BasicBlock>(Amt) &&
    805            "Passed basic block into allocation size parameter! Use other ctor");
    806     assert(Amt->getType()->isIntegerTy() &&
    807            "Allocation array size is not an integer!");
    808   }
    809   return Amt;
    810 }
    811 
    812 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    813                        const Twine &Name, Instruction *InsertBefore)
    814   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    815                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    816   setAlignment(0);
    817   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    818   setName(Name);
    819 }
    820 
    821 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
    822                        const Twine &Name, BasicBlock *InsertAtEnd)
    823   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    824                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    825   setAlignment(0);
    826   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    827   setName(Name);
    828 }
    829 
    830 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    831                        Instruction *InsertBefore)
    832   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    833                      getAISize(Ty->getContext(), 0), InsertBefore) {
    834   setAlignment(0);
    835   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    836   setName(Name);
    837 }
    838 
    839 AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
    840                        BasicBlock *InsertAtEnd)
    841   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    842                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
    843   setAlignment(0);
    844   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    845   setName(Name);
    846 }
    847 
    848 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    849                        const Twine &Name, Instruction *InsertBefore)
    850   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    851                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
    852   setAlignment(Align);
    853   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    854   setName(Name);
    855 }
    856 
    857 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
    858                        const Twine &Name, BasicBlock *InsertAtEnd)
    859   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
    860                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
    861   setAlignment(Align);
    862   assert(!Ty->isVoidTy() && "Cannot allocate void!");
    863   setName(Name);
    864 }
    865 
    866 // Out of line virtual method, so the vtable, etc has a home.
    867 AllocaInst::~AllocaInst() {
    868 }
    869 
    870 void AllocaInst::setAlignment(unsigned Align) {
    871   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
    872   assert(Align <= MaximumAlignment &&
    873          "Alignment is greater than MaximumAlignment!");
    874   setInstructionSubclassData(Log2_32(Align) + 1);
    875   assert(getAlignment() == Align && "Alignment representation error!");
    876 }
    877 
    878 bool AllocaInst::isArrayAllocation() const {
    879   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
    880     return !CI->isOne();
    881   return true;
    882 }
    883 
    884 Type *AllocaInst::getAllocatedType() const {
    885   return getType()->getElementType();
    886 }
    887 
    888 /// isStaticAlloca - Return true if this alloca is in the entry block of the
    889 /// function and is a constant size.  If so, the code generator will fold it
    890 /// into the prolog/epilog code, so it is basically free.
    891 bool AllocaInst::isStaticAlloca() const {
    892   // Must be constant size.
    893   if (!isa<ConstantInt>(getArraySize())) return false;
    894 
    895   // Must be in the entry block.
    896   const BasicBlock *Parent = getParent();
    897   return Parent == &Parent->getParent()->front();
    898 }
    899 
    900 //===----------------------------------------------------------------------===//
    901 //                           LoadInst Implementation
    902 //===----------------------------------------------------------------------===//
    903 
    904 void LoadInst::AssertOK() {
    905   assert(getOperand(0)->getType()->isPointerTy() &&
    906          "Ptr must have pointer type.");
    907   assert(!(isAtomic() && getAlignment() == 0) &&
    908          "Alignment required for atomic load");
    909 }
    910 
    911 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
    912   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    913                      Load, Ptr, InsertBef) {
    914   setVolatile(false);
    915   setAlignment(0);
    916   setAtomic(NotAtomic);
    917   AssertOK();
    918   setName(Name);
    919 }
    920 
    921 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
    922   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    923                      Load, Ptr, InsertAE) {
    924   setVolatile(false);
    925   setAlignment(0);
    926   setAtomic(NotAtomic);
    927   AssertOK();
    928   setName(Name);
    929 }
    930 
    931 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    932                    Instruction *InsertBef)
    933   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    934                      Load, Ptr, InsertBef) {
    935   setVolatile(isVolatile);
    936   setAlignment(0);
    937   setAtomic(NotAtomic);
    938   AssertOK();
    939   setName(Name);
    940 }
    941 
    942 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    943                    BasicBlock *InsertAE)
    944   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    945                      Load, Ptr, InsertAE) {
    946   setVolatile(isVolatile);
    947   setAlignment(0);
    948   setAtomic(NotAtomic);
    949   AssertOK();
    950   setName(Name);
    951 }
    952 
    953 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    954                    unsigned Align, Instruction *InsertBef)
    955   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    956                      Load, Ptr, InsertBef) {
    957   setVolatile(isVolatile);
    958   setAlignment(Align);
    959   setAtomic(NotAtomic);
    960   AssertOK();
    961   setName(Name);
    962 }
    963 
    964 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    965                    unsigned Align, BasicBlock *InsertAE)
    966   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    967                      Load, Ptr, InsertAE) {
    968   setVolatile(isVolatile);
    969   setAlignment(Align);
    970   setAtomic(NotAtomic);
    971   AssertOK();
    972   setName(Name);
    973 }
    974 
    975 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    976                    unsigned Align, AtomicOrdering Order,
    977                    SynchronizationScope SynchScope,
    978                    Instruction *InsertBef)
    979   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    980                      Load, Ptr, InsertBef) {
    981   setVolatile(isVolatile);
    982   setAlignment(Align);
    983   setAtomic(Order, SynchScope);
    984   AssertOK();
    985   setName(Name);
    986 }
    987 
    988 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
    989                    unsigned Align, AtomicOrdering Order,
    990                    SynchronizationScope SynchScope,
    991                    BasicBlock *InsertAE)
    992   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
    993                      Load, Ptr, InsertAE) {
    994   setVolatile(isVolatile);
    995   setAlignment(Align);
    996   setAtomic(Order, SynchScope);
    997   AssertOK();
    998   setName(Name);
    999 }
   1000 
   1001 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
   1002   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1003                      Load, Ptr, InsertBef) {
   1004   setVolatile(false);
   1005   setAlignment(0);
   1006   setAtomic(NotAtomic);
   1007   AssertOK();
   1008   if (Name && Name[0]) setName(Name);
   1009 }
   1010 
   1011 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
   1012   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1013                      Load, Ptr, InsertAE) {
   1014   setVolatile(false);
   1015   setAlignment(0);
   1016   setAtomic(NotAtomic);
   1017   AssertOK();
   1018   if (Name && Name[0]) setName(Name);
   1019 }
   1020 
   1021 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1022                    Instruction *InsertBef)
   1023 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1024                    Load, Ptr, InsertBef) {
   1025   setVolatile(isVolatile);
   1026   setAlignment(0);
   1027   setAtomic(NotAtomic);
   1028   AssertOK();
   1029   if (Name && Name[0]) setName(Name);
   1030 }
   1031 
   1032 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
   1033                    BasicBlock *InsertAE)
   1034   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
   1035                      Load, Ptr, InsertAE) {
   1036   setVolatile(isVolatile);
   1037   setAlignment(0);
   1038   setAtomic(NotAtomic);
   1039   AssertOK();
   1040   if (Name && Name[0]) setName(Name);
   1041 }
   1042 
   1043 void LoadInst::setAlignment(unsigned Align) {
   1044   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1045   assert(Align <= MaximumAlignment &&
   1046          "Alignment is greater than MaximumAlignment!");
   1047   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1048                              ((Log2_32(Align)+1)<<1));
   1049   assert(getAlignment() == Align && "Alignment representation error!");
   1050 }
   1051 
   1052 //===----------------------------------------------------------------------===//
   1053 //                           StoreInst Implementation
   1054 //===----------------------------------------------------------------------===//
   1055 
   1056 void StoreInst::AssertOK() {
   1057   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
   1058   assert(getOperand(1)->getType()->isPointerTy() &&
   1059          "Ptr must have pointer type!");
   1060   assert(getOperand(0)->getType() ==
   1061                  cast<PointerType>(getOperand(1)->getType())->getElementType()
   1062          && "Ptr must be a pointer to Val type!");
   1063   assert(!(isAtomic() && getAlignment() == 0) &&
   1064          "Alignment required for atomic load");
   1065 }
   1066 
   1067 
   1068 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
   1069   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1070                 OperandTraits<StoreInst>::op_begin(this),
   1071                 OperandTraits<StoreInst>::operands(this),
   1072                 InsertBefore) {
   1073   Op<0>() = val;
   1074   Op<1>() = addr;
   1075   setVolatile(false);
   1076   setAlignment(0);
   1077   setAtomic(NotAtomic);
   1078   AssertOK();
   1079 }
   1080 
   1081 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
   1082   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1083                 OperandTraits<StoreInst>::op_begin(this),
   1084                 OperandTraits<StoreInst>::operands(this),
   1085                 InsertAtEnd) {
   1086   Op<0>() = val;
   1087   Op<1>() = addr;
   1088   setVolatile(false);
   1089   setAlignment(0);
   1090   setAtomic(NotAtomic);
   1091   AssertOK();
   1092 }
   1093 
   1094 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1095                      Instruction *InsertBefore)
   1096   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1097                 OperandTraits<StoreInst>::op_begin(this),
   1098                 OperandTraits<StoreInst>::operands(this),
   1099                 InsertBefore) {
   1100   Op<0>() = val;
   1101   Op<1>() = addr;
   1102   setVolatile(isVolatile);
   1103   setAlignment(0);
   1104   setAtomic(NotAtomic);
   1105   AssertOK();
   1106 }
   1107 
   1108 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1109                      unsigned Align, Instruction *InsertBefore)
   1110   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1111                 OperandTraits<StoreInst>::op_begin(this),
   1112                 OperandTraits<StoreInst>::operands(this),
   1113                 InsertBefore) {
   1114   Op<0>() = val;
   1115   Op<1>() = addr;
   1116   setVolatile(isVolatile);
   1117   setAlignment(Align);
   1118   setAtomic(NotAtomic);
   1119   AssertOK();
   1120 }
   1121 
   1122 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1123                      unsigned Align, AtomicOrdering Order,
   1124                      SynchronizationScope SynchScope,
   1125                      Instruction *InsertBefore)
   1126   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1127                 OperandTraits<StoreInst>::op_begin(this),
   1128                 OperandTraits<StoreInst>::operands(this),
   1129                 InsertBefore) {
   1130   Op<0>() = val;
   1131   Op<1>() = addr;
   1132   setVolatile(isVolatile);
   1133   setAlignment(Align);
   1134   setAtomic(Order, SynchScope);
   1135   AssertOK();
   1136 }
   1137 
   1138 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1139                      BasicBlock *InsertAtEnd)
   1140   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1141                 OperandTraits<StoreInst>::op_begin(this),
   1142                 OperandTraits<StoreInst>::operands(this),
   1143                 InsertAtEnd) {
   1144   Op<0>() = val;
   1145   Op<1>() = addr;
   1146   setVolatile(isVolatile);
   1147   setAlignment(0);
   1148   setAtomic(NotAtomic);
   1149   AssertOK();
   1150 }
   1151 
   1152 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1153                      unsigned Align, BasicBlock *InsertAtEnd)
   1154   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1155                 OperandTraits<StoreInst>::op_begin(this),
   1156                 OperandTraits<StoreInst>::operands(this),
   1157                 InsertAtEnd) {
   1158   Op<0>() = val;
   1159   Op<1>() = addr;
   1160   setVolatile(isVolatile);
   1161   setAlignment(Align);
   1162   setAtomic(NotAtomic);
   1163   AssertOK();
   1164 }
   1165 
   1166 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
   1167                      unsigned Align, AtomicOrdering Order,
   1168                      SynchronizationScope SynchScope,
   1169                      BasicBlock *InsertAtEnd)
   1170   : Instruction(Type::getVoidTy(val->getContext()), Store,
   1171                 OperandTraits<StoreInst>::op_begin(this),
   1172                 OperandTraits<StoreInst>::operands(this),
   1173                 InsertAtEnd) {
   1174   Op<0>() = val;
   1175   Op<1>() = addr;
   1176   setVolatile(isVolatile);
   1177   setAlignment(Align);
   1178   setAtomic(Order, SynchScope);
   1179   AssertOK();
   1180 }
   1181 
   1182 void StoreInst::setAlignment(unsigned Align) {
   1183   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
   1184   assert(Align <= MaximumAlignment &&
   1185          "Alignment is greater than MaximumAlignment!");
   1186   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
   1187                              ((Log2_32(Align)+1) << 1));
   1188   assert(getAlignment() == Align && "Alignment representation error!");
   1189 }
   1190 
   1191 //===----------------------------------------------------------------------===//
   1192 //                       AtomicCmpXchgInst Implementation
   1193 //===----------------------------------------------------------------------===//
   1194 
   1195 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
   1196                              AtomicOrdering Ordering,
   1197                              SynchronizationScope SynchScope) {
   1198   Op<0>() = Ptr;
   1199   Op<1>() = Cmp;
   1200   Op<2>() = NewVal;
   1201   setOrdering(Ordering);
   1202   setSynchScope(SynchScope);
   1203 
   1204   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
   1205          "All operands must be non-null!");
   1206   assert(getOperand(0)->getType()->isPointerTy() &&
   1207          "Ptr must have pointer type!");
   1208   assert(getOperand(1)->getType() ==
   1209                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1210          && "Ptr must be a pointer to Cmp type!");
   1211   assert(getOperand(2)->getType() ==
   1212                  cast<PointerType>(getOperand(0)->getType())->getElementType()
   1213          && "Ptr must be a pointer to NewVal type!");
   1214   assert(Ordering != NotAtomic &&
   1215          "AtomicCmpXchg instructions must be atomic!");
   1216 }
   1217 
   1218 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1219                                      AtomicOrdering Ordering,
   1220                                      SynchronizationScope SynchScope,
   1221                                      Instruction *InsertBefore)
   1222   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1223                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1224                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1225                 InsertBefore) {
   1226   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1227 }
   1228 
   1229 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
   1230                                      AtomicOrdering Ordering,
   1231                                      SynchronizationScope SynchScope,
   1232                                      BasicBlock *InsertAtEnd)
   1233   : Instruction(Cmp->getType(), AtomicCmpXchg,
   1234                 OperandTraits<AtomicCmpXchgInst>::op_begin(this),
   1235                 OperandTraits<AtomicCmpXchgInst>::operands(this),
   1236                 InsertAtEnd) {
   1237   Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
   1238 }
   1239 
   1240 //===----------------------------------------------------------------------===//
   1241 //                       AtomicRMWInst Implementation
   1242 //===----------------------------------------------------------------------===//
   1243 
   1244 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
   1245                          AtomicOrdering Ordering,
   1246                          SynchronizationScope SynchScope) {
   1247   Op<0>() = Ptr;
   1248   Op<1>() = Val;
   1249   setOperation(Operation);
   1250   setOrdering(Ordering);
   1251   setSynchScope(SynchScope);
   1252 
   1253   assert(getOperand(0) && getOperand(1) &&
   1254          "All operands must be non-null!");
   1255   assert(getOperand(0)->getType()->isPointerTy() &&
   1256          "Ptr must have pointer type!");
   1257   assert(getOperand(1)->getType() ==
   1258          cast<PointerType>(getOperand(0)->getType())->getElementType()
   1259          && "Ptr must be a pointer to Val type!");
   1260   assert(Ordering != NotAtomic &&
   1261          "AtomicRMW instructions must be atomic!");
   1262 }
   1263 
   1264 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1265                              AtomicOrdering Ordering,
   1266                              SynchronizationScope SynchScope,
   1267                              Instruction *InsertBefore)
   1268   : Instruction(Val->getType(), AtomicRMW,
   1269                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1270                 OperandTraits<AtomicRMWInst>::operands(this),
   1271                 InsertBefore) {
   1272   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1273 }
   1274 
   1275 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
   1276                              AtomicOrdering Ordering,
   1277                              SynchronizationScope SynchScope,
   1278                              BasicBlock *InsertAtEnd)
   1279   : Instruction(Val->getType(), AtomicRMW,
   1280                 OperandTraits<AtomicRMWInst>::op_begin(this),
   1281                 OperandTraits<AtomicRMWInst>::operands(this),
   1282                 InsertAtEnd) {
   1283   Init(Operation, Ptr, Val, Ordering, SynchScope);
   1284 }
   1285 
   1286 //===----------------------------------------------------------------------===//
   1287 //                       FenceInst Implementation
   1288 //===----------------------------------------------------------------------===//
   1289 
   1290 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1291                      SynchronizationScope SynchScope,
   1292                      Instruction *InsertBefore)
   1293   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
   1294   setOrdering(Ordering);
   1295   setSynchScope(SynchScope);
   1296 }
   1297 
   1298 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
   1299                      SynchronizationScope SynchScope,
   1300                      BasicBlock *InsertAtEnd)
   1301   : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
   1302   setOrdering(Ordering);
   1303   setSynchScope(SynchScope);
   1304 }
   1305 
   1306 //===----------------------------------------------------------------------===//
   1307 //                       GetElementPtrInst Implementation
   1308 //===----------------------------------------------------------------------===//
   1309 
   1310 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
   1311                              const Twine &Name) {
   1312   assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
   1313   OperandList[0] = Ptr;
   1314   std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
   1315   setName(Name);
   1316 }
   1317 
   1318 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
   1319   : Instruction(GEPI.getType(), GetElementPtr,
   1320                 OperandTraits<GetElementPtrInst>::op_end(this)
   1321                 - GEPI.getNumOperands(),
   1322                 GEPI.getNumOperands()) {
   1323   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
   1324   SubclassOptionalData = GEPI.SubclassOptionalData;
   1325 }
   1326 
   1327 /// getIndexedType - Returns the type of the element that would be accessed with
   1328 /// a gep instruction with the specified parameters.
   1329 ///
   1330 /// The Idxs pointer should point to a continuous piece of memory containing the
   1331 /// indices, either as Value* or uint64_t.
   1332 ///
   1333 /// A null type is returned if the indices are invalid for the specified
   1334 /// pointer type.
   1335 ///
   1336 template <typename IndexTy>
   1337 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
   1338   if (Ptr->isVectorTy()) {
   1339     assert(IdxList.size() == 1 &&
   1340       "GEP with vector pointers must have a single index");
   1341     PointerType *PTy = dyn_cast<PointerType>(
   1342         cast<VectorType>(Ptr)->getElementType());
   1343     assert(PTy && "Gep with invalid vector pointer found");
   1344     return PTy->getElementType();
   1345   }
   1346 
   1347   PointerType *PTy = dyn_cast<PointerType>(Ptr);
   1348   if (!PTy) return 0;   // Type isn't a pointer type!
   1349   Type *Agg = PTy->getElementType();
   1350 
   1351   // Handle the special case of the empty set index set, which is always valid.
   1352   if (IdxList.empty())
   1353     return Agg;
   1354 
   1355   // If there is at least one index, the top level type must be sized, otherwise
   1356   // it cannot be 'stepped over'.
   1357   if (!Agg->isSized())
   1358     return 0;
   1359 
   1360   unsigned CurIdx = 1;
   1361   for (; CurIdx != IdxList.size(); ++CurIdx) {
   1362     CompositeType *CT = dyn_cast<CompositeType>(Agg);
   1363     if (!CT || CT->isPointerTy()) return 0;
   1364     IndexTy Index = IdxList[CurIdx];
   1365     if (!CT->indexValid(Index)) return 0;
   1366     Agg = CT->getTypeAtIndex(Index);
   1367   }
   1368   return CurIdx == IdxList.size() ? Agg : 0;
   1369 }
   1370 
   1371 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
   1372   return getIndexedTypeInternal(Ptr, IdxList);
   1373 }
   1374 
   1375 Type *GetElementPtrInst::getIndexedType(Type *Ptr,
   1376                                         ArrayRef<Constant *> IdxList) {
   1377   return getIndexedTypeInternal(Ptr, IdxList);
   1378 }
   1379 
   1380 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
   1381   return getIndexedTypeInternal(Ptr, IdxList);
   1382 }
   1383 
   1384 unsigned GetElementPtrInst::getAddressSpace(Value *Ptr) {
   1385   Type *Ty = Ptr->getType();
   1386 
   1387   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
   1388     Ty = VTy->getElementType();
   1389 
   1390   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   1391     return PTy->getAddressSpace();
   1392 
   1393   llvm_unreachable("Invalid GEP pointer type");
   1394 }
   1395 
   1396 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
   1397 /// zeros.  If so, the result pointer and the first operand have the same
   1398 /// value, just potentially different types.
   1399 bool GetElementPtrInst::hasAllZeroIndices() const {
   1400   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1401     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
   1402       if (!CI->isZero()) return false;
   1403     } else {
   1404       return false;
   1405     }
   1406   }
   1407   return true;
   1408 }
   1409 
   1410 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
   1411 /// constant integers.  If so, the result pointer and the first operand have
   1412 /// a constant offset between them.
   1413 bool GetElementPtrInst::hasAllConstantIndices() const {
   1414   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   1415     if (!isa<ConstantInt>(getOperand(i)))
   1416       return false;
   1417   }
   1418   return true;
   1419 }
   1420 
   1421 void GetElementPtrInst::setIsInBounds(bool B) {
   1422   cast<GEPOperator>(this)->setIsInBounds(B);
   1423 }
   1424 
   1425 bool GetElementPtrInst::isInBounds() const {
   1426   return cast<GEPOperator>(this)->isInBounds();
   1427 }
   1428 
   1429 //===----------------------------------------------------------------------===//
   1430 //                           ExtractElementInst Implementation
   1431 //===----------------------------------------------------------------------===//
   1432 
   1433 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1434                                        const Twine &Name,
   1435                                        Instruction *InsertBef)
   1436   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1437                 ExtractElement,
   1438                 OperandTraits<ExtractElementInst>::op_begin(this),
   1439                 2, InsertBef) {
   1440   assert(isValidOperands(Val, Index) &&
   1441          "Invalid extractelement instruction operands!");
   1442   Op<0>() = Val;
   1443   Op<1>() = Index;
   1444   setName(Name);
   1445 }
   1446 
   1447 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
   1448                                        const Twine &Name,
   1449                                        BasicBlock *InsertAE)
   1450   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
   1451                 ExtractElement,
   1452                 OperandTraits<ExtractElementInst>::op_begin(this),
   1453                 2, InsertAE) {
   1454   assert(isValidOperands(Val, Index) &&
   1455          "Invalid extractelement instruction operands!");
   1456 
   1457   Op<0>() = Val;
   1458   Op<1>() = Index;
   1459   setName(Name);
   1460 }
   1461 
   1462 
   1463 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
   1464   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
   1465     return false;
   1466   return true;
   1467 }
   1468 
   1469 
   1470 //===----------------------------------------------------------------------===//
   1471 //                           InsertElementInst Implementation
   1472 //===----------------------------------------------------------------------===//
   1473 
   1474 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1475                                      const Twine &Name,
   1476                                      Instruction *InsertBef)
   1477   : Instruction(Vec->getType(), InsertElement,
   1478                 OperandTraits<InsertElementInst>::op_begin(this),
   1479                 3, InsertBef) {
   1480   assert(isValidOperands(Vec, Elt, Index) &&
   1481          "Invalid insertelement instruction operands!");
   1482   Op<0>() = Vec;
   1483   Op<1>() = Elt;
   1484   Op<2>() = Index;
   1485   setName(Name);
   1486 }
   1487 
   1488 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
   1489                                      const Twine &Name,
   1490                                      BasicBlock *InsertAE)
   1491   : Instruction(Vec->getType(), InsertElement,
   1492                 OperandTraits<InsertElementInst>::op_begin(this),
   1493                 3, InsertAE) {
   1494   assert(isValidOperands(Vec, Elt, Index) &&
   1495          "Invalid insertelement instruction operands!");
   1496 
   1497   Op<0>() = Vec;
   1498   Op<1>() = Elt;
   1499   Op<2>() = Index;
   1500   setName(Name);
   1501 }
   1502 
   1503 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
   1504                                         const Value *Index) {
   1505   if (!Vec->getType()->isVectorTy())
   1506     return false;   // First operand of insertelement must be vector type.
   1507 
   1508   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
   1509     return false;// Second operand of insertelement must be vector element type.
   1510 
   1511   if (!Index->getType()->isIntegerTy(32))
   1512     return false;  // Third operand of insertelement must be i32.
   1513   return true;
   1514 }
   1515 
   1516 
   1517 //===----------------------------------------------------------------------===//
   1518 //                      ShuffleVectorInst Implementation
   1519 //===----------------------------------------------------------------------===//
   1520 
   1521 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1522                                      const Twine &Name,
   1523                                      Instruction *InsertBefore)
   1524 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1525                 cast<VectorType>(Mask->getType())->getNumElements()),
   1526               ShuffleVector,
   1527               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1528               OperandTraits<ShuffleVectorInst>::operands(this),
   1529               InsertBefore) {
   1530   assert(isValidOperands(V1, V2, Mask) &&
   1531          "Invalid shuffle vector instruction operands!");
   1532   Op<0>() = V1;
   1533   Op<1>() = V2;
   1534   Op<2>() = Mask;
   1535   setName(Name);
   1536 }
   1537 
   1538 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
   1539                                      const Twine &Name,
   1540                                      BasicBlock *InsertAtEnd)
   1541 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
   1542                 cast<VectorType>(Mask->getType())->getNumElements()),
   1543               ShuffleVector,
   1544               OperandTraits<ShuffleVectorInst>::op_begin(this),
   1545               OperandTraits<ShuffleVectorInst>::operands(this),
   1546               InsertAtEnd) {
   1547   assert(isValidOperands(V1, V2, Mask) &&
   1548          "Invalid shuffle vector instruction operands!");
   1549 
   1550   Op<0>() = V1;
   1551   Op<1>() = V2;
   1552   Op<2>() = Mask;
   1553   setName(Name);
   1554 }
   1555 
   1556 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
   1557                                         const Value *Mask) {
   1558   // V1 and V2 must be vectors of the same type.
   1559   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
   1560     return false;
   1561 
   1562   // Mask must be vector of i32.
   1563   VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
   1564   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
   1565     return false;
   1566 
   1567   // Check to see if Mask is valid.
   1568   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
   1569     return true;
   1570 
   1571   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
   1572     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1573     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
   1574       if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
   1575         if (CI->uge(V1Size*2))
   1576           return false;
   1577       } else if (!isa<UndefValue>(MV->getOperand(i))) {
   1578         return false;
   1579       }
   1580     }
   1581     return true;
   1582   }
   1583 
   1584   if (const ConstantDataSequential *CDS =
   1585         dyn_cast<ConstantDataSequential>(Mask)) {
   1586     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
   1587     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
   1588       if (CDS->getElementAsInteger(i) >= V1Size*2)
   1589         return false;
   1590     return true;
   1591   }
   1592 
   1593   // The bitcode reader can create a place holder for a forward reference
   1594   // used as the shuffle mask. When this occurs, the shuffle mask will
   1595   // fall into this case and fail. To avoid this error, do this bit of
   1596   // ugliness to allow such a mask pass.
   1597   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
   1598     if (CE->getOpcode() == Instruction::UserOp1)
   1599       return true;
   1600 
   1601   return false;
   1602 }
   1603 
   1604 /// getMaskValue - Return the index from the shuffle mask for the specified
   1605 /// output result.  This is either -1 if the element is undef or a number less
   1606 /// than 2*numelements.
   1607 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
   1608   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
   1609   if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
   1610     return CDS->getElementAsInteger(i);
   1611   Constant *C = Mask->getAggregateElement(i);
   1612   if (isa<UndefValue>(C))
   1613     return -1;
   1614   return cast<ConstantInt>(C)->getZExtValue();
   1615 }
   1616 
   1617 /// getShuffleMask - Return the full mask for this instruction, where each
   1618 /// element is the element number and undef's are returned as -1.
   1619 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
   1620                                        SmallVectorImpl<int> &Result) {
   1621   unsigned NumElts = Mask->getType()->getVectorNumElements();
   1622 
   1623   if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
   1624     for (unsigned i = 0; i != NumElts; ++i)
   1625       Result.push_back(CDS->getElementAsInteger(i));
   1626     return;
   1627   }
   1628   for (unsigned i = 0; i != NumElts; ++i) {
   1629     Constant *C = Mask->getAggregateElement(i);
   1630     Result.push_back(isa<UndefValue>(C) ? -1 :
   1631                      cast<ConstantInt>(C)->getZExtValue());
   1632   }
   1633 }
   1634 
   1635 
   1636 //===----------------------------------------------------------------------===//
   1637 //                             InsertValueInst Class
   1638 //===----------------------------------------------------------------------===//
   1639 
   1640 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
   1641                            const Twine &Name) {
   1642   assert(NumOperands == 2 && "NumOperands not initialized?");
   1643 
   1644   // There's no fundamental reason why we require at least one index
   1645   // (other than weirdness with &*IdxBegin being invalid; see
   1646   // getelementptr's init routine for example). But there's no
   1647   // present need to support it.
   1648   assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
   1649 
   1650   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
   1651          Val->getType() && "Inserted value must match indexed type!");
   1652   Op<0>() = Agg;
   1653   Op<1>() = Val;
   1654 
   1655   Indices.append(Idxs.begin(), Idxs.end());
   1656   setName(Name);
   1657 }
   1658 
   1659 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
   1660   : Instruction(IVI.getType(), InsertValue,
   1661                 OperandTraits<InsertValueInst>::op_begin(this), 2),
   1662     Indices(IVI.Indices) {
   1663   Op<0>() = IVI.getOperand(0);
   1664   Op<1>() = IVI.getOperand(1);
   1665   SubclassOptionalData = IVI.SubclassOptionalData;
   1666 }
   1667 
   1668 //===----------------------------------------------------------------------===//
   1669 //                             ExtractValueInst Class
   1670 //===----------------------------------------------------------------------===//
   1671 
   1672 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
   1673   assert(NumOperands == 1 && "NumOperands not initialized?");
   1674 
   1675   // There's no fundamental reason why we require at least one index.
   1676   // But there's no present need to support it.
   1677   assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
   1678 
   1679   Indices.append(Idxs.begin(), Idxs.end());
   1680   setName(Name);
   1681 }
   1682 
   1683 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
   1684   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
   1685     Indices(EVI.Indices) {
   1686   SubclassOptionalData = EVI.SubclassOptionalData;
   1687 }
   1688 
   1689 // getIndexedType - Returns the type of the element that would be extracted
   1690 // with an extractvalue instruction with the specified parameters.
   1691 //
   1692 // A null type is returned if the indices are invalid for the specified
   1693 // pointer type.
   1694 //
   1695 Type *ExtractValueInst::getIndexedType(Type *Agg,
   1696                                        ArrayRef<unsigned> Idxs) {
   1697   for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
   1698     unsigned Index = Idxs[CurIdx];
   1699     // We can't use CompositeType::indexValid(Index) here.
   1700     // indexValid() always returns true for arrays because getelementptr allows
   1701     // out-of-bounds indices. Since we don't allow those for extractvalue and
   1702     // insertvalue we need to check array indexing manually.
   1703     // Since the only other types we can index into are struct types it's just
   1704     // as easy to check those manually as well.
   1705     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
   1706       if (Index >= AT->getNumElements())
   1707         return 0;
   1708     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
   1709       if (Index >= ST->getNumElements())
   1710         return 0;
   1711     } else {
   1712       // Not a valid type to index into.
   1713       return 0;
   1714     }
   1715 
   1716     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
   1717   }
   1718   return const_cast<Type*>(Agg);
   1719 }
   1720 
   1721 //===----------------------------------------------------------------------===//
   1722 //                             BinaryOperator Class
   1723 //===----------------------------------------------------------------------===//
   1724 
   1725 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1726                                Type *Ty, const Twine &Name,
   1727                                Instruction *InsertBefore)
   1728   : Instruction(Ty, iType,
   1729                 OperandTraits<BinaryOperator>::op_begin(this),
   1730                 OperandTraits<BinaryOperator>::operands(this),
   1731                 InsertBefore) {
   1732   Op<0>() = S1;
   1733   Op<1>() = S2;
   1734   init(iType);
   1735   setName(Name);
   1736 }
   1737 
   1738 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
   1739                                Type *Ty, const Twine &Name,
   1740                                BasicBlock *InsertAtEnd)
   1741   : Instruction(Ty, iType,
   1742                 OperandTraits<BinaryOperator>::op_begin(this),
   1743                 OperandTraits<BinaryOperator>::operands(this),
   1744                 InsertAtEnd) {
   1745   Op<0>() = S1;
   1746   Op<1>() = S2;
   1747   init(iType);
   1748   setName(Name);
   1749 }
   1750 
   1751 
   1752 void BinaryOperator::init(BinaryOps iType) {
   1753   Value *LHS = getOperand(0), *RHS = getOperand(1);
   1754   (void)LHS; (void)RHS; // Silence warnings.
   1755   assert(LHS->getType() == RHS->getType() &&
   1756          "Binary operator operand types must match!");
   1757 #ifndef NDEBUG
   1758   switch (iType) {
   1759   case Add: case Sub:
   1760   case Mul:
   1761     assert(getType() == LHS->getType() &&
   1762            "Arithmetic operation should return same type as operands!");
   1763     assert(getType()->isIntOrIntVectorTy() &&
   1764            "Tried to create an integer operation on a non-integer type!");
   1765     break;
   1766   case FAdd: case FSub:
   1767   case FMul:
   1768     assert(getType() == LHS->getType() &&
   1769            "Arithmetic operation should return same type as operands!");
   1770     assert(getType()->isFPOrFPVectorTy() &&
   1771            "Tried to create a floating-point operation on a "
   1772            "non-floating-point type!");
   1773     break;
   1774   case UDiv:
   1775   case SDiv:
   1776     assert(getType() == LHS->getType() &&
   1777            "Arithmetic operation should return same type as operands!");
   1778     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1779             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1780            "Incorrect operand type (not integer) for S/UDIV");
   1781     break;
   1782   case FDiv:
   1783     assert(getType() == LHS->getType() &&
   1784            "Arithmetic operation should return same type as operands!");
   1785     assert(getType()->isFPOrFPVectorTy() &&
   1786            "Incorrect operand type (not floating point) for FDIV");
   1787     break;
   1788   case URem:
   1789   case SRem:
   1790     assert(getType() == LHS->getType() &&
   1791            "Arithmetic operation should return same type as operands!");
   1792     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
   1793             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1794            "Incorrect operand type (not integer) for S/UREM");
   1795     break;
   1796   case FRem:
   1797     assert(getType() == LHS->getType() &&
   1798            "Arithmetic operation should return same type as operands!");
   1799     assert(getType()->isFPOrFPVectorTy() &&
   1800            "Incorrect operand type (not floating point) for FREM");
   1801     break;
   1802   case Shl:
   1803   case LShr:
   1804   case AShr:
   1805     assert(getType() == LHS->getType() &&
   1806            "Shift operation should return same type as operands!");
   1807     assert((getType()->isIntegerTy() ||
   1808             (getType()->isVectorTy() &&
   1809              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1810            "Tried to create a shift operation on a non-integral type!");
   1811     break;
   1812   case And: case Or:
   1813   case Xor:
   1814     assert(getType() == LHS->getType() &&
   1815            "Logical operation should return same type as operands!");
   1816     assert((getType()->isIntegerTy() ||
   1817             (getType()->isVectorTy() &&
   1818              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
   1819            "Tried to create a logical operation on a non-integral type!");
   1820     break;
   1821   default:
   1822     break;
   1823   }
   1824 #endif
   1825 }
   1826 
   1827 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1828                                        const Twine &Name,
   1829                                        Instruction *InsertBefore) {
   1830   assert(S1->getType() == S2->getType() &&
   1831          "Cannot create binary operator with two operands of differing type!");
   1832   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
   1833 }
   1834 
   1835 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
   1836                                        const Twine &Name,
   1837                                        BasicBlock *InsertAtEnd) {
   1838   BinaryOperator *Res = Create(Op, S1, S2, Name);
   1839   InsertAtEnd->getInstList().push_back(Res);
   1840   return Res;
   1841 }
   1842 
   1843 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1844                                           Instruction *InsertBefore) {
   1845   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1846   return new BinaryOperator(Instruction::Sub,
   1847                             zero, Op,
   1848                             Op->getType(), Name, InsertBefore);
   1849 }
   1850 
   1851 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
   1852                                           BasicBlock *InsertAtEnd) {
   1853   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1854   return new BinaryOperator(Instruction::Sub,
   1855                             zero, Op,
   1856                             Op->getType(), Name, InsertAtEnd);
   1857 }
   1858 
   1859 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1860                                              Instruction *InsertBefore) {
   1861   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1862   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
   1863 }
   1864 
   1865 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
   1866                                              BasicBlock *InsertAtEnd) {
   1867   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1868   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
   1869 }
   1870 
   1871 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1872                                              Instruction *InsertBefore) {
   1873   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1874   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
   1875 }
   1876 
   1877 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
   1878                                              BasicBlock *InsertAtEnd) {
   1879   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1880   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
   1881 }
   1882 
   1883 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1884                                            Instruction *InsertBefore) {
   1885   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1886   return new BinaryOperator(Instruction::FSub, zero, Op,
   1887                             Op->getType(), Name, InsertBefore);
   1888 }
   1889 
   1890 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
   1891                                            BasicBlock *InsertAtEnd) {
   1892   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
   1893   return new BinaryOperator(Instruction::FSub, zero, Op,
   1894                             Op->getType(), Name, InsertAtEnd);
   1895 }
   1896 
   1897 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1898                                           Instruction *InsertBefore) {
   1899   Constant *C = Constant::getAllOnesValue(Op->getType());
   1900   return new BinaryOperator(Instruction::Xor, Op, C,
   1901                             Op->getType(), Name, InsertBefore);
   1902 }
   1903 
   1904 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
   1905                                           BasicBlock *InsertAtEnd) {
   1906   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
   1907   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
   1908                             Op->getType(), Name, InsertAtEnd);
   1909 }
   1910 
   1911 
   1912 // isConstantAllOnes - Helper function for several functions below
   1913 static inline bool isConstantAllOnes(const Value *V) {
   1914   if (const Constant *C = dyn_cast<Constant>(V))
   1915     return C->isAllOnesValue();
   1916   return false;
   1917 }
   1918 
   1919 bool BinaryOperator::isNeg(const Value *V) {
   1920   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1921     if (Bop->getOpcode() == Instruction::Sub)
   1922       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1923         return C->isNegativeZeroValue();
   1924   return false;
   1925 }
   1926 
   1927 bool BinaryOperator::isFNeg(const Value *V) {
   1928   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1929     if (Bop->getOpcode() == Instruction::FSub)
   1930       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
   1931         return C->isNegativeZeroValue();
   1932   return false;
   1933 }
   1934 
   1935 bool BinaryOperator::isNot(const Value *V) {
   1936   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
   1937     return (Bop->getOpcode() == Instruction::Xor &&
   1938             (isConstantAllOnes(Bop->getOperand(1)) ||
   1939              isConstantAllOnes(Bop->getOperand(0))));
   1940   return false;
   1941 }
   1942 
   1943 Value *BinaryOperator::getNegArgument(Value *BinOp) {
   1944   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1945 }
   1946 
   1947 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
   1948   return getNegArgument(const_cast<Value*>(BinOp));
   1949 }
   1950 
   1951 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
   1952   return cast<BinaryOperator>(BinOp)->getOperand(1);
   1953 }
   1954 
   1955 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
   1956   return getFNegArgument(const_cast<Value*>(BinOp));
   1957 }
   1958 
   1959 Value *BinaryOperator::getNotArgument(Value *BinOp) {
   1960   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
   1961   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
   1962   Value *Op0 = BO->getOperand(0);
   1963   Value *Op1 = BO->getOperand(1);
   1964   if (isConstantAllOnes(Op0)) return Op1;
   1965 
   1966   assert(isConstantAllOnes(Op1));
   1967   return Op0;
   1968 }
   1969 
   1970 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
   1971   return getNotArgument(const_cast<Value*>(BinOp));
   1972 }
   1973 
   1974 
   1975 // swapOperands - Exchange the two operands to this instruction.  This
   1976 // instruction is safe to use on any binary instruction and does not
   1977 // modify the semantics of the instruction.  If the instruction is
   1978 // order dependent (SetLT f.e.) the opcode is changed.
   1979 //
   1980 bool BinaryOperator::swapOperands() {
   1981   if (!isCommutative())
   1982     return true; // Can't commute operands
   1983   Op<0>().swap(Op<1>());
   1984   return false;
   1985 }
   1986 
   1987 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
   1988   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
   1989 }
   1990 
   1991 void BinaryOperator::setHasNoSignedWrap(bool b) {
   1992   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
   1993 }
   1994 
   1995 void BinaryOperator::setIsExact(bool b) {
   1996   cast<PossiblyExactOperator>(this)->setIsExact(b);
   1997 }
   1998 
   1999 bool BinaryOperator::hasNoUnsignedWrap() const {
   2000   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
   2001 }
   2002 
   2003 bool BinaryOperator::hasNoSignedWrap() const {
   2004   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
   2005 }
   2006 
   2007 bool BinaryOperator::isExact() const {
   2008   return cast<PossiblyExactOperator>(this)->isExact();
   2009 }
   2010 
   2011 //===----------------------------------------------------------------------===//
   2012 //                             FPMathOperator Class
   2013 //===----------------------------------------------------------------------===//
   2014 
   2015 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
   2016 /// An accuracy of 0.0 means that the operation should be performed with the
   2017 /// default precision.
   2018 float FPMathOperator::getFPAccuracy() const {
   2019   const MDNode *MD =
   2020     cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
   2021   if (!MD)
   2022     return 0.0;
   2023   ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
   2024   return Accuracy->getValueAPF().convertToFloat();
   2025 }
   2026 
   2027 
   2028 //===----------------------------------------------------------------------===//
   2029 //                                CastInst Class
   2030 //===----------------------------------------------------------------------===//
   2031 
   2032 void CastInst::anchor() {}
   2033 
   2034 // Just determine if this cast only deals with integral->integral conversion.
   2035 bool CastInst::isIntegerCast() const {
   2036   switch (getOpcode()) {
   2037     default: return false;
   2038     case Instruction::ZExt:
   2039     case Instruction::SExt:
   2040     case Instruction::Trunc:
   2041       return true;
   2042     case Instruction::BitCast:
   2043       return getOperand(0)->getType()->isIntegerTy() &&
   2044         getType()->isIntegerTy();
   2045   }
   2046 }
   2047 
   2048 bool CastInst::isLosslessCast() const {
   2049   // Only BitCast can be lossless, exit fast if we're not BitCast
   2050   if (getOpcode() != Instruction::BitCast)
   2051     return false;
   2052 
   2053   // Identity cast is always lossless
   2054   Type* SrcTy = getOperand(0)->getType();
   2055   Type* DstTy = getType();
   2056   if (SrcTy == DstTy)
   2057     return true;
   2058 
   2059   // Pointer to pointer is always lossless.
   2060   if (SrcTy->isPointerTy())
   2061     return DstTy->isPointerTy();
   2062   return false;  // Other types have no identity values
   2063 }
   2064 
   2065 /// This function determines if the CastInst does not require any bits to be
   2066 /// changed in order to effect the cast. Essentially, it identifies cases where
   2067 /// no code gen is necessary for the cast, hence the name no-op cast.  For
   2068 /// example, the following are all no-op casts:
   2069 /// # bitcast i32* %x to i8*
   2070 /// # bitcast <2 x i32> %x to <4 x i16>
   2071 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
   2072 /// @brief Determine if the described cast is a no-op.
   2073 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
   2074                           Type *SrcTy,
   2075                           Type *DestTy,
   2076                           Type *IntPtrTy) {
   2077   switch (Opcode) {
   2078     default: llvm_unreachable("Invalid CastOp");
   2079     case Instruction::Trunc:
   2080     case Instruction::ZExt:
   2081     case Instruction::SExt:
   2082     case Instruction::FPTrunc:
   2083     case Instruction::FPExt:
   2084     case Instruction::UIToFP:
   2085     case Instruction::SIToFP:
   2086     case Instruction::FPToUI:
   2087     case Instruction::FPToSI:
   2088       return false; // These always modify bits
   2089     case Instruction::BitCast:
   2090       return true;  // BitCast never modifies bits.
   2091     case Instruction::PtrToInt:
   2092       return IntPtrTy->getScalarSizeInBits() ==
   2093              DestTy->getScalarSizeInBits();
   2094     case Instruction::IntToPtr:
   2095       return IntPtrTy->getScalarSizeInBits() ==
   2096              SrcTy->getScalarSizeInBits();
   2097   }
   2098 }
   2099 
   2100 /// @brief Determine if a cast is a no-op.
   2101 bool CastInst::isNoopCast(Type *IntPtrTy) const {
   2102   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
   2103 }
   2104 
   2105 /// This function determines if a pair of casts can be eliminated and what
   2106 /// opcode should be used in the elimination. This assumes that there are two
   2107 /// instructions like this:
   2108 /// *  %F = firstOpcode SrcTy %x to MidTy
   2109 /// *  %S = secondOpcode MidTy %F to DstTy
   2110 /// The function returns a resultOpcode so these two casts can be replaced with:
   2111 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
   2112 /// If no such cast is permited, the function returns 0.
   2113 unsigned CastInst::isEliminableCastPair(
   2114   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
   2115   Type *SrcTy, Type *MidTy, Type *DstTy, Type *IntPtrTy) {
   2116   // Define the 144 possibilities for these two cast instructions. The values
   2117   // in this matrix determine what to do in a given situation and select the
   2118   // case in the switch below.  The rows correspond to firstOp, the columns
   2119   // correspond to secondOp.  In looking at the table below, keep in  mind
   2120   // the following cast properties:
   2121   //
   2122   //          Size Compare       Source               Destination
   2123   // Operator  Src ? Size   Type       Sign         Type       Sign
   2124   // -------- ------------ -------------------   ---------------------
   2125   // TRUNC         >       Integer      Any        Integral     Any
   2126   // ZEXT          <       Integral   Unsigned     Integer      Any
   2127   // SEXT          <       Integral    Signed      Integer      Any
   2128   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
   2129   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
   2130   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
   2131   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
   2132   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
   2133   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
   2134   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
   2135   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
   2136   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
   2137   //
   2138   // NOTE: some transforms are safe, but we consider them to be non-profitable.
   2139   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
   2140   // into "fptoui double to i64", but this loses information about the range
   2141   // of the produced value (we no longer know the top-part is all zeros).
   2142   // Further this conversion is often much more expensive for typical hardware,
   2143   // and causes issues when building libgcc.  We disallow fptosi+sext for the
   2144   // same reason.
   2145   const unsigned numCastOps =
   2146     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
   2147   static const uint8_t CastResults[numCastOps][numCastOps] = {
   2148     // T        F  F  U  S  F  F  P  I  B   -+
   2149     // R  Z  S  P  P  I  I  T  P  2  N  T    |
   2150     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
   2151     // N  X  X  U  S  F  F  N  X  N  2  V    |
   2152     // C  T  T  I  I  P  P  C  T  T  P  T   -+
   2153     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
   2154     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
   2155     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
   2156     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
   2157     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
   2158     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
   2159     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
   2160     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
   2161     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
   2162     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
   2163     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
   2164     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
   2165   };
   2166 
   2167   // If either of the casts are a bitcast from scalar to vector, disallow the
   2168   // merging. However, bitcast of A->B->A are allowed.
   2169   bool isFirstBitcast  = (firstOp == Instruction::BitCast);
   2170   bool isSecondBitcast = (secondOp == Instruction::BitCast);
   2171   bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
   2172 
   2173   // Check if any of the bitcasts convert scalars<->vectors.
   2174   if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
   2175       (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
   2176     // Unless we are bitcasing to the original type, disallow optimizations.
   2177     if (!chainedBitcast) return 0;
   2178 
   2179   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
   2180                             [secondOp-Instruction::CastOpsBegin];
   2181   switch (ElimCase) {
   2182     case 0:
   2183       // categorically disallowed
   2184       return 0;
   2185     case 1:
   2186       // allowed, use first cast's opcode
   2187       return firstOp;
   2188     case 2:
   2189       // allowed, use second cast's opcode
   2190       return secondOp;
   2191     case 3:
   2192       // no-op cast in second op implies firstOp as long as the DestTy
   2193       // is integer and we are not converting between a vector and a
   2194       // non vector type.
   2195       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
   2196         return firstOp;
   2197       return 0;
   2198     case 4:
   2199       // no-op cast in second op implies firstOp as long as the DestTy
   2200       // is floating point.
   2201       if (DstTy->isFloatingPointTy())
   2202         return firstOp;
   2203       return 0;
   2204     case 5:
   2205       // no-op cast in first op implies secondOp as long as the SrcTy
   2206       // is an integer.
   2207       if (SrcTy->isIntegerTy())
   2208         return secondOp;
   2209       return 0;
   2210     case 6:
   2211       // no-op cast in first op implies secondOp as long as the SrcTy
   2212       // is a floating point.
   2213       if (SrcTy->isFloatingPointTy())
   2214         return secondOp;
   2215       return 0;
   2216     case 7: {
   2217       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
   2218       if (!IntPtrTy)
   2219         return 0;
   2220       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2221       unsigned MidSize = MidTy->getScalarSizeInBits();
   2222       if (MidSize >= PtrSize)
   2223         return Instruction::BitCast;
   2224       return 0;
   2225     }
   2226     case 8: {
   2227       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
   2228       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
   2229       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
   2230       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2231       unsigned DstSize = DstTy->getScalarSizeInBits();
   2232       if (SrcSize == DstSize)
   2233         return Instruction::BitCast;
   2234       else if (SrcSize < DstSize)
   2235         return firstOp;
   2236       return secondOp;
   2237     }
   2238     case 9: // zext, sext -> zext, because sext can't sign extend after zext
   2239       return Instruction::ZExt;
   2240     case 10:
   2241       // fpext followed by ftrunc is allowed if the bit size returned to is
   2242       // the same as the original, in which case its just a bitcast
   2243       if (SrcTy == DstTy)
   2244         return Instruction::BitCast;
   2245       return 0; // If the types are not the same we can't eliminate it.
   2246     case 11:
   2247       // bitcast followed by ptrtoint is allowed as long as the bitcast
   2248       // is a pointer to pointer cast.
   2249       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
   2250         return secondOp;
   2251       return 0;
   2252     case 12:
   2253       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
   2254       if (MidTy->isPointerTy() && DstTy->isPointerTy())
   2255         return firstOp;
   2256       return 0;
   2257     case 13: {
   2258       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
   2259       if (!IntPtrTy)
   2260         return 0;
   2261       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
   2262       unsigned SrcSize = SrcTy->getScalarSizeInBits();
   2263       unsigned DstSize = DstTy->getScalarSizeInBits();
   2264       if (SrcSize <= PtrSize && SrcSize == DstSize)
   2265         return Instruction::BitCast;
   2266       return 0;
   2267     }
   2268     case 99:
   2269       // cast combination can't happen (error in input). This is for all cases
   2270       // where the MidTy is not the same for the two cast instructions.
   2271       llvm_unreachable("Invalid Cast Combination");
   2272     default:
   2273       llvm_unreachable("Error in CastResults table!!!");
   2274   }
   2275 }
   2276 
   2277 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2278   const Twine &Name, Instruction *InsertBefore) {
   2279   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2280   // Construct and return the appropriate CastInst subclass
   2281   switch (op) {
   2282     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
   2283     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
   2284     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
   2285     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
   2286     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
   2287     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
   2288     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
   2289     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
   2290     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
   2291     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
   2292     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
   2293     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
   2294     default: llvm_unreachable("Invalid opcode provided");
   2295   }
   2296 }
   2297 
   2298 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
   2299   const Twine &Name, BasicBlock *InsertAtEnd) {
   2300   assert(castIsValid(op, S, Ty) && "Invalid cast!");
   2301   // Construct and return the appropriate CastInst subclass
   2302   switch (op) {
   2303     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
   2304     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
   2305     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
   2306     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
   2307     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
   2308     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
   2309     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
   2310     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
   2311     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
   2312     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
   2313     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
   2314     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
   2315     default: llvm_unreachable("Invalid opcode provided");
   2316   }
   2317 }
   2318 
   2319 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2320                                         const Twine &Name,
   2321                                         Instruction *InsertBefore) {
   2322   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2323     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2324   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
   2325 }
   2326 
   2327 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
   2328                                         const Twine &Name,
   2329                                         BasicBlock *InsertAtEnd) {
   2330   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2331     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2332   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
   2333 }
   2334 
   2335 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2336                                         const Twine &Name,
   2337                                         Instruction *InsertBefore) {
   2338   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2339     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2340   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
   2341 }
   2342 
   2343 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
   2344                                         const Twine &Name,
   2345                                         BasicBlock *InsertAtEnd) {
   2346   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2347     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2348   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
   2349 }
   2350 
   2351 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2352                                          const Twine &Name,
   2353                                          Instruction *InsertBefore) {
   2354   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2355     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2356   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
   2357 }
   2358 
   2359 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
   2360                                          const Twine &Name,
   2361                                          BasicBlock *InsertAtEnd) {
   2362   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   2363     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2364   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
   2365 }
   2366 
   2367 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2368                                       const Twine &Name,
   2369                                       BasicBlock *InsertAtEnd) {
   2370   assert(S->getType()->isPointerTy() && "Invalid cast");
   2371   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2372          "Invalid cast");
   2373 
   2374   if (Ty->isIntegerTy())
   2375     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
   2376   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
   2377 }
   2378 
   2379 /// @brief Create a BitCast or a PtrToInt cast instruction
   2380 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
   2381                                       const Twine &Name,
   2382                                       Instruction *InsertBefore) {
   2383   assert(S->getType()->isPointerTy() && "Invalid cast");
   2384   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2385          "Invalid cast");
   2386 
   2387   if (Ty->isIntegerTy())
   2388     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
   2389   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
   2390 }
   2391 
   2392 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2393                                       bool isSigned, const Twine &Name,
   2394                                       Instruction *InsertBefore) {
   2395   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2396          "Invalid integer cast");
   2397   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2398   unsigned DstBits = Ty->getScalarSizeInBits();
   2399   Instruction::CastOps opcode =
   2400     (SrcBits == DstBits ? Instruction::BitCast :
   2401      (SrcBits > DstBits ? Instruction::Trunc :
   2402       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2403   return Create(opcode, C, Ty, Name, InsertBefore);
   2404 }
   2405 
   2406 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
   2407                                       bool isSigned, const Twine &Name,
   2408                                       BasicBlock *InsertAtEnd) {
   2409   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
   2410          "Invalid cast");
   2411   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2412   unsigned DstBits = Ty->getScalarSizeInBits();
   2413   Instruction::CastOps opcode =
   2414     (SrcBits == DstBits ? Instruction::BitCast :
   2415      (SrcBits > DstBits ? Instruction::Trunc :
   2416       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   2417   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2418 }
   2419 
   2420 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2421                                  const Twine &Name,
   2422                                  Instruction *InsertBefore) {
   2423   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2424          "Invalid cast");
   2425   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2426   unsigned DstBits = Ty->getScalarSizeInBits();
   2427   Instruction::CastOps opcode =
   2428     (SrcBits == DstBits ? Instruction::BitCast :
   2429      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2430   return Create(opcode, C, Ty, Name, InsertBefore);
   2431 }
   2432 
   2433 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
   2434                                  const Twine &Name,
   2435                                  BasicBlock *InsertAtEnd) {
   2436   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   2437          "Invalid cast");
   2438   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   2439   unsigned DstBits = Ty->getScalarSizeInBits();
   2440   Instruction::CastOps opcode =
   2441     (SrcBits == DstBits ? Instruction::BitCast :
   2442      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
   2443   return Create(opcode, C, Ty, Name, InsertAtEnd);
   2444 }
   2445 
   2446 // Check whether it is valid to call getCastOpcode for these types.
   2447 // This routine must be kept in sync with getCastOpcode.
   2448 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
   2449   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
   2450     return false;
   2451 
   2452   if (SrcTy == DestTy)
   2453     return true;
   2454 
   2455   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2456     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2457       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2458         // An element by element cast.  Valid if casting the elements is valid.
   2459         SrcTy = SrcVecTy->getElementType();
   2460         DestTy = DestVecTy->getElementType();
   2461       }
   2462 
   2463   // Get the bit sizes, we'll need these
   2464   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2465   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2466 
   2467   // Run through the possibilities ...
   2468   if (DestTy->isIntegerTy()) {               // Casting to integral
   2469     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2470         return true;
   2471     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2472       return true;
   2473     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2474       return DestBits == SrcBits;
   2475     } else {                                   // Casting from something else
   2476       return SrcTy->isPointerTy();
   2477     }
   2478   } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
   2479     if (SrcTy->isIntegerTy()) {                // Casting from integral
   2480       return true;
   2481     } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
   2482       return true;
   2483     } else if (SrcTy->isVectorTy()) {          // Casting from vector
   2484       return DestBits == SrcBits;
   2485     } else {                                   // Casting from something else
   2486       return false;
   2487     }
   2488   } else if (DestTy->isVectorTy()) {         // Casting to vector
   2489     return DestBits == SrcBits;
   2490   } else if (DestTy->isPointerTy()) {        // Casting to pointer
   2491     if (SrcTy->isPointerTy()) {                // Casting from pointer
   2492       return true;
   2493     } else if (SrcTy->isIntegerTy()) {         // Casting from integral
   2494       return true;
   2495     } else {                                   // Casting from something else
   2496       return false;
   2497     }
   2498   } else if (DestTy->isX86_MMXTy()) {
   2499     if (SrcTy->isVectorTy()) {
   2500       return DestBits == SrcBits;       // 64-bit vector to MMX
   2501     } else {
   2502       return false;
   2503     }
   2504   } else {                                   // Casting to something else
   2505     return false;
   2506   }
   2507 }
   2508 
   2509 // Provide a way to get a "cast" where the cast opcode is inferred from the
   2510 // types and size of the operand. This, basically, is a parallel of the
   2511 // logic in the castIsValid function below.  This axiom should hold:
   2512 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
   2513 // should not assert in castIsValid. In other words, this produces a "correct"
   2514 // casting opcode for the arguments passed to it.
   2515 // This routine must be kept in sync with isCastable.
   2516 Instruction::CastOps
   2517 CastInst::getCastOpcode(
   2518   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
   2519   Type *SrcTy = Src->getType();
   2520 
   2521   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
   2522          "Only first class types are castable!");
   2523 
   2524   if (SrcTy == DestTy)
   2525     return BitCast;
   2526 
   2527   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
   2528     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
   2529       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
   2530         // An element by element cast.  Find the appropriate opcode based on the
   2531         // element types.
   2532         SrcTy = SrcVecTy->getElementType();
   2533         DestTy = DestVecTy->getElementType();
   2534       }
   2535 
   2536   // Get the bit sizes, we'll need these
   2537   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
   2538   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
   2539 
   2540   // Run through the possibilities ...
   2541   if (DestTy->isIntegerTy()) {                      // Casting to integral
   2542     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2543       if (DestBits < SrcBits)
   2544         return Trunc;                               // int -> smaller int
   2545       else if (DestBits > SrcBits) {                // its an extension
   2546         if (SrcIsSigned)
   2547           return SExt;                              // signed -> SEXT
   2548         else
   2549           return ZExt;                              // unsigned -> ZEXT
   2550       } else {
   2551         return BitCast;                             // Same size, No-op cast
   2552       }
   2553     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2554       if (DestIsSigned)
   2555         return FPToSI;                              // FP -> sint
   2556       else
   2557         return FPToUI;                              // FP -> uint
   2558     } else if (SrcTy->isVectorTy()) {
   2559       assert(DestBits == SrcBits &&
   2560              "Casting vector to integer of different width");
   2561       return BitCast;                             // Same size, no-op cast
   2562     } else {
   2563       assert(SrcTy->isPointerTy() &&
   2564              "Casting from a value that is not first-class type");
   2565       return PtrToInt;                              // ptr -> int
   2566     }
   2567   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
   2568     if (SrcTy->isIntegerTy()) {                     // Casting from integral
   2569       if (SrcIsSigned)
   2570         return SIToFP;                              // sint -> FP
   2571       else
   2572         return UIToFP;                              // uint -> FP
   2573     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
   2574       if (DestBits < SrcBits) {
   2575         return FPTrunc;                             // FP -> smaller FP
   2576       } else if (DestBits > SrcBits) {
   2577         return FPExt;                               // FP -> larger FP
   2578       } else  {
   2579         return BitCast;                             // same size, no-op cast
   2580       }
   2581     } else if (SrcTy->isVectorTy()) {
   2582       assert(DestBits == SrcBits &&
   2583              "Casting vector to floating point of different width");
   2584       return BitCast;                             // same size, no-op cast
   2585     }
   2586     llvm_unreachable("Casting pointer or non-first class to float");
   2587   } else if (DestTy->isVectorTy()) {
   2588     assert(DestBits == SrcBits &&
   2589            "Illegal cast to vector (wrong type or size)");
   2590     return BitCast;
   2591   } else if (DestTy->isPointerTy()) {
   2592     if (SrcTy->isPointerTy()) {
   2593       return BitCast;                               // ptr -> ptr
   2594     } else if (SrcTy->isIntegerTy()) {
   2595       return IntToPtr;                              // int -> ptr
   2596     }
   2597     llvm_unreachable("Casting pointer to other than pointer or int");
   2598   } else if (DestTy->isX86_MMXTy()) {
   2599     if (SrcTy->isVectorTy()) {
   2600       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
   2601       return BitCast;                               // 64-bit vector to MMX
   2602     }
   2603     llvm_unreachable("Illegal cast to X86_MMX");
   2604   }
   2605   llvm_unreachable("Casting to type that is not first-class");
   2606 }
   2607 
   2608 //===----------------------------------------------------------------------===//
   2609 //                    CastInst SubClass Constructors
   2610 //===----------------------------------------------------------------------===//
   2611 
   2612 /// Check that the construction parameters for a CastInst are correct. This
   2613 /// could be broken out into the separate constructors but it is useful to have
   2614 /// it in one place and to eliminate the redundant code for getting the sizes
   2615 /// of the types involved.
   2616 bool
   2617 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
   2618 
   2619   // Check for type sanity on the arguments
   2620   Type *SrcTy = S->getType();
   2621   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
   2622       SrcTy->isAggregateType() || DstTy->isAggregateType())
   2623     return false;
   2624 
   2625   // Get the size of the types in bits, we'll need this later
   2626   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   2627   unsigned DstBitSize = DstTy->getScalarSizeInBits();
   2628 
   2629   // If these are vector types, get the lengths of the vectors (using zero for
   2630   // scalar types means that checking that vector lengths match also checks that
   2631   // scalars are not being converted to vectors or vectors to scalars).
   2632   unsigned SrcLength = SrcTy->isVectorTy() ?
   2633     cast<VectorType>(SrcTy)->getNumElements() : 0;
   2634   unsigned DstLength = DstTy->isVectorTy() ?
   2635     cast<VectorType>(DstTy)->getNumElements() : 0;
   2636 
   2637   // Switch on the opcode provided
   2638   switch (op) {
   2639   default: return false; // This is an input error
   2640   case Instruction::Trunc:
   2641     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2642       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2643   case Instruction::ZExt:
   2644     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2645       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2646   case Instruction::SExt:
   2647     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2648       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2649   case Instruction::FPTrunc:
   2650     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2651       SrcLength == DstLength && SrcBitSize > DstBitSize;
   2652   case Instruction::FPExt:
   2653     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2654       SrcLength == DstLength && SrcBitSize < DstBitSize;
   2655   case Instruction::UIToFP:
   2656   case Instruction::SIToFP:
   2657     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
   2658       SrcLength == DstLength;
   2659   case Instruction::FPToUI:
   2660   case Instruction::FPToSI:
   2661     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
   2662       SrcLength == DstLength;
   2663   case Instruction::PtrToInt:
   2664     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2665       return false;
   2666     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2667       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2668         return false;
   2669     return SrcTy->getScalarType()->isPointerTy() &&
   2670            DstTy->getScalarType()->isIntegerTy();
   2671   case Instruction::IntToPtr:
   2672     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
   2673       return false;
   2674     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
   2675       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
   2676         return false;
   2677     return SrcTy->getScalarType()->isIntegerTy() &&
   2678            DstTy->getScalarType()->isPointerTy();
   2679   case Instruction::BitCast:
   2680     // BitCast implies a no-op cast of type only. No bits change.
   2681     // However, you can't cast pointers to anything but pointers.
   2682     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
   2683       return false;
   2684 
   2685     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
   2686     // these cases, the cast is okay if the source and destination bit widths
   2687     // are identical.
   2688     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
   2689   }
   2690 }
   2691 
   2692 TruncInst::TruncInst(
   2693   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2694 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
   2695   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2696 }
   2697 
   2698 TruncInst::TruncInst(
   2699   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2700 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
   2701   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
   2702 }
   2703 
   2704 ZExtInst::ZExtInst(
   2705   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2706 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
   2707   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2708 }
   2709 
   2710 ZExtInst::ZExtInst(
   2711   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2712 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
   2713   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
   2714 }
   2715 SExtInst::SExtInst(
   2716   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2717 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
   2718   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2719 }
   2720 
   2721 SExtInst::SExtInst(
   2722   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2723 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
   2724   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
   2725 }
   2726 
   2727 FPTruncInst::FPTruncInst(
   2728   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2729 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
   2730   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2731 }
   2732 
   2733 FPTruncInst::FPTruncInst(
   2734   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2735 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
   2736   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
   2737 }
   2738 
   2739 FPExtInst::FPExtInst(
   2740   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2741 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
   2742   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2743 }
   2744 
   2745 FPExtInst::FPExtInst(
   2746   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2747 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
   2748   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
   2749 }
   2750 
   2751 UIToFPInst::UIToFPInst(
   2752   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2753 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
   2754   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2755 }
   2756 
   2757 UIToFPInst::UIToFPInst(
   2758   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2759 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
   2760   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
   2761 }
   2762 
   2763 SIToFPInst::SIToFPInst(
   2764   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2765 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
   2766   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2767 }
   2768 
   2769 SIToFPInst::SIToFPInst(
   2770   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2771 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
   2772   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
   2773 }
   2774 
   2775 FPToUIInst::FPToUIInst(
   2776   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2777 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
   2778   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2779 }
   2780 
   2781 FPToUIInst::FPToUIInst(
   2782   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2783 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
   2784   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
   2785 }
   2786 
   2787 FPToSIInst::FPToSIInst(
   2788   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2789 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
   2790   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2791 }
   2792 
   2793 FPToSIInst::FPToSIInst(
   2794   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2795 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
   2796   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
   2797 }
   2798 
   2799 PtrToIntInst::PtrToIntInst(
   2800   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2801 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
   2802   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2803 }
   2804 
   2805 PtrToIntInst::PtrToIntInst(
   2806   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2807 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
   2808   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
   2809 }
   2810 
   2811 IntToPtrInst::IntToPtrInst(
   2812   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2813 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
   2814   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2815 }
   2816 
   2817 IntToPtrInst::IntToPtrInst(
   2818   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2819 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
   2820   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
   2821 }
   2822 
   2823 BitCastInst::BitCastInst(
   2824   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
   2825 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
   2826   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2827 }
   2828 
   2829 BitCastInst::BitCastInst(
   2830   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
   2831 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
   2832   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
   2833 }
   2834 
   2835 //===----------------------------------------------------------------------===//
   2836 //                               CmpInst Classes
   2837 //===----------------------------------------------------------------------===//
   2838 
   2839 void CmpInst::Anchor() const {}
   2840 
   2841 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2842                  Value *LHS, Value *RHS, const Twine &Name,
   2843                  Instruction *InsertBefore)
   2844   : Instruction(ty, op,
   2845                 OperandTraits<CmpInst>::op_begin(this),
   2846                 OperandTraits<CmpInst>::operands(this),
   2847                 InsertBefore) {
   2848     Op<0>() = LHS;
   2849     Op<1>() = RHS;
   2850   setPredicate((Predicate)predicate);
   2851   setName(Name);
   2852 }
   2853 
   2854 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
   2855                  Value *LHS, Value *RHS, const Twine &Name,
   2856                  BasicBlock *InsertAtEnd)
   2857   : Instruction(ty, op,
   2858                 OperandTraits<CmpInst>::op_begin(this),
   2859                 OperandTraits<CmpInst>::operands(this),
   2860                 InsertAtEnd) {
   2861   Op<0>() = LHS;
   2862   Op<1>() = RHS;
   2863   setPredicate((Predicate)predicate);
   2864   setName(Name);
   2865 }
   2866 
   2867 CmpInst *
   2868 CmpInst::Create(OtherOps Op, unsigned short predicate,
   2869                 Value *S1, Value *S2,
   2870                 const Twine &Name, Instruction *InsertBefore) {
   2871   if (Op == Instruction::ICmp) {
   2872     if (InsertBefore)
   2873       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2874                           S1, S2, Name);
   2875     else
   2876       return new ICmpInst(CmpInst::Predicate(predicate),
   2877                           S1, S2, Name);
   2878   }
   2879 
   2880   if (InsertBefore)
   2881     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
   2882                         S1, S2, Name);
   2883   else
   2884     return new FCmpInst(CmpInst::Predicate(predicate),
   2885                         S1, S2, Name);
   2886 }
   2887 
   2888 CmpInst *
   2889 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
   2890                 const Twine &Name, BasicBlock *InsertAtEnd) {
   2891   if (Op == Instruction::ICmp) {
   2892     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2893                         S1, S2, Name);
   2894   }
   2895   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
   2896                       S1, S2, Name);
   2897 }
   2898 
   2899 void CmpInst::swapOperands() {
   2900   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2901     IC->swapOperands();
   2902   else
   2903     cast<FCmpInst>(this)->swapOperands();
   2904 }
   2905 
   2906 bool CmpInst::isCommutative() const {
   2907   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2908     return IC->isCommutative();
   2909   return cast<FCmpInst>(this)->isCommutative();
   2910 }
   2911 
   2912 bool CmpInst::isEquality() const {
   2913   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
   2914     return IC->isEquality();
   2915   return cast<FCmpInst>(this)->isEquality();
   2916 }
   2917 
   2918 
   2919 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
   2920   switch (pred) {
   2921     default: llvm_unreachable("Unknown cmp predicate!");
   2922     case ICMP_EQ: return ICMP_NE;
   2923     case ICMP_NE: return ICMP_EQ;
   2924     case ICMP_UGT: return ICMP_ULE;
   2925     case ICMP_ULT: return ICMP_UGE;
   2926     case ICMP_UGE: return ICMP_ULT;
   2927     case ICMP_ULE: return ICMP_UGT;
   2928     case ICMP_SGT: return ICMP_SLE;
   2929     case ICMP_SLT: return ICMP_SGE;
   2930     case ICMP_SGE: return ICMP_SLT;
   2931     case ICMP_SLE: return ICMP_SGT;
   2932 
   2933     case FCMP_OEQ: return FCMP_UNE;
   2934     case FCMP_ONE: return FCMP_UEQ;
   2935     case FCMP_OGT: return FCMP_ULE;
   2936     case FCMP_OLT: return FCMP_UGE;
   2937     case FCMP_OGE: return FCMP_ULT;
   2938     case FCMP_OLE: return FCMP_UGT;
   2939     case FCMP_UEQ: return FCMP_ONE;
   2940     case FCMP_UNE: return FCMP_OEQ;
   2941     case FCMP_UGT: return FCMP_OLE;
   2942     case FCMP_ULT: return FCMP_OGE;
   2943     case FCMP_UGE: return FCMP_OLT;
   2944     case FCMP_ULE: return FCMP_OGT;
   2945     case FCMP_ORD: return FCMP_UNO;
   2946     case FCMP_UNO: return FCMP_ORD;
   2947     case FCMP_TRUE: return FCMP_FALSE;
   2948     case FCMP_FALSE: return FCMP_TRUE;
   2949   }
   2950 }
   2951 
   2952 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
   2953   switch (pred) {
   2954     default: llvm_unreachable("Unknown icmp predicate!");
   2955     case ICMP_EQ: case ICMP_NE:
   2956     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
   2957        return pred;
   2958     case ICMP_UGT: return ICMP_SGT;
   2959     case ICMP_ULT: return ICMP_SLT;
   2960     case ICMP_UGE: return ICMP_SGE;
   2961     case ICMP_ULE: return ICMP_SLE;
   2962   }
   2963 }
   2964 
   2965 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
   2966   switch (pred) {
   2967     default: llvm_unreachable("Unknown icmp predicate!");
   2968     case ICMP_EQ: case ICMP_NE:
   2969     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
   2970        return pred;
   2971     case ICMP_SGT: return ICMP_UGT;
   2972     case ICMP_SLT: return ICMP_ULT;
   2973     case ICMP_SGE: return ICMP_UGE;
   2974     case ICMP_SLE: return ICMP_ULE;
   2975   }
   2976 }
   2977 
   2978 /// Initialize a set of values that all satisfy the condition with C.
   2979 ///
   2980 ConstantRange
   2981 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
   2982   APInt Lower(C);
   2983   APInt Upper(C);
   2984   uint32_t BitWidth = C.getBitWidth();
   2985   switch (pred) {
   2986   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
   2987   case ICmpInst::ICMP_EQ: Upper++; break;
   2988   case ICmpInst::ICMP_NE: Lower++; break;
   2989   case ICmpInst::ICMP_ULT:
   2990     Lower = APInt::getMinValue(BitWidth);
   2991     // Check for an empty-set condition.
   2992     if (Lower == Upper)
   2993       return ConstantRange(BitWidth, /*isFullSet=*/false);
   2994     break;
   2995   case ICmpInst::ICMP_SLT:
   2996     Lower = APInt::getSignedMinValue(BitWidth);
   2997     // Check for an empty-set condition.
   2998     if (Lower == Upper)
   2999       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3000     break;
   3001   case ICmpInst::ICMP_UGT:
   3002     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   3003     // Check for an empty-set condition.
   3004     if (Lower == Upper)
   3005       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3006     break;
   3007   case ICmpInst::ICMP_SGT:
   3008     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3009     // Check for an empty-set condition.
   3010     if (Lower == Upper)
   3011       return ConstantRange(BitWidth, /*isFullSet=*/false);
   3012     break;
   3013   case ICmpInst::ICMP_ULE:
   3014     Lower = APInt::getMinValue(BitWidth); Upper++;
   3015     // Check for a full-set condition.
   3016     if (Lower == Upper)
   3017       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3018     break;
   3019   case ICmpInst::ICMP_SLE:
   3020     Lower = APInt::getSignedMinValue(BitWidth); Upper++;
   3021     // Check for a full-set condition.
   3022     if (Lower == Upper)
   3023       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3024     break;
   3025   case ICmpInst::ICMP_UGE:
   3026     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
   3027     // Check for a full-set condition.
   3028     if (Lower == Upper)
   3029       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3030     break;
   3031   case ICmpInst::ICMP_SGE:
   3032     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
   3033     // Check for a full-set condition.
   3034     if (Lower == Upper)
   3035       return ConstantRange(BitWidth, /*isFullSet=*/true);
   3036     break;
   3037   }
   3038   return ConstantRange(Lower, Upper);
   3039 }
   3040 
   3041 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
   3042   switch (pred) {
   3043     default: llvm_unreachable("Unknown cmp predicate!");
   3044     case ICMP_EQ: case ICMP_NE:
   3045       return pred;
   3046     case ICMP_SGT: return ICMP_SLT;
   3047     case ICMP_SLT: return ICMP_SGT;
   3048     case ICMP_SGE: return ICMP_SLE;
   3049     case ICMP_SLE: return ICMP_SGE;
   3050     case ICMP_UGT: return ICMP_ULT;
   3051     case ICMP_ULT: return ICMP_UGT;
   3052     case ICMP_UGE: return ICMP_ULE;
   3053     case ICMP_ULE: return ICMP_UGE;
   3054 
   3055     case FCMP_FALSE: case FCMP_TRUE:
   3056     case FCMP_OEQ: case FCMP_ONE:
   3057     case FCMP_UEQ: case FCMP_UNE:
   3058     case FCMP_ORD: case FCMP_UNO:
   3059       return pred;
   3060     case FCMP_OGT: return FCMP_OLT;
   3061     case FCMP_OLT: return FCMP_OGT;
   3062     case FCMP_OGE: return FCMP_OLE;
   3063     case FCMP_OLE: return FCMP_OGE;
   3064     case FCMP_UGT: return FCMP_ULT;
   3065     case FCMP_ULT: return FCMP_UGT;
   3066     case FCMP_UGE: return FCMP_ULE;
   3067     case FCMP_ULE: return FCMP_UGE;
   3068   }
   3069 }
   3070 
   3071 bool CmpInst::isUnsigned(unsigned short predicate) {
   3072   switch (predicate) {
   3073     default: return false;
   3074     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
   3075     case ICmpInst::ICMP_UGE: return true;
   3076   }
   3077 }
   3078 
   3079 bool CmpInst::isSigned(unsigned short predicate) {
   3080   switch (predicate) {
   3081     default: return false;
   3082     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
   3083     case ICmpInst::ICMP_SGE: return true;
   3084   }
   3085 }
   3086 
   3087 bool CmpInst::isOrdered(unsigned short predicate) {
   3088   switch (predicate) {
   3089     default: return false;
   3090     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
   3091     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
   3092     case FCmpInst::FCMP_ORD: return true;
   3093   }
   3094 }
   3095 
   3096 bool CmpInst::isUnordered(unsigned short predicate) {
   3097   switch (predicate) {
   3098     default: return false;
   3099     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
   3100     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
   3101     case FCmpInst::FCMP_UNO: return true;
   3102   }
   3103 }
   3104 
   3105 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
   3106   switch(predicate) {
   3107     default: return false;
   3108     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
   3109     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
   3110   }
   3111 }
   3112 
   3113 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
   3114   switch(predicate) {
   3115   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
   3116   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
   3117   default: return false;
   3118   }
   3119 }
   3120 
   3121 
   3122 //===----------------------------------------------------------------------===//
   3123 //                        SwitchInst Implementation
   3124 //===----------------------------------------------------------------------===//
   3125 
   3126 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
   3127   assert(Value && Default && NumReserved);
   3128   ReservedSpace = NumReserved;
   3129   NumOperands = 2;
   3130   OperandList = allocHungoffUses(ReservedSpace);
   3131 
   3132   OperandList[0] = Value;
   3133   OperandList[1] = Default;
   3134 }
   3135 
   3136 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3137 /// switch on and a default destination.  The number of additional cases can
   3138 /// be specified here to make memory allocation more efficient.  This
   3139 /// constructor can also autoinsert before another instruction.
   3140 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3141                        Instruction *InsertBefore)
   3142   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3143                    0, 0, InsertBefore) {
   3144   init(Value, Default, 2+NumCases*2);
   3145 }
   3146 
   3147 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
   3148 /// switch on and a default destination.  The number of additional cases can
   3149 /// be specified here to make memory allocation more efficient.  This
   3150 /// constructor also autoinserts at the end of the specified BasicBlock.
   3151 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
   3152                        BasicBlock *InsertAtEnd)
   3153   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
   3154                    0, 0, InsertAtEnd) {
   3155   init(Value, Default, 2+NumCases*2);
   3156 }
   3157 
   3158 SwitchInst::SwitchInst(const SwitchInst &SI)
   3159   : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
   3160   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
   3161   NumOperands = SI.getNumOperands();
   3162   Use *OL = OperandList, *InOL = SI.OperandList;
   3163   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
   3164     OL[i] = InOL[i];
   3165     OL[i+1] = InOL[i+1];
   3166   }
   3167   TheSubsets = SI.TheSubsets;
   3168   SubclassOptionalData = SI.SubclassOptionalData;
   3169 }
   3170 
   3171 SwitchInst::~SwitchInst() {
   3172   dropHungoffUses();
   3173 }
   3174 
   3175 
   3176 /// addCase - Add an entry to the switch instruction...
   3177 ///
   3178 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
   3179   IntegersSubsetToBB Mapping;
   3180 
   3181   // FIXME: Currently we work with ConstantInt based cases.
   3182   // So inititalize IntItem container directly from ConstantInt.
   3183   Mapping.add(IntItem::fromConstantInt(OnVal));
   3184   IntegersSubset CaseRanges = Mapping.getCase();
   3185   addCase(CaseRanges, Dest);
   3186 }
   3187 
   3188 void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
   3189   unsigned NewCaseIdx = getNumCases();
   3190   unsigned OpNo = NumOperands;
   3191   if (OpNo+2 > ReservedSpace)
   3192     growOperands();  // Get more space!
   3193   // Initialize some new operands.
   3194   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
   3195   NumOperands = OpNo+2;
   3196 
   3197   SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
   3198 
   3199   CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
   3200   Case.updateCaseValueOperand(OnVal);
   3201   Case.setSuccessor(Dest);
   3202 }
   3203 
   3204 /// removeCase - This method removes the specified case and its successor
   3205 /// from the switch instruction.
   3206 void SwitchInst::removeCase(CaseIt& i) {
   3207   unsigned idx = i.getCaseIndex();
   3208 
   3209   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
   3210 
   3211   unsigned NumOps = getNumOperands();
   3212   Use *OL = OperandList;
   3213 
   3214   // Overwrite this case with the end of the list.
   3215   if (2 + (idx + 1) * 2 != NumOps) {
   3216     OL[2 + idx * 2] = OL[NumOps - 2];
   3217     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
   3218   }
   3219 
   3220   // Nuke the last value.
   3221   OL[NumOps-2].set(0);
   3222   OL[NumOps-2+1].set(0);
   3223 
   3224   // Do the same with TheCases collection:
   3225   if (i.SubsetIt != --TheSubsets.end()) {
   3226     *i.SubsetIt = TheSubsets.back();
   3227     TheSubsets.pop_back();
   3228   } else {
   3229     TheSubsets.pop_back();
   3230     i.SubsetIt = TheSubsets.end();
   3231   }
   3232 
   3233   NumOperands = NumOps-2;
   3234 }
   3235 
   3236 /// growOperands - grow operands - This grows the operand list in response
   3237 /// to a push_back style of operation.  This grows the number of ops by 3 times.
   3238 ///
   3239 void SwitchInst::growOperands() {
   3240   unsigned e = getNumOperands();
   3241   unsigned NumOps = e*3;
   3242 
   3243   ReservedSpace = NumOps;
   3244   Use *NewOps = allocHungoffUses(NumOps);
   3245   Use *OldOps = OperandList;
   3246   for (unsigned i = 0; i != e; ++i) {
   3247       NewOps[i] = OldOps[i];
   3248   }
   3249   OperandList = NewOps;
   3250   Use::zap(OldOps, OldOps + e, true);
   3251 }
   3252 
   3253 
   3254 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
   3255   return getSuccessor(idx);
   3256 }
   3257 unsigned SwitchInst::getNumSuccessorsV() const {
   3258   return getNumSuccessors();
   3259 }
   3260 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3261   setSuccessor(idx, B);
   3262 }
   3263 
   3264 //===----------------------------------------------------------------------===//
   3265 //                        IndirectBrInst Implementation
   3266 //===----------------------------------------------------------------------===//
   3267 
   3268 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
   3269   assert(Address && Address->getType()->isPointerTy() &&
   3270          "Address of indirectbr must be a pointer");
   3271   ReservedSpace = 1+NumDests;
   3272   NumOperands = 1;
   3273   OperandList = allocHungoffUses(ReservedSpace);
   3274 
   3275   OperandList[0] = Address;
   3276 }
   3277 
   3278 
   3279 /// growOperands - grow operands - This grows the operand list in response
   3280 /// to a push_back style of operation.  This grows the number of ops by 2 times.
   3281 ///
   3282 void IndirectBrInst::growOperands() {
   3283   unsigned e = getNumOperands();
   3284   unsigned NumOps = e*2;
   3285 
   3286   ReservedSpace = NumOps;
   3287   Use *NewOps = allocHungoffUses(NumOps);
   3288   Use *OldOps = OperandList;
   3289   for (unsigned i = 0; i != e; ++i)
   3290     NewOps[i] = OldOps[i];
   3291   OperandList = NewOps;
   3292   Use::zap(OldOps, OldOps + e, true);
   3293 }
   3294 
   3295 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3296                                Instruction *InsertBefore)
   3297 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3298                  0, 0, InsertBefore) {
   3299   init(Address, NumCases);
   3300 }
   3301 
   3302 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
   3303                                BasicBlock *InsertAtEnd)
   3304 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
   3305                  0, 0, InsertAtEnd) {
   3306   init(Address, NumCases);
   3307 }
   3308 
   3309 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
   3310   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
   3311                    allocHungoffUses(IBI.getNumOperands()),
   3312                    IBI.getNumOperands()) {
   3313   Use *OL = OperandList, *InOL = IBI.OperandList;
   3314   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
   3315     OL[i] = InOL[i];
   3316   SubclassOptionalData = IBI.SubclassOptionalData;
   3317 }
   3318 
   3319 IndirectBrInst::~IndirectBrInst() {
   3320   dropHungoffUses();
   3321 }
   3322 
   3323 /// addDestination - Add a destination.
   3324 ///
   3325 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
   3326   unsigned OpNo = NumOperands;
   3327   if (OpNo+1 > ReservedSpace)
   3328     growOperands();  // Get more space!
   3329   // Initialize some new operands.
   3330   assert(OpNo < ReservedSpace && "Growing didn't work!");
   3331   NumOperands = OpNo+1;
   3332   OperandList[OpNo] = DestBB;
   3333 }
   3334 
   3335 /// removeDestination - This method removes the specified successor from the
   3336 /// indirectbr instruction.
   3337 void IndirectBrInst::removeDestination(unsigned idx) {
   3338   assert(idx < getNumOperands()-1 && "Successor index out of range!");
   3339 
   3340   unsigned NumOps = getNumOperands();
   3341   Use *OL = OperandList;
   3342 
   3343   // Replace this value with the last one.
   3344   OL[idx+1] = OL[NumOps-1];
   3345 
   3346   // Nuke the last value.
   3347   OL[NumOps-1].set(0);
   3348   NumOperands = NumOps-1;
   3349 }
   3350 
   3351 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
   3352   return getSuccessor(idx);
   3353 }
   3354 unsigned IndirectBrInst::getNumSuccessorsV() const {
   3355   return getNumSuccessors();
   3356 }
   3357 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
   3358   setSuccessor(idx, B);
   3359 }
   3360 
   3361 //===----------------------------------------------------------------------===//
   3362 //                           clone_impl() implementations
   3363 //===----------------------------------------------------------------------===//
   3364 
   3365 // Define these methods here so vtables don't get emitted into every translation
   3366 // unit that uses these classes.
   3367 
   3368 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
   3369   return new (getNumOperands()) GetElementPtrInst(*this);
   3370 }
   3371 
   3372 BinaryOperator *BinaryOperator::clone_impl() const {
   3373   return Create(getOpcode(), Op<0>(), Op<1>());
   3374 }
   3375 
   3376 FCmpInst* FCmpInst::clone_impl() const {
   3377   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
   3378 }
   3379 
   3380 ICmpInst* ICmpInst::clone_impl() const {
   3381   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
   3382 }
   3383 
   3384 ExtractValueInst *ExtractValueInst::clone_impl() const {
   3385   return new ExtractValueInst(*this);
   3386 }
   3387 
   3388 InsertValueInst *InsertValueInst::clone_impl() const {
   3389   return new InsertValueInst(*this);
   3390 }
   3391 
   3392 AllocaInst *AllocaInst::clone_impl() const {
   3393   return new AllocaInst(getAllocatedType(),
   3394                         (Value*)getOperand(0),
   3395                         getAlignment());
   3396 }
   3397 
   3398 LoadInst *LoadInst::clone_impl() const {
   3399   return new LoadInst(getOperand(0), Twine(), isVolatile(),
   3400                       getAlignment(), getOrdering(), getSynchScope());
   3401 }
   3402 
   3403 StoreInst *StoreInst::clone_impl() const {
   3404   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
   3405                        getAlignment(), getOrdering(), getSynchScope());
   3406 
   3407 }
   3408 
   3409 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
   3410   AtomicCmpXchgInst *Result =
   3411     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
   3412                           getOrdering(), getSynchScope());
   3413   Result->setVolatile(isVolatile());
   3414   return Result;
   3415 }
   3416 
   3417 AtomicRMWInst *AtomicRMWInst::clone_impl() const {
   3418   AtomicRMWInst *Result =
   3419     new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
   3420                       getOrdering(), getSynchScope());
   3421   Result->setVolatile(isVolatile());
   3422   return Result;
   3423 }
   3424 
   3425 FenceInst *FenceInst::clone_impl() const {
   3426   return new FenceInst(getContext(), getOrdering(), getSynchScope());
   3427 }
   3428 
   3429 TruncInst *TruncInst::clone_impl() const {
   3430   return new TruncInst(getOperand(0), getType());
   3431 }
   3432 
   3433 ZExtInst *ZExtInst::clone_impl() const {
   3434   return new ZExtInst(getOperand(0), getType());
   3435 }
   3436 
   3437 SExtInst *SExtInst::clone_impl() const {
   3438   return new SExtInst(getOperand(0), getType());
   3439 }
   3440 
   3441 FPTruncInst *FPTruncInst::clone_impl() const {
   3442   return new FPTruncInst(getOperand(0), getType());
   3443 }
   3444 
   3445 FPExtInst *FPExtInst::clone_impl() const {
   3446   return new FPExtInst(getOperand(0), getType());
   3447 }
   3448 
   3449 UIToFPInst *UIToFPInst::clone_impl() const {
   3450   return new UIToFPInst(getOperand(0), getType());
   3451 }
   3452 
   3453 SIToFPInst *SIToFPInst::clone_impl() const {
   3454   return new SIToFPInst(getOperand(0), getType());
   3455 }
   3456 
   3457 FPToUIInst *FPToUIInst::clone_impl() const {
   3458   return new FPToUIInst(getOperand(0), getType());
   3459 }
   3460 
   3461 FPToSIInst *FPToSIInst::clone_impl() const {
   3462   return new FPToSIInst(getOperand(0), getType());
   3463 }
   3464 
   3465 PtrToIntInst *PtrToIntInst::clone_impl() const {
   3466   return new PtrToIntInst(getOperand(0), getType());
   3467 }
   3468 
   3469 IntToPtrInst *IntToPtrInst::clone_impl() const {
   3470   return new IntToPtrInst(getOperand(0), getType());
   3471 }
   3472 
   3473 BitCastInst *BitCastInst::clone_impl() const {
   3474   return new BitCastInst(getOperand(0), getType());
   3475 }
   3476 
   3477 CallInst *CallInst::clone_impl() const {
   3478   return  new(getNumOperands()) CallInst(*this);
   3479 }
   3480 
   3481 SelectInst *SelectInst::clone_impl() const {
   3482   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3483 }
   3484 
   3485 VAArgInst *VAArgInst::clone_impl() const {
   3486   return new VAArgInst(getOperand(0), getType());
   3487 }
   3488 
   3489 ExtractElementInst *ExtractElementInst::clone_impl() const {
   3490   return ExtractElementInst::Create(getOperand(0), getOperand(1));
   3491 }
   3492 
   3493 InsertElementInst *InsertElementInst::clone_impl() const {
   3494   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
   3495 }
   3496 
   3497 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
   3498   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
   3499 }
   3500 
   3501 PHINode *PHINode::clone_impl() const {
   3502   return new PHINode(*this);
   3503 }
   3504 
   3505 LandingPadInst *LandingPadInst::clone_impl() const {
   3506   return new LandingPadInst(*this);
   3507 }
   3508 
   3509 ReturnInst *ReturnInst::clone_impl() const {
   3510   return new(getNumOperands()) ReturnInst(*this);
   3511 }
   3512 
   3513 BranchInst *BranchInst::clone_impl() const {
   3514   return new(getNumOperands()) BranchInst(*this);
   3515 }
   3516 
   3517 SwitchInst *SwitchInst::clone_impl() const {
   3518   return new SwitchInst(*this);
   3519 }
   3520 
   3521 IndirectBrInst *IndirectBrInst::clone_impl() const {
   3522   return new IndirectBrInst(*this);
   3523 }
   3524 
   3525 
   3526 InvokeInst *InvokeInst::clone_impl() const {
   3527   return new(getNumOperands()) InvokeInst(*this);
   3528 }
   3529 
   3530 ResumeInst *ResumeInst::clone_impl() const {
   3531   return new(1) ResumeInst(*this);
   3532 }
   3533 
   3534 UnreachableInst *UnreachableInst::clone_impl() const {
   3535   LLVMContext &Context = getContext();
   3536   return new UnreachableInst(Context);
   3537 }
   3538