Home | History | Annotate | Download | only in CodeGen
      1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/Analysis.h"
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/DerivedTypes.h"
     17 #include "llvm/Function.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/IntrinsicInst.h"
     20 #include "llvm/LLVMContext.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/SelectionDAG.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/Target/TargetLowering.h"
     26 #include "llvm/Target/TargetOptions.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/MathExtras.h"
     29 using namespace llvm;
     30 
     31 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
     32 /// of insertvalue or extractvalue indices that identify a member, return
     33 /// the linearized index of the start of the member.
     34 ///
     35 unsigned llvm::ComputeLinearIndex(Type *Ty,
     36                                   const unsigned *Indices,
     37                                   const unsigned *IndicesEnd,
     38                                   unsigned CurIndex) {
     39   // Base case: We're done.
     40   if (Indices && Indices == IndicesEnd)
     41     return CurIndex;
     42 
     43   // Given a struct type, recursively traverse the elements.
     44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     45     for (StructType::element_iterator EB = STy->element_begin(),
     46                                       EI = EB,
     47                                       EE = STy->element_end();
     48         EI != EE; ++EI) {
     49       if (Indices && *Indices == unsigned(EI - EB))
     50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
     51       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
     52     }
     53     return CurIndex;
     54   }
     55   // Given an array type, recursively traverse the elements.
     56   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     57     Type *EltTy = ATy->getElementType();
     58     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
     59       if (Indices && *Indices == i)
     60         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
     61       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
     62     }
     63     return CurIndex;
     64   }
     65   // We haven't found the type we're looking for, so keep searching.
     66   return CurIndex + 1;
     67 }
     68 
     69 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
     70 /// EVTs that represent all the individual underlying
     71 /// non-aggregate types that comprise it.
     72 ///
     73 /// If Offsets is non-null, it points to a vector to be filled in
     74 /// with the in-memory offsets of each of the individual values.
     75 ///
     76 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
     77                            SmallVectorImpl<EVT> &ValueVTs,
     78                            SmallVectorImpl<uint64_t> *Offsets,
     79                            uint64_t StartingOffset) {
     80   // Given a struct type, recursively traverse the elements.
     81   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     82     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
     83     for (StructType::element_iterator EB = STy->element_begin(),
     84                                       EI = EB,
     85                                       EE = STy->element_end();
     86          EI != EE; ++EI)
     87       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
     88                       StartingOffset + SL->getElementOffset(EI - EB));
     89     return;
     90   }
     91   // Given an array type, recursively traverse the elements.
     92   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     93     Type *EltTy = ATy->getElementType();
     94     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
     95     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
     96       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
     97                       StartingOffset + i * EltSize);
     98     return;
     99   }
    100   // Interpret void as zero return values.
    101   if (Ty->isVoidTy())
    102     return;
    103   // Base case: we can get an EVT for this LLVM IR type.
    104   ValueVTs.push_back(TLI.getValueType(Ty));
    105   if (Offsets)
    106     Offsets->push_back(StartingOffset);
    107 }
    108 
    109 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
    110 GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
    111   V = V->stripPointerCasts();
    112   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
    113 
    114   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
    115     assert(GV->hasInitializer() &&
    116            "The EH catch-all value must have an initializer");
    117     Value *Init = GV->getInitializer();
    118     GV = dyn_cast<GlobalVariable>(Init);
    119     if (!GV) V = cast<ConstantPointerNull>(Init);
    120   }
    121 
    122   assert((GV || isa<ConstantPointerNull>(V)) &&
    123          "TypeInfo must be a global variable or NULL");
    124   return GV;
    125 }
    126 
    127 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
    128 /// processed uses a memory 'm' constraint.
    129 bool
    130 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
    131                                 const TargetLowering &TLI) {
    132   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
    133     InlineAsm::ConstraintInfo &CI = CInfos[i];
    134     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
    135       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
    136       if (CType == TargetLowering::C_Memory)
    137         return true;
    138     }
    139 
    140     // Indirect operand accesses access memory.
    141     if (CI.isIndirect)
    142       return true;
    143   }
    144 
    145   return false;
    146 }
    147 
    148 /// getFCmpCondCode - Return the ISD condition code corresponding to
    149 /// the given LLVM IR floating-point condition code.  This includes
    150 /// consideration of global floating-point math flags.
    151 ///
    152 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
    153   switch (Pred) {
    154   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
    155   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
    156   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
    157   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
    158   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
    159   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
    160   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
    161   case FCmpInst::FCMP_ORD:   return ISD::SETO;
    162   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
    163   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
    164   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
    165   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
    166   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
    167   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
    168   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
    169   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
    170   default: llvm_unreachable("Invalid FCmp predicate opcode!");
    171   }
    172 }
    173 
    174 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
    175   switch (CC) {
    176     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
    177     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
    178     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
    179     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
    180     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
    181     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
    182     default: return CC;
    183   }
    184 }
    185 
    186 /// getICmpCondCode - Return the ISD condition code corresponding to
    187 /// the given LLVM IR integer condition code.
    188 ///
    189 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
    190   switch (Pred) {
    191   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
    192   case ICmpInst::ICMP_NE:  return ISD::SETNE;
    193   case ICmpInst::ICMP_SLE: return ISD::SETLE;
    194   case ICmpInst::ICMP_ULE: return ISD::SETULE;
    195   case ICmpInst::ICMP_SGE: return ISD::SETGE;
    196   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
    197   case ICmpInst::ICMP_SLT: return ISD::SETLT;
    198   case ICmpInst::ICMP_ULT: return ISD::SETULT;
    199   case ICmpInst::ICMP_SGT: return ISD::SETGT;
    200   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
    201   default:
    202     llvm_unreachable("Invalid ICmp predicate opcode!");
    203   }
    204 }
    205 
    206 
    207 /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look
    208 /// through it (and any transitive noop operands to it) and return its input
    209 /// value.  This is used to determine if a tail call can be formed.
    210 ///
    211 static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) {
    212   // If V is not an instruction, it can't be looked through.
    213   const Instruction *I = dyn_cast<Instruction>(V);
    214   if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V;
    215 
    216   Value *Op = I->getOperand(0);
    217 
    218   // Look through truly no-op truncates.
    219   if (isa<TruncInst>(I) &&
    220       TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType()))
    221     return getNoopInput(I->getOperand(0), TLI);
    222 
    223   // Look through truly no-op bitcasts.
    224   if (isa<BitCastInst>(I)) {
    225     // No type change at all.
    226     if (Op->getType() == I->getType())
    227       return getNoopInput(Op, TLI);
    228 
    229     // Pointer to pointer cast.
    230     if (Op->getType()->isPointerTy() && I->getType()->isPointerTy())
    231       return getNoopInput(Op, TLI);
    232 
    233     if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) &&
    234         TLI.isTypeLegal(EVT::getEVT(Op->getType())) &&
    235         TLI.isTypeLegal(EVT::getEVT(I->getType())))
    236       return getNoopInput(Op, TLI);
    237   }
    238 
    239   // Look through inttoptr.
    240   if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) {
    241     // Make sure this isn't a truncating or extending cast.  We could support
    242     // this eventually, but don't bother for now.
    243     if (TLI.getPointerTy().getSizeInBits() ==
    244           cast<IntegerType>(Op->getType())->getBitWidth())
    245       return getNoopInput(Op, TLI);
    246   }
    247 
    248   // Look through ptrtoint.
    249   if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) {
    250     // Make sure this isn't a truncating or extending cast.  We could support
    251     // this eventually, but don't bother for now.
    252     if (TLI.getPointerTy().getSizeInBits() ==
    253         cast<IntegerType>(I->getType())->getBitWidth())
    254       return getNoopInput(Op, TLI);
    255   }
    256 
    257 
    258   // Otherwise it's not something we can look through.
    259   return V;
    260 }
    261 
    262 
    263 /// Test if the given instruction is in a position to be optimized
    264 /// with a tail-call. This roughly means that it's in a block with
    265 /// a return and there's nothing that needs to be scheduled
    266 /// between it and the return.
    267 ///
    268 /// This function only tests target-independent requirements.
    269 bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
    270                                 const TargetLowering &TLI) {
    271   const Instruction *I = CS.getInstruction();
    272   const BasicBlock *ExitBB = I->getParent();
    273   const TerminatorInst *Term = ExitBB->getTerminator();
    274   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
    275 
    276   // The block must end in a return statement or unreachable.
    277   //
    278   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
    279   // an unreachable, for now. The way tailcall optimization is currently
    280   // implemented means it will add an epilogue followed by a jump. That is
    281   // not profitable. Also, if the callee is a special function (e.g.
    282   // longjmp on x86), it can end up causing miscompilation that has not
    283   // been fully understood.
    284   if (!Ret &&
    285       (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
    286        !isa<UnreachableInst>(Term)))
    287     return false;
    288 
    289   // If I will have a chain, make sure no other instruction that will have a
    290   // chain interposes between I and the return.
    291   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
    292       !isSafeToSpeculativelyExecute(I))
    293     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
    294          --BBI) {
    295       if (&*BBI == I)
    296         break;
    297       // Debug info intrinsics do not get in the way of tail call optimization.
    298       if (isa<DbgInfoIntrinsic>(BBI))
    299         continue;
    300       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
    301           !isSafeToSpeculativelyExecute(BBI))
    302         return false;
    303     }
    304 
    305   // If the block ends with a void return or unreachable, it doesn't matter
    306   // what the call's return type is.
    307   if (!Ret || Ret->getNumOperands() == 0) return true;
    308 
    309   // If the return value is undef, it doesn't matter what the call's
    310   // return type is.
    311   if (isa<UndefValue>(Ret->getOperand(0))) return true;
    312 
    313   // Conservatively require the attributes of the call to match those of
    314   // the return. Ignore noalias because it doesn't affect the call sequence.
    315   const Function *F = ExitBB->getParent();
    316   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
    317   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
    318     return false;
    319 
    320   // It's not safe to eliminate the sign / zero extension of the return value.
    321   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    322     return false;
    323 
    324   // Otherwise, make sure the unmodified return value of I is the return value.
    325   // We handle two cases: multiple return values + scalars.
    326   Value *RetVal = Ret->getOperand(0);
    327   if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType()))
    328     // Handle scalars first.
    329     return getNoopInput(Ret->getOperand(0), TLI) == I;
    330 
    331   // If this is an aggregate return, look through the insert/extract values and
    332   // see if each is transparent.
    333   for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements();
    334        i != e; ++i) {
    335     const Value *InScalar = FindInsertedValue(RetVal, i);
    336     if (InScalar == 0) return false;
    337     InScalar = getNoopInput(InScalar, TLI);
    338 
    339     // If the scalar value being inserted is an extractvalue of the right index
    340     // from the call, then everything is good.
    341     const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar);
    342     if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 ||
    343         EVI->getIndices()[0] != i)
    344       return false;
    345   }
    346 
    347   return true;
    348 }
    349 
    350 bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
    351                                 SDValue &Chain, const TargetLowering &TLI) {
    352   const Function *F = DAG.getMachineFunction().getFunction();
    353 
    354   // Conservatively require the attributes of the call to match those of
    355   // the return. Ignore noalias because it doesn't affect the call sequence.
    356   Attributes CallerRetAttr = F->getAttributes().getRetAttributes();
    357   if (CallerRetAttr & ~Attribute::NoAlias)
    358     return false;
    359 
    360   // It's not safe to eliminate the sign / zero extension of the return value.
    361   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
    362     return false;
    363 
    364   // Check if the only use is a function return node.
    365   return TLI.isUsedByReturnOnly(Node, Chain);
    366 }
    367