Home | History | Annotate | Download | only in libtess
      1 /*
      2 ** License Applicability. Except to the extent portions of this file are
      3 ** made subject to an alternative license as permitted in the SGI Free
      4 ** Software License B, Version 1.1 (the "License"), the contents of this
      5 ** file are subject only to the provisions of the License. You may not use
      6 ** this file except in compliance with the License. You may obtain a copy
      7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
      8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
      9 **
     10 ** http://oss.sgi.com/projects/FreeB
     11 **
     12 ** Note that, as provided in the License, the Software is distributed on an
     13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
     14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
     15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
     16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
     17 **
     18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
     19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
     20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
     21 ** Copyright in any portions created by third parties is as indicated
     22 ** elsewhere herein. All Rights Reserved.
     23 **
     24 ** Additional Notice Provisions: The application programming interfaces
     25 ** established by SGI in conjunction with the Original Code are The
     26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
     27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
     28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
     29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
     30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
     31 ** published by SGI, but has not been independently verified as being
     32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
     33 **
     34 */
     35 /*
     36 ** Author: Eric Veach, July 1994.
     37 **
     38 ** $Date$ $Revision$
     39 ** $Header: //depot/main/gfx/lib/glu/libtess/sweep.c#5 $
     40 */
     41 
     42 #include "gluos.h"
     43 #include <assert.h>
     44 #include <stddef.h>
     45 #include <setjmp.h>		/* longjmp */
     46 #include <limits.h>		/* LONG_MAX */
     47 
     48 #include "mesh.h"
     49 #include "geom.h"
     50 #include "tess.h"
     51 #include "dict.h"
     52 #include "priorityq.h"
     53 #include "memalloc.h"
     54 #include "sweep.h"
     55 
     56 #define TRUE 1
     57 #define FALSE 0
     58 
     59 #ifdef FOR_TRITE_TEST_PROGRAM
     60 extern void DebugEvent( GLUtesselator *tess );
     61 #else
     62 #define DebugEvent( tess )
     63 #endif
     64 
     65 /*
     66  * Invariants for the Edge Dictionary.
     67  * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
     68  *   at any valid location of the sweep event
     69  * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
     70  *   share a common endpoint
     71  * - for each e, e->Dst has been processed, but not e->Org
     72  * - each edge e satisfies VertLeq(e->Dst,event) && VertLeq(event,e->Org)
     73  *   where "event" is the current sweep line event.
     74  * - no edge e has zero length
     75  *
     76  * Invariants for the Mesh (the processed portion).
     77  * - the portion of the mesh left of the sweep line is a planar graph,
     78  *   ie. there is *some* way to embed it in the plane
     79  * - no processed edge has zero length
     80  * - no two processed vertices have identical coordinates
     81  * - each "inside" region is monotone, ie. can be broken into two chains
     82  *   of monotonically increasing vertices according to VertLeq(v1,v2)
     83  *   - a non-invariant: these chains may intersect (very slightly)
     84  *
     85  * Invariants for the Sweep.
     86  * - if none of the edges incident to the event vertex have an activeRegion
     87  *   (ie. none of these edges are in the edge dictionary), then the vertex
     88  *   has only right-going edges.
     89  * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
     90  *   by ConnectRightVertex), then it is the only right-going edge from
     91  *   its associated vertex.  (This says that these edges exist only
     92  *   when it is necessary.)
     93  */
     94 
     95 #define MAX(x,y)	((x) >= (y) ? (x) : (y))
     96 #define MIN(x,y)	((x) <= (y) ? (x) : (y))
     97 
     98 /* When we merge two edges into one, we need to compute the combined
     99  * winding of the new edge.
    100  */
    101 #define AddWinding(eDst,eSrc)	(eDst->winding += eSrc->winding, \
    102 				 eDst->Sym->winding += eSrc->Sym->winding)
    103 
    104 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent );
    105 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp );
    106 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp );
    107 
    108 static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
    109 		    ActiveRegion *reg2 )
    110 /*
    111  * Both edges must be directed from right to left (this is the canonical
    112  * direction for the upper edge of each region).
    113  *
    114  * The strategy is to evaluate a "t" value for each edge at the
    115  * current sweep line position, given by tess->event.  The calculations
    116  * are designed to be very stable, but of course they are not perfect.
    117  *
    118  * Special case: if both edge destinations are at the sweep event,
    119  * we sort the edges by slope (they would otherwise compare equally).
    120  */
    121 {
    122   GLUvertex *event = tess->event;
    123   GLUhalfEdge *e1, *e2;
    124   GLdouble t1, t2;
    125 
    126   e1 = reg1->eUp;
    127   e2 = reg2->eUp;
    128 
    129   if( e1->Dst == event ) {
    130     if( e2->Dst == event ) {
    131       /* Two edges right of the sweep line which meet at the sweep event.
    132        * Sort them by slope.
    133        */
    134       if( VertLeq( e1->Org, e2->Org )) {
    135 	return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
    136       }
    137       return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
    138     }
    139     return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
    140   }
    141   if( e2->Dst == event ) {
    142     return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
    143   }
    144 
    145   /* General case - compute signed distance *from* e1, e2 to event */
    146   t1 = EdgeEval( e1->Dst, event, e1->Org );
    147   t2 = EdgeEval( e2->Dst, event, e2->Org );
    148   return (t1 >= t2);
    149 }
    150 
    151 
    152 static void DeleteRegion( GLUtesselator *tess, ActiveRegion *reg )
    153 {
    154   if( reg->fixUpperEdge ) {
    155     /* It was created with zero winding number, so it better be
    156      * deleted with zero winding number (ie. it better not get merged
    157      * with a real edge).
    158      */
    159     assert( reg->eUp->winding == 0 );
    160   }
    161   reg->eUp->activeRegion = NULL;
    162   dictDelete( tess->dict, reg->nodeUp ); /* __gl_dictListDelete */
    163   memFree( reg );
    164 }
    165 
    166 
    167 static int FixUpperEdge( ActiveRegion *reg, GLUhalfEdge *newEdge )
    168 /*
    169  * Replace an upper edge which needs fixing (see ConnectRightVertex).
    170  */
    171 {
    172   assert( reg->fixUpperEdge );
    173   if ( !__gl_meshDelete( reg->eUp ) ) return 0;
    174   reg->fixUpperEdge = FALSE;
    175   reg->eUp = newEdge;
    176   newEdge->activeRegion = reg;
    177 
    178   return 1;
    179 }
    180 
    181 static ActiveRegion *TopLeftRegion( ActiveRegion *reg )
    182 {
    183   GLUvertex *org = reg->eUp->Org;
    184   GLUhalfEdge *e;
    185 
    186   /* Find the region above the uppermost edge with the same origin */
    187   do {
    188     reg = RegionAbove( reg );
    189   } while( reg->eUp->Org == org );
    190 
    191   /* If the edge above was a temporary edge introduced by ConnectRightVertex,
    192    * now is the time to fix it.
    193    */
    194   if( reg->fixUpperEdge ) {
    195     e = __gl_meshConnect( RegionBelow(reg)->eUp->Sym, reg->eUp->Lnext );
    196     if (e == NULL) return NULL;
    197     if ( !FixUpperEdge( reg, e ) ) return NULL;
    198     reg = RegionAbove( reg );
    199   }
    200   return reg;
    201 }
    202 
    203 static ActiveRegion *TopRightRegion( ActiveRegion *reg )
    204 {
    205   GLUvertex *dst = reg->eUp->Dst;
    206 
    207   /* Find the region above the uppermost edge with the same destination */
    208   do {
    209     reg = RegionAbove( reg );
    210   } while( reg->eUp->Dst == dst );
    211   return reg;
    212 }
    213 
    214 static ActiveRegion *AddRegionBelow( GLUtesselator *tess,
    215 				     ActiveRegion *regAbove,
    216 				     GLUhalfEdge *eNewUp )
    217 /*
    218  * Add a new active region to the sweep line, *somewhere* below "regAbove"
    219  * (according to where the new edge belongs in the sweep-line dictionary).
    220  * The upper edge of the new region will be "eNewUp".
    221  * Winding number and "inside" flag are not updated.
    222  */
    223 {
    224   ActiveRegion *regNew = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
    225   if (regNew == NULL) longjmp(tess->env,1);
    226 
    227   regNew->eUp = eNewUp;
    228   /* __gl_dictListInsertBefore */
    229   regNew->nodeUp = dictInsertBefore( tess->dict, regAbove->nodeUp, regNew );
    230   if (regNew->nodeUp == NULL) longjmp(tess->env,1);
    231   regNew->fixUpperEdge = FALSE;
    232   regNew->sentinel = FALSE;
    233   regNew->dirty = FALSE;
    234 
    235   eNewUp->activeRegion = regNew;
    236   return regNew;
    237 }
    238 
    239 static GLboolean IsWindingInside( GLUtesselator *tess, int n )
    240 {
    241   switch( tess->windingRule ) {
    242   case GLU_TESS_WINDING_ODD:
    243     return (n & 1);
    244   case GLU_TESS_WINDING_NONZERO:
    245     return (n != 0);
    246   case GLU_TESS_WINDING_POSITIVE:
    247     return (n > 0);
    248   case GLU_TESS_WINDING_NEGATIVE:
    249     return (n < 0);
    250   case GLU_TESS_WINDING_ABS_GEQ_TWO:
    251     return (n >= 2) || (n <= -2);
    252   }
    253   /*LINTED*/
    254   assert( FALSE );
    255   /*NOTREACHED*/
    256   return 0;
    257 }
    258 
    259 
    260 static void ComputeWinding( GLUtesselator *tess, ActiveRegion *reg )
    261 {
    262   reg->windingNumber = RegionAbove(reg)->windingNumber + reg->eUp->winding;
    263   reg->inside = IsWindingInside( tess, reg->windingNumber );
    264 }
    265 
    266 
    267 static void FinishRegion( GLUtesselator *tess, ActiveRegion *reg )
    268 /*
    269  * Delete a region from the sweep line.  This happens when the upper
    270  * and lower chains of a region meet (at a vertex on the sweep line).
    271  * The "inside" flag is copied to the appropriate mesh face (we could
    272  * not do this before -- since the structure of the mesh is always
    273  * changing, this face may not have even existed until now).
    274  */
    275 {
    276   GLUhalfEdge *e = reg->eUp;
    277   GLUface *f = e->Lface;
    278 
    279   f->inside = reg->inside;
    280   f->anEdge = e;   /* optimization for __gl_meshTessellateMonoRegion() */
    281   DeleteRegion( tess, reg );
    282 }
    283 
    284 
    285 static GLUhalfEdge *FinishLeftRegions( GLUtesselator *tess,
    286 	       ActiveRegion *regFirst, ActiveRegion *regLast )
    287 /*
    288  * We are given a vertex with one or more left-going edges.  All affected
    289  * edges should be in the edge dictionary.  Starting at regFirst->eUp,
    290  * we walk down deleting all regions where both edges have the same
    291  * origin vOrg.  At the same time we copy the "inside" flag from the
    292  * active region to the face, since at this point each face will belong
    293  * to at most one region (this was not necessarily true until this point
    294  * in the sweep).  The walk stops at the region above regLast; if regLast
    295  * is NULL we walk as far as possible.  At the same time we relink the
    296  * mesh if necessary, so that the ordering of edges around vOrg is the
    297  * same as in the dictionary.
    298  */
    299 {
    300   ActiveRegion *reg, *regPrev;
    301   GLUhalfEdge *e, *ePrev;
    302 
    303   regPrev = regFirst;
    304   ePrev = regFirst->eUp;
    305   while( regPrev != regLast ) {
    306     regPrev->fixUpperEdge = FALSE;	/* placement was OK */
    307     reg = RegionBelow( regPrev );
    308     e = reg->eUp;
    309     if( e->Org != ePrev->Org ) {
    310       if( ! reg->fixUpperEdge ) {
    311 	/* Remove the last left-going edge.  Even though there are no further
    312 	 * edges in the dictionary with this origin, there may be further
    313 	 * such edges in the mesh (if we are adding left edges to a vertex
    314 	 * that has already been processed).  Thus it is important to call
    315 	 * FinishRegion rather than just DeleteRegion.
    316 	 */
    317 	FinishRegion( tess, regPrev );
    318 	break;
    319       }
    320       /* If the edge below was a temporary edge introduced by
    321        * ConnectRightVertex, now is the time to fix it.
    322        */
    323       e = __gl_meshConnect( ePrev->Lprev, e->Sym );
    324       if (e == NULL) longjmp(tess->env,1);
    325       if ( !FixUpperEdge( reg, e ) ) longjmp(tess->env,1);
    326     }
    327 
    328     /* Relink edges so that ePrev->Onext == e */
    329     if( ePrev->Onext != e ) {
    330       if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
    331       if ( !__gl_meshSplice( ePrev, e ) ) longjmp(tess->env,1);
    332     }
    333     FinishRegion( tess, regPrev );	/* may change reg->eUp */
    334     ePrev = reg->eUp;
    335     regPrev = reg;
    336   }
    337   return ePrev;
    338 }
    339 
    340 
    341 static void AddRightEdges( GLUtesselator *tess, ActiveRegion *regUp,
    342        GLUhalfEdge *eFirst, GLUhalfEdge *eLast, GLUhalfEdge *eTopLeft,
    343        GLboolean cleanUp )
    344 /*
    345  * Purpose: insert right-going edges into the edge dictionary, and update
    346  * winding numbers and mesh connectivity appropriately.  All right-going
    347  * edges share a common origin vOrg.  Edges are inserted CCW starting at
    348  * eFirst; the last edge inserted is eLast->Oprev.  If vOrg has any
    349  * left-going edges already processed, then eTopLeft must be the edge
    350  * such that an imaginary upward vertical segment from vOrg would be
    351  * contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
    352  * should be NULL.
    353  */
    354 {
    355   ActiveRegion *reg, *regPrev;
    356   GLUhalfEdge *e, *ePrev;
    357   int firstTime = TRUE;
    358 
    359   /* Insert the new right-going edges in the dictionary */
    360   e = eFirst;
    361   do {
    362     assert( VertLeq( e->Org, e->Dst ));
    363     AddRegionBelow( tess, regUp, e->Sym );
    364     e = e->Onext;
    365   } while ( e != eLast );
    366 
    367   /* Walk *all* right-going edges from e->Org, in the dictionary order,
    368    * updating the winding numbers of each region, and re-linking the mesh
    369    * edges to match the dictionary ordering (if necessary).
    370    */
    371   if( eTopLeft == NULL ) {
    372     eTopLeft = RegionBelow( regUp )->eUp->Rprev;
    373   }
    374   regPrev = regUp;
    375   ePrev = eTopLeft;
    376   for( ;; ) {
    377     reg = RegionBelow( regPrev );
    378     e = reg->eUp->Sym;
    379     if( e->Org != ePrev->Org ) break;
    380 
    381     if( e->Onext != ePrev ) {
    382       /* Unlink e from its current position, and relink below ePrev */
    383       if ( !__gl_meshSplice( e->Oprev, e ) ) longjmp(tess->env,1);
    384       if ( !__gl_meshSplice( ePrev->Oprev, e ) ) longjmp(tess->env,1);
    385     }
    386     /* Compute the winding number and "inside" flag for the new regions */
    387     reg->windingNumber = regPrev->windingNumber - e->winding;
    388     reg->inside = IsWindingInside( tess, reg->windingNumber );
    389 
    390     /* Check for two outgoing edges with same slope -- process these
    391      * before any intersection tests (see example in __gl_computeInterior).
    392      */
    393     regPrev->dirty = TRUE;
    394     if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
    395       AddWinding( e, ePrev );
    396       DeleteRegion( tess, regPrev );
    397       if ( !__gl_meshDelete( ePrev ) ) longjmp(tess->env,1);
    398     }
    399     firstTime = FALSE;
    400     regPrev = reg;
    401     ePrev = e;
    402   }
    403   regPrev->dirty = TRUE;
    404   assert( regPrev->windingNumber - e->winding == reg->windingNumber );
    405 
    406   if( cleanUp ) {
    407     /* Check for intersections between newly adjacent edges. */
    408     WalkDirtyRegions( tess, regPrev );
    409   }
    410 }
    411 
    412 
    413 static void CallCombine( GLUtesselator *tess, GLUvertex *isect,
    414 			 void *data[4], GLfloat weights[4], int needed )
    415 {
    416   GLdouble coords[3];
    417 
    418   /* Copy coord data in case the callback changes it. */
    419   coords[0] = isect->coords[0];
    420   coords[1] = isect->coords[1];
    421   coords[2] = isect->coords[2];
    422 
    423   isect->data = NULL;
    424   CALL_COMBINE_OR_COMBINE_DATA( coords, data, weights, &isect->data );
    425   if( isect->data == NULL ) {
    426     if( ! needed ) {
    427       isect->data = data[0];
    428     } else if( ! tess->fatalError ) {
    429       /* The only way fatal error is when two edges are found to intersect,
    430        * but the user has not provided the callback necessary to handle
    431        * generated intersection points.
    432        */
    433       CALL_ERROR_OR_ERROR_DATA( GLU_TESS_NEED_COMBINE_CALLBACK );
    434       tess->fatalError = TRUE;
    435     }
    436   }
    437 }
    438 
    439 static void SpliceMergeVertices( GLUtesselator *tess, GLUhalfEdge *e1,
    440 				 GLUhalfEdge *e2 )
    441 /*
    442  * Two vertices with idential coordinates are combined into one.
    443  * e1->Org is kept, while e2->Org is discarded.
    444  */
    445 {
    446   void *data[4] = { NULL, NULL, NULL, NULL };
    447   GLfloat weights[4] = { 0.5, 0.5, 0.0, 0.0 };
    448 
    449   data[0] = e1->Org->data;
    450   data[1] = e2->Org->data;
    451   CallCombine( tess, e1->Org, data, weights, FALSE );
    452   if ( !__gl_meshSplice( e1, e2 ) ) longjmp(tess->env,1);
    453 }
    454 
    455 static void VertexWeights( GLUvertex *isect, GLUvertex *org, GLUvertex *dst,
    456                            GLfloat *weights )
    457 /*
    458  * Find some weights which describe how the intersection vertex is
    459  * a linear combination of "org" and "dest".  Each of the two edges
    460  * which generated "isect" is allocated 50% of the weight; each edge
    461  * splits the weight between its org and dst according to the
    462  * relative distance to "isect".
    463  */
    464 {
    465   GLdouble t1 = VertL1dist( org, isect );
    466   GLdouble t2 = VertL1dist( dst, isect );
    467 
    468   weights[0] = 0.5 * t2 / (t1 + t2);
    469   weights[1] = 0.5 * t1 / (t1 + t2);
    470   isect->coords[0] += weights[0]*org->coords[0] + weights[1]*dst->coords[0];
    471   isect->coords[1] += weights[0]*org->coords[1] + weights[1]*dst->coords[1];
    472   isect->coords[2] += weights[0]*org->coords[2] + weights[1]*dst->coords[2];
    473 }
    474 
    475 
    476 static void GetIntersectData( GLUtesselator *tess, GLUvertex *isect,
    477        GLUvertex *orgUp, GLUvertex *dstUp,
    478        GLUvertex *orgLo, GLUvertex *dstLo )
    479 /*
    480  * We've computed a new intersection point, now we need a "data" pointer
    481  * from the user so that we can refer to this new vertex in the
    482  * rendering callbacks.
    483  */
    484 {
    485   void *data[4];
    486   GLfloat weights[4];
    487 
    488   data[0] = orgUp->data;
    489   data[1] = dstUp->data;
    490   data[2] = orgLo->data;
    491   data[3] = dstLo->data;
    492 
    493   isect->coords[0] = isect->coords[1] = isect->coords[2] = 0;
    494   VertexWeights( isect, orgUp, dstUp, &weights[0] );
    495   VertexWeights( isect, orgLo, dstLo, &weights[2] );
    496 
    497   CallCombine( tess, isect, data, weights, TRUE );
    498 }
    499 
    500 static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
    501 /*
    502  * Check the upper and lower edge of "regUp", to make sure that the
    503  * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
    504  * origin is leftmost).
    505  *
    506  * The main purpose is to splice right-going edges with the same
    507  * dest vertex and nearly identical slopes (ie. we can't distinguish
    508  * the slopes numerically).  However the splicing can also help us
    509  * to recover from numerical errors.  For example, suppose at one
    510  * point we checked eUp and eLo, and decided that eUp->Org is barely
    511  * above eLo.  Then later, we split eLo into two edges (eg. from
    512  * a splice operation like this one).  This can change the result of
    513  * our test so that now eUp->Org is incident to eLo, or barely below it.
    514  * We must correct this condition to maintain the dictionary invariants.
    515  *
    516  * One possibility is to check these edges for intersection again
    517  * (ie. CheckForIntersect).  This is what we do if possible.  However
    518  * CheckForIntersect requires that tess->event lies between eUp and eLo,
    519  * so that it has something to fall back on when the intersection
    520  * calculation gives us an unusable answer.  So, for those cases where
    521  * we can't check for intersection, this routine fixes the problem
    522  * by just splicing the offending vertex into the other edge.
    523  * This is a guaranteed solution, no matter how degenerate things get.
    524  * Basically this is a combinatorial solution to a numerical problem.
    525  */
    526 {
    527   ActiveRegion *regLo = RegionBelow(regUp);
    528   GLUhalfEdge *eUp = regUp->eUp;
    529   GLUhalfEdge *eLo = regLo->eUp;
    530 
    531   if( VertLeq( eUp->Org, eLo->Org )) {
    532     if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
    533 
    534     /* eUp->Org appears to be below eLo */
    535     if( ! VertEq( eUp->Org, eLo->Org )) {
    536       /* Splice eUp->Org into eLo */
    537       if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
    538       if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
    539       regUp->dirty = regLo->dirty = TRUE;
    540 
    541     } else if( eUp->Org != eLo->Org ) {
    542       /* merge the two vertices, discarding eUp->Org */
    543       pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
    544       SpliceMergeVertices( tess, eLo->Oprev, eUp );
    545     }
    546   } else {
    547     if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
    548 
    549     /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
    550     RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    551     if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    552     if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
    553   }
    554   return TRUE;
    555 }
    556 
    557 static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
    558 /*
    559  * Check the upper and lower edge of "regUp", to make sure that the
    560  * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
    561  * destination is rightmost).
    562  *
    563  * Theoretically, this should always be true.  However, splitting an edge
    564  * into two pieces can change the results of previous tests.  For example,
    565  * suppose at one point we checked eUp and eLo, and decided that eUp->Dst
    566  * is barely above eLo.  Then later, we split eLo into two edges (eg. from
    567  * a splice operation like this one).  This can change the result of
    568  * the test so that now eUp->Dst is incident to eLo, or barely below it.
    569  * We must correct this condition to maintain the dictionary invariants
    570  * (otherwise new edges might get inserted in the wrong place in the
    571  * dictionary, and bad stuff will happen).
    572  *
    573  * We fix the problem by just splicing the offending vertex into the
    574  * other edge.
    575  */
    576 {
    577   ActiveRegion *regLo = RegionBelow(regUp);
    578   GLUhalfEdge *eUp = regUp->eUp;
    579   GLUhalfEdge *eLo = regLo->eUp;
    580   GLUhalfEdge *e;
    581 
    582   assert( ! VertEq( eUp->Dst, eLo->Dst ));
    583 
    584   if( VertLeq( eUp->Dst, eLo->Dst )) {
    585     if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
    586 
    587     /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
    588     RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    589     e = __gl_meshSplitEdge( eUp );
    590     if (e == NULL) longjmp(tess->env,1);
    591     if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
    592     e->Lface->inside = regUp->inside;
    593   } else {
    594     if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
    595 
    596     /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
    597     regUp->dirty = regLo->dirty = TRUE;
    598     e = __gl_meshSplitEdge( eLo );
    599     if (e == NULL) longjmp(tess->env,1);
    600     if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
    601     e->Rface->inside = regUp->inside;
    602   }
    603   return TRUE;
    604 }
    605 
    606 
    607 static int CheckForIntersect( GLUtesselator *tess, ActiveRegion *regUp )
    608 /*
    609  * Check the upper and lower edges of the given region to see if
    610  * they intersect.  If so, create the intersection and add it
    611  * to the data structures.
    612  *
    613  * Returns TRUE if adding the new intersection resulted in a recursive
    614  * call to AddRightEdges(); in this case all "dirty" regions have been
    615  * checked for intersections, and possibly regUp has been deleted.
    616  */
    617 {
    618   ActiveRegion *regLo = RegionBelow(regUp);
    619   GLUhalfEdge *eUp = regUp->eUp;
    620   GLUhalfEdge *eLo = regLo->eUp;
    621   GLUvertex *orgUp = eUp->Org;
    622   GLUvertex *orgLo = eLo->Org;
    623   GLUvertex *dstUp = eUp->Dst;
    624   GLUvertex *dstLo = eLo->Dst;
    625   GLdouble tMinUp, tMaxLo;
    626   GLUvertex isect, *orgMin;
    627   GLUhalfEdge *e;
    628 
    629   assert( ! VertEq( dstLo, dstUp ));
    630   assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
    631   assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
    632   assert( orgUp != tess->event && orgLo != tess->event );
    633   assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
    634 
    635   if( orgUp == orgLo ) return FALSE;	/* right endpoints are the same */
    636 
    637   tMinUp = MIN( orgUp->t, dstUp->t );
    638   tMaxLo = MAX( orgLo->t, dstLo->t );
    639   if( tMinUp > tMaxLo ) return FALSE;	/* t ranges do not overlap */
    640 
    641   if( VertLeq( orgUp, orgLo )) {
    642     if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
    643   } else {
    644     if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
    645   }
    646 
    647   /* At this point the edges intersect, at least marginally */
    648   DebugEvent( tess );
    649 
    650   __gl_edgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
    651   /* The following properties are guaranteed: */
    652   assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
    653   assert( isect.t <= MAX( orgLo->t, dstLo->t ));
    654   assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
    655   assert( isect.s <= MAX( orgLo->s, orgUp->s ));
    656 
    657   if( VertLeq( &isect, tess->event )) {
    658     /* The intersection point lies slightly to the left of the sweep line,
    659      * so move it until it''s slightly to the right of the sweep line.
    660      * (If we had perfect numerical precision, this would never happen
    661      * in the first place).  The easiest and safest thing to do is
    662      * replace the intersection by tess->event.
    663      */
    664     isect.s = tess->event->s;
    665     isect.t = tess->event->t;
    666   }
    667   /* Similarly, if the computed intersection lies to the right of the
    668    * rightmost origin (which should rarely happen), it can cause
    669    * unbelievable inefficiency on sufficiently degenerate inputs.
    670    * (If you have the test program, try running test54.d with the
    671    * "X zoom" option turned on).
    672    */
    673   orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
    674   if( VertLeq( orgMin, &isect )) {
    675     isect.s = orgMin->s;
    676     isect.t = orgMin->t;
    677   }
    678 
    679   if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
    680     /* Easy case -- intersection at one of the right endpoints */
    681     (void) CheckForRightSplice( tess, regUp );
    682     return FALSE;
    683   }
    684 
    685   if(    (! VertEq( dstUp, tess->event )
    686 	  && EdgeSign( dstUp, tess->event, &isect ) >= 0)
    687       || (! VertEq( dstLo, tess->event )
    688 	  && EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
    689   {
    690     /* Very unusual -- the new upper or lower edge would pass on the
    691      * wrong side of the sweep event, or through it.  This can happen
    692      * due to very small numerical errors in the intersection calculation.
    693      */
    694     if( dstLo == tess->event ) {
    695       /* Splice dstLo into eUp, and process the new region(s) */
    696       if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    697       if ( !__gl_meshSplice( eLo->Sym, eUp ) ) longjmp(tess->env,1);
    698       regUp = TopLeftRegion( regUp );
    699       if (regUp == NULL) longjmp(tess->env,1);
    700       eUp = RegionBelow(regUp)->eUp;
    701       FinishLeftRegions( tess, RegionBelow(regUp), regLo );
    702       AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
    703       return TRUE;
    704     }
    705     if( dstUp == tess->event ) {
    706       /* Splice dstUp into eLo, and process the new region(s) */
    707       if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
    708       if ( !__gl_meshSplice( eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1);
    709       regLo = regUp;
    710       regUp = TopRightRegion( regUp );
    711       e = RegionBelow(regUp)->eUp->Rprev;
    712       regLo->eUp = eLo->Oprev;
    713       eLo = FinishLeftRegions( tess, regLo, NULL );
    714       AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE );
    715       return TRUE;
    716     }
    717     /* Special case: called from ConnectRightVertex.  If either
    718      * edge passes on the wrong side of tess->event, split it
    719      * (and wait for ConnectRightVertex to splice it appropriately).
    720      */
    721     if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) {
    722       RegionAbove(regUp)->dirty = regUp->dirty = TRUE;
    723       if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    724       eUp->Org->s = tess->event->s;
    725       eUp->Org->t = tess->event->t;
    726     }
    727     if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) {
    728       regUp->dirty = regLo->dirty = TRUE;
    729       if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
    730       eLo->Org->s = tess->event->s;
    731       eLo->Org->t = tess->event->t;
    732     }
    733     /* leave the rest for ConnectRightVertex */
    734     return FALSE;
    735   }
    736 
    737   /* General case -- split both edges, splice into new vertex.
    738    * When we do the splice operation, the order of the arguments is
    739    * arbitrary as far as correctness goes.  However, when the operation
    740    * creates a new face, the work done is proportional to the size of
    741    * the new face.  We expect the faces in the processed part of
    742    * the mesh (ie. eUp->Lface) to be smaller than the faces in the
    743    * unprocessed original contours (which will be eLo->Oprev->Lface).
    744    */
    745   if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
    746   if (__gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
    747   if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
    748   eUp->Org->s = isect.s;
    749   eUp->Org->t = isect.t;
    750   eUp->Org->pqHandle = pqInsert( tess->pq, eUp->Org ); /* __gl_pqSortInsert */
    751   if (eUp->Org->pqHandle == LONG_MAX) {
    752      pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
    753      tess->pq = NULL;
    754      longjmp(tess->env,1);
    755   }
    756   GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo );
    757   RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE;
    758   return FALSE;
    759 }
    760 
    761 static void WalkDirtyRegions( GLUtesselator *tess, ActiveRegion *regUp )
    762 /*
    763  * When the upper or lower edge of any region changes, the region is
    764  * marked "dirty".  This routine walks through all the dirty regions
    765  * and makes sure that the dictionary invariants are satisfied
    766  * (see the comments at the beginning of this file).  Of course
    767  * new dirty regions can be created as we make changes to restore
    768  * the invariants.
    769  */
    770 {
    771   ActiveRegion *regLo = RegionBelow(regUp);
    772   GLUhalfEdge *eUp, *eLo;
    773 
    774   for( ;; ) {
    775     /* Find the lowest dirty region (we walk from the bottom up). */
    776     while( regLo->dirty ) {
    777       regUp = regLo;
    778       regLo = RegionBelow(regLo);
    779     }
    780     if( ! regUp->dirty ) {
    781       regLo = regUp;
    782       regUp = RegionAbove( regUp );
    783       if( regUp == NULL || ! regUp->dirty ) {
    784 	/* We've walked all the dirty regions */
    785 	return;
    786       }
    787     }
    788     regUp->dirty = FALSE;
    789     eUp = regUp->eUp;
    790     eLo = regLo->eUp;
    791 
    792     if( eUp->Dst != eLo->Dst ) {
    793       /* Check that the edge ordering is obeyed at the Dst vertices. */
    794       if( CheckForLeftSplice( tess, regUp )) {
    795 
    796 	/* If the upper or lower edge was marked fixUpperEdge, then
    797 	 * we no longer need it (since these edges are needed only for
    798 	 * vertices which otherwise have no right-going edges).
    799 	 */
    800 	if( regLo->fixUpperEdge ) {
    801 	  DeleteRegion( tess, regLo );
    802 	  if ( !__gl_meshDelete( eLo ) ) longjmp(tess->env,1);
    803 	  regLo = RegionBelow( regUp );
    804 	  eLo = regLo->eUp;
    805 	} else if( regUp->fixUpperEdge ) {
    806 	  DeleteRegion( tess, regUp );
    807 	  if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
    808 	  regUp = RegionAbove( regLo );
    809 	  eUp = regUp->eUp;
    810 	}
    811       }
    812     }
    813     if( eUp->Org != eLo->Org ) {
    814       if(    eUp->Dst != eLo->Dst
    815 	  && ! regUp->fixUpperEdge && ! regLo->fixUpperEdge
    816           && (eUp->Dst == tess->event || eLo->Dst == tess->event) )
    817       {
    818 	/* When all else fails in CheckForIntersect(), it uses tess->event
    819 	 * as the intersection location.  To make this possible, it requires
    820 	 * that tess->event lie between the upper and lower edges, and also
    821 	 * that neither of these is marked fixUpperEdge (since in the worst
    822 	 * case it might splice one of these edges into tess->event, and
    823 	 * violate the invariant that fixable edges are the only right-going
    824 	 * edge from their associated vertex).
    825          */
    826 	if( CheckForIntersect( tess, regUp )) {
    827 	  /* WalkDirtyRegions() was called recursively; we're done */
    828 	  return;
    829 	}
    830       } else {
    831 	/* Even though we can't use CheckForIntersect(), the Org vertices
    832 	 * may violate the dictionary edge ordering.  Check and correct this.
    833 	 */
    834 	(void) CheckForRightSplice( tess, regUp );
    835       }
    836     }
    837     if( eUp->Org == eLo->Org && eUp->Dst == eLo->Dst ) {
    838       /* A degenerate loop consisting of only two edges -- delete it. */
    839       AddWinding( eLo, eUp );
    840       DeleteRegion( tess, regUp );
    841       if ( !__gl_meshDelete( eUp ) ) longjmp(tess->env,1);
    842       regUp = RegionAbove( regLo );
    843     }
    844   }
    845 }
    846 
    847 
    848 static void ConnectRightVertex( GLUtesselator *tess, ActiveRegion *regUp,
    849 			        GLUhalfEdge *eBottomLeft )
    850 /*
    851  * Purpose: connect a "right" vertex vEvent (one where all edges go left)
    852  * to the unprocessed portion of the mesh.  Since there are no right-going
    853  * edges, two regions (one above vEvent and one below) are being merged
    854  * into one.  "regUp" is the upper of these two regions.
    855  *
    856  * There are two reasons for doing this (adding a right-going edge):
    857  *  - if the two regions being merged are "inside", we must add an edge
    858  *    to keep them separated (the combined region would not be monotone).
    859  *  - in any case, we must leave some record of vEvent in the dictionary,
    860  *    so that we can merge vEvent with features that we have not seen yet.
    861  *    For example, maybe there is a vertical edge which passes just to
    862  *    the right of vEvent; we would like to splice vEvent into this edge.
    863  *
    864  * However, we don't want to connect vEvent to just any vertex.  We don''t
    865  * want the new edge to cross any other edges; otherwise we will create
    866  * intersection vertices even when the input data had no self-intersections.
    867  * (This is a bad thing; if the user's input data has no intersections,
    868  * we don't want to generate any false intersections ourselves.)
    869  *
    870  * Our eventual goal is to connect vEvent to the leftmost unprocessed
    871  * vertex of the combined region (the union of regUp and regLo).
    872  * But because of unseen vertices with all right-going edges, and also
    873  * new vertices which may be created by edge intersections, we don''t
    874  * know where that leftmost unprocessed vertex is.  In the meantime, we
    875  * connect vEvent to the closest vertex of either chain, and mark the region
    876  * as "fixUpperEdge".  This flag says to delete and reconnect this edge
    877  * to the next processed vertex on the boundary of the combined region.
    878  * Quite possibly the vertex we connected to will turn out to be the
    879  * closest one, in which case we won''t need to make any changes.
    880  */
    881 {
    882   GLUhalfEdge *eNew;
    883   GLUhalfEdge *eTopLeft = eBottomLeft->Onext;
    884   ActiveRegion *regLo = RegionBelow(regUp);
    885   GLUhalfEdge *eUp = regUp->eUp;
    886   GLUhalfEdge *eLo = regLo->eUp;
    887   int degenerate = FALSE;
    888 
    889   if( eUp->Dst != eLo->Dst ) {
    890     (void) CheckForIntersect( tess, regUp );
    891   }
    892 
    893   /* Possible new degeneracies: upper or lower edge of regUp may pass
    894    * through vEvent, or may coincide with new intersection vertex
    895    */
    896   if( VertEq( eUp->Org, tess->event )) {
    897     if ( !__gl_meshSplice( eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
    898     regUp = TopLeftRegion( regUp );
    899     if (regUp == NULL) longjmp(tess->env,1);
    900     eTopLeft = RegionBelow( regUp )->eUp;
    901     FinishLeftRegions( tess, RegionBelow(regUp), regLo );
    902     degenerate = TRUE;
    903   }
    904   if( VertEq( eLo->Org, tess->event )) {
    905     if ( !__gl_meshSplice( eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
    906     eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
    907     degenerate = TRUE;
    908   }
    909   if( degenerate ) {
    910     AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
    911     return;
    912   }
    913 
    914   /* Non-degenerate situation -- need to add a temporary, fixable edge.
    915    * Connect to the closer of eLo->Org, eUp->Org.
    916    */
    917   if( VertLeq( eLo->Org, eUp->Org )) {
    918     eNew = eLo->Oprev;
    919   } else {
    920     eNew = eUp;
    921   }
    922   eNew = __gl_meshConnect( eBottomLeft->Lprev, eNew );
    923   if (eNew == NULL) longjmp(tess->env,1);
    924 
    925   /* Prevent cleanup, otherwise eNew might disappear before we've even
    926    * had a chance to mark it as a temporary edge.
    927    */
    928   AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
    929   eNew->Sym->activeRegion->fixUpperEdge = TRUE;
    930   WalkDirtyRegions( tess, regUp );
    931 }
    932 
    933 /* Because vertices at exactly the same location are merged together
    934  * before we process the sweep event, some degenerate cases can't occur.
    935  * However if someone eventually makes the modifications required to
    936  * merge features which are close together, the cases below marked
    937  * TOLERANCE_NONZERO will be useful.  They were debugged before the
    938  * code to merge identical vertices in the main loop was added.
    939  */
    940 #define TOLERANCE_NONZERO	FALSE
    941 
    942 static void ConnectLeftDegenerate( GLUtesselator *tess,
    943 				   ActiveRegion *regUp, GLUvertex *vEvent )
    944 /*
    945  * The event vertex lies exacty on an already-processed edge or vertex.
    946  * Adding the new vertex involves splicing it into the already-processed
    947  * part of the mesh.
    948  */
    949 {
    950   GLUhalfEdge *e, *eTopLeft, *eTopRight, *eLast;
    951   ActiveRegion *reg;
    952 
    953   e = regUp->eUp;
    954   if( VertEq( e->Org, vEvent )) {
    955     /* e->Org is an unprocessed vertex - just combine them, and wait
    956      * for e->Org to be pulled from the queue
    957      */
    958     assert( TOLERANCE_NONZERO );
    959     SpliceMergeVertices( tess, e, vEvent->anEdge );
    960     return;
    961   }
    962 
    963   if( ! VertEq( e->Dst, vEvent )) {
    964     /* General case -- splice vEvent into edge e which passes through it */
    965     if (__gl_meshSplitEdge( e->Sym ) == NULL) longjmp(tess->env,1);
    966     if( regUp->fixUpperEdge ) {
    967       /* This edge was fixable -- delete unused portion of original edge */
    968       if ( !__gl_meshDelete( e->Onext ) ) longjmp(tess->env,1);
    969       regUp->fixUpperEdge = FALSE;
    970     }
    971     if ( !__gl_meshSplice( vEvent->anEdge, e ) ) longjmp(tess->env,1);
    972     SweepEvent( tess, vEvent );	/* recurse */
    973     return;
    974   }
    975 
    976   /* vEvent coincides with e->Dst, which has already been processed.
    977    * Splice in the additional right-going edges.
    978    */
    979   assert( TOLERANCE_NONZERO );
    980   regUp = TopRightRegion( regUp );
    981   reg = RegionBelow( regUp );
    982   eTopRight = reg->eUp->Sym;
    983   eTopLeft = eLast = eTopRight->Onext;
    984   if( reg->fixUpperEdge ) {
    985     /* Here e->Dst has only a single fixable edge going right.
    986      * We can delete it since now we have some real right-going edges.
    987      */
    988     assert( eTopLeft != eTopRight );   /* there are some left edges too */
    989     DeleteRegion( tess, reg );
    990     if ( !__gl_meshDelete( eTopRight ) ) longjmp(tess->env,1);
    991     eTopRight = eTopLeft->Oprev;
    992   }
    993   if ( !__gl_meshSplice( vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1);
    994   if( ! EdgeGoesLeft( eTopLeft )) {
    995     /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */
    996     eTopLeft = NULL;
    997   }
    998   AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE );
    999 }
   1000 
   1001 
   1002 static void ConnectLeftVertex( GLUtesselator *tess, GLUvertex *vEvent )
   1003 /*
   1004  * Purpose: connect a "left" vertex (one where both edges go right)
   1005  * to the processed portion of the mesh.  Let R be the active region
   1006  * containing vEvent, and let U and L be the upper and lower edge
   1007  * chains of R.  There are two possibilities:
   1008  *
   1009  * - the normal case: split R into two regions, by connecting vEvent to
   1010  *   the rightmost vertex of U or L lying to the left of the sweep line
   1011  *
   1012  * - the degenerate case: if vEvent is close enough to U or L, we
   1013  *   merge vEvent into that edge chain.  The subcases are:
   1014  *	- merging with the rightmost vertex of U or L
   1015  *	- merging with the active edge of U or L
   1016  *	- merging with an already-processed portion of U or L
   1017  */
   1018 {
   1019   ActiveRegion *regUp, *regLo, *reg;
   1020   GLUhalfEdge *eUp, *eLo, *eNew;
   1021   ActiveRegion tmp;
   1022 
   1023   /* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
   1024 
   1025   /* Get a pointer to the active region containing vEvent */
   1026   tmp.eUp = vEvent->anEdge->Sym;
   1027   /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
   1028   regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
   1029   regLo = RegionBelow( regUp );
   1030   eUp = regUp->eUp;
   1031   eLo = regLo->eUp;
   1032 
   1033   /* Try merging with U or L first */
   1034   if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
   1035     ConnectLeftDegenerate( tess, regUp, vEvent );
   1036     return;
   1037   }
   1038 
   1039   /* Connect vEvent to rightmost processed vertex of either chain.
   1040    * e->Dst is the vertex that we will connect to vEvent.
   1041    */
   1042   reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
   1043 
   1044   if( regUp->inside || reg->fixUpperEdge) {
   1045     if( reg == regUp ) {
   1046       eNew = __gl_meshConnect( vEvent->anEdge->Sym, eUp->Lnext );
   1047       if (eNew == NULL) longjmp(tess->env,1);
   1048     } else {
   1049       GLUhalfEdge *tempHalfEdge= __gl_meshConnect( eLo->Dnext, vEvent->anEdge);
   1050       if (tempHalfEdge == NULL) longjmp(tess->env,1);
   1051 
   1052       eNew = tempHalfEdge->Sym;
   1053     }
   1054     if( reg->fixUpperEdge ) {
   1055       if ( !FixUpperEdge( reg, eNew ) ) longjmp(tess->env,1);
   1056     } else {
   1057       ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
   1058     }
   1059     SweepEvent( tess, vEvent );
   1060   } else {
   1061     /* The new vertex is in a region which does not belong to the polygon.
   1062      * We don''t need to connect this vertex to the rest of the mesh.
   1063      */
   1064     AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
   1065   }
   1066 }
   1067 
   1068 
   1069 static void SweepEvent( GLUtesselator *tess, GLUvertex *vEvent )
   1070 /*
   1071  * Does everything necessary when the sweep line crosses a vertex.
   1072  * Updates the mesh and the edge dictionary.
   1073  */
   1074 {
   1075   ActiveRegion *regUp, *reg;
   1076   GLUhalfEdge *e, *eTopLeft, *eBottomLeft;
   1077 
   1078   tess->event = vEvent;		/* for access in EdgeLeq() */
   1079   DebugEvent( tess );
   1080 
   1081   /* Check if this vertex is the right endpoint of an edge that is
   1082    * already in the dictionary.  In this case we don't need to waste
   1083    * time searching for the location to insert new edges.
   1084    */
   1085   e = vEvent->anEdge;
   1086   while( e->activeRegion == NULL ) {
   1087     e = e->Onext;
   1088     if( e == vEvent->anEdge ) {
   1089       /* All edges go right -- not incident to any processed edges */
   1090       ConnectLeftVertex( tess, vEvent );
   1091       return;
   1092     }
   1093   }
   1094 
   1095   /* Processing consists of two phases: first we "finish" all the
   1096    * active regions where both the upper and lower edges terminate
   1097    * at vEvent (ie. vEvent is closing off these regions).
   1098    * We mark these faces "inside" or "outside" the polygon according
   1099    * to their winding number, and delete the edges from the dictionary.
   1100    * This takes care of all the left-going edges from vEvent.
   1101    */
   1102   regUp = TopLeftRegion( e->activeRegion );
   1103   if (regUp == NULL) longjmp(tess->env,1);
   1104   reg = RegionBelow( regUp );
   1105   eTopLeft = reg->eUp;
   1106   eBottomLeft = FinishLeftRegions( tess, reg, NULL );
   1107 
   1108   /* Next we process all the right-going edges from vEvent.  This
   1109    * involves adding the edges to the dictionary, and creating the
   1110    * associated "active regions" which record information about the
   1111    * regions between adjacent dictionary edges.
   1112    */
   1113   if( eBottomLeft->Onext == eTopLeft ) {
   1114     /* No right-going edges -- add a temporary "fixable" edge */
   1115     ConnectRightVertex( tess, regUp, eBottomLeft );
   1116   } else {
   1117     AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
   1118   }
   1119 }
   1120 
   1121 
   1122 /* Make the sentinel coordinates big enough that they will never be
   1123  * merged with real input features.  (Even with the largest possible
   1124  * input contour and the maximum tolerance of 1.0, no merging will be
   1125  * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
   1126  */
   1127 #define SENTINEL_COORD	(4 * GLU_TESS_MAX_COORD)
   1128 
   1129 static void AddSentinel( GLUtesselator *tess, GLdouble t )
   1130 /*
   1131  * We add two sentinel edges above and below all other edges,
   1132  * to avoid special cases at the top and bottom.
   1133  */
   1134 {
   1135   GLUhalfEdge *e;
   1136   ActiveRegion *reg = (ActiveRegion *)memAlloc( sizeof( ActiveRegion ));
   1137   if (reg == NULL) longjmp(tess->env,1);
   1138 
   1139   e = __gl_meshMakeEdge( tess->mesh );
   1140   if (e == NULL) longjmp(tess->env,1);
   1141 
   1142   e->Org->s = SENTINEL_COORD;
   1143   e->Org->t = t;
   1144   e->Dst->s = -SENTINEL_COORD;
   1145   e->Dst->t = t;
   1146   tess->event = e->Dst;		/* initialize it */
   1147 
   1148   reg->eUp = e;
   1149   reg->windingNumber = 0;
   1150   reg->inside = FALSE;
   1151   reg->fixUpperEdge = FALSE;
   1152   reg->sentinel = TRUE;
   1153   reg->dirty = FALSE;
   1154   reg->nodeUp = dictInsert( tess->dict, reg ); /* __gl_dictListInsertBefore */
   1155   if (reg->nodeUp == NULL) longjmp(tess->env,1);
   1156 }
   1157 
   1158 
   1159 static void InitEdgeDict( GLUtesselator *tess )
   1160 /*
   1161  * We maintain an ordering of edge intersections with the sweep line.
   1162  * This order is maintained in a dynamic dictionary.
   1163  */
   1164 {
   1165   /* __gl_dictListNewDict */
   1166   tess->dict = dictNewDict( tess, (int (*)(void *, DictKey, DictKey)) EdgeLeq );
   1167   if (tess->dict == NULL) longjmp(tess->env,1);
   1168 
   1169   AddSentinel( tess, -SENTINEL_COORD );
   1170   AddSentinel( tess, SENTINEL_COORD );
   1171 }
   1172 
   1173 
   1174 static void DoneEdgeDict( GLUtesselator *tess )
   1175 {
   1176   ActiveRegion *reg;
   1177 #ifndef NDEBUG
   1178   int fixedEdges = 0;
   1179 #endif
   1180 
   1181   /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
   1182   while( (reg = (ActiveRegion *)dictKey( dictMin( tess->dict ))) != NULL ) {
   1183     /*
   1184      * At the end of all processing, the dictionary should contain
   1185      * only the two sentinel edges, plus at most one "fixable" edge
   1186      * created by ConnectRightVertex().
   1187      */
   1188     if( ! reg->sentinel ) {
   1189       assert( reg->fixUpperEdge );
   1190       assert( ++fixedEdges == 1 );
   1191     }
   1192     assert( reg->windingNumber == 0 );
   1193     DeleteRegion( tess, reg );
   1194 /*    __gl_meshDelete( reg->eUp );*/
   1195   }
   1196   dictDeleteDict( tess->dict );	/* __gl_dictListDeleteDict */
   1197 }
   1198 
   1199 
   1200 static void RemoveDegenerateEdges( GLUtesselator *tess )
   1201 /*
   1202  * Remove zero-length edges, and contours with fewer than 3 vertices.
   1203  */
   1204 {
   1205   GLUhalfEdge *e, *eNext, *eLnext;
   1206   GLUhalfEdge *eHead = &tess->mesh->eHead;
   1207 
   1208   /*LINTED*/
   1209   for( e = eHead->next; e != eHead; e = eNext ) {
   1210     eNext = e->next;
   1211     eLnext = e->Lnext;
   1212 
   1213     if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) {
   1214       /* Zero-length edge, contour has at least 3 edges */
   1215 
   1216       SpliceMergeVertices( tess, eLnext, e );	/* deletes e->Org */
   1217       if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1); /* e is a self-loop */
   1218       e = eLnext;
   1219       eLnext = e->Lnext;
   1220     }
   1221     if( eLnext->Lnext == e ) {
   1222       /* Degenerate contour (one or two edges) */
   1223 
   1224       if( eLnext != e ) {
   1225 	if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; }
   1226 	if ( !__gl_meshDelete( eLnext ) ) longjmp(tess->env,1);
   1227       }
   1228       if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; }
   1229       if ( !__gl_meshDelete( e ) ) longjmp(tess->env,1);
   1230     }
   1231   }
   1232 }
   1233 
   1234 static int InitPriorityQ( GLUtesselator *tess )
   1235 /*
   1236  * Insert all vertices into the priority queue which determines the
   1237  * order in which vertices cross the sweep line.
   1238  */
   1239 {
   1240   PriorityQ *pq;
   1241   GLUvertex *v, *vHead;
   1242 
   1243   /* __gl_pqSortNewPriorityQ */
   1244   pq = tess->pq = pqNewPriorityQ( (int (*)(PQkey, PQkey)) __gl_vertLeq );
   1245   if (pq == NULL) return 0;
   1246 
   1247   vHead = &tess->mesh->vHead;
   1248   for( v = vHead->next; v != vHead; v = v->next ) {
   1249     v->pqHandle = pqInsert( pq, v ); /* __gl_pqSortInsert */
   1250     if (v->pqHandle == LONG_MAX) break;
   1251   }
   1252   if (v != vHead || !pqInit( pq ) ) { /* __gl_pqSortInit */
   1253     pqDeletePriorityQ(tess->pq);	/* __gl_pqSortDeletePriorityQ */
   1254     tess->pq = NULL;
   1255     return 0;
   1256   }
   1257 
   1258   return 1;
   1259 }
   1260 
   1261 
   1262 static void DonePriorityQ( GLUtesselator *tess )
   1263 {
   1264   pqDeletePriorityQ( tess->pq ); /* __gl_pqSortDeletePriorityQ */
   1265 }
   1266 
   1267 
   1268 static int RemoveDegenerateFaces( GLUmesh *mesh )
   1269 /*
   1270  * Delete any degenerate faces with only two edges.  WalkDirtyRegions()
   1271  * will catch almost all of these, but it won't catch degenerate faces
   1272  * produced by splice operations on already-processed edges.
   1273  * The two places this can happen are in FinishLeftRegions(), when
   1274  * we splice in a "temporary" edge produced by ConnectRightVertex(),
   1275  * and in CheckForLeftSplice(), where we splice already-processed
   1276  * edges to ensure that our dictionary invariants are not violated
   1277  * by numerical errors.
   1278  *
   1279  * In both these cases it is *very* dangerous to delete the offending
   1280  * edge at the time, since one of the routines further up the stack
   1281  * will sometimes be keeping a pointer to that edge.
   1282  */
   1283 {
   1284   GLUface *f, *fNext;
   1285   GLUhalfEdge *e;
   1286 
   1287   /*LINTED*/
   1288   for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) {
   1289     fNext = f->next;
   1290     e = f->anEdge;
   1291     assert( e->Lnext != e );
   1292 
   1293     if( e->Lnext->Lnext == e ) {
   1294       /* A face with only two edges */
   1295       AddWinding( e->Onext, e );
   1296       if ( !__gl_meshDelete( e ) ) return 0;
   1297     }
   1298   }
   1299   return 1;
   1300 }
   1301 
   1302 int __gl_computeInterior( GLUtesselator *tess )
   1303 /*
   1304  * __gl_computeInterior( tess ) computes the planar arrangement specified
   1305  * by the given contours, and further subdivides this arrangement
   1306  * into regions.  Each region is marked "inside" if it belongs
   1307  * to the polygon, according to the rule given by tess->windingRule.
   1308  * Each interior region is guaranteed be monotone.
   1309  */
   1310 {
   1311   GLUvertex *v, *vNext;
   1312 
   1313   tess->fatalError = FALSE;
   1314 
   1315   /* Each vertex defines an event for our sweep line.  Start by inserting
   1316    * all the vertices in a priority queue.  Events are processed in
   1317    * lexicographic order, ie.
   1318    *
   1319    *	e1 < e2  iff  e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
   1320    */
   1321   RemoveDegenerateEdges( tess );
   1322   if ( !InitPriorityQ( tess ) ) return 0; /* if error */
   1323   InitEdgeDict( tess );
   1324 
   1325   /* __gl_pqSortExtractMin */
   1326   while( (v = (GLUvertex *)pqExtractMin( tess->pq )) != NULL ) {
   1327     for( ;; ) {
   1328       vNext = (GLUvertex *)pqMinimum( tess->pq ); /* __gl_pqSortMinimum */
   1329       if( vNext == NULL || ! VertEq( vNext, v )) break;
   1330 
   1331       /* Merge together all vertices at exactly the same location.
   1332        * This is more efficient than processing them one at a time,
   1333        * simplifies the code (see ConnectLeftDegenerate), and is also
   1334        * important for correct handling of certain degenerate cases.
   1335        * For example, suppose there are two identical edges A and B
   1336        * that belong to different contours (so without this code they would
   1337        * be processed by separate sweep events).  Suppose another edge C
   1338        * crosses A and B from above.  When A is processed, we split it
   1339        * at its intersection point with C.  However this also splits C,
   1340        * so when we insert B we may compute a slightly different
   1341        * intersection point.  This might leave two edges with a small
   1342        * gap between them.  This kind of error is especially obvious
   1343        * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
   1344        */
   1345       vNext = (GLUvertex *)pqExtractMin( tess->pq ); /* __gl_pqSortExtractMin*/
   1346       SpliceMergeVertices( tess, v->anEdge, vNext->anEdge );
   1347     }
   1348     SweepEvent( tess, v );
   1349   }
   1350 
   1351   /* Set tess->event for debugging purposes */
   1352   /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
   1353   tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org;
   1354   DebugEvent( tess );
   1355   DoneEdgeDict( tess );
   1356   DonePriorityQ( tess );
   1357 
   1358   if ( !RemoveDegenerateFaces( tess->mesh ) ) return 0;
   1359   __gl_meshCheckMesh( tess->mesh );
   1360 
   1361   return 1;
   1362 }
   1363