Home | History | Annotate | Download | only in AST
      1 //===--- Type.cpp - Type representation and manipulation ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related functionality.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/CharUnits.h"
     16 #include "clang/AST/Type.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/PrettyPrinter.h"
     22 #include "clang/AST/TypeVisitor.h"
     23 #include "clang/Basic/Specifiers.h"
     24 #include "llvm/ADT/APSInt.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <algorithm>
     28 using namespace clang;
     29 
     30 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
     31   return (*this != Other) &&
     32     // CVR qualifiers superset
     33     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
     34     // ObjC GC qualifiers superset
     35     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
     36      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
     37     // Address space superset.
     38     ((getAddressSpace() == Other.getAddressSpace()) ||
     39      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
     40     // Lifetime qualifier superset.
     41     ((getObjCLifetime() == Other.getObjCLifetime()) ||
     42      (hasObjCLifetime() && !Other.hasObjCLifetime()));
     43 }
     44 
     45 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
     46   const Type* ty = getTypePtr();
     47   NamedDecl *ND = NULL;
     48   if (ty->isPointerType() || ty->isReferenceType())
     49     return ty->getPointeeType().getBaseTypeIdentifier();
     50   else if (ty->isRecordType())
     51     ND = ty->getAs<RecordType>()->getDecl();
     52   else if (ty->isEnumeralType())
     53     ND = ty->getAs<EnumType>()->getDecl();
     54   else if (ty->getTypeClass() == Type::Typedef)
     55     ND = ty->getAs<TypedefType>()->getDecl();
     56   else if (ty->isArrayType())
     57     return ty->castAsArrayTypeUnsafe()->
     58         getElementType().getBaseTypeIdentifier();
     59 
     60   if (ND)
     61     return ND->getIdentifier();
     62   return NULL;
     63 }
     64 
     65 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
     66   if (T.isConstQualified())
     67     return true;
     68 
     69   if (const ArrayType *AT = Ctx.getAsArrayType(T))
     70     return AT->getElementType().isConstant(Ctx);
     71 
     72   return false;
     73 }
     74 
     75 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
     76                                                  QualType ElementType,
     77                                                const llvm::APInt &NumElements) {
     78   llvm::APSInt SizeExtended(NumElements, true);
     79   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
     80   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
     81                                               SizeExtended.getBitWidth()) * 2);
     82 
     83   uint64_t ElementSize
     84     = Context.getTypeSizeInChars(ElementType).getQuantity();
     85   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
     86   TotalSize *= SizeExtended;
     87 
     88   return TotalSize.getActiveBits();
     89 }
     90 
     91 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
     92   unsigned Bits = Context.getTypeSize(Context.getSizeType());
     93 
     94   // GCC appears to only allow 63 bits worth of address space when compiling
     95   // for 64-bit, so we do the same.
     96   if (Bits == 64)
     97     --Bits;
     98 
     99   return Bits;
    100 }
    101 
    102 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
    103                                                  QualType et, QualType can,
    104                                                  Expr *e, ArraySizeModifier sm,
    105                                                  unsigned tq,
    106                                                  SourceRange brackets)
    107     : ArrayType(DependentSizedArray, et, can, sm, tq,
    108                 (et->containsUnexpandedParameterPack() ||
    109                  (e && e->containsUnexpandedParameterPack()))),
    110       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
    111 {
    112 }
    113 
    114 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
    115                                       const ASTContext &Context,
    116                                       QualType ET,
    117                                       ArraySizeModifier SizeMod,
    118                                       unsigned TypeQuals,
    119                                       Expr *E) {
    120   ID.AddPointer(ET.getAsOpaquePtr());
    121   ID.AddInteger(SizeMod);
    122   ID.AddInteger(TypeQuals);
    123   E->Profile(ID, Context, true);
    124 }
    125 
    126 DependentSizedExtVectorType::DependentSizedExtVectorType(const
    127                                                          ASTContext &Context,
    128                                                          QualType ElementType,
    129                                                          QualType can,
    130                                                          Expr *SizeExpr,
    131                                                          SourceLocation loc)
    132     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
    133            /*InstantiationDependent=*/true,
    134            ElementType->isVariablyModifiedType(),
    135            (ElementType->containsUnexpandedParameterPack() ||
    136             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
    137       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
    138       loc(loc)
    139 {
    140 }
    141 
    142 void
    143 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
    144                                      const ASTContext &Context,
    145                                      QualType ElementType, Expr *SizeExpr) {
    146   ID.AddPointer(ElementType.getAsOpaquePtr());
    147   SizeExpr->Profile(ID, Context, true);
    148 }
    149 
    150 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
    151                        VectorKind vecKind)
    152   : Type(Vector, canonType, vecType->isDependentType(),
    153          vecType->isInstantiationDependentType(),
    154          vecType->isVariablyModifiedType(),
    155          vecType->containsUnexpandedParameterPack()),
    156     ElementType(vecType)
    157 {
    158   VectorTypeBits.VecKind = vecKind;
    159   VectorTypeBits.NumElements = nElements;
    160 }
    161 
    162 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
    163                        QualType canonType, VectorKind vecKind)
    164   : Type(tc, canonType, vecType->isDependentType(),
    165          vecType->isInstantiationDependentType(),
    166          vecType->isVariablyModifiedType(),
    167          vecType->containsUnexpandedParameterPack()),
    168     ElementType(vecType)
    169 {
    170   VectorTypeBits.VecKind = vecKind;
    171   VectorTypeBits.NumElements = nElements;
    172 }
    173 
    174 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
    175 /// element type of the array, potentially with type qualifiers missing.
    176 /// This method should never be used when type qualifiers are meaningful.
    177 const Type *Type::getArrayElementTypeNoTypeQual() const {
    178   // If this is directly an array type, return it.
    179   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    180     return ATy->getElementType().getTypePtr();
    181 
    182   // If the canonical form of this type isn't the right kind, reject it.
    183   if (!isa<ArrayType>(CanonicalType))
    184     return 0;
    185 
    186   // If this is a typedef for an array type, strip the typedef off without
    187   // losing all typedef information.
    188   return cast<ArrayType>(getUnqualifiedDesugaredType())
    189     ->getElementType().getTypePtr();
    190 }
    191 
    192 /// getDesugaredType - Return the specified type with any "sugar" removed from
    193 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    194 /// the type is already concrete, it returns it unmodified.  This is similar
    195 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    196 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    197 /// concrete.
    198 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
    199   SplitQualType split = getSplitDesugaredType(T);
    200   return Context.getQualifiedType(split.Ty, split.Quals);
    201 }
    202 
    203 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
    204                                                   const ASTContext &Context) {
    205   SplitQualType split = type.split();
    206   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
    207   return Context.getQualifiedType(desugar, split.Quals);
    208 }
    209 
    210 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
    211   switch (getTypeClass()) {
    212 #define ABSTRACT_TYPE(Class, Parent)
    213 #define TYPE(Class, Parent) \
    214   case Type::Class: { \
    215     const Class##Type *ty = cast<Class##Type>(this); \
    216     if (!ty->isSugared()) return QualType(ty, 0); \
    217     return ty->desugar(); \
    218   }
    219 #include "clang/AST/TypeNodes.def"
    220   }
    221   llvm_unreachable("bad type kind!");
    222 }
    223 
    224 SplitQualType QualType::getSplitDesugaredType(QualType T) {
    225   QualifierCollector Qs;
    226 
    227   QualType Cur = T;
    228   while (true) {
    229     const Type *CurTy = Qs.strip(Cur);
    230     switch (CurTy->getTypeClass()) {
    231 #define ABSTRACT_TYPE(Class, Parent)
    232 #define TYPE(Class, Parent) \
    233     case Type::Class: { \
    234       const Class##Type *Ty = cast<Class##Type>(CurTy); \
    235       if (!Ty->isSugared()) \
    236         return SplitQualType(Ty, Qs); \
    237       Cur = Ty->desugar(); \
    238       break; \
    239     }
    240 #include "clang/AST/TypeNodes.def"
    241     }
    242   }
    243 }
    244 
    245 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
    246   SplitQualType split = type.split();
    247 
    248   // All the qualifiers we've seen so far.
    249   Qualifiers quals = split.Quals;
    250 
    251   // The last type node we saw with any nodes inside it.
    252   const Type *lastTypeWithQuals = split.Ty;
    253 
    254   while (true) {
    255     QualType next;
    256 
    257     // Do a single-step desugar, aborting the loop if the type isn't
    258     // sugared.
    259     switch (split.Ty->getTypeClass()) {
    260 #define ABSTRACT_TYPE(Class, Parent)
    261 #define TYPE(Class, Parent) \
    262     case Type::Class: { \
    263       const Class##Type *ty = cast<Class##Type>(split.Ty); \
    264       if (!ty->isSugared()) goto done; \
    265       next = ty->desugar(); \
    266       break; \
    267     }
    268 #include "clang/AST/TypeNodes.def"
    269     }
    270 
    271     // Otherwise, split the underlying type.  If that yields qualifiers,
    272     // update the information.
    273     split = next.split();
    274     if (!split.Quals.empty()) {
    275       lastTypeWithQuals = split.Ty;
    276       quals.addConsistentQualifiers(split.Quals);
    277     }
    278   }
    279 
    280  done:
    281   return SplitQualType(lastTypeWithQuals, quals);
    282 }
    283 
    284 QualType QualType::IgnoreParens(QualType T) {
    285   // FIXME: this seems inherently un-qualifiers-safe.
    286   while (const ParenType *PT = T->getAs<ParenType>())
    287     T = PT->getInnerType();
    288   return T;
    289 }
    290 
    291 /// \brief This will check for a TypedefType by removing any existing sugar
    292 /// until it reaches a TypedefType or a non-sugared type.
    293 template <> const TypedefType *Type::getAs() const {
    294   const Type *Cur = this;
    295 
    296   while (true) {
    297     if (const TypedefType *TDT = dyn_cast<TypedefType>(Cur))
    298       return TDT;
    299     switch (Cur->getTypeClass()) {
    300 #define ABSTRACT_TYPE(Class, Parent)
    301 #define TYPE(Class, Parent) \
    302     case Class: { \
    303       const Class##Type *Ty = cast<Class##Type>(Cur); \
    304       if (!Ty->isSugared()) return 0; \
    305       Cur = Ty->desugar().getTypePtr(); \
    306       break; \
    307     }
    308 #include "clang/AST/TypeNodes.def"
    309     }
    310   }
    311 }
    312 
    313 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
    314 /// sugar off the given type.  This should produce an object of the
    315 /// same dynamic type as the canonical type.
    316 const Type *Type::getUnqualifiedDesugaredType() const {
    317   const Type *Cur = this;
    318 
    319   while (true) {
    320     switch (Cur->getTypeClass()) {
    321 #define ABSTRACT_TYPE(Class, Parent)
    322 #define TYPE(Class, Parent) \
    323     case Class: { \
    324       const Class##Type *Ty = cast<Class##Type>(Cur); \
    325       if (!Ty->isSugared()) return Cur; \
    326       Cur = Ty->desugar().getTypePtr(); \
    327       break; \
    328     }
    329 #include "clang/AST/TypeNodes.def"
    330     }
    331   }
    332 }
    333 
    334 bool Type::isDerivedType() const {
    335   switch (CanonicalType->getTypeClass()) {
    336   case Pointer:
    337   case VariableArray:
    338   case ConstantArray:
    339   case IncompleteArray:
    340   case FunctionProto:
    341   case FunctionNoProto:
    342   case LValueReference:
    343   case RValueReference:
    344   case Record:
    345     return true;
    346   default:
    347     return false;
    348   }
    349 }
    350 bool Type::isClassType() const {
    351   if (const RecordType *RT = getAs<RecordType>())
    352     return RT->getDecl()->isClass();
    353   return false;
    354 }
    355 bool Type::isStructureType() const {
    356   if (const RecordType *RT = getAs<RecordType>())
    357     return RT->getDecl()->isStruct();
    358   return false;
    359 }
    360 bool Type::isInterfaceType() const {
    361   if (const RecordType *RT = getAs<RecordType>())
    362     return RT->getDecl()->isInterface();
    363   return false;
    364 }
    365 bool Type::isStructureOrClassType() const {
    366   if (const RecordType *RT = getAs<RecordType>())
    367     return RT->getDecl()->isStruct() || RT->getDecl()->isClass() ||
    368       RT->getDecl()->isInterface();
    369   return false;
    370 }
    371 bool Type::isVoidPointerType() const {
    372   if (const PointerType *PT = getAs<PointerType>())
    373     return PT->getPointeeType()->isVoidType();
    374   return false;
    375 }
    376 
    377 bool Type::isUnionType() const {
    378   if (const RecordType *RT = getAs<RecordType>())
    379     return RT->getDecl()->isUnion();
    380   return false;
    381 }
    382 
    383 bool Type::isComplexType() const {
    384   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    385     return CT->getElementType()->isFloatingType();
    386   return false;
    387 }
    388 
    389 bool Type::isComplexIntegerType() const {
    390   // Check for GCC complex integer extension.
    391   return getAsComplexIntegerType();
    392 }
    393 
    394 const ComplexType *Type::getAsComplexIntegerType() const {
    395   if (const ComplexType *Complex = getAs<ComplexType>())
    396     if (Complex->getElementType()->isIntegerType())
    397       return Complex;
    398   return 0;
    399 }
    400 
    401 QualType Type::getPointeeType() const {
    402   if (const PointerType *PT = getAs<PointerType>())
    403     return PT->getPointeeType();
    404   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    405     return OPT->getPointeeType();
    406   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
    407     return BPT->getPointeeType();
    408   if (const ReferenceType *RT = getAs<ReferenceType>())
    409     return RT->getPointeeType();
    410   return QualType();
    411 }
    412 
    413 const RecordType *Type::getAsStructureType() const {
    414   // If this is directly a structure type, return it.
    415   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    416     if (RT->getDecl()->isStruct())
    417       return RT;
    418   }
    419 
    420   // If the canonical form of this type isn't the right kind, reject it.
    421   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    422     if (!RT->getDecl()->isStruct())
    423       return 0;
    424 
    425     // If this is a typedef for a structure type, strip the typedef off without
    426     // losing all typedef information.
    427     return cast<RecordType>(getUnqualifiedDesugaredType());
    428   }
    429   return 0;
    430 }
    431 
    432 const RecordType *Type::getAsUnionType() const {
    433   // If this is directly a union type, return it.
    434   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    435     if (RT->getDecl()->isUnion())
    436       return RT;
    437   }
    438 
    439   // If the canonical form of this type isn't the right kind, reject it.
    440   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    441     if (!RT->getDecl()->isUnion())
    442       return 0;
    443 
    444     // If this is a typedef for a union type, strip the typedef off without
    445     // losing all typedef information.
    446     return cast<RecordType>(getUnqualifiedDesugaredType());
    447   }
    448 
    449   return 0;
    450 }
    451 
    452 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
    453                                ObjCProtocolDecl * const *Protocols,
    454                                unsigned NumProtocols)
    455   : Type(ObjCObject, Canonical, false, false, false, false),
    456     BaseType(Base)
    457 {
    458   ObjCObjectTypeBits.NumProtocols = NumProtocols;
    459   assert(getNumProtocols() == NumProtocols &&
    460          "bitfield overflow in protocol count");
    461   if (NumProtocols)
    462     memcpy(getProtocolStorage(), Protocols,
    463            NumProtocols * sizeof(ObjCProtocolDecl*));
    464 }
    465 
    466 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
    467   // There is no sugar for ObjCObjectType's, just return the canonical
    468   // type pointer if it is the right class.  There is no typedef information to
    469   // return and these cannot be Address-space qualified.
    470   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
    471     if (T->getNumProtocols() && T->getInterface())
    472       return T;
    473   return 0;
    474 }
    475 
    476 bool Type::isObjCQualifiedInterfaceType() const {
    477   return getAsObjCQualifiedInterfaceType() != 0;
    478 }
    479 
    480 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
    481   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
    482   // type pointer if it is the right class.
    483   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    484     if (OPT->isObjCQualifiedIdType())
    485       return OPT;
    486   }
    487   return 0;
    488 }
    489 
    490 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
    491   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
    492   // type pointer if it is the right class.
    493   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    494     if (OPT->isObjCQualifiedClassType())
    495       return OPT;
    496   }
    497   return 0;
    498 }
    499 
    500 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
    501   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    502     if (OPT->getInterfaceType())
    503       return OPT;
    504   }
    505   return 0;
    506 }
    507 
    508 const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
    509   if (const PointerType *PT = getAs<PointerType>())
    510     if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
    511       return dyn_cast<CXXRecordDecl>(RT->getDecl());
    512   return 0;
    513 }
    514 
    515 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
    516   if (const RecordType *RT = getAs<RecordType>())
    517     return dyn_cast<CXXRecordDecl>(RT->getDecl());
    518   else if (const InjectedClassNameType *Injected
    519                                   = getAs<InjectedClassNameType>())
    520     return Injected->getDecl();
    521 
    522   return 0;
    523 }
    524 
    525 namespace {
    526   class GetContainedAutoVisitor :
    527     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
    528   public:
    529     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
    530     AutoType *Visit(QualType T) {
    531       if (T.isNull())
    532         return 0;
    533       return Visit(T.getTypePtr());
    534     }
    535 
    536     // The 'auto' type itself.
    537     AutoType *VisitAutoType(const AutoType *AT) {
    538       return const_cast<AutoType*>(AT);
    539     }
    540 
    541     // Only these types can contain the desired 'auto' type.
    542     AutoType *VisitPointerType(const PointerType *T) {
    543       return Visit(T->getPointeeType());
    544     }
    545     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
    546       return Visit(T->getPointeeType());
    547     }
    548     AutoType *VisitReferenceType(const ReferenceType *T) {
    549       return Visit(T->getPointeeTypeAsWritten());
    550     }
    551     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
    552       return Visit(T->getPointeeType());
    553     }
    554     AutoType *VisitArrayType(const ArrayType *T) {
    555       return Visit(T->getElementType());
    556     }
    557     AutoType *VisitDependentSizedExtVectorType(
    558       const DependentSizedExtVectorType *T) {
    559       return Visit(T->getElementType());
    560     }
    561     AutoType *VisitVectorType(const VectorType *T) {
    562       return Visit(T->getElementType());
    563     }
    564     AutoType *VisitFunctionType(const FunctionType *T) {
    565       return Visit(T->getResultType());
    566     }
    567     AutoType *VisitParenType(const ParenType *T) {
    568       return Visit(T->getInnerType());
    569     }
    570     AutoType *VisitAttributedType(const AttributedType *T) {
    571       return Visit(T->getModifiedType());
    572     }
    573   };
    574 }
    575 
    576 AutoType *Type::getContainedAutoType() const {
    577   return GetContainedAutoVisitor().Visit(this);
    578 }
    579 
    580 bool Type::hasIntegerRepresentation() const {
    581   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    582     return VT->getElementType()->isIntegerType();
    583   else
    584     return isIntegerType();
    585 }
    586 
    587 /// \brief Determine whether this type is an integral type.
    588 ///
    589 /// This routine determines whether the given type is an integral type per
    590 /// C++ [basic.fundamental]p7. Although the C standard does not define the
    591 /// term "integral type", it has a similar term "integer type", and in C++
    592 /// the two terms are equivalent. However, C's "integer type" includes
    593 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
    594 /// parameter is used to determine whether we should be following the C or
    595 /// C++ rules when determining whether this type is an integral/integer type.
    596 ///
    597 /// For cases where C permits "an integer type" and C++ permits "an integral
    598 /// type", use this routine.
    599 ///
    600 /// For cases where C permits "an integer type" and C++ permits "an integral
    601 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
    602 ///
    603 /// \param Ctx The context in which this type occurs.
    604 ///
    605 /// \returns true if the type is considered an integral type, false otherwise.
    606 bool Type::isIntegralType(ASTContext &Ctx) const {
    607   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    608     return BT->getKind() >= BuiltinType::Bool &&
    609     BT->getKind() <= BuiltinType::Int128;
    610 
    611   if (!Ctx.getLangOpts().CPlusPlus)
    612     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    613       return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
    614 
    615   return false;
    616 }
    617 
    618 
    619 bool Type::isIntegralOrUnscopedEnumerationType() const {
    620   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    621     return BT->getKind() >= BuiltinType::Bool &&
    622            BT->getKind() <= BuiltinType::Int128;
    623 
    624   // Check for a complete enum type; incomplete enum types are not properly an
    625   // enumeration type in the sense required here.
    626   // C++0x: However, if the underlying type of the enum is fixed, it is
    627   // considered complete.
    628   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    629     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
    630 
    631   return false;
    632 }
    633 
    634 
    635 
    636 bool Type::isCharType() const {
    637   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    638     return BT->getKind() == BuiltinType::Char_U ||
    639            BT->getKind() == BuiltinType::UChar ||
    640            BT->getKind() == BuiltinType::Char_S ||
    641            BT->getKind() == BuiltinType::SChar;
    642   return false;
    643 }
    644 
    645 bool Type::isWideCharType() const {
    646   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    647     return BT->getKind() == BuiltinType::WChar_S ||
    648            BT->getKind() == BuiltinType::WChar_U;
    649   return false;
    650 }
    651 
    652 bool Type::isChar16Type() const {
    653   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    654     return BT->getKind() == BuiltinType::Char16;
    655   return false;
    656 }
    657 
    658 bool Type::isChar32Type() const {
    659   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    660     return BT->getKind() == BuiltinType::Char32;
    661   return false;
    662 }
    663 
    664 /// \brief Determine whether this type is any of the built-in character
    665 /// types.
    666 bool Type::isAnyCharacterType() const {
    667   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
    668   if (BT == 0) return false;
    669   switch (BT->getKind()) {
    670   default: return false;
    671   case BuiltinType::Char_U:
    672   case BuiltinType::UChar:
    673   case BuiltinType::WChar_U:
    674   case BuiltinType::Char16:
    675   case BuiltinType::Char32:
    676   case BuiltinType::Char_S:
    677   case BuiltinType::SChar:
    678   case BuiltinType::WChar_S:
    679     return true;
    680   }
    681 }
    682 
    683 /// isSignedIntegerType - Return true if this is an integer type that is
    684 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
    685 /// an enum decl which has a signed representation
    686 bool Type::isSignedIntegerType() const {
    687   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    688     return BT->getKind() >= BuiltinType::Char_S &&
    689            BT->getKind() <= BuiltinType::Int128;
    690   }
    691 
    692   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    693     // Incomplete enum types are not treated as integer types.
    694     // FIXME: In C++, enum types are never integer types.
    695     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
    696       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
    697   }
    698 
    699   return false;
    700 }
    701 
    702 bool Type::isSignedIntegerOrEnumerationType() const {
    703   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    704     return BT->getKind() >= BuiltinType::Char_S &&
    705     BT->getKind() <= BuiltinType::Int128;
    706   }
    707 
    708   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    709     if (ET->getDecl()->isComplete())
    710       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
    711   }
    712 
    713   return false;
    714 }
    715 
    716 bool Type::hasSignedIntegerRepresentation() const {
    717   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    718     return VT->getElementType()->isSignedIntegerType();
    719   else
    720     return isSignedIntegerType();
    721 }
    722 
    723 /// isUnsignedIntegerType - Return true if this is an integer type that is
    724 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
    725 /// decl which has an unsigned representation
    726 bool Type::isUnsignedIntegerType() const {
    727   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    728     return BT->getKind() >= BuiltinType::Bool &&
    729            BT->getKind() <= BuiltinType::UInt128;
    730   }
    731 
    732   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    733     // Incomplete enum types are not treated as integer types.
    734     // FIXME: In C++, enum types are never integer types.
    735     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
    736       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
    737   }
    738 
    739   return false;
    740 }
    741 
    742 bool Type::isUnsignedIntegerOrEnumerationType() const {
    743   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    744     return BT->getKind() >= BuiltinType::Bool &&
    745     BT->getKind() <= BuiltinType::UInt128;
    746   }
    747 
    748   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    749     if (ET->getDecl()->isComplete())
    750       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
    751   }
    752 
    753   return false;
    754 }
    755 
    756 bool Type::hasUnsignedIntegerRepresentation() const {
    757   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    758     return VT->getElementType()->isUnsignedIntegerType();
    759   else
    760     return isUnsignedIntegerType();
    761 }
    762 
    763 bool Type::isFloatingType() const {
    764   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    765     return BT->getKind() >= BuiltinType::Half &&
    766            BT->getKind() <= BuiltinType::LongDouble;
    767   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    768     return CT->getElementType()->isFloatingType();
    769   return false;
    770 }
    771 
    772 bool Type::hasFloatingRepresentation() const {
    773   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    774     return VT->getElementType()->isFloatingType();
    775   else
    776     return isFloatingType();
    777 }
    778 
    779 bool Type::isRealFloatingType() const {
    780   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    781     return BT->isFloatingPoint();
    782   return false;
    783 }
    784 
    785 bool Type::isRealType() const {
    786   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    787     return BT->getKind() >= BuiltinType::Bool &&
    788            BT->getKind() <= BuiltinType::LongDouble;
    789   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    790       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
    791   return false;
    792 }
    793 
    794 bool Type::isArithmeticType() const {
    795   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    796     return BT->getKind() >= BuiltinType::Bool &&
    797            BT->getKind() <= BuiltinType::LongDouble;
    798   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    799     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
    800     // If a body isn't seen by the time we get here, return false.
    801     //
    802     // C++0x: Enumerations are not arithmetic types. For now, just return
    803     // false for scoped enumerations since that will disable any
    804     // unwanted implicit conversions.
    805     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
    806   return isa<ComplexType>(CanonicalType);
    807 }
    808 
    809 Type::ScalarTypeKind Type::getScalarTypeKind() const {
    810   assert(isScalarType());
    811 
    812   const Type *T = CanonicalType.getTypePtr();
    813   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
    814     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
    815     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
    816     if (BT->isInteger()) return STK_Integral;
    817     if (BT->isFloatingPoint()) return STK_Floating;
    818     llvm_unreachable("unknown scalar builtin type");
    819   } else if (isa<PointerType>(T)) {
    820     return STK_CPointer;
    821   } else if (isa<BlockPointerType>(T)) {
    822     return STK_BlockPointer;
    823   } else if (isa<ObjCObjectPointerType>(T)) {
    824     return STK_ObjCObjectPointer;
    825   } else if (isa<MemberPointerType>(T)) {
    826     return STK_MemberPointer;
    827   } else if (isa<EnumType>(T)) {
    828     assert(cast<EnumType>(T)->getDecl()->isComplete());
    829     return STK_Integral;
    830   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
    831     if (CT->getElementType()->isRealFloatingType())
    832       return STK_FloatingComplex;
    833     return STK_IntegralComplex;
    834   }
    835 
    836   llvm_unreachable("unknown scalar type");
    837 }
    838 
    839 /// \brief Determines whether the type is a C++ aggregate type or C
    840 /// aggregate or union type.
    841 ///
    842 /// An aggregate type is an array or a class type (struct, union, or
    843 /// class) that has no user-declared constructors, no private or
    844 /// protected non-static data members, no base classes, and no virtual
    845 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
    846 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
    847 /// includes union types.
    848 bool Type::isAggregateType() const {
    849   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
    850     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
    851       return ClassDecl->isAggregate();
    852 
    853     return true;
    854   }
    855 
    856   return isa<ArrayType>(CanonicalType);
    857 }
    858 
    859 /// isConstantSizeType - Return true if this is not a variable sized type,
    860 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
    861 /// incomplete types or dependent types.
    862 bool Type::isConstantSizeType() const {
    863   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
    864   assert(!isDependentType() && "This doesn't make sense for dependent types");
    865   // The VAT must have a size, as it is known to be complete.
    866   return !isa<VariableArrayType>(CanonicalType);
    867 }
    868 
    869 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
    870 /// - a type that can describe objects, but which lacks information needed to
    871 /// determine its size.
    872 bool Type::isIncompleteType(NamedDecl **Def) const {
    873   if (Def)
    874     *Def = 0;
    875 
    876   switch (CanonicalType->getTypeClass()) {
    877   default: return false;
    878   case Builtin:
    879     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
    880     // be completed.
    881     return isVoidType();
    882   case Enum: {
    883     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
    884     if (Def)
    885       *Def = EnumD;
    886 
    887     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
    888     if (EnumD->isFixed())
    889       return false;
    890 
    891     return !EnumD->isCompleteDefinition();
    892   }
    893   case Record: {
    894     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
    895     // forward declaration, but not a full definition (C99 6.2.5p22).
    896     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
    897     if (Def)
    898       *Def = Rec;
    899     return !Rec->isCompleteDefinition();
    900   }
    901   case ConstantArray:
    902     // An array is incomplete if its element type is incomplete
    903     // (C++ [dcl.array]p1).
    904     // We don't handle variable arrays (they're not allowed in C++) or
    905     // dependent-sized arrays (dependent types are never treated as incomplete).
    906     return cast<ArrayType>(CanonicalType)->getElementType()
    907              ->isIncompleteType(Def);
    908   case IncompleteArray:
    909     // An array of unknown size is an incomplete type (C99 6.2.5p22).
    910     return true;
    911   case ObjCObject:
    912     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
    913              ->isIncompleteType(Def);
    914   case ObjCInterface: {
    915     // ObjC interfaces are incomplete if they are @class, not @interface.
    916     ObjCInterfaceDecl *Interface
    917       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
    918     if (Def)
    919       *Def = Interface;
    920     return !Interface->hasDefinition();
    921   }
    922   }
    923 }
    924 
    925 bool QualType::isPODType(ASTContext &Context) const {
    926   // C++11 has a more relaxed definition of POD.
    927   if (Context.getLangOpts().CPlusPlus0x)
    928     return isCXX11PODType(Context);
    929 
    930   return isCXX98PODType(Context);
    931 }
    932 
    933 bool QualType::isCXX98PODType(ASTContext &Context) const {
    934   // The compiler shouldn't query this for incomplete types, but the user might.
    935   // We return false for that case. Except for incomplete arrays of PODs, which
    936   // are PODs according to the standard.
    937   if (isNull())
    938     return 0;
    939 
    940   if ((*this)->isIncompleteArrayType())
    941     return Context.getBaseElementType(*this).isCXX98PODType(Context);
    942 
    943   if ((*this)->isIncompleteType())
    944     return false;
    945 
    946   if (Context.getLangOpts().ObjCAutoRefCount) {
    947     switch (getObjCLifetime()) {
    948     case Qualifiers::OCL_ExplicitNone:
    949       return true;
    950 
    951     case Qualifiers::OCL_Strong:
    952     case Qualifiers::OCL_Weak:
    953     case Qualifiers::OCL_Autoreleasing:
    954       return false;
    955 
    956     case Qualifiers::OCL_None:
    957       break;
    958     }
    959   }
    960 
    961   QualType CanonicalType = getTypePtr()->CanonicalType;
    962   switch (CanonicalType->getTypeClass()) {
    963     // Everything not explicitly mentioned is not POD.
    964   default: return false;
    965   case Type::VariableArray:
    966   case Type::ConstantArray:
    967     // IncompleteArray is handled above.
    968     return Context.getBaseElementType(*this).isCXX98PODType(Context);
    969 
    970   case Type::ObjCObjectPointer:
    971   case Type::BlockPointer:
    972   case Type::Builtin:
    973   case Type::Complex:
    974   case Type::Pointer:
    975   case Type::MemberPointer:
    976   case Type::Vector:
    977   case Type::ExtVector:
    978     return true;
    979 
    980   case Type::Enum:
    981     return true;
    982 
    983   case Type::Record:
    984     if (CXXRecordDecl *ClassDecl
    985           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
    986       return ClassDecl->isPOD();
    987 
    988     // C struct/union is POD.
    989     return true;
    990   }
    991 }
    992 
    993 bool QualType::isTrivialType(ASTContext &Context) const {
    994   // The compiler shouldn't query this for incomplete types, but the user might.
    995   // We return false for that case. Except for incomplete arrays of PODs, which
    996   // are PODs according to the standard.
    997   if (isNull())
    998     return 0;
    999 
   1000   if ((*this)->isArrayType())
   1001     return Context.getBaseElementType(*this).isTrivialType(Context);
   1002 
   1003   // Return false for incomplete types after skipping any incomplete array
   1004   // types which are expressly allowed by the standard and thus our API.
   1005   if ((*this)->isIncompleteType())
   1006     return false;
   1007 
   1008   if (Context.getLangOpts().ObjCAutoRefCount) {
   1009     switch (getObjCLifetime()) {
   1010     case Qualifiers::OCL_ExplicitNone:
   1011       return true;
   1012 
   1013     case Qualifiers::OCL_Strong:
   1014     case Qualifiers::OCL_Weak:
   1015     case Qualifiers::OCL_Autoreleasing:
   1016       return false;
   1017 
   1018     case Qualifiers::OCL_None:
   1019       if ((*this)->isObjCLifetimeType())
   1020         return false;
   1021       break;
   1022     }
   1023   }
   1024 
   1025   QualType CanonicalType = getTypePtr()->CanonicalType;
   1026   if (CanonicalType->isDependentType())
   1027     return false;
   1028 
   1029   // C++0x [basic.types]p9:
   1030   //   Scalar types, trivial class types, arrays of such types, and
   1031   //   cv-qualified versions of these types are collectively called trivial
   1032   //   types.
   1033 
   1034   // As an extension, Clang treats vector types as Scalar types.
   1035   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   1036     return true;
   1037   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   1038     if (const CXXRecordDecl *ClassDecl =
   1039         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1040       // C++0x [class]p5:
   1041       //   A trivial class is a class that has a trivial default constructor
   1042       if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
   1043       //   and is trivially copyable.
   1044       if (!ClassDecl->isTriviallyCopyable()) return false;
   1045     }
   1046 
   1047     return true;
   1048   }
   1049 
   1050   // No other types can match.
   1051   return false;
   1052 }
   1053 
   1054 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
   1055   if ((*this)->isArrayType())
   1056     return Context.getBaseElementType(*this).isTrivialType(Context);
   1057 
   1058   if (Context.getLangOpts().ObjCAutoRefCount) {
   1059     switch (getObjCLifetime()) {
   1060     case Qualifiers::OCL_ExplicitNone:
   1061       return true;
   1062 
   1063     case Qualifiers::OCL_Strong:
   1064     case Qualifiers::OCL_Weak:
   1065     case Qualifiers::OCL_Autoreleasing:
   1066       return false;
   1067 
   1068     case Qualifiers::OCL_None:
   1069       if ((*this)->isObjCLifetimeType())
   1070         return false;
   1071       break;
   1072     }
   1073   }
   1074 
   1075   // C++0x [basic.types]p9
   1076   //   Scalar types, trivially copyable class types, arrays of such types, and
   1077   //   cv-qualified versions of these types are collectively called trivial
   1078   //   types.
   1079 
   1080   QualType CanonicalType = getCanonicalType();
   1081   if (CanonicalType->isDependentType())
   1082     return false;
   1083 
   1084   // Return false for incomplete types after skipping any incomplete array types
   1085   // which are expressly allowed by the standard and thus our API.
   1086   if (CanonicalType->isIncompleteType())
   1087     return false;
   1088 
   1089   // As an extension, Clang treats vector types as Scalar types.
   1090   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   1091     return true;
   1092 
   1093   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   1094     if (const CXXRecordDecl *ClassDecl =
   1095           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1096       if (!ClassDecl->isTriviallyCopyable()) return false;
   1097     }
   1098 
   1099     return true;
   1100   }
   1101 
   1102   // No other types can match.
   1103   return false;
   1104 }
   1105 
   1106 
   1107 
   1108 bool Type::isLiteralType() const {
   1109   if (isDependentType())
   1110     return false;
   1111 
   1112   // C++0x [basic.types]p10:
   1113   //   A type is a literal type if it is:
   1114   //   [...]
   1115   //   -- an array of literal type.
   1116   // Extension: variable arrays cannot be literal types, since they're
   1117   // runtime-sized.
   1118   if (isVariableArrayType())
   1119     return false;
   1120   const Type *BaseTy = getBaseElementTypeUnsafe();
   1121   assert(BaseTy && "NULL element type");
   1122 
   1123   // Return false for incomplete types after skipping any incomplete array
   1124   // types; those are expressly allowed by the standard and thus our API.
   1125   if (BaseTy->isIncompleteType())
   1126     return false;
   1127 
   1128   // C++0x [basic.types]p10:
   1129   //   A type is a literal type if it is:
   1130   //    -- a scalar type; or
   1131   // As an extension, Clang treats vector types and complex types as
   1132   // literal types.
   1133   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
   1134       BaseTy->isAnyComplexType())
   1135     return true;
   1136   //    -- a reference type; or
   1137   if (BaseTy->isReferenceType())
   1138     return true;
   1139   //    -- a class type that has all of the following properties:
   1140   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1141     //    -- a trivial destructor,
   1142     //    -- every constructor call and full-expression in the
   1143     //       brace-or-equal-initializers for non-static data members (if any)
   1144     //       is a constant expression,
   1145     //    -- it is an aggregate type or has at least one constexpr
   1146     //       constructor or constructor template that is not a copy or move
   1147     //       constructor, and
   1148     //    -- all non-static data members and base classes of literal types
   1149     //
   1150     // We resolve DR1361 by ignoring the second bullet.
   1151     if (const CXXRecordDecl *ClassDecl =
   1152         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1153       return ClassDecl->isLiteral();
   1154 
   1155     return true;
   1156   }
   1157 
   1158   return false;
   1159 }
   1160 
   1161 bool Type::isStandardLayoutType() const {
   1162   if (isDependentType())
   1163     return false;
   1164 
   1165   // C++0x [basic.types]p9:
   1166   //   Scalar types, standard-layout class types, arrays of such types, and
   1167   //   cv-qualified versions of these types are collectively called
   1168   //   standard-layout types.
   1169   const Type *BaseTy = getBaseElementTypeUnsafe();
   1170   assert(BaseTy && "NULL element type");
   1171 
   1172   // Return false for incomplete types after skipping any incomplete array
   1173   // types which are expressly allowed by the standard and thus our API.
   1174   if (BaseTy->isIncompleteType())
   1175     return false;
   1176 
   1177   // As an extension, Clang treats vector types as Scalar types.
   1178   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   1179   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1180     if (const CXXRecordDecl *ClassDecl =
   1181         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1182       if (!ClassDecl->isStandardLayout())
   1183         return false;
   1184 
   1185     // Default to 'true' for non-C++ class types.
   1186     // FIXME: This is a bit dubious, but plain C structs should trivially meet
   1187     // all the requirements of standard layout classes.
   1188     return true;
   1189   }
   1190 
   1191   // No other types can match.
   1192   return false;
   1193 }
   1194 
   1195 // This is effectively the intersection of isTrivialType and
   1196 // isStandardLayoutType. We implement it directly to avoid redundant
   1197 // conversions from a type to a CXXRecordDecl.
   1198 bool QualType::isCXX11PODType(ASTContext &Context) const {
   1199   const Type *ty = getTypePtr();
   1200   if (ty->isDependentType())
   1201     return false;
   1202 
   1203   if (Context.getLangOpts().ObjCAutoRefCount) {
   1204     switch (getObjCLifetime()) {
   1205     case Qualifiers::OCL_ExplicitNone:
   1206       return true;
   1207 
   1208     case Qualifiers::OCL_Strong:
   1209     case Qualifiers::OCL_Weak:
   1210     case Qualifiers::OCL_Autoreleasing:
   1211       return false;
   1212 
   1213     case Qualifiers::OCL_None:
   1214       break;
   1215     }
   1216   }
   1217 
   1218   // C++11 [basic.types]p9:
   1219   //   Scalar types, POD classes, arrays of such types, and cv-qualified
   1220   //   versions of these types are collectively called trivial types.
   1221   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
   1222   assert(BaseTy && "NULL element type");
   1223 
   1224   // Return false for incomplete types after skipping any incomplete array
   1225   // types which are expressly allowed by the standard and thus our API.
   1226   if (BaseTy->isIncompleteType())
   1227     return false;
   1228 
   1229   // As an extension, Clang treats vector types as Scalar types.
   1230   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   1231   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1232     if (const CXXRecordDecl *ClassDecl =
   1233         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1234       // C++11 [class]p10:
   1235       //   A POD struct is a non-union class that is both a trivial class [...]
   1236       if (!ClassDecl->isTrivial()) return false;
   1237 
   1238       // C++11 [class]p10:
   1239       //   A POD struct is a non-union class that is both a trivial class and
   1240       //   a standard-layout class [...]
   1241       if (!ClassDecl->isStandardLayout()) return false;
   1242 
   1243       // C++11 [class]p10:
   1244       //   A POD struct is a non-union class that is both a trivial class and
   1245       //   a standard-layout class, and has no non-static data members of type
   1246       //   non-POD struct, non-POD union (or array of such types). [...]
   1247       //
   1248       // We don't directly query the recursive aspect as the requiremets for
   1249       // both standard-layout classes and trivial classes apply recursively
   1250       // already.
   1251     }
   1252 
   1253     return true;
   1254   }
   1255 
   1256   // No other types can match.
   1257   return false;
   1258 }
   1259 
   1260 bool Type::isPromotableIntegerType() const {
   1261   if (const BuiltinType *BT = getAs<BuiltinType>())
   1262     switch (BT->getKind()) {
   1263     case BuiltinType::Bool:
   1264     case BuiltinType::Char_S:
   1265     case BuiltinType::Char_U:
   1266     case BuiltinType::SChar:
   1267     case BuiltinType::UChar:
   1268     case BuiltinType::Short:
   1269     case BuiltinType::UShort:
   1270     case BuiltinType::WChar_S:
   1271     case BuiltinType::WChar_U:
   1272     case BuiltinType::Char16:
   1273     case BuiltinType::Char32:
   1274       return true;
   1275     default:
   1276       return false;
   1277     }
   1278 
   1279   // Enumerated types are promotable to their compatible integer types
   1280   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
   1281   if (const EnumType *ET = getAs<EnumType>()){
   1282     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
   1283         || ET->getDecl()->isScoped())
   1284       return false;
   1285 
   1286     return true;
   1287   }
   1288 
   1289   return false;
   1290 }
   1291 
   1292 bool Type::isSpecifierType() const {
   1293   // Note that this intentionally does not use the canonical type.
   1294   switch (getTypeClass()) {
   1295   case Builtin:
   1296   case Record:
   1297   case Enum:
   1298   case Typedef:
   1299   case Complex:
   1300   case TypeOfExpr:
   1301   case TypeOf:
   1302   case TemplateTypeParm:
   1303   case SubstTemplateTypeParm:
   1304   case TemplateSpecialization:
   1305   case Elaborated:
   1306   case DependentName:
   1307   case DependentTemplateSpecialization:
   1308   case ObjCInterface:
   1309   case ObjCObject:
   1310   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
   1311     return true;
   1312   default:
   1313     return false;
   1314   }
   1315 }
   1316 
   1317 ElaboratedTypeKeyword
   1318 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
   1319   switch (TypeSpec) {
   1320   default: return ETK_None;
   1321   case TST_typename: return ETK_Typename;
   1322   case TST_class: return ETK_Class;
   1323   case TST_struct: return ETK_Struct;
   1324   case TST_interface: return ETK_Interface;
   1325   case TST_union: return ETK_Union;
   1326   case TST_enum: return ETK_Enum;
   1327   }
   1328 }
   1329 
   1330 TagTypeKind
   1331 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
   1332   switch(TypeSpec) {
   1333   case TST_class: return TTK_Class;
   1334   case TST_struct: return TTK_Struct;
   1335   case TST_interface: return TTK_Interface;
   1336   case TST_union: return TTK_Union;
   1337   case TST_enum: return TTK_Enum;
   1338   }
   1339 
   1340   llvm_unreachable("Type specifier is not a tag type kind.");
   1341 }
   1342 
   1343 ElaboratedTypeKeyword
   1344 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
   1345   switch (Kind) {
   1346   case TTK_Class: return ETK_Class;
   1347   case TTK_Struct: return ETK_Struct;
   1348   case TTK_Interface: return ETK_Interface;
   1349   case TTK_Union: return ETK_Union;
   1350   case TTK_Enum: return ETK_Enum;
   1351   }
   1352   llvm_unreachable("Unknown tag type kind.");
   1353 }
   1354 
   1355 TagTypeKind
   1356 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
   1357   switch (Keyword) {
   1358   case ETK_Class: return TTK_Class;
   1359   case ETK_Struct: return TTK_Struct;
   1360   case ETK_Interface: return TTK_Interface;
   1361   case ETK_Union: return TTK_Union;
   1362   case ETK_Enum: return TTK_Enum;
   1363   case ETK_None: // Fall through.
   1364   case ETK_Typename:
   1365     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
   1366   }
   1367   llvm_unreachable("Unknown elaborated type keyword.");
   1368 }
   1369 
   1370 bool
   1371 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
   1372   switch (Keyword) {
   1373   case ETK_None:
   1374   case ETK_Typename:
   1375     return false;
   1376   case ETK_Class:
   1377   case ETK_Struct:
   1378   case ETK_Interface:
   1379   case ETK_Union:
   1380   case ETK_Enum:
   1381     return true;
   1382   }
   1383   llvm_unreachable("Unknown elaborated type keyword.");
   1384 }
   1385 
   1386 const char*
   1387 TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
   1388   switch (Keyword) {
   1389   case ETK_None: return "";
   1390   case ETK_Typename: return "typename";
   1391   case ETK_Class:  return "class";
   1392   case ETK_Struct: return "struct";
   1393   case ETK_Interface: return "__interface";
   1394   case ETK_Union:  return "union";
   1395   case ETK_Enum:   return "enum";
   1396   }
   1397 
   1398   llvm_unreachable("Unknown elaborated type keyword.");
   1399 }
   1400 
   1401 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
   1402                          ElaboratedTypeKeyword Keyword,
   1403                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
   1404                          unsigned NumArgs, const TemplateArgument *Args,
   1405                          QualType Canon)
   1406   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
   1407                     /*VariablyModified=*/false,
   1408                     NNS && NNS->containsUnexpandedParameterPack()),
   1409     NNS(NNS), Name(Name), NumArgs(NumArgs) {
   1410   assert((!NNS || NNS->isDependent()) &&
   1411          "DependentTemplateSpecializatonType requires dependent qualifier");
   1412   for (unsigned I = 0; I != NumArgs; ++I) {
   1413     if (Args[I].containsUnexpandedParameterPack())
   1414       setContainsUnexpandedParameterPack();
   1415 
   1416     new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
   1417   }
   1418 }
   1419 
   1420 void
   1421 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   1422                                              const ASTContext &Context,
   1423                                              ElaboratedTypeKeyword Keyword,
   1424                                              NestedNameSpecifier *Qualifier,
   1425                                              const IdentifierInfo *Name,
   1426                                              unsigned NumArgs,
   1427                                              const TemplateArgument *Args) {
   1428   ID.AddInteger(Keyword);
   1429   ID.AddPointer(Qualifier);
   1430   ID.AddPointer(Name);
   1431   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
   1432     Args[Idx].Profile(ID, Context);
   1433 }
   1434 
   1435 bool Type::isElaboratedTypeSpecifier() const {
   1436   ElaboratedTypeKeyword Keyword;
   1437   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
   1438     Keyword = Elab->getKeyword();
   1439   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
   1440     Keyword = DepName->getKeyword();
   1441   else if (const DependentTemplateSpecializationType *DepTST =
   1442              dyn_cast<DependentTemplateSpecializationType>(this))
   1443     Keyword = DepTST->getKeyword();
   1444   else
   1445     return false;
   1446 
   1447   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
   1448 }
   1449 
   1450 const char *Type::getTypeClassName() const {
   1451   switch (TypeBits.TC) {
   1452 #define ABSTRACT_TYPE(Derived, Base)
   1453 #define TYPE(Derived, Base) case Derived: return #Derived;
   1454 #include "clang/AST/TypeNodes.def"
   1455   }
   1456 
   1457   llvm_unreachable("Invalid type class.");
   1458 }
   1459 
   1460 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
   1461   switch (getKind()) {
   1462   case Void:              return "void";
   1463   case Bool:              return Policy.Bool ? "bool" : "_Bool";
   1464   case Char_S:            return "char";
   1465   case Char_U:            return "char";
   1466   case SChar:             return "signed char";
   1467   case Short:             return "short";
   1468   case Int:               return "int";
   1469   case Long:              return "long";
   1470   case LongLong:          return "long long";
   1471   case Int128:            return "__int128";
   1472   case UChar:             return "unsigned char";
   1473   case UShort:            return "unsigned short";
   1474   case UInt:              return "unsigned int";
   1475   case ULong:             return "unsigned long";
   1476   case ULongLong:         return "unsigned long long";
   1477   case UInt128:           return "unsigned __int128";
   1478   case Half:              return "half";
   1479   case Float:             return "float";
   1480   case Double:            return "double";
   1481   case LongDouble:        return "long double";
   1482   case WChar_S:
   1483   case WChar_U:           return "wchar_t";
   1484   case Char16:            return "char16_t";
   1485   case Char32:            return "char32_t";
   1486   case NullPtr:           return "nullptr_t";
   1487   case Overload:          return "<overloaded function type>";
   1488   case BoundMember:       return "<bound member function type>";
   1489   case PseudoObject:      return "<pseudo-object type>";
   1490   case Dependent:         return "<dependent type>";
   1491   case UnknownAny:        return "<unknown type>";
   1492   case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
   1493   case BuiltinFn:         return "<builtin fn type>";
   1494   case ObjCId:            return "id";
   1495   case ObjCClass:         return "Class";
   1496   case ObjCSel:           return "SEL";
   1497   }
   1498 
   1499   llvm_unreachable("Invalid builtin type.");
   1500 }
   1501 
   1502 QualType QualType::getNonLValueExprType(ASTContext &Context) const {
   1503   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
   1504     return RefType->getPointeeType();
   1505 
   1506   // C++0x [basic.lval]:
   1507   //   Class prvalues can have cv-qualified types; non-class prvalues always
   1508   //   have cv-unqualified types.
   1509   //
   1510   // See also C99 6.3.2.1p2.
   1511   if (!Context.getLangOpts().CPlusPlus ||
   1512       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
   1513     return getUnqualifiedType();
   1514 
   1515   return *this;
   1516 }
   1517 
   1518 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
   1519   switch (CC) {
   1520   case CC_Default:
   1521     llvm_unreachable("no name for default cc");
   1522 
   1523   case CC_C: return "cdecl";
   1524   case CC_X86StdCall: return "stdcall";
   1525   case CC_X86FastCall: return "fastcall";
   1526   case CC_X86ThisCall: return "thiscall";
   1527   case CC_X86Pascal: return "pascal";
   1528   case CC_AAPCS: return "aapcs";
   1529   case CC_AAPCS_VFP: return "aapcs-vfp";
   1530   }
   1531 
   1532   llvm_unreachable("Invalid calling convention.");
   1533 }
   1534 
   1535 FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
   1536                                      unsigned numArgs, QualType canonical,
   1537                                      const ExtProtoInfo &epi)
   1538   : FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
   1539                  canonical,
   1540                  result->isDependentType(),
   1541                  result->isInstantiationDependentType(),
   1542                  result->isVariablyModifiedType(),
   1543                  result->containsUnexpandedParameterPack(),
   1544                  epi.ExtInfo),
   1545     NumArgs(numArgs), NumExceptions(epi.NumExceptions),
   1546     ExceptionSpecType(epi.ExceptionSpecType),
   1547     HasAnyConsumedArgs(epi.ConsumedArguments != 0),
   1548     Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
   1549 {
   1550   // Fill in the trailing argument array.
   1551   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
   1552   for (unsigned i = 0; i != numArgs; ++i) {
   1553     if (args[i]->isDependentType())
   1554       setDependent();
   1555     else if (args[i]->isInstantiationDependentType())
   1556       setInstantiationDependent();
   1557 
   1558     if (args[i]->containsUnexpandedParameterPack())
   1559       setContainsUnexpandedParameterPack();
   1560 
   1561     argSlot[i] = args[i];
   1562   }
   1563 
   1564   if (getExceptionSpecType() == EST_Dynamic) {
   1565     // Fill in the exception array.
   1566     QualType *exnSlot = argSlot + numArgs;
   1567     for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
   1568       if (epi.Exceptions[i]->isDependentType())
   1569         setDependent();
   1570       else if (epi.Exceptions[i]->isInstantiationDependentType())
   1571         setInstantiationDependent();
   1572 
   1573       if (epi.Exceptions[i]->containsUnexpandedParameterPack())
   1574         setContainsUnexpandedParameterPack();
   1575 
   1576       exnSlot[i] = epi.Exceptions[i];
   1577     }
   1578   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
   1579     // Store the noexcept expression and context.
   1580     Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
   1581     *noexSlot = epi.NoexceptExpr;
   1582 
   1583     if (epi.NoexceptExpr) {
   1584       if (epi.NoexceptExpr->isValueDependent()
   1585           || epi.NoexceptExpr->isTypeDependent())
   1586         setDependent();
   1587       else if (epi.NoexceptExpr->isInstantiationDependent())
   1588         setInstantiationDependent();
   1589     }
   1590   } else if (getExceptionSpecType() == EST_Uninstantiated) {
   1591     // Store the function decl from which we will resolve our
   1592     // exception specification.
   1593     FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
   1594     slot[0] = epi.ExceptionSpecDecl;
   1595     slot[1] = epi.ExceptionSpecTemplate;
   1596     // This exception specification doesn't make the type dependent, because
   1597     // it's not instantiated as part of instantiating the type.
   1598   } else if (getExceptionSpecType() == EST_Unevaluated) {
   1599     // Store the function decl from which we will resolve our
   1600     // exception specification.
   1601     FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
   1602     slot[0] = epi.ExceptionSpecDecl;
   1603   }
   1604 
   1605   if (epi.ConsumedArguments) {
   1606     bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
   1607     for (unsigned i = 0; i != numArgs; ++i)
   1608       consumedArgs[i] = epi.ConsumedArguments[i];
   1609   }
   1610 }
   1611 
   1612 FunctionProtoType::NoexceptResult
   1613 FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
   1614   ExceptionSpecificationType est = getExceptionSpecType();
   1615   if (est == EST_BasicNoexcept)
   1616     return NR_Nothrow;
   1617 
   1618   if (est != EST_ComputedNoexcept)
   1619     return NR_NoNoexcept;
   1620 
   1621   Expr *noexceptExpr = getNoexceptExpr();
   1622   if (!noexceptExpr)
   1623     return NR_BadNoexcept;
   1624   if (noexceptExpr->isValueDependent())
   1625     return NR_Dependent;
   1626 
   1627   llvm::APSInt value;
   1628   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
   1629                                                    /*evaluated*/false);
   1630   (void)isICE;
   1631   assert(isICE && "AST should not contain bad noexcept expressions.");
   1632 
   1633   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
   1634 }
   1635 
   1636 bool FunctionProtoType::isTemplateVariadic() const {
   1637   for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
   1638     if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
   1639       return true;
   1640 
   1641   return false;
   1642 }
   1643 
   1644 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   1645                                 const QualType *ArgTys, unsigned NumArgs,
   1646                                 const ExtProtoInfo &epi,
   1647                                 const ASTContext &Context) {
   1648 
   1649   // We have to be careful not to get ambiguous profile encodings.
   1650   // Note that valid type pointers are never ambiguous with anything else.
   1651   //
   1652   // The encoding grammar begins:
   1653   //      type type* bool int bool
   1654   // If that final bool is true, then there is a section for the EH spec:
   1655   //      bool type*
   1656   // This is followed by an optional "consumed argument" section of the
   1657   // same length as the first type sequence:
   1658   //      bool*
   1659   // Finally, we have the ext info and trailing return type flag:
   1660   //      int bool
   1661   //
   1662   // There is no ambiguity between the consumed arguments and an empty EH
   1663   // spec because of the leading 'bool' which unambiguously indicates
   1664   // whether the following bool is the EH spec or part of the arguments.
   1665 
   1666   ID.AddPointer(Result.getAsOpaquePtr());
   1667   for (unsigned i = 0; i != NumArgs; ++i)
   1668     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
   1669   // This method is relatively performance sensitive, so as a performance
   1670   // shortcut, use one AddInteger call instead of four for the next four
   1671   // fields.
   1672   assert(!(unsigned(epi.Variadic) & ~1) &&
   1673          !(unsigned(epi.TypeQuals) & ~255) &&
   1674          !(unsigned(epi.RefQualifier) & ~3) &&
   1675          !(unsigned(epi.ExceptionSpecType) & ~7) &&
   1676          "Values larger than expected.");
   1677   ID.AddInteger(unsigned(epi.Variadic) +
   1678                 (epi.TypeQuals << 1) +
   1679                 (epi.RefQualifier << 9) +
   1680                 (epi.ExceptionSpecType << 11));
   1681   if (epi.ExceptionSpecType == EST_Dynamic) {
   1682     for (unsigned i = 0; i != epi.NumExceptions; ++i)
   1683       ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
   1684   } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
   1685     epi.NoexceptExpr->Profile(ID, Context, false);
   1686   } else if (epi.ExceptionSpecType == EST_Uninstantiated ||
   1687              epi.ExceptionSpecType == EST_Unevaluated) {
   1688     ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
   1689   }
   1690   if (epi.ConsumedArguments) {
   1691     for (unsigned i = 0; i != NumArgs; ++i)
   1692       ID.AddBoolean(epi.ConsumedArguments[i]);
   1693   }
   1694   epi.ExtInfo.Profile(ID);
   1695   ID.AddBoolean(epi.HasTrailingReturn);
   1696 }
   1697 
   1698 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
   1699                                 const ASTContext &Ctx) {
   1700   Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
   1701           Ctx);
   1702 }
   1703 
   1704 QualType TypedefType::desugar() const {
   1705   return getDecl()->getUnderlyingType();
   1706 }
   1707 
   1708 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
   1709   : Type(TypeOfExpr, can, E->isTypeDependent(),
   1710          E->isInstantiationDependent(),
   1711          E->getType()->isVariablyModifiedType(),
   1712          E->containsUnexpandedParameterPack()),
   1713     TOExpr(E) {
   1714 }
   1715 
   1716 bool TypeOfExprType::isSugared() const {
   1717   return !TOExpr->isTypeDependent();
   1718 }
   1719 
   1720 QualType TypeOfExprType::desugar() const {
   1721   if (isSugared())
   1722     return getUnderlyingExpr()->getType();
   1723 
   1724   return QualType(this, 0);
   1725 }
   1726 
   1727 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
   1728                                       const ASTContext &Context, Expr *E) {
   1729   E->Profile(ID, Context, true);
   1730 }
   1731 
   1732 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
   1733   // C++11 [temp.type]p2: "If an expression e involves a template parameter,
   1734   // decltype(e) denotes a unique dependent type." Hence a decltype type is
   1735   // type-dependent even if its expression is only instantiation-dependent.
   1736   : Type(Decltype, can, E->isInstantiationDependent(),
   1737          E->isInstantiationDependent(),
   1738          E->getType()->isVariablyModifiedType(),
   1739          E->containsUnexpandedParameterPack()),
   1740     E(E),
   1741   UnderlyingType(underlyingType) {
   1742 }
   1743 
   1744 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
   1745 
   1746 QualType DecltypeType::desugar() const {
   1747   if (isSugared())
   1748     return getUnderlyingType();
   1749 
   1750   return QualType(this, 0);
   1751 }
   1752 
   1753 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
   1754   : DecltypeType(E, Context.DependentTy), Context(Context) { }
   1755 
   1756 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
   1757                                     const ASTContext &Context, Expr *E) {
   1758   E->Profile(ID, Context, true);
   1759 }
   1760 
   1761 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
   1762   : Type(TC, can, D->isDependentType(),
   1763          /*InstantiationDependent=*/D->isDependentType(),
   1764          /*VariablyModified=*/false,
   1765          /*ContainsUnexpandedParameterPack=*/false),
   1766     decl(const_cast<TagDecl*>(D)) {}
   1767 
   1768 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
   1769   for (TagDecl::redecl_iterator I = decl->redecls_begin(),
   1770                                 E = decl->redecls_end();
   1771        I != E; ++I) {
   1772     if (I->isCompleteDefinition() || I->isBeingDefined())
   1773       return *I;
   1774   }
   1775   // If there's no definition (not even in progress), return what we have.
   1776   return decl;
   1777 }
   1778 
   1779 UnaryTransformType::UnaryTransformType(QualType BaseType,
   1780                                        QualType UnderlyingType,
   1781                                        UTTKind UKind,
   1782                                        QualType CanonicalType)
   1783   : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
   1784          UnderlyingType->isInstantiationDependentType(),
   1785          UnderlyingType->isVariablyModifiedType(),
   1786          BaseType->containsUnexpandedParameterPack())
   1787   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
   1788 {}
   1789 
   1790 TagDecl *TagType::getDecl() const {
   1791   return getInterestingTagDecl(decl);
   1792 }
   1793 
   1794 bool TagType::isBeingDefined() const {
   1795   return getDecl()->isBeingDefined();
   1796 }
   1797 
   1798 CXXRecordDecl *InjectedClassNameType::getDecl() const {
   1799   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
   1800 }
   1801 
   1802 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
   1803   return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
   1804 }
   1805 
   1806 SubstTemplateTypeParmPackType::
   1807 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   1808                               QualType Canon,
   1809                               const TemplateArgument &ArgPack)
   1810   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
   1811     Replaced(Param),
   1812     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
   1813 {
   1814 }
   1815 
   1816 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
   1817   return TemplateArgument(Arguments, NumArguments);
   1818 }
   1819 
   1820 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
   1821   Profile(ID, getReplacedParameter(), getArgumentPack());
   1822 }
   1823 
   1824 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
   1825                                            const TemplateTypeParmType *Replaced,
   1826                                             const TemplateArgument &ArgPack) {
   1827   ID.AddPointer(Replaced);
   1828   ID.AddInteger(ArgPack.pack_size());
   1829   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   1830                                     PEnd = ArgPack.pack_end();
   1831        P != PEnd; ++P)
   1832     ID.AddPointer(P->getAsType().getAsOpaquePtr());
   1833 }
   1834 
   1835 bool TemplateSpecializationType::
   1836 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
   1837                               bool &InstantiationDependent) {
   1838   return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
   1839                                        InstantiationDependent);
   1840 }
   1841 
   1842 bool TemplateSpecializationType::
   1843 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
   1844                               bool &InstantiationDependent) {
   1845   for (unsigned i = 0; i != N; ++i) {
   1846     if (Args[i].getArgument().isDependent()) {
   1847       InstantiationDependent = true;
   1848       return true;
   1849     }
   1850 
   1851     if (Args[i].getArgument().isInstantiationDependent())
   1852       InstantiationDependent = true;
   1853   }
   1854   return false;
   1855 }
   1856 
   1857 bool TemplateSpecializationType::
   1858 anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
   1859                               bool &InstantiationDependent) {
   1860   for (unsigned i = 0; i != N; ++i) {
   1861     if (Args[i].isDependent()) {
   1862       InstantiationDependent = true;
   1863       return true;
   1864     }
   1865 
   1866     if (Args[i].isInstantiationDependent())
   1867       InstantiationDependent = true;
   1868   }
   1869   return false;
   1870 }
   1871 
   1872 TemplateSpecializationType::
   1873 TemplateSpecializationType(TemplateName T,
   1874                            const TemplateArgument *Args, unsigned NumArgs,
   1875                            QualType Canon, QualType AliasedType)
   1876   : Type(TemplateSpecialization,
   1877          Canon.isNull()? QualType(this, 0) : Canon,
   1878          Canon.isNull()? T.isDependent() : Canon->isDependentType(),
   1879          Canon.isNull()? T.isDependent()
   1880                        : Canon->isInstantiationDependentType(),
   1881          false,
   1882          T.containsUnexpandedParameterPack()),
   1883     Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
   1884   assert(!T.getAsDependentTemplateName() &&
   1885          "Use DependentTemplateSpecializationType for dependent template-name");
   1886   assert((T.getKind() == TemplateName::Template ||
   1887           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
   1888           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
   1889          "Unexpected template name for TemplateSpecializationType");
   1890   bool InstantiationDependent;
   1891   (void)InstantiationDependent;
   1892   assert((!Canon.isNull() ||
   1893           T.isDependent() ||
   1894           anyDependentTemplateArguments(Args, NumArgs,
   1895                                         InstantiationDependent)) &&
   1896          "No canonical type for non-dependent class template specialization");
   1897 
   1898   TemplateArgument *TemplateArgs
   1899     = reinterpret_cast<TemplateArgument *>(this + 1);
   1900   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
   1901     // Update dependent and variably-modified bits.
   1902     // If the canonical type exists and is non-dependent, the template
   1903     // specialization type can be non-dependent even if one of the type
   1904     // arguments is. Given:
   1905     //   template<typename T> using U = int;
   1906     // U<T> is always non-dependent, irrespective of the type T.
   1907     // However, U<Ts> contains an unexpanded parameter pack, even though
   1908     // its expansion (and thus its desugared type) doesn't.
   1909     if (Canon.isNull() && Args[Arg].isDependent())
   1910       setDependent();
   1911     else if (Args[Arg].isInstantiationDependent())
   1912       setInstantiationDependent();
   1913 
   1914     if (Args[Arg].getKind() == TemplateArgument::Type &&
   1915         Args[Arg].getAsType()->isVariablyModifiedType())
   1916       setVariablyModified();
   1917     if (Args[Arg].containsUnexpandedParameterPack())
   1918       setContainsUnexpandedParameterPack();
   1919 
   1920     new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
   1921   }
   1922 
   1923   // Store the aliased type if this is a type alias template specialization.
   1924   if (TypeAlias) {
   1925     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
   1926     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
   1927   }
   1928 }
   1929 
   1930 void
   1931 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   1932                                     TemplateName T,
   1933                                     const TemplateArgument *Args,
   1934                                     unsigned NumArgs,
   1935                                     const ASTContext &Context) {
   1936   T.Profile(ID);
   1937   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
   1938     Args[Idx].Profile(ID, Context);
   1939 }
   1940 
   1941 QualType
   1942 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
   1943   if (!hasNonFastQualifiers())
   1944     return QT.withFastQualifiers(getFastQualifiers());
   1945 
   1946   return Context.getQualifiedType(QT, *this);
   1947 }
   1948 
   1949 QualType
   1950 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
   1951   if (!hasNonFastQualifiers())
   1952     return QualType(T, getFastQualifiers());
   1953 
   1954   return Context.getQualifiedType(T, *this);
   1955 }
   1956 
   1957 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
   1958                                  QualType BaseType,
   1959                                  ObjCProtocolDecl * const *Protocols,
   1960                                  unsigned NumProtocols) {
   1961   ID.AddPointer(BaseType.getAsOpaquePtr());
   1962   for (unsigned i = 0; i != NumProtocols; i++)
   1963     ID.AddPointer(Protocols[i]);
   1964 }
   1965 
   1966 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
   1967   Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
   1968 }
   1969 
   1970 namespace {
   1971 
   1972 /// \brief The cached properties of a type.
   1973 class CachedProperties {
   1974   NamedDecl::LinkageInfo LV;
   1975   bool local;
   1976 
   1977 public:
   1978   CachedProperties(NamedDecl::LinkageInfo LV, bool local)
   1979     : LV(LV), local(local) {}
   1980 
   1981   Linkage getLinkage() const { return LV.linkage(); }
   1982   Visibility getVisibility() const { return LV.visibility(); }
   1983   bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
   1984   bool hasLocalOrUnnamedType() const { return local; }
   1985 
   1986   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
   1987     NamedDecl::LinkageInfo MergedLV = L.LV;
   1988     MergedLV.merge(R.LV);
   1989     return CachedProperties(MergedLV,
   1990                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
   1991   }
   1992 };
   1993 }
   1994 
   1995 static CachedProperties computeCachedProperties(const Type *T);
   1996 
   1997 namespace clang {
   1998 /// The type-property cache.  This is templated so as to be
   1999 /// instantiated at an internal type to prevent unnecessary symbol
   2000 /// leakage.
   2001 template <class Private> class TypePropertyCache {
   2002 public:
   2003   static CachedProperties get(QualType T) {
   2004     return get(T.getTypePtr());
   2005   }
   2006 
   2007   static CachedProperties get(const Type *T) {
   2008     ensure(T);
   2009     NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
   2010                               T->TypeBits.getVisibility(),
   2011                               T->TypeBits.isVisibilityExplicit());
   2012     return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
   2013   }
   2014 
   2015   static void ensure(const Type *T) {
   2016     // If the cache is valid, we're okay.
   2017     if (T->TypeBits.isCacheValid()) return;
   2018 
   2019     // If this type is non-canonical, ask its canonical type for the
   2020     // relevant information.
   2021     if (!T->isCanonicalUnqualified()) {
   2022       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
   2023       ensure(CT);
   2024       T->TypeBits.CacheValidAndVisibility =
   2025         CT->TypeBits.CacheValidAndVisibility;
   2026       T->TypeBits.CachedExplicitVisibility =
   2027         CT->TypeBits.CachedExplicitVisibility;
   2028       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
   2029       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
   2030       return;
   2031     }
   2032 
   2033     // Compute the cached properties and then set the cache.
   2034     CachedProperties Result = computeCachedProperties(T);
   2035     T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
   2036     T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
   2037     assert(T->TypeBits.isCacheValid() &&
   2038            T->TypeBits.getVisibility() == Result.getVisibility());
   2039     T->TypeBits.CachedLinkage = Result.getLinkage();
   2040     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
   2041   }
   2042 };
   2043 }
   2044 
   2045 // Instantiate the friend template at a private class.  In a
   2046 // reasonable implementation, these symbols will be internal.
   2047 // It is terrible that this is the best way to accomplish this.
   2048 namespace { class Private {}; }
   2049 typedef TypePropertyCache<Private> Cache;
   2050 
   2051 static CachedProperties computeCachedProperties(const Type *T) {
   2052   switch (T->getTypeClass()) {
   2053 #define TYPE(Class,Base)
   2054 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
   2055 #include "clang/AST/TypeNodes.def"
   2056     llvm_unreachable("didn't expect a non-canonical type here");
   2057 
   2058 #define TYPE(Class,Base)
   2059 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
   2060 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
   2061 #include "clang/AST/TypeNodes.def"
   2062     // Treat instantiation-dependent types as external.
   2063     assert(T->isInstantiationDependentType());
   2064     return CachedProperties(NamedDecl::LinkageInfo(), false);
   2065 
   2066   case Type::Builtin:
   2067     // C++ [basic.link]p8:
   2068     //   A type is said to have linkage if and only if:
   2069     //     - it is a fundamental type (3.9.1); or
   2070     return CachedProperties(NamedDecl::LinkageInfo(), false);
   2071 
   2072   case Type::Record:
   2073   case Type::Enum: {
   2074     const TagDecl *Tag = cast<TagType>(T)->getDecl();
   2075 
   2076     // C++ [basic.link]p8:
   2077     //     - it is a class or enumeration type that is named (or has a name
   2078     //       for linkage purposes (7.1.3)) and the name has linkage; or
   2079     //     -  it is a specialization of a class template (14); or
   2080     NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
   2081     bool IsLocalOrUnnamed =
   2082       Tag->getDeclContext()->isFunctionOrMethod() ||
   2083       (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
   2084     return CachedProperties(LV, IsLocalOrUnnamed);
   2085   }
   2086 
   2087     // C++ [basic.link]p8:
   2088     //   - it is a compound type (3.9.2) other than a class or enumeration,
   2089     //     compounded exclusively from types that have linkage; or
   2090   case Type::Complex:
   2091     return Cache::get(cast<ComplexType>(T)->getElementType());
   2092   case Type::Pointer:
   2093     return Cache::get(cast<PointerType>(T)->getPointeeType());
   2094   case Type::BlockPointer:
   2095     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
   2096   case Type::LValueReference:
   2097   case Type::RValueReference:
   2098     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
   2099   case Type::MemberPointer: {
   2100     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   2101     return merge(Cache::get(MPT->getClass()),
   2102                  Cache::get(MPT->getPointeeType()));
   2103   }
   2104   case Type::ConstantArray:
   2105   case Type::IncompleteArray:
   2106   case Type::VariableArray:
   2107     return Cache::get(cast<ArrayType>(T)->getElementType());
   2108   case Type::Vector:
   2109   case Type::ExtVector:
   2110     return Cache::get(cast<VectorType>(T)->getElementType());
   2111   case Type::FunctionNoProto:
   2112     return Cache::get(cast<FunctionType>(T)->getResultType());
   2113   case Type::FunctionProto: {
   2114     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   2115     CachedProperties result = Cache::get(FPT->getResultType());
   2116     for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
   2117            ae = FPT->arg_type_end(); ai != ae; ++ai)
   2118       result = merge(result, Cache::get(*ai));
   2119     return result;
   2120   }
   2121   case Type::ObjCInterface: {
   2122     NamedDecl::LinkageInfo LV =
   2123       cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
   2124     return CachedProperties(LV, false);
   2125   }
   2126   case Type::ObjCObject:
   2127     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
   2128   case Type::ObjCObjectPointer:
   2129     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
   2130   case Type::Atomic:
   2131     return Cache::get(cast<AtomicType>(T)->getValueType());
   2132   }
   2133 
   2134   llvm_unreachable("unhandled type class");
   2135 }
   2136 
   2137 /// \brief Determine the linkage of this type.
   2138 Linkage Type::getLinkage() const {
   2139   Cache::ensure(this);
   2140   return TypeBits.getLinkage();
   2141 }
   2142 
   2143 /// \brief Determine the linkage of this type.
   2144 Visibility Type::getVisibility() const {
   2145   Cache::ensure(this);
   2146   return TypeBits.getVisibility();
   2147 }
   2148 
   2149 bool Type::isVisibilityExplicit() const {
   2150   Cache::ensure(this);
   2151   return TypeBits.isVisibilityExplicit();
   2152 }
   2153 
   2154 bool Type::hasUnnamedOrLocalType() const {
   2155   Cache::ensure(this);
   2156   return TypeBits.hasLocalOrUnnamedType();
   2157 }
   2158 
   2159 std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
   2160   Cache::ensure(this);
   2161   return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
   2162 }
   2163 
   2164 void Type::ClearLinkageCache() {
   2165   TypeBits.CacheValidAndVisibility = 0;
   2166   if (QualType(this, 0) != CanonicalType)
   2167     CanonicalType->TypeBits.CacheValidAndVisibility = 0;
   2168 }
   2169 
   2170 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
   2171   if (isObjCARCImplicitlyUnretainedType())
   2172     return Qualifiers::OCL_ExplicitNone;
   2173   return Qualifiers::OCL_Strong;
   2174 }
   2175 
   2176 bool Type::isObjCARCImplicitlyUnretainedType() const {
   2177   assert(isObjCLifetimeType() &&
   2178          "cannot query implicit lifetime for non-inferrable type");
   2179 
   2180   const Type *canon = getCanonicalTypeInternal().getTypePtr();
   2181 
   2182   // Walk down to the base type.  We don't care about qualifiers for this.
   2183   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
   2184     canon = array->getElementType().getTypePtr();
   2185 
   2186   if (const ObjCObjectPointerType *opt
   2187         = dyn_cast<ObjCObjectPointerType>(canon)) {
   2188     // Class and Class<Protocol> don't require retension.
   2189     if (opt->getObjectType()->isObjCClass())
   2190       return true;
   2191   }
   2192 
   2193   return false;
   2194 }
   2195 
   2196 bool Type::isObjCNSObjectType() const {
   2197   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
   2198     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
   2199   return false;
   2200 }
   2201 bool Type::isObjCRetainableType() const {
   2202   return isObjCObjectPointerType() ||
   2203          isBlockPointerType() ||
   2204          isObjCNSObjectType();
   2205 }
   2206 bool Type::isObjCIndirectLifetimeType() const {
   2207   if (isObjCLifetimeType())
   2208     return true;
   2209   if (const PointerType *OPT = getAs<PointerType>())
   2210     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
   2211   if (const ReferenceType *Ref = getAs<ReferenceType>())
   2212     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
   2213   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
   2214     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
   2215   return false;
   2216 }
   2217 
   2218 /// Returns true if objects of this type have lifetime semantics under
   2219 /// ARC.
   2220 bool Type::isObjCLifetimeType() const {
   2221   const Type *type = this;
   2222   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
   2223     type = array->getElementType().getTypePtr();
   2224   return type->isObjCRetainableType();
   2225 }
   2226 
   2227 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
   2228 /// which is either an Objective-C object pointer type or an
   2229 bool Type::isObjCARCBridgableType() const {
   2230   return isObjCObjectPointerType() || isBlockPointerType();
   2231 }
   2232 
   2233 /// \brief Determine whether the given type T is a "bridgeable" C type.
   2234 bool Type::isCARCBridgableType() const {
   2235   const PointerType *Pointer = getAs<PointerType>();
   2236   if (!Pointer)
   2237     return false;
   2238 
   2239   QualType Pointee = Pointer->getPointeeType();
   2240   return Pointee->isVoidType() || Pointee->isRecordType();
   2241 }
   2242 
   2243 bool Type::hasSizedVLAType() const {
   2244   if (!isVariablyModifiedType()) return false;
   2245 
   2246   if (const PointerType *ptr = getAs<PointerType>())
   2247     return ptr->getPointeeType()->hasSizedVLAType();
   2248   if (const ReferenceType *ref = getAs<ReferenceType>())
   2249     return ref->getPointeeType()->hasSizedVLAType();
   2250   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
   2251     if (isa<VariableArrayType>(arr) &&
   2252         cast<VariableArrayType>(arr)->getSizeExpr())
   2253       return true;
   2254 
   2255     return arr->getElementType()->hasSizedVLAType();
   2256   }
   2257 
   2258   return false;
   2259 }
   2260 
   2261 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
   2262   switch (type.getObjCLifetime()) {
   2263   case Qualifiers::OCL_None:
   2264   case Qualifiers::OCL_ExplicitNone:
   2265   case Qualifiers::OCL_Autoreleasing:
   2266     break;
   2267 
   2268   case Qualifiers::OCL_Strong:
   2269     return DK_objc_strong_lifetime;
   2270   case Qualifiers::OCL_Weak:
   2271     return DK_objc_weak_lifetime;
   2272   }
   2273 
   2274   /// Currently, the only destruction kind we recognize is C++ objects
   2275   /// with non-trivial destructors.
   2276   const CXXRecordDecl *record =
   2277     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   2278   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
   2279     return DK_cxx_destructor;
   2280 
   2281   return DK_none;
   2282 }
   2283 
   2284 bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
   2285   switch (getObjCLifetime()) {
   2286   case Qualifiers::OCL_None:
   2287     break;
   2288 
   2289   case Qualifiers::OCL_ExplicitNone:
   2290     return true;
   2291 
   2292   case Qualifiers::OCL_Autoreleasing:
   2293   case Qualifiers::OCL_Strong:
   2294   case Qualifiers::OCL_Weak:
   2295     return !Context.getLangOpts().ObjCAutoRefCount;
   2296   }
   2297 
   2298   if (const CXXRecordDecl *Record
   2299             = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
   2300     return Copying ? Record->hasTrivialCopyAssignment() :
   2301                      Record->hasTrivialMoveAssignment();
   2302 
   2303   return true;
   2304 }
   2305