Home | History | Annotate | Download | only in InstCombine
      1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // InstructionCombining - Combine instructions to form fewer, simple
     11 // instructions.  This pass does not modify the CFG.  This pass is where
     12 // algebraic simplification happens.
     13 //
     14 // This pass combines things like:
     15 //    %Y = add i32 %X, 1
     16 //    %Z = add i32 %Y, 1
     17 // into:
     18 //    %Z = add i32 %X, 2
     19 //
     20 // This is a simple worklist driven algorithm.
     21 //
     22 // This pass guarantees that the following canonicalizations are performed on
     23 // the program:
     24 //    1. If a binary operator has a constant operand, it is moved to the RHS
     25 //    2. Bitwise operators with constant operands are always grouped so that
     26 //       shifts are performed first, then or's, then and's, then xor's.
     27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
     28 //    4. All cmp instructions on boolean values are replaced with logical ops
     29 //    5. add X, X is represented as (X*2) => (X << 1)
     30 //    6. Multiplies with a power-of-two constant argument are transformed into
     31 //       shifts.
     32 //   ... etc.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #define DEBUG_TYPE "instcombine"
     37 #include "llvm/Transforms/Scalar.h"
     38 #include "InstCombine.h"
     39 #include "llvm/IntrinsicInst.h"
     40 #include "llvm/Analysis/ConstantFolding.h"
     41 #include "llvm/Analysis/InstructionSimplify.h"
     42 #include "llvm/Analysis/MemoryBuiltins.h"
     43 #include "llvm/Target/TargetData.h"
     44 #include "llvm/Target/TargetLibraryInfo.h"
     45 #include "llvm/Transforms/Utils/Local.h"
     46 #include "llvm/Support/CFG.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/GetElementPtrTypeIterator.h"
     49 #include "llvm/Support/PatternMatch.h"
     50 #include "llvm/Support/ValueHandle.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/Statistic.h"
     53 #include "llvm/ADT/StringSwitch.h"
     54 #include "llvm-c/Initialization.h"
     55 #include <algorithm>
     56 #include <climits>
     57 using namespace llvm;
     58 using namespace llvm::PatternMatch;
     59 
     60 STATISTIC(NumCombined , "Number of insts combined");
     61 STATISTIC(NumConstProp, "Number of constant folds");
     62 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
     63 STATISTIC(NumSunkInst , "Number of instructions sunk");
     64 STATISTIC(NumExpand,    "Number of expansions");
     65 STATISTIC(NumFactor   , "Number of factorizations");
     66 STATISTIC(NumReassoc  , "Number of reassociations");
     67 
     68 // Initialization Routines
     69 void llvm::initializeInstCombine(PassRegistry &Registry) {
     70   initializeInstCombinerPass(Registry);
     71 }
     72 
     73 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
     74   initializeInstCombine(*unwrap(R));
     75 }
     76 
     77 char InstCombiner::ID = 0;
     78 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
     79                 "Combine redundant instructions", false, false)
     80 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     81 INITIALIZE_PASS_END(InstCombiner, "instcombine",
     82                 "Combine redundant instructions", false, false)
     83 
     84 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
     85   AU.setPreservesCFG();
     86   AU.addRequired<TargetLibraryInfo>();
     87 }
     88 
     89 
     90 Value *InstCombiner::EmitGEPOffset(User *GEP) {
     91   return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP);
     92 }
     93 
     94 /// ShouldChangeType - Return true if it is desirable to convert a computation
     95 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
     96 /// type for example, or from a smaller to a larger illegal type.
     97 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
     98   assert(From->isIntegerTy() && To->isIntegerTy());
     99 
    100   // If we don't have TD, we don't know if the source/dest are legal.
    101   if (!TD) return false;
    102 
    103   unsigned FromWidth = From->getPrimitiveSizeInBits();
    104   unsigned ToWidth = To->getPrimitiveSizeInBits();
    105   bool FromLegal = TD->isLegalInteger(FromWidth);
    106   bool ToLegal = TD->isLegalInteger(ToWidth);
    107 
    108   // If this is a legal integer from type, and the result would be an illegal
    109   // type, don't do the transformation.
    110   if (FromLegal && !ToLegal)
    111     return false;
    112 
    113   // Otherwise, if both are illegal, do not increase the size of the result. We
    114   // do allow things like i160 -> i64, but not i64 -> i160.
    115   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    116     return false;
    117 
    118   return true;
    119 }
    120 
    121 // Return true, if No Signed Wrap should be maintained for I.
    122 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
    123 // where both B and C should be ConstantInts, results in a constant that does
    124 // not overflow. This function only handles the Add and Sub opcodes. For
    125 // all other opcodes, the function conservatively returns false.
    126 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
    127   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
    128   if (!OBO || !OBO->hasNoSignedWrap()) {
    129     return false;
    130   }
    131 
    132   // We reason about Add and Sub Only.
    133   Instruction::BinaryOps Opcode = I.getOpcode();
    134   if (Opcode != Instruction::Add &&
    135       Opcode != Instruction::Sub) {
    136     return false;
    137   }
    138 
    139   ConstantInt *CB = dyn_cast<ConstantInt>(B);
    140   ConstantInt *CC = dyn_cast<ConstantInt>(C);
    141 
    142   if (!CB || !CC) {
    143     return false;
    144   }
    145 
    146   const APInt &BVal = CB->getValue();
    147   const APInt &CVal = CC->getValue();
    148   bool Overflow = false;
    149 
    150   if (Opcode == Instruction::Add) {
    151     BVal.sadd_ov(CVal, Overflow);
    152   } else {
    153     BVal.ssub_ov(CVal, Overflow);
    154   }
    155 
    156   return !Overflow;
    157 }
    158 
    159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    160 /// operators which are associative or commutative:
    161 //
    162 //  Commutative operators:
    163 //
    164 //  1. Order operands such that they are listed from right (least complex) to
    165 //     left (most complex).  This puts constants before unary operators before
    166 //     binary operators.
    167 //
    168 //  Associative operators:
    169 //
    170 //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    171 //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    172 //
    173 //  Associative and commutative operators:
    174 //
    175 //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    176 //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    177 //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    178 //     if C1 and C2 are constants.
    179 //
    180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
    181   Instruction::BinaryOps Opcode = I.getOpcode();
    182   bool Changed = false;
    183 
    184   do {
    185     // Order operands such that they are listed from right (least complex) to
    186     // left (most complex).  This puts constants before unary operators before
    187     // binary operators.
    188     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
    189         getComplexity(I.getOperand(1)))
    190       Changed = !I.swapOperands();
    191 
    192     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    193     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
    194 
    195     if (I.isAssociative()) {
    196       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    197       if (Op0 && Op0->getOpcode() == Opcode) {
    198         Value *A = Op0->getOperand(0);
    199         Value *B = Op0->getOperand(1);
    200         Value *C = I.getOperand(1);
    201 
    202         // Does "B op C" simplify?
    203         if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
    204           // It simplifies to V.  Form "A op V".
    205           I.setOperand(0, A);
    206           I.setOperand(1, V);
    207           // Conservatively clear the optional flags, since they may not be
    208           // preserved by the reassociation.
    209           if (MaintainNoSignedWrap(I, B, C) &&
    210               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
    211             // Note: this is only valid because SimplifyBinOp doesn't look at
    212             // the operands to Op0.
    213             I.clearSubclassOptionalData();
    214             I.setHasNoSignedWrap(true);
    215           } else {
    216             I.clearSubclassOptionalData();
    217           }
    218 
    219           Changed = true;
    220           ++NumReassoc;
    221           continue;
    222         }
    223       }
    224 
    225       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    226       if (Op1 && Op1->getOpcode() == Opcode) {
    227         Value *A = I.getOperand(0);
    228         Value *B = Op1->getOperand(0);
    229         Value *C = Op1->getOperand(1);
    230 
    231         // Does "A op B" simplify?
    232         if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
    233           // It simplifies to V.  Form "V op C".
    234           I.setOperand(0, V);
    235           I.setOperand(1, C);
    236           // Conservatively clear the optional flags, since they may not be
    237           // preserved by the reassociation.
    238           I.clearSubclassOptionalData();
    239           Changed = true;
    240           ++NumReassoc;
    241           continue;
    242         }
    243       }
    244     }
    245 
    246     if (I.isAssociative() && I.isCommutative()) {
    247       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    248       if (Op0 && Op0->getOpcode() == Opcode) {
    249         Value *A = Op0->getOperand(0);
    250         Value *B = Op0->getOperand(1);
    251         Value *C = I.getOperand(1);
    252 
    253         // Does "C op A" simplify?
    254         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
    255           // It simplifies to V.  Form "V op B".
    256           I.setOperand(0, V);
    257           I.setOperand(1, B);
    258           // Conservatively clear the optional flags, since they may not be
    259           // preserved by the reassociation.
    260           I.clearSubclassOptionalData();
    261           Changed = true;
    262           ++NumReassoc;
    263           continue;
    264         }
    265       }
    266 
    267       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    268       if (Op1 && Op1->getOpcode() == Opcode) {
    269         Value *A = I.getOperand(0);
    270         Value *B = Op1->getOperand(0);
    271         Value *C = Op1->getOperand(1);
    272 
    273         // Does "C op A" simplify?
    274         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
    275           // It simplifies to V.  Form "B op V".
    276           I.setOperand(0, B);
    277           I.setOperand(1, V);
    278           // Conservatively clear the optional flags, since they may not be
    279           // preserved by the reassociation.
    280           I.clearSubclassOptionalData();
    281           Changed = true;
    282           ++NumReassoc;
    283           continue;
    284         }
    285       }
    286 
    287       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    288       // if C1 and C2 are constants.
    289       if (Op0 && Op1 &&
    290           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
    291           isa<Constant>(Op0->getOperand(1)) &&
    292           isa<Constant>(Op1->getOperand(1)) &&
    293           Op0->hasOneUse() && Op1->hasOneUse()) {
    294         Value *A = Op0->getOperand(0);
    295         Constant *C1 = cast<Constant>(Op0->getOperand(1));
    296         Value *B = Op1->getOperand(0);
    297         Constant *C2 = cast<Constant>(Op1->getOperand(1));
    298 
    299         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
    300         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
    301         InsertNewInstWith(New, I);
    302         New->takeName(Op1);
    303         I.setOperand(0, New);
    304         I.setOperand(1, Folded);
    305         // Conservatively clear the optional flags, since they may not be
    306         // preserved by the reassociation.
    307         I.clearSubclassOptionalData();
    308 
    309         Changed = true;
    310         continue;
    311       }
    312     }
    313 
    314     // No further simplifications.
    315     return Changed;
    316   } while (1);
    317 }
    318 
    319 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
    320 /// "(X LOp Y) ROp (X LOp Z)".
    321 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
    322                                      Instruction::BinaryOps ROp) {
    323   switch (LOp) {
    324   default:
    325     return false;
    326 
    327   case Instruction::And:
    328     // And distributes over Or and Xor.
    329     switch (ROp) {
    330     default:
    331       return false;
    332     case Instruction::Or:
    333     case Instruction::Xor:
    334       return true;
    335     }
    336 
    337   case Instruction::Mul:
    338     // Multiplication distributes over addition and subtraction.
    339     switch (ROp) {
    340     default:
    341       return false;
    342     case Instruction::Add:
    343     case Instruction::Sub:
    344       return true;
    345     }
    346 
    347   case Instruction::Or:
    348     // Or distributes over And.
    349     switch (ROp) {
    350     default:
    351       return false;
    352     case Instruction::And:
    353       return true;
    354     }
    355   }
    356 }
    357 
    358 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
    359 /// "(X ROp Z) LOp (Y ROp Z)".
    360 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
    361                                      Instruction::BinaryOps ROp) {
    362   if (Instruction::isCommutative(ROp))
    363     return LeftDistributesOverRight(ROp, LOp);
    364   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
    365   // but this requires knowing that the addition does not overflow and other
    366   // such subtleties.
    367   return false;
    368 }
    369 
    370 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    371 /// which some other binary operation distributes over either by factorizing
    372 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    373 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    374 /// a win).  Returns the simplified value, or null if it didn't simplify.
    375 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
    376   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    377   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    378   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    379   Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
    380 
    381   // Factorization.
    382   if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
    383     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    384     // a common term.
    385     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
    386     Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
    387     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    388 
    389     // Does "X op' Y" always equal "Y op' X"?
    390     bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
    391 
    392     // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    393     if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    394       // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    395       // commutative case, "(A op' B) op (C op' A)"?
    396       if (A == C || (InnerCommutative && A == D)) {
    397         if (A != C)
    398           std::swap(C, D);
    399         // Consider forming "A op' (B op D)".
    400         // If "B op D" simplifies then it can be formed with no cost.
    401         Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
    402         // If "B op D" doesn't simplify then only go on if both of the existing
    403         // operations "A op' B" and "C op' D" will be zapped as no longer used.
    404         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
    405           V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
    406         if (V) {
    407           ++NumFactor;
    408           V = Builder->CreateBinOp(InnerOpcode, A, V);
    409           V->takeName(&I);
    410           return V;
    411         }
    412       }
    413 
    414     // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    415     if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    416       // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    417       // commutative case, "(A op' B) op (B op' D)"?
    418       if (B == D || (InnerCommutative && B == C)) {
    419         if (B != D)
    420           std::swap(C, D);
    421         // Consider forming "(A op C) op' B".
    422         // If "A op C" simplifies then it can be formed with no cost.
    423         Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
    424         // If "A op C" doesn't simplify then only go on if both of the existing
    425         // operations "A op' B" and "C op' D" will be zapped as no longer used.
    426         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
    427           V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
    428         if (V) {
    429           ++NumFactor;
    430           V = Builder->CreateBinOp(InnerOpcode, V, B);
    431           V->takeName(&I);
    432           return V;
    433         }
    434       }
    435   }
    436 
    437   // Expansion.
    438   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    439     // The instruction has the form "(A op' B) op C".  See if expanding it out
    440     // to "(A op C) op' (B op C)" results in simplifications.
    441     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    442     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    443 
    444     // Do "A op C" and "B op C" both simplify?
    445     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
    446       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
    447         // They do! Return "L op' R".
    448         ++NumExpand;
    449         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    450         if ((L == A && R == B) ||
    451             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
    452           return Op0;
    453         // Otherwise return "L op' R" if it simplifies.
    454         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
    455           return V;
    456         // Otherwise, create a new instruction.
    457         C = Builder->CreateBinOp(InnerOpcode, L, R);
    458         C->takeName(&I);
    459         return C;
    460       }
    461   }
    462 
    463   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    464     // The instruction has the form "A op (B op' C)".  See if expanding it out
    465     // to "(A op B) op' (A op C)" results in simplifications.
    466     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    467     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
    468 
    469     // Do "A op B" and "A op C" both simplify?
    470     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
    471       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
    472         // They do! Return "L op' R".
    473         ++NumExpand;
    474         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    475         if ((L == B && R == C) ||
    476             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
    477           return Op1;
    478         // Otherwise return "L op' R" if it simplifies.
    479         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
    480           return V;
    481         // Otherwise, create a new instruction.
    482         A = Builder->CreateBinOp(InnerOpcode, L, R);
    483         A->takeName(&I);
    484         return A;
    485       }
    486   }
    487 
    488   return 0;
    489 }
    490 
    491 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
    492 // if the LHS is a constant zero (which is the 'negate' form).
    493 //
    494 Value *InstCombiner::dyn_castNegVal(Value *V) const {
    495   if (BinaryOperator::isNeg(V))
    496     return BinaryOperator::getNegArgument(V);
    497 
    498   // Constants can be considered to be negated values if they can be folded.
    499   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    500     return ConstantExpr::getNeg(C);
    501 
    502   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    503     if (C->getType()->getElementType()->isIntegerTy())
    504       return ConstantExpr::getNeg(C);
    505 
    506   return 0;
    507 }
    508 
    509 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
    510 // instruction if the LHS is a constant negative zero (which is the 'negate'
    511 // form).
    512 //
    513 Value *InstCombiner::dyn_castFNegVal(Value *V) const {
    514   if (BinaryOperator::isFNeg(V))
    515     return BinaryOperator::getFNegArgument(V);
    516 
    517   // Constants can be considered to be negated values if they can be folded.
    518   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    519     return ConstantExpr::getFNeg(C);
    520 
    521   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    522     if (C->getType()->getElementType()->isFloatingPointTy())
    523       return ConstantExpr::getFNeg(C);
    524 
    525   return 0;
    526 }
    527 
    528 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
    529                                              InstCombiner *IC) {
    530   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    531     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
    532   }
    533 
    534   // Figure out if the constant is the left or the right argument.
    535   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
    536   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
    537 
    538   if (Constant *SOC = dyn_cast<Constant>(SO)) {
    539     if (ConstIsRHS)
    540       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    541     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
    542   }
    543 
    544   Value *Op0 = SO, *Op1 = ConstOperand;
    545   if (!ConstIsRHS)
    546     std::swap(Op0, Op1);
    547 
    548   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
    549     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
    550                                     SO->getName()+".op");
    551   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    552     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    553                                    SO->getName()+".cmp");
    554   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    555     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    556                                    SO->getName()+".cmp");
    557   llvm_unreachable("Unknown binary instruction type!");
    558 }
    559 
    560 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
    561 // constant as the other operand, try to fold the binary operator into the
    562 // select arguments.  This also works for Cast instructions, which obviously do
    563 // not have a second operand.
    564 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
    565   // Don't modify shared select instructions
    566   if (!SI->hasOneUse()) return 0;
    567   Value *TV = SI->getOperand(1);
    568   Value *FV = SI->getOperand(2);
    569 
    570   if (isa<Constant>(TV) || isa<Constant>(FV)) {
    571     // Bool selects with constant operands can be folded to logical ops.
    572     if (SI->getType()->isIntegerTy(1)) return 0;
    573 
    574     // If it's a bitcast involving vectors, make sure it has the same number of
    575     // elements on both sides.
    576     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
    577       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    578       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
    579 
    580       // Verify that either both or neither are vectors.
    581       if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
    582       // If vectors, verify that they have the same number of elements.
    583       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
    584         return 0;
    585     }
    586 
    587     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    588     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
    589 
    590     return SelectInst::Create(SI->getCondition(),
    591                               SelectTrueVal, SelectFalseVal);
    592   }
    593   return 0;
    594 }
    595 
    596 
    597 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
    598 /// has a PHI node as operand #0, see if we can fold the instruction into the
    599 /// PHI (which is only possible if all operands to the PHI are constants).
    600 ///
    601 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
    602   PHINode *PN = cast<PHINode>(I.getOperand(0));
    603   unsigned NumPHIValues = PN->getNumIncomingValues();
    604   if (NumPHIValues == 0)
    605     return 0;
    606 
    607   // We normally only transform phis with a single use.  However, if a PHI has
    608   // multiple uses and they are all the same operation, we can fold *all* of the
    609   // uses into the PHI.
    610   if (!PN->hasOneUse()) {
    611     // Walk the use list for the instruction, comparing them to I.
    612     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
    613          UI != E; ++UI) {
    614       Instruction *User = cast<Instruction>(*UI);
    615       if (User != &I && !I.isIdenticalTo(User))
    616         return 0;
    617     }
    618     // Otherwise, we can replace *all* users with the new PHI we form.
    619   }
    620 
    621   // Check to see if all of the operands of the PHI are simple constants
    622   // (constantint/constantfp/undef).  If there is one non-constant value,
    623   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
    624   // bail out.  We don't do arbitrary constant expressions here because moving
    625   // their computation can be expensive without a cost model.
    626   BasicBlock *NonConstBB = 0;
    627   for (unsigned i = 0; i != NumPHIValues; ++i) {
    628     Value *InVal = PN->getIncomingValue(i);
    629     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
    630       continue;
    631 
    632     if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
    633     if (NonConstBB) return 0;  // More than one non-const value.
    634 
    635     NonConstBB = PN->getIncomingBlock(i);
    636 
    637     // If the InVal is an invoke at the end of the pred block, then we can't
    638     // insert a computation after it without breaking the edge.
    639     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
    640       if (II->getParent() == NonConstBB)
    641         return 0;
    642 
    643     // If the incoming non-constant value is in I's block, we will remove one
    644     // instruction, but insert another equivalent one, leading to infinite
    645     // instcombine.
    646     if (NonConstBB == I.getParent())
    647       return 0;
    648   }
    649 
    650   // If there is exactly one non-constant value, we can insert a copy of the
    651   // operation in that block.  However, if this is a critical edge, we would be
    652   // inserting the computation one some other paths (e.g. inside a loop).  Only
    653   // do this if the pred block is unconditionally branching into the phi block.
    654   if (NonConstBB != 0) {
    655     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    656     if (!BI || !BI->isUnconditional()) return 0;
    657   }
    658 
    659   // Okay, we can do the transformation: create the new PHI node.
    660   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
    661   InsertNewInstBefore(NewPN, *PN);
    662   NewPN->takeName(PN);
    663 
    664   // If we are going to have to insert a new computation, do so right before the
    665   // predecessors terminator.
    666   if (NonConstBB)
    667     Builder->SetInsertPoint(NonConstBB->getTerminator());
    668 
    669   // Next, add all of the operands to the PHI.
    670   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    671     // We only currently try to fold the condition of a select when it is a phi,
    672     // not the true/false values.
    673     Value *TrueV = SI->getTrueValue();
    674     Value *FalseV = SI->getFalseValue();
    675     BasicBlock *PhiTransBB = PN->getParent();
    676     for (unsigned i = 0; i != NumPHIValues; ++i) {
    677       BasicBlock *ThisBB = PN->getIncomingBlock(i);
    678       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
    679       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
    680       Value *InV = 0;
    681       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    682         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
    683       else
    684         InV = Builder->CreateSelect(PN->getIncomingValue(i),
    685                                     TrueVInPred, FalseVInPred, "phitmp");
    686       NewPN->addIncoming(InV, ThisBB);
    687     }
    688   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    689     Constant *C = cast<Constant>(I.getOperand(1));
    690     for (unsigned i = 0; i != NumPHIValues; ++i) {
    691       Value *InV = 0;
    692       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    693         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
    694       else if (isa<ICmpInst>(CI))
    695         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
    696                                   C, "phitmp");
    697       else
    698         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
    699                                   C, "phitmp");
    700       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    701     }
    702   } else if (I.getNumOperands() == 2) {
    703     Constant *C = cast<Constant>(I.getOperand(1));
    704     for (unsigned i = 0; i != NumPHIValues; ++i) {
    705       Value *InV = 0;
    706       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    707         InV = ConstantExpr::get(I.getOpcode(), InC, C);
    708       else
    709         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
    710                                    PN->getIncomingValue(i), C, "phitmp");
    711       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    712     }
    713   } else {
    714     CastInst *CI = cast<CastInst>(&I);
    715     Type *RetTy = CI->getType();
    716     for (unsigned i = 0; i != NumPHIValues; ++i) {
    717       Value *InV;
    718       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    719         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
    720       else
    721         InV = Builder->CreateCast(CI->getOpcode(),
    722                                 PN->getIncomingValue(i), I.getType(), "phitmp");
    723       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    724     }
    725   }
    726 
    727   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
    728        UI != E; ) {
    729     Instruction *User = cast<Instruction>(*UI++);
    730     if (User == &I) continue;
    731     ReplaceInstUsesWith(*User, NewPN);
    732     EraseInstFromFunction(*User);
    733   }
    734   return ReplaceInstUsesWith(I, NewPN);
    735 }
    736 
    737 /// FindElementAtOffset - Given a type and a constant offset, determine whether
    738 /// or not there is a sequence of GEP indices into the type that will land us at
    739 /// the specified offset.  If so, fill them into NewIndices and return the
    740 /// resultant element type, otherwise return null.
    741 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
    742                                           SmallVectorImpl<Value*> &NewIndices) {
    743   if (!TD) return 0;
    744   if (!Ty->isSized()) return 0;
    745 
    746   // Start with the index over the outer type.  Note that the type size
    747   // might be zero (even if the offset isn't zero) if the indexed type
    748   // is something like [0 x {int, int}]
    749   Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
    750   int64_t FirstIdx = 0;
    751   if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
    752     FirstIdx = Offset/TySize;
    753     Offset -= FirstIdx*TySize;
    754 
    755     // Handle hosts where % returns negative instead of values [0..TySize).
    756     if (Offset < 0) {
    757       --FirstIdx;
    758       Offset += TySize;
    759       assert(Offset >= 0);
    760     }
    761     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
    762   }
    763 
    764   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    765 
    766   // Index into the types.  If we fail, set OrigBase to null.
    767   while (Offset) {
    768     // Indexing into tail padding between struct/array elements.
    769     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
    770       return 0;
    771 
    772     if (StructType *STy = dyn_cast<StructType>(Ty)) {
    773       const StructLayout *SL = TD->getStructLayout(STy);
    774       assert(Offset < (int64_t)SL->getSizeInBytes() &&
    775              "Offset must stay within the indexed type");
    776 
    777       unsigned Elt = SL->getElementContainingOffset(Offset);
    778       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    779                                             Elt));
    780 
    781       Offset -= SL->getElementOffset(Elt);
    782       Ty = STy->getElementType(Elt);
    783     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    784       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
    785       assert(EltSize && "Cannot index into a zero-sized array");
    786       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
    787       Offset %= EltSize;
    788       Ty = AT->getElementType();
    789     } else {
    790       // Otherwise, we can't index into the middle of this atomic type, bail.
    791       return 0;
    792     }
    793   }
    794 
    795   return Ty;
    796 }
    797 
    798 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
    799   // If this GEP has only 0 indices, it is the same pointer as
    800   // Src. If Src is not a trivial GEP too, don't combine
    801   // the indices.
    802   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
    803       !Src.hasOneUse())
    804     return false;
    805   return true;
    806 }
    807 
    808 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
    809   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
    810 
    811   if (Value *V = SimplifyGEPInst(Ops, TD))
    812     return ReplaceInstUsesWith(GEP, V);
    813 
    814   Value *PtrOp = GEP.getOperand(0);
    815 
    816   // Eliminate unneeded casts for indices, and replace indices which displace
    817   // by multiples of a zero size type with zero.
    818   if (TD) {
    819     bool MadeChange = false;
    820     Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
    821 
    822     gep_type_iterator GTI = gep_type_begin(GEP);
    823     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
    824          I != E; ++I, ++GTI) {
    825       // Skip indices into struct types.
    826       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
    827       if (!SeqTy) continue;
    828 
    829       // If the element type has zero size then any index over it is equivalent
    830       // to an index of zero, so replace it with zero if it is not zero already.
    831       if (SeqTy->getElementType()->isSized() &&
    832           TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
    833         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
    834           *I = Constant::getNullValue(IntPtrTy);
    835           MadeChange = true;
    836         }
    837 
    838       Type *IndexTy = (*I)->getType();
    839       if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
    840         // If we are using a wider index than needed for this platform, shrink
    841         // it to what we need.  If narrower, sign-extend it to what we need.
    842         // This explicit cast can make subsequent optimizations more obvious.
    843         *I = Builder->CreateIntCast(*I, IntPtrTy, true);
    844         MadeChange = true;
    845       }
    846     }
    847     if (MadeChange) return &GEP;
    848   }
    849 
    850   // Combine Indices - If the source pointer to this getelementptr instruction
    851   // is a getelementptr instruction, combine the indices of the two
    852   // getelementptr instructions into a single instruction.
    853   //
    854   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
    855     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
    856       return 0;
    857 
    858     // Note that if our source is a gep chain itself that we wait for that
    859     // chain to be resolved before we perform this transformation.  This
    860     // avoids us creating a TON of code in some cases.
    861     if (GEPOperator *SrcGEP =
    862           dyn_cast<GEPOperator>(Src->getOperand(0)))
    863       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
    864         return 0;   // Wait until our source is folded to completion.
    865 
    866     SmallVector<Value*, 8> Indices;
    867 
    868     // Find out whether the last index in the source GEP is a sequential idx.
    869     bool EndsWithSequential = false;
    870     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
    871          I != E; ++I)
    872       EndsWithSequential = !(*I)->isStructTy();
    873 
    874     // Can we combine the two pointer arithmetics offsets?
    875     if (EndsWithSequential) {
    876       // Replace: gep (gep %P, long B), long A, ...
    877       // With:    T = long A+B; gep %P, T, ...
    878       //
    879       Value *Sum;
    880       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
    881       Value *GO1 = GEP.getOperand(1);
    882       if (SO1 == Constant::getNullValue(SO1->getType())) {
    883         Sum = GO1;
    884       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
    885         Sum = SO1;
    886       } else {
    887         // If they aren't the same type, then the input hasn't been processed
    888         // by the loop above yet (which canonicalizes sequential index types to
    889         // intptr_t).  Just avoid transforming this until the input has been
    890         // normalized.
    891         if (SO1->getType() != GO1->getType())
    892           return 0;
    893         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
    894       }
    895 
    896       // Update the GEP in place if possible.
    897       if (Src->getNumOperands() == 2) {
    898         GEP.setOperand(0, Src->getOperand(0));
    899         GEP.setOperand(1, Sum);
    900         return &GEP;
    901       }
    902       Indices.append(Src->op_begin()+1, Src->op_end()-1);
    903       Indices.push_back(Sum);
    904       Indices.append(GEP.op_begin()+2, GEP.op_end());
    905     } else if (isa<Constant>(*GEP.idx_begin()) &&
    906                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
    907                Src->getNumOperands() != 1) {
    908       // Otherwise we can do the fold if the first index of the GEP is a zero
    909       Indices.append(Src->op_begin()+1, Src->op_end());
    910       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    911     }
    912 
    913     if (!Indices.empty())
    914       return (GEP.isInBounds() && Src->isInBounds()) ?
    915         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
    916                                           GEP.getName()) :
    917         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
    918   }
    919 
    920   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
    921   Value *StrippedPtr = PtrOp->stripPointerCasts();
    922   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
    923 
    924   // We do not handle pointer-vector geps here.
    925   if (!StrippedPtrTy)
    926     return 0;
    927 
    928   if (StrippedPtr != PtrOp &&
    929     StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
    930 
    931     bool HasZeroPointerIndex = false;
    932     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
    933       HasZeroPointerIndex = C->isZero();
    934 
    935     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    936     // into     : GEP [10 x i8]* X, i32 0, ...
    937     //
    938     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    939     //           into     : GEP i8* X, ...
    940     //
    941     // This occurs when the program declares an array extern like "int X[];"
    942     if (HasZeroPointerIndex) {
    943       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
    944       if (ArrayType *CATy =
    945           dyn_cast<ArrayType>(CPTy->getElementType())) {
    946         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
    947         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
    948           // -> GEP i8* X, ...
    949           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
    950           GetElementPtrInst *Res =
    951             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
    952           Res->setIsInBounds(GEP.isInBounds());
    953           return Res;
    954         }
    955 
    956         if (ArrayType *XATy =
    957               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
    958           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
    959           if (CATy->getElementType() == XATy->getElementType()) {
    960             // -> GEP [10 x i8]* X, i32 0, ...
    961             // At this point, we know that the cast source type is a pointer
    962             // to an array of the same type as the destination pointer
    963             // array.  Because the array type is never stepped over (there
    964             // is a leading zero) we can fold the cast into this GEP.
    965             GEP.setOperand(0, StrippedPtr);
    966             return &GEP;
    967           }
    968         }
    969       }
    970     } else if (GEP.getNumOperands() == 2) {
    971       // Transform things like:
    972       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
    973       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
    974       Type *SrcElTy = StrippedPtrTy->getElementType();
    975       Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
    976       if (TD && SrcElTy->isArrayTy() &&
    977           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
    978           TD->getTypeAllocSize(ResElTy)) {
    979         Value *Idx[2];
    980         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
    981         Idx[1] = GEP.getOperand(1);
    982         Value *NewGEP = GEP.isInBounds() ?
    983           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
    984           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
    985         // V and GEP are both pointer types --> BitCast
    986         return new BitCastInst(NewGEP, GEP.getType());
    987       }
    988 
    989       // Transform things like:
    990       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
    991       //   (where tmp = 8*tmp2) into:
    992       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
    993 
    994       if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
    995         uint64_t ArrayEltSize =
    996             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
    997 
    998         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
    999         // allow either a mul, shift, or constant here.
   1000         Value *NewIdx = 0;
   1001         ConstantInt *Scale = 0;
   1002         if (ArrayEltSize == 1) {
   1003           NewIdx = GEP.getOperand(1);
   1004           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
   1005         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
   1006           NewIdx = ConstantInt::get(CI->getType(), 1);
   1007           Scale = CI;
   1008         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
   1009           if (Inst->getOpcode() == Instruction::Shl &&
   1010               isa<ConstantInt>(Inst->getOperand(1))) {
   1011             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
   1012             uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
   1013             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
   1014                                      1ULL << ShAmtVal);
   1015             NewIdx = Inst->getOperand(0);
   1016           } else if (Inst->getOpcode() == Instruction::Mul &&
   1017                      isa<ConstantInt>(Inst->getOperand(1))) {
   1018             Scale = cast<ConstantInt>(Inst->getOperand(1));
   1019             NewIdx = Inst->getOperand(0);
   1020           }
   1021         }
   1022 
   1023         // If the index will be to exactly the right offset with the scale taken
   1024         // out, perform the transformation. Note, we don't know whether Scale is
   1025         // signed or not. We'll use unsigned version of division/modulo
   1026         // operation after making sure Scale doesn't have the sign bit set.
   1027         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
   1028             Scale->getZExtValue() % ArrayEltSize == 0) {
   1029           Scale = ConstantInt::get(Scale->getType(),
   1030                                    Scale->getZExtValue() / ArrayEltSize);
   1031           if (Scale->getZExtValue() != 1) {
   1032             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
   1033                                                        false /*ZExt*/);
   1034             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
   1035           }
   1036 
   1037           // Insert the new GEP instruction.
   1038           Value *Idx[2];
   1039           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
   1040           Idx[1] = NewIdx;
   1041           Value *NewGEP = GEP.isInBounds() ?
   1042             Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
   1043             Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
   1044           // The NewGEP must be pointer typed, so must the old one -> BitCast
   1045           return new BitCastInst(NewGEP, GEP.getType());
   1046         }
   1047       }
   1048     }
   1049   }
   1050 
   1051   /// See if we can simplify:
   1052   ///   X = bitcast A* to B*
   1053   ///   Y = gep X, <...constant indices...>
   1054   /// into a gep of the original struct.  This is important for SROA and alias
   1055   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
   1056   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
   1057     if (TD &&
   1058         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
   1059         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
   1060 
   1061       // Determine how much the GEP moves the pointer.
   1062       SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
   1063       int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
   1064 
   1065       // If this GEP instruction doesn't move the pointer, just replace the GEP
   1066       // with a bitcast of the real input to the dest type.
   1067       if (Offset == 0) {
   1068         // If the bitcast is of an allocation, and the allocation will be
   1069         // converted to match the type of the cast, don't touch this.
   1070         if (isa<AllocaInst>(BCI->getOperand(0)) ||
   1071             isAllocationFn(BCI->getOperand(0), TLI)) {
   1072           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
   1073           if (Instruction *I = visitBitCast(*BCI)) {
   1074             if (I != BCI) {
   1075               I->takeName(BCI);
   1076               BCI->getParent()->getInstList().insert(BCI, I);
   1077               ReplaceInstUsesWith(*BCI, I);
   1078             }
   1079             return &GEP;
   1080           }
   1081         }
   1082         return new BitCastInst(BCI->getOperand(0), GEP.getType());
   1083       }
   1084 
   1085       // Otherwise, if the offset is non-zero, we need to find out if there is a
   1086       // field at Offset in 'A's type.  If so, we can pull the cast through the
   1087       // GEP.
   1088       SmallVector<Value*, 8> NewIndices;
   1089       Type *InTy =
   1090         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
   1091       if (FindElementAtOffset(InTy, Offset, NewIndices)) {
   1092         Value *NGEP = GEP.isInBounds() ?
   1093           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
   1094           Builder->CreateGEP(BCI->getOperand(0), NewIndices);
   1095 
   1096         if (NGEP->getType() == GEP.getType())
   1097           return ReplaceInstUsesWith(GEP, NGEP);
   1098         NGEP->takeName(&GEP);
   1099         return new BitCastInst(NGEP, GEP.getType());
   1100       }
   1101     }
   1102   }
   1103 
   1104   return 0;
   1105 }
   1106 
   1107 
   1108 
   1109 static bool
   1110 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
   1111                      const TargetLibraryInfo *TLI) {
   1112   SmallVector<Instruction*, 4> Worklist;
   1113   Worklist.push_back(AI);
   1114 
   1115   do {
   1116     Instruction *PI = Worklist.pop_back_val();
   1117     for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
   1118          ++UI) {
   1119       Instruction *I = cast<Instruction>(*UI);
   1120       switch (I->getOpcode()) {
   1121       default:
   1122         // Give up the moment we see something we can't handle.
   1123         return false;
   1124 
   1125       case Instruction::BitCast:
   1126       case Instruction::GetElementPtr:
   1127         Users.push_back(I);
   1128         Worklist.push_back(I);
   1129         continue;
   1130 
   1131       case Instruction::ICmp: {
   1132         ICmpInst *ICI = cast<ICmpInst>(I);
   1133         // We can fold eq/ne comparisons with null to false/true, respectively.
   1134         if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
   1135           return false;
   1136         Users.push_back(I);
   1137         continue;
   1138       }
   1139 
   1140       case Instruction::Call:
   1141         // Ignore no-op and store intrinsics.
   1142         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1143           switch (II->getIntrinsicID()) {
   1144           default:
   1145             return false;
   1146 
   1147           case Intrinsic::memmove:
   1148           case Intrinsic::memcpy:
   1149           case Intrinsic::memset: {
   1150             MemIntrinsic *MI = cast<MemIntrinsic>(II);
   1151             if (MI->isVolatile() || MI->getRawDest() != PI)
   1152               return false;
   1153           }
   1154           // fall through
   1155           case Intrinsic::dbg_declare:
   1156           case Intrinsic::dbg_value:
   1157           case Intrinsic::invariant_start:
   1158           case Intrinsic::invariant_end:
   1159           case Intrinsic::lifetime_start:
   1160           case Intrinsic::lifetime_end:
   1161           case Intrinsic::objectsize:
   1162             Users.push_back(I);
   1163             continue;
   1164           }
   1165         }
   1166 
   1167         if (isFreeCall(I, TLI)) {
   1168           Users.push_back(I);
   1169           continue;
   1170         }
   1171         return false;
   1172 
   1173       case Instruction::Store: {
   1174         StoreInst *SI = cast<StoreInst>(I);
   1175         if (SI->isVolatile() || SI->getPointerOperand() != PI)
   1176           return false;
   1177         Users.push_back(I);
   1178         continue;
   1179       }
   1180       }
   1181       llvm_unreachable("missing a return?");
   1182     }
   1183   } while (!Worklist.empty());
   1184   return true;
   1185 }
   1186 
   1187 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
   1188   // If we have a malloc call which is only used in any amount of comparisons
   1189   // to null and free calls, delete the calls and replace the comparisons with
   1190   // true or false as appropriate.
   1191   SmallVector<WeakVH, 64> Users;
   1192   if (isAllocSiteRemovable(&MI, Users, TLI)) {
   1193     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1194       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
   1195       if (!I) continue;
   1196 
   1197       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
   1198         ReplaceInstUsesWith(*C,
   1199                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
   1200                                              C->isFalseWhenEqual()));
   1201       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
   1202         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
   1203       } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1204         if (II->getIntrinsicID() == Intrinsic::objectsize) {
   1205           ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
   1206           uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
   1207           ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
   1208         }
   1209       }
   1210       EraseInstFromFunction(*I);
   1211     }
   1212 
   1213     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
   1214       // Replace invoke with a NOP intrinsic to maintain the original CFG
   1215       Module *M = II->getParent()->getParent()->getParent();
   1216       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
   1217       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
   1218                          ArrayRef<Value *>(), "", II->getParent());
   1219     }
   1220     return EraseInstFromFunction(MI);
   1221   }
   1222   return 0;
   1223 }
   1224 
   1225 
   1226 
   1227 Instruction *InstCombiner::visitFree(CallInst &FI) {
   1228   Value *Op = FI.getArgOperand(0);
   1229 
   1230   // free undef -> unreachable.
   1231   if (isa<UndefValue>(Op)) {
   1232     // Insert a new store to null because we cannot modify the CFG here.
   1233     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
   1234                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
   1235     return EraseInstFromFunction(FI);
   1236   }
   1237 
   1238   // If we have 'free null' delete the instruction.  This can happen in stl code
   1239   // when lots of inlining happens.
   1240   if (isa<ConstantPointerNull>(Op))
   1241     return EraseInstFromFunction(FI);
   1242 
   1243   return 0;
   1244 }
   1245 
   1246 
   1247 
   1248 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
   1249   // Change br (not X), label True, label False to: br X, label False, True
   1250   Value *X = 0;
   1251   BasicBlock *TrueDest;
   1252   BasicBlock *FalseDest;
   1253   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
   1254       !isa<Constant>(X)) {
   1255     // Swap Destinations and condition...
   1256     BI.setCondition(X);
   1257     BI.swapSuccessors();
   1258     return &BI;
   1259   }
   1260 
   1261   // Cannonicalize fcmp_one -> fcmp_oeq
   1262   FCmpInst::Predicate FPred; Value *Y;
   1263   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
   1264                              TrueDest, FalseDest)) &&
   1265       BI.getCondition()->hasOneUse())
   1266     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
   1267         FPred == FCmpInst::FCMP_OGE) {
   1268       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
   1269       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
   1270 
   1271       // Swap Destinations and condition.
   1272       BI.swapSuccessors();
   1273       Worklist.Add(Cond);
   1274       return &BI;
   1275     }
   1276 
   1277   // Cannonicalize icmp_ne -> icmp_eq
   1278   ICmpInst::Predicate IPred;
   1279   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
   1280                       TrueDest, FalseDest)) &&
   1281       BI.getCondition()->hasOneUse())
   1282     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
   1283         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
   1284         IPred == ICmpInst::ICMP_SGE) {
   1285       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
   1286       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
   1287       // Swap Destinations and condition.
   1288       BI.swapSuccessors();
   1289       Worklist.Add(Cond);
   1290       return &BI;
   1291     }
   1292 
   1293   return 0;
   1294 }
   1295 
   1296 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
   1297   Value *Cond = SI.getCondition();
   1298   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
   1299     if (I->getOpcode() == Instruction::Add)
   1300       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1301         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
   1302         // Skip the first item since that's the default case.
   1303         for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
   1304              i != e; ++i) {
   1305           ConstantInt* CaseVal = i.getCaseValue();
   1306           Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
   1307                                                       AddRHS);
   1308           assert(isa<ConstantInt>(NewCaseVal) &&
   1309                  "Result of expression should be constant");
   1310           i.setValue(cast<ConstantInt>(NewCaseVal));
   1311         }
   1312         SI.setCondition(I->getOperand(0));
   1313         Worklist.Add(I);
   1314         return &SI;
   1315       }
   1316   }
   1317   return 0;
   1318 }
   1319 
   1320 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
   1321   Value *Agg = EV.getAggregateOperand();
   1322 
   1323   if (!EV.hasIndices())
   1324     return ReplaceInstUsesWith(EV, Agg);
   1325 
   1326   if (Constant *C = dyn_cast<Constant>(Agg)) {
   1327     if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
   1328       if (EV.getNumIndices() == 0)
   1329         return ReplaceInstUsesWith(EV, C2);
   1330       // Extract the remaining indices out of the constant indexed by the
   1331       // first index
   1332       return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
   1333     }
   1334     return 0; // Can't handle other constants
   1335   }
   1336 
   1337   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
   1338     // We're extracting from an insertvalue instruction, compare the indices
   1339     const unsigned *exti, *exte, *insi, *inse;
   1340     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
   1341          exte = EV.idx_end(), inse = IV->idx_end();
   1342          exti != exte && insi != inse;
   1343          ++exti, ++insi) {
   1344       if (*insi != *exti)
   1345         // The insert and extract both reference distinctly different elements.
   1346         // This means the extract is not influenced by the insert, and we can
   1347         // replace the aggregate operand of the extract with the aggregate
   1348         // operand of the insert. i.e., replace
   1349         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   1350         // %E = extractvalue { i32, { i32 } } %I, 0
   1351         // with
   1352         // %E = extractvalue { i32, { i32 } } %A, 0
   1353         return ExtractValueInst::Create(IV->getAggregateOperand(),
   1354                                         EV.getIndices());
   1355     }
   1356     if (exti == exte && insi == inse)
   1357       // Both iterators are at the end: Index lists are identical. Replace
   1358       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   1359       // %C = extractvalue { i32, { i32 } } %B, 1, 0
   1360       // with "i32 42"
   1361       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
   1362     if (exti == exte) {
   1363       // The extract list is a prefix of the insert list. i.e. replace
   1364       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   1365       // %E = extractvalue { i32, { i32 } } %I, 1
   1366       // with
   1367       // %X = extractvalue { i32, { i32 } } %A, 1
   1368       // %E = insertvalue { i32 } %X, i32 42, 0
   1369       // by switching the order of the insert and extract (though the
   1370       // insertvalue should be left in, since it may have other uses).
   1371       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
   1372                                                  EV.getIndices());
   1373       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
   1374                                      makeArrayRef(insi, inse));
   1375     }
   1376     if (insi == inse)
   1377       // The insert list is a prefix of the extract list
   1378       // We can simply remove the common indices from the extract and make it
   1379       // operate on the inserted value instead of the insertvalue result.
   1380       // i.e., replace
   1381       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   1382       // %E = extractvalue { i32, { i32 } } %I, 1, 0
   1383       // with
   1384       // %E extractvalue { i32 } { i32 42 }, 0
   1385       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
   1386                                       makeArrayRef(exti, exte));
   1387   }
   1388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
   1389     // We're extracting from an intrinsic, see if we're the only user, which
   1390     // allows us to simplify multiple result intrinsics to simpler things that
   1391     // just get one value.
   1392     if (II->hasOneUse()) {
   1393       // Check if we're grabbing the overflow bit or the result of a 'with
   1394       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
   1395       // and replace it with a traditional binary instruction.
   1396       switch (II->getIntrinsicID()) {
   1397       case Intrinsic::uadd_with_overflow:
   1398       case Intrinsic::sadd_with_overflow:
   1399         if (*EV.idx_begin() == 0) {  // Normal result.
   1400           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1401           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1402           EraseInstFromFunction(*II);
   1403           return BinaryOperator::CreateAdd(LHS, RHS);
   1404         }
   1405 
   1406         // If the normal result of the add is dead, and the RHS is a constant,
   1407         // we can transform this into a range comparison.
   1408         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
   1409         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
   1410           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
   1411             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
   1412                                 ConstantExpr::getNot(CI));
   1413         break;
   1414       case Intrinsic::usub_with_overflow:
   1415       case Intrinsic::ssub_with_overflow:
   1416         if (*EV.idx_begin() == 0) {  // Normal result.
   1417           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1418           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1419           EraseInstFromFunction(*II);
   1420           return BinaryOperator::CreateSub(LHS, RHS);
   1421         }
   1422         break;
   1423       case Intrinsic::umul_with_overflow:
   1424       case Intrinsic::smul_with_overflow:
   1425         if (*EV.idx_begin() == 0) {  // Normal result.
   1426           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   1427           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   1428           EraseInstFromFunction(*II);
   1429           return BinaryOperator::CreateMul(LHS, RHS);
   1430         }
   1431         break;
   1432       default:
   1433         break;
   1434       }
   1435     }
   1436   }
   1437   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
   1438     // If the (non-volatile) load only has one use, we can rewrite this to a
   1439     // load from a GEP. This reduces the size of the load.
   1440     // FIXME: If a load is used only by extractvalue instructions then this
   1441     //        could be done regardless of having multiple uses.
   1442     if (L->isSimple() && L->hasOneUse()) {
   1443       // extractvalue has integer indices, getelementptr has Value*s. Convert.
   1444       SmallVector<Value*, 4> Indices;
   1445       // Prefix an i32 0 since we need the first element.
   1446       Indices.push_back(Builder->getInt32(0));
   1447       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
   1448             I != E; ++I)
   1449         Indices.push_back(Builder->getInt32(*I));
   1450 
   1451       // We need to insert these at the location of the old load, not at that of
   1452       // the extractvalue.
   1453       Builder->SetInsertPoint(L->getParent(), L);
   1454       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
   1455       // Returning the load directly will cause the main loop to insert it in
   1456       // the wrong spot, so use ReplaceInstUsesWith().
   1457       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
   1458     }
   1459   // We could simplify extracts from other values. Note that nested extracts may
   1460   // already be simplified implicitly by the above: extract (extract (insert) )
   1461   // will be translated into extract ( insert ( extract ) ) first and then just
   1462   // the value inserted, if appropriate. Similarly for extracts from single-use
   1463   // loads: extract (extract (load)) will be translated to extract (load (gep))
   1464   // and if again single-use then via load (gep (gep)) to load (gep).
   1465   // However, double extracts from e.g. function arguments or return values
   1466   // aren't handled yet.
   1467   return 0;
   1468 }
   1469 
   1470 enum Personality_Type {
   1471   Unknown_Personality,
   1472   GNU_Ada_Personality,
   1473   GNU_CXX_Personality,
   1474   GNU_ObjC_Personality
   1475 };
   1476 
   1477 /// RecognizePersonality - See if the given exception handling personality
   1478 /// function is one that we understand.  If so, return a description of it;
   1479 /// otherwise return Unknown_Personality.
   1480 static Personality_Type RecognizePersonality(Value *Pers) {
   1481   Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
   1482   if (!F)
   1483     return Unknown_Personality;
   1484   return StringSwitch<Personality_Type>(F->getName())
   1485     .Case("__gnat_eh_personality", GNU_Ada_Personality)
   1486     .Case("__gxx_personality_v0",  GNU_CXX_Personality)
   1487     .Case("__objc_personality_v0", GNU_ObjC_Personality)
   1488     .Default(Unknown_Personality);
   1489 }
   1490 
   1491 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
   1492 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
   1493   switch (Personality) {
   1494   case Unknown_Personality:
   1495     return false;
   1496   case GNU_Ada_Personality:
   1497     // While __gnat_all_others_value will match any Ada exception, it doesn't
   1498     // match foreign exceptions (or didn't, before gcc-4.7).
   1499     return false;
   1500   case GNU_CXX_Personality:
   1501   case GNU_ObjC_Personality:
   1502     return TypeInfo->isNullValue();
   1503   }
   1504   llvm_unreachable("Unknown personality!");
   1505 }
   1506 
   1507 static bool shorter_filter(const Value *LHS, const Value *RHS) {
   1508   return
   1509     cast<ArrayType>(LHS->getType())->getNumElements()
   1510   <
   1511     cast<ArrayType>(RHS->getType())->getNumElements();
   1512 }
   1513 
   1514 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
   1515   // The logic here should be correct for any real-world personality function.
   1516   // However if that turns out not to be true, the offending logic can always
   1517   // be conditioned on the personality function, like the catch-all logic is.
   1518   Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
   1519 
   1520   // Simplify the list of clauses, eg by removing repeated catch clauses
   1521   // (these are often created by inlining).
   1522   bool MakeNewInstruction = false; // If true, recreate using the following:
   1523   SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
   1524   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
   1525 
   1526   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
   1527   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
   1528     bool isLastClause = i + 1 == e;
   1529     if (LI.isCatch(i)) {
   1530       // A catch clause.
   1531       Value *CatchClause = LI.getClause(i);
   1532       Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
   1533 
   1534       // If we already saw this clause, there is no point in having a second
   1535       // copy of it.
   1536       if (AlreadyCaught.insert(TypeInfo)) {
   1537         // This catch clause was not already seen.
   1538         NewClauses.push_back(CatchClause);
   1539       } else {
   1540         // Repeated catch clause - drop the redundant copy.
   1541         MakeNewInstruction = true;
   1542       }
   1543 
   1544       // If this is a catch-all then there is no point in keeping any following
   1545       // clauses or marking the landingpad as having a cleanup.
   1546       if (isCatchAll(Personality, TypeInfo)) {
   1547         if (!isLastClause)
   1548           MakeNewInstruction = true;
   1549         CleanupFlag = false;
   1550         break;
   1551       }
   1552     } else {
   1553       // A filter clause.  If any of the filter elements were already caught
   1554       // then they can be dropped from the filter.  It is tempting to try to
   1555       // exploit the filter further by saying that any typeinfo that does not
   1556       // occur in the filter can't be caught later (and thus can be dropped).
   1557       // However this would be wrong, since typeinfos can match without being
   1558       // equal (for example if one represents a C++ class, and the other some
   1559       // class derived from it).
   1560       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
   1561       Value *FilterClause = LI.getClause(i);
   1562       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
   1563       unsigned NumTypeInfos = FilterType->getNumElements();
   1564 
   1565       // An empty filter catches everything, so there is no point in keeping any
   1566       // following clauses or marking the landingpad as having a cleanup.  By
   1567       // dealing with this case here the following code is made a bit simpler.
   1568       if (!NumTypeInfos) {
   1569         NewClauses.push_back(FilterClause);
   1570         if (!isLastClause)
   1571           MakeNewInstruction = true;
   1572         CleanupFlag = false;
   1573         break;
   1574       }
   1575 
   1576       bool MakeNewFilter = false; // If true, make a new filter.
   1577       SmallVector<Constant *, 16> NewFilterElts; // New elements.
   1578       if (isa<ConstantAggregateZero>(FilterClause)) {
   1579         // Not an empty filter - it contains at least one null typeinfo.
   1580         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
   1581         Constant *TypeInfo =
   1582           Constant::getNullValue(FilterType->getElementType());
   1583         // If this typeinfo is a catch-all then the filter can never match.
   1584         if (isCatchAll(Personality, TypeInfo)) {
   1585           // Throw the filter away.
   1586           MakeNewInstruction = true;
   1587           continue;
   1588         }
   1589 
   1590         // There is no point in having multiple copies of this typeinfo, so
   1591         // discard all but the first copy if there is more than one.
   1592         NewFilterElts.push_back(TypeInfo);
   1593         if (NumTypeInfos > 1)
   1594           MakeNewFilter = true;
   1595       } else {
   1596         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
   1597         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
   1598         NewFilterElts.reserve(NumTypeInfos);
   1599 
   1600         // Remove any filter elements that were already caught or that already
   1601         // occurred in the filter.  While there, see if any of the elements are
   1602         // catch-alls.  If so, the filter can be discarded.
   1603         bool SawCatchAll = false;
   1604         for (unsigned j = 0; j != NumTypeInfos; ++j) {
   1605           Value *Elt = Filter->getOperand(j);
   1606           Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
   1607           if (isCatchAll(Personality, TypeInfo)) {
   1608             // This element is a catch-all.  Bail out, noting this fact.
   1609             SawCatchAll = true;
   1610             break;
   1611           }
   1612           if (AlreadyCaught.count(TypeInfo))
   1613             // Already caught by an earlier clause, so having it in the filter
   1614             // is pointless.
   1615             continue;
   1616           // There is no point in having multiple copies of the same typeinfo in
   1617           // a filter, so only add it if we didn't already.
   1618           if (SeenInFilter.insert(TypeInfo))
   1619             NewFilterElts.push_back(cast<Constant>(Elt));
   1620         }
   1621         // A filter containing a catch-all cannot match anything by definition.
   1622         if (SawCatchAll) {
   1623           // Throw the filter away.
   1624           MakeNewInstruction = true;
   1625           continue;
   1626         }
   1627 
   1628         // If we dropped something from the filter, make a new one.
   1629         if (NewFilterElts.size() < NumTypeInfos)
   1630           MakeNewFilter = true;
   1631       }
   1632       if (MakeNewFilter) {
   1633         FilterType = ArrayType::get(FilterType->getElementType(),
   1634                                     NewFilterElts.size());
   1635         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
   1636         MakeNewInstruction = true;
   1637       }
   1638 
   1639       NewClauses.push_back(FilterClause);
   1640 
   1641       // If the new filter is empty then it will catch everything so there is
   1642       // no point in keeping any following clauses or marking the landingpad
   1643       // as having a cleanup.  The case of the original filter being empty was
   1644       // already handled above.
   1645       if (MakeNewFilter && !NewFilterElts.size()) {
   1646         assert(MakeNewInstruction && "New filter but not a new instruction!");
   1647         CleanupFlag = false;
   1648         break;
   1649       }
   1650     }
   1651   }
   1652 
   1653   // If several filters occur in a row then reorder them so that the shortest
   1654   // filters come first (those with the smallest number of elements).  This is
   1655   // advantageous because shorter filters are more likely to match, speeding up
   1656   // unwinding, but mostly because it increases the effectiveness of the other
   1657   // filter optimizations below.
   1658   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
   1659     unsigned j;
   1660     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
   1661     for (j = i; j != e; ++j)
   1662       if (!isa<ArrayType>(NewClauses[j]->getType()))
   1663         break;
   1664 
   1665     // Check whether the filters are already sorted by length.  We need to know
   1666     // if sorting them is actually going to do anything so that we only make a
   1667     // new landingpad instruction if it does.
   1668     for (unsigned k = i; k + 1 < j; ++k)
   1669       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
   1670         // Not sorted, so sort the filters now.  Doing an unstable sort would be
   1671         // correct too but reordering filters pointlessly might confuse users.
   1672         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
   1673                          shorter_filter);
   1674         MakeNewInstruction = true;
   1675         break;
   1676       }
   1677 
   1678     // Look for the next batch of filters.
   1679     i = j + 1;
   1680   }
   1681 
   1682   // If typeinfos matched if and only if equal, then the elements of a filter L
   1683   // that occurs later than a filter F could be replaced by the intersection of
   1684   // the elements of F and L.  In reality two typeinfos can match without being
   1685   // equal (for example if one represents a C++ class, and the other some class
   1686   // derived from it) so it would be wrong to perform this transform in general.
   1687   // However the transform is correct and useful if F is a subset of L.  In that
   1688   // case L can be replaced by F, and thus removed altogether since repeating a
   1689   // filter is pointless.  So here we look at all pairs of filters F and L where
   1690   // L follows F in the list of clauses, and remove L if every element of F is
   1691   // an element of L.  This can occur when inlining C++ functions with exception
   1692   // specifications.
   1693   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
   1694     // Examine each filter in turn.
   1695     Value *Filter = NewClauses[i];
   1696     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
   1697     if (!FTy)
   1698       // Not a filter - skip it.
   1699       continue;
   1700     unsigned FElts = FTy->getNumElements();
   1701     // Examine each filter following this one.  Doing this backwards means that
   1702     // we don't have to worry about filters disappearing under us when removed.
   1703     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
   1704       Value *LFilter = NewClauses[j];
   1705       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
   1706       if (!LTy)
   1707         // Not a filter - skip it.
   1708         continue;
   1709       // If Filter is a subset of LFilter, i.e. every element of Filter is also
   1710       // an element of LFilter, then discard LFilter.
   1711       SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
   1712       // If Filter is empty then it is a subset of LFilter.
   1713       if (!FElts) {
   1714         // Discard LFilter.
   1715         NewClauses.erase(J);
   1716         MakeNewInstruction = true;
   1717         // Move on to the next filter.
   1718         continue;
   1719       }
   1720       unsigned LElts = LTy->getNumElements();
   1721       // If Filter is longer than LFilter then it cannot be a subset of it.
   1722       if (FElts > LElts)
   1723         // Move on to the next filter.
   1724         continue;
   1725       // At this point we know that LFilter has at least one element.
   1726       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
   1727         // Filter is a subset of LFilter iff Filter contains only zeros (as we
   1728         // already know that Filter is not longer than LFilter).
   1729         if (isa<ConstantAggregateZero>(Filter)) {
   1730           assert(FElts <= LElts && "Should have handled this case earlier!");
   1731           // Discard LFilter.
   1732           NewClauses.erase(J);
   1733           MakeNewInstruction = true;
   1734         }
   1735         // Move on to the next filter.
   1736         continue;
   1737       }
   1738       ConstantArray *LArray = cast<ConstantArray>(LFilter);
   1739       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
   1740         // Since Filter is non-empty and contains only zeros, it is a subset of
   1741         // LFilter iff LFilter contains a zero.
   1742         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
   1743         for (unsigned l = 0; l != LElts; ++l)
   1744           if (LArray->getOperand(l)->isNullValue()) {
   1745             // LFilter contains a zero - discard it.
   1746             NewClauses.erase(J);
   1747             MakeNewInstruction = true;
   1748             break;
   1749           }
   1750         // Move on to the next filter.
   1751         continue;
   1752       }
   1753       // At this point we know that both filters are ConstantArrays.  Loop over
   1754       // operands to see whether every element of Filter is also an element of
   1755       // LFilter.  Since filters tend to be short this is probably faster than
   1756       // using a method that scales nicely.
   1757       ConstantArray *FArray = cast<ConstantArray>(Filter);
   1758       bool AllFound = true;
   1759       for (unsigned f = 0; f != FElts; ++f) {
   1760         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
   1761         AllFound = false;
   1762         for (unsigned l = 0; l != LElts; ++l) {
   1763           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
   1764           if (LTypeInfo == FTypeInfo) {
   1765             AllFound = true;
   1766             break;
   1767           }
   1768         }
   1769         if (!AllFound)
   1770           break;
   1771       }
   1772       if (AllFound) {
   1773         // Discard LFilter.
   1774         NewClauses.erase(J);
   1775         MakeNewInstruction = true;
   1776       }
   1777       // Move on to the next filter.
   1778     }
   1779   }
   1780 
   1781   // If we changed any of the clauses, replace the old landingpad instruction
   1782   // with a new one.
   1783   if (MakeNewInstruction) {
   1784     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
   1785                                                  LI.getPersonalityFn(),
   1786                                                  NewClauses.size());
   1787     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
   1788       NLI->addClause(NewClauses[i]);
   1789     // A landing pad with no clauses must have the cleanup flag set.  It is
   1790     // theoretically possible, though highly unlikely, that we eliminated all
   1791     // clauses.  If so, force the cleanup flag to true.
   1792     if (NewClauses.empty())
   1793       CleanupFlag = true;
   1794     NLI->setCleanup(CleanupFlag);
   1795     return NLI;
   1796   }
   1797 
   1798   // Even if none of the clauses changed, we may nonetheless have understood
   1799   // that the cleanup flag is pointless.  Clear it if so.
   1800   if (LI.isCleanup() != CleanupFlag) {
   1801     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
   1802     LI.setCleanup(CleanupFlag);
   1803     return &LI;
   1804   }
   1805 
   1806   return 0;
   1807 }
   1808 
   1809 
   1810 
   1811 
   1812 /// TryToSinkInstruction - Try to move the specified instruction from its
   1813 /// current block into the beginning of DestBlock, which can only happen if it's
   1814 /// safe to move the instruction past all of the instructions between it and the
   1815 /// end of its block.
   1816 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
   1817   assert(I->hasOneUse() && "Invariants didn't hold!");
   1818 
   1819   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   1820   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
   1821       isa<TerminatorInst>(I))
   1822     return false;
   1823 
   1824   // Do not sink alloca instructions out of the entry block.
   1825   if (isa<AllocaInst>(I) && I->getParent() ==
   1826         &DestBlock->getParent()->getEntryBlock())
   1827     return false;
   1828 
   1829   // We can only sink load instructions if there is nothing between the load and
   1830   // the end of block that could change the value.
   1831   if (I->mayReadFromMemory()) {
   1832     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
   1833          Scan != E; ++Scan)
   1834       if (Scan->mayWriteToMemory())
   1835         return false;
   1836   }
   1837 
   1838   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
   1839   I->moveBefore(InsertPos);
   1840   ++NumSunkInst;
   1841   return true;
   1842 }
   1843 
   1844 
   1845 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
   1846 /// all reachable code to the worklist.
   1847 ///
   1848 /// This has a couple of tricks to make the code faster and more powerful.  In
   1849 /// particular, we constant fold and DCE instructions as we go, to avoid adding
   1850 /// them to the worklist (this significantly speeds up instcombine on code where
   1851 /// many instructions are dead or constant).  Additionally, if we find a branch
   1852 /// whose condition is a known constant, we only visit the reachable successors.
   1853 ///
   1854 static bool AddReachableCodeToWorklist(BasicBlock *BB,
   1855                                        SmallPtrSet<BasicBlock*, 64> &Visited,
   1856                                        InstCombiner &IC,
   1857                                        const TargetData *TD,
   1858                                        const TargetLibraryInfo *TLI) {
   1859   bool MadeIRChange = false;
   1860   SmallVector<BasicBlock*, 256> Worklist;
   1861   Worklist.push_back(BB);
   1862 
   1863   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
   1864   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
   1865 
   1866   do {
   1867     BB = Worklist.pop_back_val();
   1868 
   1869     // We have now visited this block!  If we've already been here, ignore it.
   1870     if (!Visited.insert(BB)) continue;
   1871 
   1872     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
   1873       Instruction *Inst = BBI++;
   1874 
   1875       // DCE instruction if trivially dead.
   1876       if (isInstructionTriviallyDead(Inst, TLI)) {
   1877         ++NumDeadInst;
   1878         DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
   1879         Inst->eraseFromParent();
   1880         continue;
   1881       }
   1882 
   1883       // ConstantProp instruction if trivially constant.
   1884       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
   1885         if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
   1886           DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
   1887                        << *Inst << '\n');
   1888           Inst->replaceAllUsesWith(C);
   1889           ++NumConstProp;
   1890           Inst->eraseFromParent();
   1891           continue;
   1892         }
   1893 
   1894       if (TD) {
   1895         // See if we can constant fold its operands.
   1896         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
   1897              i != e; ++i) {
   1898           ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
   1899           if (CE == 0) continue;
   1900 
   1901           Constant*& FoldRes = FoldedConstants[CE];
   1902           if (!FoldRes)
   1903             FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
   1904           if (!FoldRes)
   1905             FoldRes = CE;
   1906 
   1907           if (FoldRes != CE) {
   1908             *i = FoldRes;
   1909             MadeIRChange = true;
   1910           }
   1911         }
   1912       }
   1913 
   1914       InstrsForInstCombineWorklist.push_back(Inst);
   1915     }
   1916 
   1917     // Recursively visit successors.  If this is a branch or switch on a
   1918     // constant, only visit the reachable successor.
   1919     TerminatorInst *TI = BB->getTerminator();
   1920     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1921       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
   1922         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
   1923         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
   1924         Worklist.push_back(ReachableBB);
   1925         continue;
   1926       }
   1927     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1928       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
   1929         // See if this is an explicit destination.
   1930         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   1931              i != e; ++i)
   1932           if (i.getCaseValue() == Cond) {
   1933             BasicBlock *ReachableBB = i.getCaseSuccessor();
   1934             Worklist.push_back(ReachableBB);
   1935             continue;
   1936           }
   1937 
   1938         // Otherwise it is the default destination.
   1939         Worklist.push_back(SI->getDefaultDest());
   1940         continue;
   1941       }
   1942     }
   1943 
   1944     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
   1945       Worklist.push_back(TI->getSuccessor(i));
   1946   } while (!Worklist.empty());
   1947 
   1948   // Once we've found all of the instructions to add to instcombine's worklist,
   1949   // add them in reverse order.  This way instcombine will visit from the top
   1950   // of the function down.  This jives well with the way that it adds all uses
   1951   // of instructions to the worklist after doing a transformation, thus avoiding
   1952   // some N^2 behavior in pathological cases.
   1953   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
   1954                               InstrsForInstCombineWorklist.size());
   1955 
   1956   return MadeIRChange;
   1957 }
   1958 
   1959 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
   1960   MadeIRChange = false;
   1961 
   1962   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
   1963                << F.getName() << "\n");
   1964 
   1965   {
   1966     // Do a depth-first traversal of the function, populate the worklist with
   1967     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
   1968     // track of which blocks we visit.
   1969     SmallPtrSet<BasicBlock*, 64> Visited;
   1970     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
   1971                                                TLI);
   1972 
   1973     // Do a quick scan over the function.  If we find any blocks that are
   1974     // unreachable, remove any instructions inside of them.  This prevents
   1975     // the instcombine code from having to deal with some bad special cases.
   1976     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1977       if (Visited.count(BB)) continue;
   1978 
   1979       // Delete the instructions backwards, as it has a reduced likelihood of
   1980       // having to update as many def-use and use-def chains.
   1981       Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1982       while (EndInst != BB->begin()) {
   1983         // Delete the next to last instruction.
   1984         BasicBlock::iterator I = EndInst;
   1985         Instruction *Inst = --I;
   1986         if (!Inst->use_empty())
   1987           Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1988         if (isa<LandingPadInst>(Inst)) {
   1989           EndInst = Inst;
   1990           continue;
   1991         }
   1992         if (!isa<DbgInfoIntrinsic>(Inst)) {
   1993           ++NumDeadInst;
   1994           MadeIRChange = true;
   1995         }
   1996         Inst->eraseFromParent();
   1997       }
   1998     }
   1999   }
   2000 
   2001   while (!Worklist.isEmpty()) {
   2002     Instruction *I = Worklist.RemoveOne();
   2003     if (I == 0) continue;  // skip null values.
   2004 
   2005     // Check to see if we can DCE the instruction.
   2006     if (isInstructionTriviallyDead(I, TLI)) {
   2007       DEBUG(errs() << "IC: DCE: " << *I << '\n');
   2008       EraseInstFromFunction(*I);
   2009       ++NumDeadInst;
   2010       MadeIRChange = true;
   2011       continue;
   2012     }
   2013 
   2014     // Instruction isn't dead, see if we can constant propagate it.
   2015     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
   2016       if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
   2017         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
   2018 
   2019         // Add operands to the worklist.
   2020         ReplaceInstUsesWith(*I, C);
   2021         ++NumConstProp;
   2022         EraseInstFromFunction(*I);
   2023         MadeIRChange = true;
   2024         continue;
   2025       }
   2026 
   2027     // See if we can trivially sink this instruction to a successor basic block.
   2028     if (I->hasOneUse()) {
   2029       BasicBlock *BB = I->getParent();
   2030       Instruction *UserInst = cast<Instruction>(I->use_back());
   2031       BasicBlock *UserParent;
   2032 
   2033       // Get the block the use occurs in.
   2034       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
   2035         UserParent = PN->getIncomingBlock(I->use_begin().getUse());
   2036       else
   2037         UserParent = UserInst->getParent();
   2038 
   2039       if (UserParent != BB) {
   2040         bool UserIsSuccessor = false;
   2041         // See if the user is one of our successors.
   2042         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
   2043           if (*SI == UserParent) {
   2044             UserIsSuccessor = true;
   2045             break;
   2046           }
   2047 
   2048         // If the user is one of our immediate successors, and if that successor
   2049         // only has us as a predecessors (we'd have to split the critical edge
   2050         // otherwise), we can keep going.
   2051         if (UserIsSuccessor && UserParent->getSinglePredecessor())
   2052           // Okay, the CFG is simple enough, try to sink this instruction.
   2053           MadeIRChange |= TryToSinkInstruction(I, UserParent);
   2054       }
   2055     }
   2056 
   2057     // Now that we have an instruction, try combining it to simplify it.
   2058     Builder->SetInsertPoint(I->getParent(), I);
   2059     Builder->SetCurrentDebugLocation(I->getDebugLoc());
   2060 
   2061 #ifndef NDEBUG
   2062     std::string OrigI;
   2063 #endif
   2064     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
   2065     DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
   2066 
   2067     if (Instruction *Result = visit(*I)) {
   2068       ++NumCombined;
   2069       // Should we replace the old instruction with a new one?
   2070       if (Result != I) {
   2071         DEBUG(errs() << "IC: Old = " << *I << '\n'
   2072                      << "    New = " << *Result << '\n');
   2073 
   2074         if (!I->getDebugLoc().isUnknown())
   2075           Result->setDebugLoc(I->getDebugLoc());
   2076         // Everything uses the new instruction now.
   2077         I->replaceAllUsesWith(Result);
   2078 
   2079         // Move the name to the new instruction first.
   2080         Result->takeName(I);
   2081 
   2082         // Push the new instruction and any users onto the worklist.
   2083         Worklist.Add(Result);
   2084         Worklist.AddUsersToWorkList(*Result);
   2085 
   2086         // Insert the new instruction into the basic block...
   2087         BasicBlock *InstParent = I->getParent();
   2088         BasicBlock::iterator InsertPos = I;
   2089 
   2090         // If we replace a PHI with something that isn't a PHI, fix up the
   2091         // insertion point.
   2092         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
   2093           InsertPos = InstParent->getFirstInsertionPt();
   2094 
   2095         InstParent->getInstList().insert(InsertPos, Result);
   2096 
   2097         EraseInstFromFunction(*I);
   2098       } else {
   2099 #ifndef NDEBUG
   2100         DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
   2101                      << "    New = " << *I << '\n');
   2102 #endif
   2103 
   2104         // If the instruction was modified, it's possible that it is now dead.
   2105         // if so, remove it.
   2106         if (isInstructionTriviallyDead(I, TLI)) {
   2107           EraseInstFromFunction(*I);
   2108         } else {
   2109           Worklist.Add(I);
   2110           Worklist.AddUsersToWorkList(*I);
   2111         }
   2112       }
   2113       MadeIRChange = true;
   2114     }
   2115   }
   2116 
   2117   Worklist.Zap();
   2118   return MadeIRChange;
   2119 }
   2120 
   2121 
   2122 bool InstCombiner::runOnFunction(Function &F) {
   2123   TD = getAnalysisIfAvailable<TargetData>();
   2124   TLI = &getAnalysis<TargetLibraryInfo>();
   2125 
   2126   /// Builder - This is an IRBuilder that automatically inserts new
   2127   /// instructions into the worklist when they are created.
   2128   IRBuilder<true, TargetFolder, InstCombineIRInserter>
   2129     TheBuilder(F.getContext(), TargetFolder(TD),
   2130                InstCombineIRInserter(Worklist));
   2131   Builder = &TheBuilder;
   2132 
   2133   bool EverMadeChange = false;
   2134 
   2135   // Lower dbg.declare intrinsics otherwise their value may be clobbered
   2136   // by instcombiner.
   2137   EverMadeChange = LowerDbgDeclare(F);
   2138 
   2139   // Iterate while there is work to do.
   2140   unsigned Iteration = 0;
   2141   while (DoOneIteration(F, Iteration++))
   2142     EverMadeChange = true;
   2143 
   2144   Builder = 0;
   2145   return EverMadeChange;
   2146 }
   2147 
   2148 FunctionPass *llvm::createInstructionCombiningPass() {
   2149   return new InstCombiner();
   2150 }
   2151