Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "reassociate"
     24 #include "llvm/Transforms/Scalar.h"
     25 #include "llvm/Transforms/Utils/Local.h"
     26 #include "llvm/Constants.h"
     27 #include "llvm/DerivedTypes.h"
     28 #include "llvm/Function.h"
     29 #include "llvm/IRBuilder.h"
     30 #include "llvm/Instructions.h"
     31 #include "llvm/IntrinsicInst.h"
     32 #include "llvm/Pass.h"
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/PostOrderIterator.h"
     35 #include "llvm/ADT/STLExtras.h"
     36 #include "llvm/ADT/SetVector.h"
     37 #include "llvm/ADT/Statistic.h"
     38 #include "llvm/Assembly/Writer.h"
     39 #include "llvm/Support/CFG.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ValueHandle.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include <algorithm>
     44 using namespace llvm;
     45 
     46 STATISTIC(NumChanged, "Number of insts reassociated");
     47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     48 STATISTIC(NumFactor , "Number of multiplies factored");
     49 
     50 namespace {
     51   struct ValueEntry {
     52     unsigned Rank;
     53     Value *Op;
     54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     55   };
     56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     58   }
     59 }
     60 
     61 #ifndef NDEBUG
     62 /// PrintOps - Print out the expression identified in the Ops list.
     63 ///
     64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     65   Module *M = I->getParent()->getParent()->getParent();
     66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     67        << *Ops[0].Op->getType() << '\t';
     68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     69     dbgs() << "[ ";
     70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
     71     dbgs() << ", #" << Ops[i].Rank << "] ";
     72   }
     73 }
     74 #endif
     75 
     76 namespace {
     77   /// \brief Utility class representing a base and exponent pair which form one
     78   /// factor of some product.
     79   struct Factor {
     80     Value *Base;
     81     unsigned Power;
     82 
     83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     84 
     85     /// \brief Sort factors by their Base.
     86     struct BaseSorter {
     87       bool operator()(const Factor &LHS, const Factor &RHS) {
     88         return LHS.Base < RHS.Base;
     89       }
     90     };
     91 
     92     /// \brief Compare factors for equal bases.
     93     struct BaseEqual {
     94       bool operator()(const Factor &LHS, const Factor &RHS) {
     95         return LHS.Base == RHS.Base;
     96       }
     97     };
     98 
     99     /// \brief Sort factors in descending order by their power.
    100     struct PowerDescendingSorter {
    101       bool operator()(const Factor &LHS, const Factor &RHS) {
    102         return LHS.Power > RHS.Power;
    103       }
    104     };
    105 
    106     /// \brief Compare factors for equal powers.
    107     struct PowerEqual {
    108       bool operator()(const Factor &LHS, const Factor &RHS) {
    109         return LHS.Power == RHS.Power;
    110       }
    111     };
    112   };
    113 }
    114 
    115 namespace {
    116   class Reassociate : public FunctionPass {
    117     DenseMap<BasicBlock*, unsigned> RankMap;
    118     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    119     SetVector<AssertingVH<Instruction> > RedoInsts;
    120     bool MadeChange;
    121   public:
    122     static char ID; // Pass identification, replacement for typeid
    123     Reassociate() : FunctionPass(ID) {
    124       initializeReassociatePass(*PassRegistry::getPassRegistry());
    125     }
    126 
    127     bool runOnFunction(Function &F);
    128 
    129     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    130       AU.setPreservesCFG();
    131     }
    132   private:
    133     void BuildRankMap(Function &F);
    134     unsigned getRank(Value *V);
    135     void ReassociateExpression(BinaryOperator *I);
    136     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    137     Value *OptimizeExpression(BinaryOperator *I,
    138                               SmallVectorImpl<ValueEntry> &Ops);
    139     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    140     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    141                                 SmallVectorImpl<Factor> &Factors);
    142     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    143                                    SmallVectorImpl<Factor> &Factors);
    144     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    145     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    146     void EraseInst(Instruction *I);
    147     void OptimizeInst(Instruction *I);
    148   };
    149 }
    150 
    151 char Reassociate::ID = 0;
    152 INITIALIZE_PASS(Reassociate, "reassociate",
    153                 "Reassociate expressions", false, false)
    154 
    155 // Public interface to the Reassociate pass
    156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    157 
    158 /// isReassociableOp - Return true if V is an instruction of the specified
    159 /// opcode and if it only has one use.
    160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    161   if (V->hasOneUse() && isa<Instruction>(V) &&
    162       cast<Instruction>(V)->getOpcode() == Opcode)
    163     return cast<BinaryOperator>(V);
    164   return 0;
    165 }
    166 
    167 static bool isUnmovableInstruction(Instruction *I) {
    168   if (I->getOpcode() == Instruction::PHI ||
    169       I->getOpcode() == Instruction::LandingPad ||
    170       I->getOpcode() == Instruction::Alloca ||
    171       I->getOpcode() == Instruction::Load ||
    172       I->getOpcode() == Instruction::Invoke ||
    173       (I->getOpcode() == Instruction::Call &&
    174        !isa<DbgInfoIntrinsic>(I)) ||
    175       I->getOpcode() == Instruction::UDiv ||
    176       I->getOpcode() == Instruction::SDiv ||
    177       I->getOpcode() == Instruction::FDiv ||
    178       I->getOpcode() == Instruction::URem ||
    179       I->getOpcode() == Instruction::SRem ||
    180       I->getOpcode() == Instruction::FRem)
    181     return true;
    182   return false;
    183 }
    184 
    185 void Reassociate::BuildRankMap(Function &F) {
    186   unsigned i = 2;
    187 
    188   // Assign distinct ranks to function arguments
    189   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    190     ValueRankMap[&*I] = ++i;
    191 
    192   ReversePostOrderTraversal<Function*> RPOT(&F);
    193   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    194          E = RPOT.end(); I != E; ++I) {
    195     BasicBlock *BB = *I;
    196     unsigned BBRank = RankMap[BB] = ++i << 16;
    197 
    198     // Walk the basic block, adding precomputed ranks for any instructions that
    199     // we cannot move.  This ensures that the ranks for these instructions are
    200     // all different in the block.
    201     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    202       if (isUnmovableInstruction(I))
    203         ValueRankMap[&*I] = ++BBRank;
    204   }
    205 }
    206 
    207 unsigned Reassociate::getRank(Value *V) {
    208   Instruction *I = dyn_cast<Instruction>(V);
    209   if (I == 0) {
    210     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    211     return 0;  // Otherwise it's a global or constant, rank 0.
    212   }
    213 
    214   if (unsigned Rank = ValueRankMap[I])
    215     return Rank;    // Rank already known?
    216 
    217   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    218   // we can reassociate expressions for code motion!  Since we do not recurse
    219   // for PHI nodes, we cannot have infinite recursion here, because there
    220   // cannot be loops in the value graph that do not go through PHI nodes.
    221   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    222   for (unsigned i = 0, e = I->getNumOperands();
    223        i != e && Rank != MaxRank; ++i)
    224     Rank = std::max(Rank, getRank(I->getOperand(i)));
    225 
    226   // If this is a not or neg instruction, do not count it for rank.  This
    227   // assures us that X and ~X will have the same rank.
    228   if (!I->getType()->isIntegerTy() ||
    229       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    230     ++Rank;
    231 
    232   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
    233   //     << Rank << "\n");
    234 
    235   return ValueRankMap[I] = Rank;
    236 }
    237 
    238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    239 ///
    240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    241   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
    242 
    243   BinaryOperator *Res =
    244     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
    245   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
    246   Res->takeName(Neg);
    247   Neg->replaceAllUsesWith(Res);
    248   Res->setDebugLoc(Neg->getDebugLoc());
    249   return Res;
    250 }
    251 
    252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
    253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    256 /// even x in Bitwidth-bit arithmetic.
    257 static unsigned CarmichaelShift(unsigned Bitwidth) {
    258   if (Bitwidth < 3)
    259     return Bitwidth - 1;
    260   return Bitwidth - 2;
    261 }
    262 
    263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
    264 /// reducing the combined weight using any special properties of the operation.
    265 /// The existing weight LHS represents the computation X op X op ... op X where
    266 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    267 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    271   // If we were working with infinite precision arithmetic then the combined
    272   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    273   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    274   // for nilpotent operations and addition, but not for idempotent operations
    275   // and multiplication), so it is important to correctly reduce the combined
    276   // weight back into range if wrapping would be wrong.
    277 
    278   // If RHS is zero then the weight didn't change.
    279   if (RHS.isMinValue())
    280     return;
    281   // If LHS is zero then the combined weight is RHS.
    282   if (LHS.isMinValue()) {
    283     LHS = RHS;
    284     return;
    285   }
    286   // From this point on we know that neither LHS nor RHS is zero.
    287 
    288   if (Instruction::isIdempotent(Opcode)) {
    289     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    290     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    291     // not a problem.
    292     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    293     return; // Return a weight of 1.
    294   }
    295   if (Instruction::isNilpotent(Opcode)) {
    296     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    297     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    298     LHS = 0; // 1 + 1 === 0 modulo 2.
    299     return;
    300   }
    301   if (Opcode == Instruction::Add) {
    302     // TODO: Reduce the weight by exploiting nsw/nuw?
    303     LHS += RHS;
    304     return;
    305   }
    306 
    307   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
    308   unsigned Bitwidth = LHS.getBitWidth();
    309   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    310   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    311   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    312   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    313   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    314   // which by a happy accident means that they can always be represented using
    315   // Bitwidth bits.
    316   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    317   // the Carmichael number).
    318   if (Bitwidth > 3) {
    319     /// CM - The value of Carmichael's lambda function.
    320     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    321     // Any weight W >= Threshold can be replaced with W - CM.
    322     APInt Threshold = CM + Bitwidth;
    323     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    324     // For Bitwidth 4 or more the following sum does not overflow.
    325     LHS += RHS;
    326     while (LHS.uge(Threshold))
    327       LHS -= CM;
    328   } else {
    329     // To avoid problems with overflow do everything the same as above but using
    330     // a larger type.
    331     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    332     unsigned Threshold = CM + Bitwidth;
    333     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    334            "Weights not reduced!");
    335     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    336     while (Total >= Threshold)
    337       Total -= CM;
    338     LHS = Total;
    339   }
    340 }
    341 
    342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
    343 /// is repeated Weight times.
    344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
    345                                           APInt Weight) {
    346   // For addition the result can be efficiently computed as the product of the
    347   // constant and the weight.
    348   if (Opcode == Instruction::Add)
    349     return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
    350 
    351   // The weight might be huge, so compute by repeated squaring to ensure that
    352   // compile time is proportional to the logarithm of the weight.
    353   Constant *Result = 0;
    354   Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
    355   // Visit the bits in Weight.
    356   while (Weight != 0) {
    357     // If the current bit in Weight is non-zero do Result = Result op Power.
    358     if (Weight[0])
    359       Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
    360     // Move on to the next bit if any more are non-zero.
    361     Weight = Weight.lshr(1);
    362     if (Weight.isMinValue())
    363       break;
    364     // Square the power.
    365     Power = ConstantExpr::get(Opcode, Power, Power);
    366   }
    367 
    368   assert(Result && "Only positive weights supported!");
    369   return Result;
    370 }
    371 
    372 typedef std::pair<Value*, APInt> RepeatedValue;
    373 
    374 /// LinearizeExprTree - Given an associative binary expression, return the leaf
    375 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    376 /// original expression is the same as
    377 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    378 /// op
    379 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    380 /// op
    381 ///   ...
    382 /// op
    383 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    384 ///
    385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
    386 /// they are all non-constant except possibly for the last one, which if it is
    387 /// constant will have weight one (Ops[N].second === 1).
    388 ///
    389 /// This routine may modify the function, in which case it returns 'true'.  The
    390 /// changes it makes may well be destructive, changing the value computed by 'I'
    391 /// to something completely different.  Thus if the routine returns 'true' then
    392 /// you MUST either replace I with a new expression computed from the Ops array,
    393 /// or use RewriteExprTree to put the values back in.
    394 ///
    395 /// A leaf node is either not a binary operation of the same kind as the root
    396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    397 /// opcode), or is the same kind of binary operator but has a use which either
    398 /// does not belong to the expression, or does belong to the expression but is
    399 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    400 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    401 /// use is a non-leaf node of the expression.
    402 ///
    403 /// For example:
    404 ///           expression graph        node names
    405 ///
    406 ///                     +        |        I
    407 ///                    / \       |
    408 ///                   +   +      |      A,  B
    409 ///                  / \ / \     |
    410 ///                 *   +   *    |    C,  D,  E
    411 ///                / \ / \ / \   |
    412 ///                   +   *      |      F,  G
    413 ///
    414 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    416 ///
    417 /// The expression is maximal: if some instruction is a binary operator of the
    418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    419 /// then the instruction also belongs to the expression, is not a leaf node of
    420 /// it, and its operands also belong to the expression (but may be leaf nodes).
    421 ///
    422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    423 /// order to ensure that every non-root node in the expression has *exactly one*
    424 /// use by a non-leaf node of the expression.  This destruction means that the
    425 /// caller MUST either replace 'I' with a new expression or use something like
    426 /// RewriteExprTree to put the values back in if the routine indicates that it
    427 /// made a change by returning 'true'.
    428 ///
    429 /// In the above example either the right operand of A or the left operand of B
    430 /// will be replaced by undef.  If it is B's operand then this gives:
    431 ///
    432 ///                     +        |        I
    433 ///                    / \       |
    434 ///                   +   +      |      A,  B - operand of B replaced with undef
    435 ///                  / \   \     |
    436 ///                 *   +   *    |    C,  D,  E
    437 ///                / \ / \ / \   |
    438 ///                   +   *      |      F,  G
    439 ///
    440 /// Note that such undef operands can only be reached by passing through 'I'.
    441 /// For example, if you visit operands recursively starting from a leaf node
    442 /// then you will never see such an undef operand unless you get back to 'I',
    443 /// which requires passing through a phi node.
    444 ///
    445 /// Note that this routine may also mutate binary operators of the wrong type
    446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    447 /// of the expression) if it can turn them into binary operators of the right
    448 /// type and thus make the expression bigger.
    449 
    450 static bool LinearizeExprTree(BinaryOperator *I,
    451                               SmallVectorImpl<RepeatedValue> &Ops) {
    452   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    453   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    454   unsigned Opcode = I->getOpcode();
    455   assert(Instruction::isAssociative(Opcode) &&
    456          Instruction::isCommutative(Opcode) &&
    457          "Expected an associative and commutative operation!");
    458   // If we see an absorbing element then the entire expression must be equal to
    459   // it.  For example, if this is a multiplication expression and zero occurs as
    460   // an operand somewhere in it then the result of the expression must be zero.
    461   Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
    462 
    463   // Visit all operands of the expression, keeping track of their weight (the
    464   // number of paths from the expression root to the operand, or if you like
    465   // the number of times that operand occurs in the linearized expression).
    466   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    467   // while A has weight two.
    468 
    469   // Worklist of non-leaf nodes (their operands are in the expression too) along
    470   // with their weights, representing a certain number of paths to the operator.
    471   // If an operator occurs in the worklist multiple times then we found multiple
    472   // ways to get to it.
    473   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    474   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    475   bool MadeChange = false;
    476 
    477   // Leaves of the expression are values that either aren't the right kind of
    478   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    479   // some uses that are not inside the expression.  For example, in I = X + X,
    480   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    481   // X has any other uses, for example in a return instruction, then we consider
    482   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    483   // if it has more than one use then at first we conservatively consider it to
    484   // be a leaf.  Later, as the expression is explored, we may discover some more
    485   // uses of the value from inside the expression.  If all uses turn out to be
    486   // from within the expression (and the value is a binary operator of the right
    487   // kind) then the value is no longer considered to be a leaf, and its operands
    488   // are explored.
    489 
    490   // Leaves - Keeps track of the set of putative leaves as well as the number of
    491   // paths to each leaf seen so far.
    492   typedef DenseMap<Value*, APInt> LeafMap;
    493   LeafMap Leaves; // Leaf -> Total weight so far.
    494   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    495 
    496 #ifndef NDEBUG
    497   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    498 #endif
    499   while (!Worklist.empty()) {
    500     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    501     I = P.first; // We examine the operands of this binary operator.
    502 
    503     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    504       Value *Op = I->getOperand(OpIdx);
    505       APInt Weight = P.second; // Number of paths to this operand.
    506       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    507       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    508 
    509       // If the expression contains an absorbing element then there is no need
    510       // to analyze it further: it must evaluate to the absorbing element.
    511       if (Op == Absorber && !Weight.isMinValue()) {
    512         Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
    513         return MadeChange;
    514       }
    515 
    516       // If this is a binary operation of the right kind with only one use then
    517       // add its operands to the expression.
    518       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    519         assert(Visited.insert(Op) && "Not first visit!");
    520         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    521         Worklist.push_back(std::make_pair(BO, Weight));
    522         continue;
    523       }
    524 
    525       // Appears to be a leaf.  Is the operand already in the set of leaves?
    526       LeafMap::iterator It = Leaves.find(Op);
    527       if (It == Leaves.end()) {
    528         // Not in the leaf map.  Must be the first time we saw this operand.
    529         assert(Visited.insert(Op) && "Not first visit!");
    530         if (!Op->hasOneUse()) {
    531           // This value has uses not accounted for by the expression, so it is
    532           // not safe to modify.  Mark it as being a leaf.
    533           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    534           LeafOrder.push_back(Op);
    535           Leaves[Op] = Weight;
    536           continue;
    537         }
    538         // No uses outside the expression, try morphing it.
    539       } else if (It != Leaves.end()) {
    540         // Already in the leaf map.
    541         assert(Visited.count(Op) && "In leaf map but not visited!");
    542 
    543         // Update the number of paths to the leaf.
    544         IncorporateWeight(It->second, Weight, Opcode);
    545 
    546 #if 0   // TODO: Re-enable once PR13021 is fixed.
    547         // The leaf already has one use from inside the expression.  As we want
    548         // exactly one such use, drop this new use of the leaf.
    549         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    550         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    551         MadeChange = true;
    552 
    553         // If the leaf is a binary operation of the right kind and we now see
    554         // that its multiple original uses were in fact all by nodes belonging
    555         // to the expression, then no longer consider it to be a leaf and add
    556         // its operands to the expression.
    557         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    558           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    559           Worklist.push_back(std::make_pair(BO, It->second));
    560           Leaves.erase(It);
    561           continue;
    562         }
    563 #endif
    564 
    565         // If we still have uses that are not accounted for by the expression
    566         // then it is not safe to modify the value.
    567         if (!Op->hasOneUse())
    568           continue;
    569 
    570         // No uses outside the expression, try morphing it.
    571         Weight = It->second;
    572         Leaves.erase(It); // Since the value may be morphed below.
    573       }
    574 
    575       // At this point we have a value which, first of all, is not a binary
    576       // expression of the right kind, and secondly, is only used inside the
    577       // expression.  This means that it can safely be modified.  See if we
    578       // can usefully morph it into an expression of the right kind.
    579       assert((!isa<Instruction>(Op) ||
    580               cast<Instruction>(Op)->getOpcode() != Opcode) &&
    581              "Should have been handled above!");
    582       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    583 
    584       // If this is a multiply expression, turn any internal negations into
    585       // multiplies by -1 so they can be reassociated.
    586       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
    587       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
    588         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    589         BO = LowerNegateToMultiply(BO);
    590         DEBUG(dbgs() << *BO << 'n');
    591         Worklist.push_back(std::make_pair(BO, Weight));
    592         MadeChange = true;
    593         continue;
    594       }
    595 
    596       // Failed to morph into an expression of the right type.  This really is
    597       // a leaf.
    598       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    599       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    600       LeafOrder.push_back(Op);
    601       Leaves[Op] = Weight;
    602     }
    603   }
    604 
    605   // The leaves, repeated according to their weights, represent the linearized
    606   // form of the expression.
    607   Constant *Cst = 0; // Accumulate constants here.
    608   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    609     Value *V = LeafOrder[i];
    610     LeafMap::iterator It = Leaves.find(V);
    611     if (It == Leaves.end())
    612       // Node initially thought to be a leaf wasn't.
    613       continue;
    614     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    615     APInt Weight = It->second;
    616     if (Weight.isMinValue())
    617       // Leaf already output or weight reduction eliminated it.
    618       continue;
    619     // Ensure the leaf is only output once.
    620     It->second = 0;
    621     // Glob all constants together into Cst.
    622     if (Constant *C = dyn_cast<Constant>(V)) {
    623       C = EvaluateRepeatedConstant(Opcode, C, Weight);
    624       Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
    625       continue;
    626     }
    627     // Add non-constant
    628     Ops.push_back(std::make_pair(V, Weight));
    629   }
    630 
    631   // Add any constants back into Ops, all globbed together and reduced to having
    632   // weight 1 for the convenience of users.
    633   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    634   if (Cst && Cst != Identity) {
    635     // If combining multiple constants resulted in the absorber then the entire
    636     // expression must evaluate to the absorber.
    637     if (Cst == Absorber)
    638       Ops.clear();
    639     Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
    640   }
    641 
    642   // For nilpotent operations or addition there may be no operands, for example
    643   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    644   // in both cases the weight reduces to 0 causing the value to be skipped.
    645   if (Ops.empty()) {
    646     assert(Identity && "Associative operation without identity!");
    647     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
    648   }
    649 
    650   return MadeChange;
    651 }
    652 
    653 // RewriteExprTree - Now that the operands for this expression tree are
    654 // linearized and optimized, emit them in-order.
    655 void Reassociate::RewriteExprTree(BinaryOperator *I,
    656                                   SmallVectorImpl<ValueEntry> &Ops) {
    657   assert(Ops.size() > 1 && "Single values should be used directly!");
    658 
    659   // Since our optimizations never increase the number of operations, the new
    660   // expression can always be written by reusing the existing binary operators
    661   // from the original expression tree, without creating any new instructions,
    662   // though the rewritten expression may have a completely different topology.
    663   // We take care to not change anything if the new expression will be the same
    664   // as the original.  If more than trivial changes (like commuting operands)
    665   // were made then we are obliged to clear out any optional subclass data like
    666   // nsw flags.
    667 
    668   /// NodesToRewrite - Nodes from the original expression available for writing
    669   /// the new expression into.
    670   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    671   unsigned Opcode = I->getOpcode();
    672   BinaryOperator *Op = I;
    673 
    674   // ExpressionChanged - Non-null if the rewritten expression differs from the
    675   // original in some non-trivial way, requiring the clearing of optional flags.
    676   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    677   BinaryOperator *ExpressionChanged = 0;
    678   for (unsigned i = 0; ; ++i) {
    679     // The last operation (which comes earliest in the IR) is special as both
    680     // operands will come from Ops, rather than just one with the other being
    681     // a subexpression.
    682     if (i+2 == Ops.size()) {
    683       Value *NewLHS = Ops[i].Op;
    684       Value *NewRHS = Ops[i+1].Op;
    685       Value *OldLHS = Op->getOperand(0);
    686       Value *OldRHS = Op->getOperand(1);
    687 
    688       if (NewLHS == OldLHS && NewRHS == OldRHS)
    689         // Nothing changed, leave it alone.
    690         break;
    691 
    692       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    693         // The order of the operands was reversed.  Swap them.
    694         DEBUG(dbgs() << "RA: " << *Op << '\n');
    695         Op->swapOperands();
    696         DEBUG(dbgs() << "TO: " << *Op << '\n');
    697         MadeChange = true;
    698         ++NumChanged;
    699         break;
    700       }
    701 
    702       // The new operation differs non-trivially from the original. Overwrite
    703       // the old operands with the new ones.
    704       DEBUG(dbgs() << "RA: " << *Op << '\n');
    705       if (NewLHS != OldLHS) {
    706         if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
    707           NodesToRewrite.push_back(BO);
    708         Op->setOperand(0, NewLHS);
    709       }
    710       if (NewRHS != OldRHS) {
    711         if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
    712           NodesToRewrite.push_back(BO);
    713         Op->setOperand(1, NewRHS);
    714       }
    715       DEBUG(dbgs() << "TO: " << *Op << '\n');
    716 
    717       ExpressionChanged = Op;
    718       MadeChange = true;
    719       ++NumChanged;
    720 
    721       break;
    722     }
    723 
    724     // Not the last operation.  The left-hand side will be a sub-expression
    725     // while the right-hand side will be the current element of Ops.
    726     Value *NewRHS = Ops[i].Op;
    727     if (NewRHS != Op->getOperand(1)) {
    728       DEBUG(dbgs() << "RA: " << *Op << '\n');
    729       if (NewRHS == Op->getOperand(0)) {
    730         // The new right-hand side was already present as the left operand.  If
    731         // we are lucky then swapping the operands will sort out both of them.
    732         Op->swapOperands();
    733       } else {
    734         // Overwrite with the new right-hand side.
    735         if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
    736           NodesToRewrite.push_back(BO);
    737         Op->setOperand(1, NewRHS);
    738         ExpressionChanged = Op;
    739       }
    740       DEBUG(dbgs() << "TO: " << *Op << '\n');
    741       MadeChange = true;
    742       ++NumChanged;
    743     }
    744 
    745     // Now deal with the left-hand side.  If this is already an operation node
    746     // from the original expression then just rewrite the rest of the expression
    747     // into it.
    748     if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
    749       Op = BO;
    750       continue;
    751     }
    752 
    753     // Otherwise, grab a spare node from the original expression and use that as
    754     // the left-hand side.  If there are no nodes left then the optimizers made
    755     // an expression with more nodes than the original!  This usually means that
    756     // they did something stupid but it might mean that the problem was just too
    757     // hard (finding the mimimal number of multiplications needed to realize a
    758     // multiplication expression is NP-complete).  Whatever the reason, smart or
    759     // stupid, create a new node if there are none left.
    760     BinaryOperator *NewOp;
    761     if (NodesToRewrite.empty()) {
    762       Constant *Undef = UndefValue::get(I->getType());
    763       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    764                                      Undef, Undef, "", I);
    765     } else {
    766       NewOp = NodesToRewrite.pop_back_val();
    767     }
    768 
    769     DEBUG(dbgs() << "RA: " << *Op << '\n');
    770     Op->setOperand(0, NewOp);
    771     DEBUG(dbgs() << "TO: " << *Op << '\n');
    772     ExpressionChanged = Op;
    773     MadeChange = true;
    774     ++NumChanged;
    775     Op = NewOp;
    776   }
    777 
    778   // If the expression changed non-trivially then clear out all subclass data
    779   // starting from the operator specified in ExpressionChanged, and compactify
    780   // the operators to just before the expression root to guarantee that the
    781   // expression tree is dominated by all of Ops.
    782   if (ExpressionChanged)
    783     do {
    784       ExpressionChanged->clearSubclassOptionalData();
    785       if (ExpressionChanged == I)
    786         break;
    787       ExpressionChanged->moveBefore(I);
    788       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
    789     } while (1);
    790 
    791   // Throw away any left over nodes from the original expression.
    792   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    793     RedoInsts.insert(NodesToRewrite[i]);
    794 }
    795 
    796 /// NegateValue - Insert instructions before the instruction pointed to by BI,
    797 /// that computes the negative version of the value specified.  The negative
    798 /// version of the value is returned, and BI is left pointing at the instruction
    799 /// that should be processed next by the reassociation pass.
    800 static Value *NegateValue(Value *V, Instruction *BI) {
    801   if (Constant *C = dyn_cast<Constant>(V))
    802     return ConstantExpr::getNeg(C);
    803 
    804   // We are trying to expose opportunity for reassociation.  One of the things
    805   // that we want to do to achieve this is to push a negation as deep into an
    806   // expression chain as possible, to expose the add instructions.  In practice,
    807   // this means that we turn this:
    808   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    809   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    810   // the constants.  We assume that instcombine will clean up the mess later if
    811   // we introduce tons of unnecessary negation instructions.
    812   //
    813   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
    814     // Push the negates through the add.
    815     I->setOperand(0, NegateValue(I->getOperand(0), BI));
    816     I->setOperand(1, NegateValue(I->getOperand(1), BI));
    817 
    818     // We must move the add instruction here, because the neg instructions do
    819     // not dominate the old add instruction in general.  By moving it, we are
    820     // assured that the neg instructions we just inserted dominate the
    821     // instruction we are about to insert after them.
    822     //
    823     I->moveBefore(BI);
    824     I->setName(I->getName()+".neg");
    825     return I;
    826   }
    827 
    828   // Okay, we need to materialize a negated version of V with an instruction.
    829   // Scan the use lists of V to see if we have one already.
    830   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    831     User *U = *UI;
    832     if (!BinaryOperator::isNeg(U)) continue;
    833 
    834     // We found one!  Now we have to make sure that the definition dominates
    835     // this use.  We do this by moving it to the entry block (if it is a
    836     // non-instruction value) or right after the definition.  These negates will
    837     // be zapped by reassociate later, so we don't need much finesse here.
    838     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    839 
    840     // Verify that the negate is in this function, V might be a constant expr.
    841     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    842       continue;
    843 
    844     BasicBlock::iterator InsertPt;
    845     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    846       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    847         InsertPt = II->getNormalDest()->begin();
    848       } else {
    849         InsertPt = InstInput;
    850         ++InsertPt;
    851       }
    852       while (isa<PHINode>(InsertPt)) ++InsertPt;
    853     } else {
    854       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    855     }
    856     TheNeg->moveBefore(InsertPt);
    857     return TheNeg;
    858   }
    859 
    860   // Insert a 'neg' instruction that subtracts the value from zero to get the
    861   // negation.
    862   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
    863 }
    864 
    865 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    866 /// X-Y into (X + -Y).
    867 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    868   // If this is a negation, we can't split it up!
    869   if (BinaryOperator::isNeg(Sub))
    870     return false;
    871 
    872   // Don't bother to break this up unless either the LHS is an associable add or
    873   // subtract or if this is only used by one.
    874   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
    875       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    876     return true;
    877   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
    878       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    879     return true;
    880   if (Sub->hasOneUse() &&
    881       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
    882        isReassociableOp(Sub->use_back(), Instruction::Sub)))
    883     return true;
    884 
    885   return false;
    886 }
    887 
    888 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
    889 /// only used by an add, transform this into (X+(0-Y)) to promote better
    890 /// reassociation.
    891 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
    892   // Convert a subtract into an add and a neg instruction. This allows sub
    893   // instructions to be commuted with other add instructions.
    894   //
    895   // Calculate the negative value of Operand 1 of the sub instruction,
    896   // and set it as the RHS of the add instruction we just made.
    897   //
    898   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
    899   BinaryOperator *New =
    900     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
    901   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
    902   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
    903   New->takeName(Sub);
    904 
    905   // Everyone now refers to the add instruction.
    906   Sub->replaceAllUsesWith(New);
    907   New->setDebugLoc(Sub->getDebugLoc());
    908 
    909   DEBUG(dbgs() << "Negated: " << *New << '\n');
    910   return New;
    911 }
    912 
    913 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
    914 /// by one, change this into a multiply by a constant to assist with further
    915 /// reassociation.
    916 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
    917   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    918   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    919 
    920   BinaryOperator *Mul =
    921     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    922   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
    923   Mul->takeName(Shl);
    924   Shl->replaceAllUsesWith(Mul);
    925   Mul->setDebugLoc(Shl->getDebugLoc());
    926   return Mul;
    927 }
    928 
    929 /// FindInOperandList - Scan backwards and forwards among values with the same
    930 /// rank as element i to see if X exists.  If X does not exist, return i.  This
    931 /// is useful when scanning for 'x' when we see '-x' because they both get the
    932 /// same rank.
    933 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    934                                   Value *X) {
    935   unsigned XRank = Ops[i].Rank;
    936   unsigned e = Ops.size();
    937   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    938     if (Ops[j].Op == X)
    939       return j;
    940   // Scan backwards.
    941   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    942     if (Ops[j].Op == X)
    943       return j;
    944   return i;
    945 }
    946 
    947 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
    948 /// and returning the result.  Insert the tree before I.
    949 static Value *EmitAddTreeOfValues(Instruction *I,
    950                                   SmallVectorImpl<WeakVH> &Ops){
    951   if (Ops.size() == 1) return Ops.back();
    952 
    953   Value *V1 = Ops.back();
    954   Ops.pop_back();
    955   Value *V2 = EmitAddTreeOfValues(I, Ops);
    956   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
    957 }
    958 
    959 /// RemoveFactorFromExpression - If V is an expression tree that is a
    960 /// multiplication sequence, and if this sequence contains a multiply by Factor,
    961 /// remove Factor from the tree and return the new tree.
    962 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
    963   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
    964   if (!BO) return 0;
    965 
    966   SmallVector<RepeatedValue, 8> Tree;
    967   MadeChange |= LinearizeExprTree(BO, Tree);
    968   SmallVector<ValueEntry, 8> Factors;
    969   Factors.reserve(Tree.size());
    970   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
    971     RepeatedValue E = Tree[i];
    972     Factors.append(E.second.getZExtValue(),
    973                    ValueEntry(getRank(E.first), E.first));
    974   }
    975 
    976   bool FoundFactor = false;
    977   bool NeedsNegate = false;
    978   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
    979     if (Factors[i].Op == Factor) {
    980       FoundFactor = true;
    981       Factors.erase(Factors.begin()+i);
    982       break;
    983     }
    984 
    985     // If this is a negative version of this factor, remove it.
    986     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
    987       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
    988         if (FC1->getValue() == -FC2->getValue()) {
    989           FoundFactor = NeedsNegate = true;
    990           Factors.erase(Factors.begin()+i);
    991           break;
    992         }
    993   }
    994 
    995   if (!FoundFactor) {
    996     // Make sure to restore the operands to the expression tree.
    997     RewriteExprTree(BO, Factors);
    998     return 0;
    999   }
   1000 
   1001   BasicBlock::iterator InsertPt = BO; ++InsertPt;
   1002 
   1003   // If this was just a single multiply, remove the multiply and return the only
   1004   // remaining operand.
   1005   if (Factors.size() == 1) {
   1006     RedoInsts.insert(BO);
   1007     V = Factors[0].Op;
   1008   } else {
   1009     RewriteExprTree(BO, Factors);
   1010     V = BO;
   1011   }
   1012 
   1013   if (NeedsNegate)
   1014     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
   1015 
   1016   return V;
   1017 }
   1018 
   1019 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
   1020 /// add its operands as factors, otherwise add V to the list of factors.
   1021 ///
   1022 /// Ops is the top-level list of add operands we're trying to factor.
   1023 static void FindSingleUseMultiplyFactors(Value *V,
   1024                                          SmallVectorImpl<Value*> &Factors,
   1025                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1026   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
   1027   if (!BO) {
   1028     Factors.push_back(V);
   1029     return;
   1030   }
   1031 
   1032   // Otherwise, add the LHS and RHS to the list of factors.
   1033   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1034   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1035 }
   1036 
   1037 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
   1038 /// instruction.  This optimizes based on identities.  If it can be reduced to
   1039 /// a single Value, it is returned, otherwise the Ops list is mutated as
   1040 /// necessary.
   1041 static Value *OptimizeAndOrXor(unsigned Opcode,
   1042                                SmallVectorImpl<ValueEntry> &Ops) {
   1043   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1044   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1045   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1046     // First, check for X and ~X in the operand list.
   1047     assert(i < Ops.size());
   1048     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1049       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1050       unsigned FoundX = FindInOperandList(Ops, i, X);
   1051       if (FoundX != i) {
   1052         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1053           return Constant::getNullValue(X->getType());
   1054 
   1055         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1056           return Constant::getAllOnesValue(X->getType());
   1057       }
   1058     }
   1059 
   1060     // Next, check for duplicate pairs of values, which we assume are next to
   1061     // each other, due to our sorting criteria.
   1062     assert(i < Ops.size());
   1063     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1064       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1065         // Drop duplicate values for And and Or.
   1066         Ops.erase(Ops.begin()+i);
   1067         --i; --e;
   1068         ++NumAnnihil;
   1069         continue;
   1070       }
   1071 
   1072       // Drop pairs of values for Xor.
   1073       assert(Opcode == Instruction::Xor);
   1074       if (e == 2)
   1075         return Constant::getNullValue(Ops[0].Op->getType());
   1076 
   1077       // Y ^ X^X -> Y
   1078       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1079       i -= 1; e -= 2;
   1080       ++NumAnnihil;
   1081     }
   1082   }
   1083   return 0;
   1084 }
   1085 
   1086 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
   1087 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1088 /// is returned, otherwise the Ops list is mutated as necessary.
   1089 Value *Reassociate::OptimizeAdd(Instruction *I,
   1090                                 SmallVectorImpl<ValueEntry> &Ops) {
   1091   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1092   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
   1093   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1094   //
   1095   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
   1096   //
   1097   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1098     Value *TheOp = Ops[i].Op;
   1099     // Check to see if we've seen this operand before.  If so, we factor all
   1100     // instances of the operand together.  Due to our sorting criteria, we know
   1101     // that these need to be next to each other in the vector.
   1102     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1103       // Rescan the list, remove all instances of this operand from the expr.
   1104       unsigned NumFound = 0;
   1105       do {
   1106         Ops.erase(Ops.begin()+i);
   1107         ++NumFound;
   1108       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1109 
   1110       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1111       ++NumFactor;
   1112 
   1113       // Insert a new multiply.
   1114       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
   1115       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
   1116 
   1117       // Now that we have inserted a multiply, optimize it. This allows us to
   1118       // handle cases that require multiple factoring steps, such as this:
   1119       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1120       RedoInsts.insert(cast<Instruction>(Mul));
   1121 
   1122       // If every add operand was a duplicate, return the multiply.
   1123       if (Ops.empty())
   1124         return Mul;
   1125 
   1126       // Otherwise, we had some input that didn't have the dupe, such as
   1127       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1128       // things being added by this operation.
   1129       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1130 
   1131       --i;
   1132       e = Ops.size();
   1133       continue;
   1134     }
   1135 
   1136     // Check for X and -X in the operand list.
   1137     if (!BinaryOperator::isNeg(TheOp))
   1138       continue;
   1139 
   1140     Value *X = BinaryOperator::getNegArgument(TheOp);
   1141     unsigned FoundX = FindInOperandList(Ops, i, X);
   1142     if (FoundX == i)
   1143       continue;
   1144 
   1145     // Remove X and -X from the operand list.
   1146     if (Ops.size() == 2)
   1147       return Constant::getNullValue(X->getType());
   1148 
   1149     Ops.erase(Ops.begin()+i);
   1150     if (i < FoundX)
   1151       --FoundX;
   1152     else
   1153       --i;   // Need to back up an extra one.
   1154     Ops.erase(Ops.begin()+FoundX);
   1155     ++NumAnnihil;
   1156     --i;     // Revisit element.
   1157     e -= 2;  // Removed two elements.
   1158   }
   1159 
   1160   // Scan the operand list, checking to see if there are any common factors
   1161   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1162   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1163   // To efficiently find this, we count the number of times a factor occurs
   1164   // for any ADD operands that are MULs.
   1165   DenseMap<Value*, unsigned> FactorOccurrences;
   1166 
   1167   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1168   // where they are actually the same multiply.
   1169   unsigned MaxOcc = 0;
   1170   Value *MaxOccVal = 0;
   1171   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1172     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1173     if (!BOp)
   1174       continue;
   1175 
   1176     // Compute all of the factors of this added value.
   1177     SmallVector<Value*, 8> Factors;
   1178     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1179     assert(Factors.size() > 1 && "Bad linearize!");
   1180 
   1181     // Add one to FactorOccurrences for each unique factor in this op.
   1182     SmallPtrSet<Value*, 8> Duplicates;
   1183     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1184       Value *Factor = Factors[i];
   1185       if (!Duplicates.insert(Factor)) continue;
   1186 
   1187       unsigned Occ = ++FactorOccurrences[Factor];
   1188       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1189 
   1190       // If Factor is a negative constant, add the negated value as a factor
   1191       // because we can percolate the negate out.  Watch for minint, which
   1192       // cannot be positivified.
   1193       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
   1194         if (CI->isNegative() && !CI->isMinValue(true)) {
   1195           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1196           assert(!Duplicates.count(Factor) &&
   1197                  "Shouldn't have two constant factors, missed a canonicalize");
   1198 
   1199           unsigned Occ = ++FactorOccurrences[Factor];
   1200           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1201         }
   1202     }
   1203   }
   1204 
   1205   // If any factor occurred more than one time, we can pull it out.
   1206   if (MaxOcc > 1) {
   1207     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1208     ++NumFactor;
   1209 
   1210     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1211     // this, we could otherwise run into situations where removing a factor
   1212     // from an expression will drop a use of maxocc, and this can cause
   1213     // RemoveFactorFromExpression on successive values to behave differently.
   1214     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
   1215     SmallVector<WeakVH, 4> NewMulOps;
   1216     for (unsigned i = 0; i != Ops.size(); ++i) {
   1217       // Only try to remove factors from expressions we're allowed to.
   1218       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1219       if (!BOp)
   1220         continue;
   1221 
   1222       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1223         // The factorized operand may occur several times.  Convert them all in
   1224         // one fell swoop.
   1225         for (unsigned j = Ops.size(); j != i;) {
   1226           --j;
   1227           if (Ops[j].Op == Ops[i].Op) {
   1228             NewMulOps.push_back(V);
   1229             Ops.erase(Ops.begin()+j);
   1230           }
   1231         }
   1232         --i;
   1233       }
   1234     }
   1235 
   1236     // No need for extra uses anymore.
   1237     delete DummyInst;
   1238 
   1239     unsigned NumAddedValues = NewMulOps.size();
   1240     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1241 
   1242     // Now that we have inserted the add tree, optimize it. This allows us to
   1243     // handle cases that require multiple factoring steps, such as this:
   1244     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1245     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1246     (void)NumAddedValues;
   1247     if (Instruction *VI = dyn_cast<Instruction>(V))
   1248       RedoInsts.insert(VI);
   1249 
   1250     // Create the multiply.
   1251     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
   1252 
   1253     // Rerun associate on the multiply in case the inner expression turned into
   1254     // a multiply.  We want to make sure that we keep things in canonical form.
   1255     RedoInsts.insert(V2);
   1256 
   1257     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1258     // entire result expression is just the multiply "A*(B+C)".
   1259     if (Ops.empty())
   1260       return V2;
   1261 
   1262     // Otherwise, we had some input that didn't have the factor, such as
   1263     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1264     // things being added by this operation.
   1265     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1266   }
   1267 
   1268   return 0;
   1269 }
   1270 
   1271 namespace {
   1272   /// \brief Predicate tests whether a ValueEntry's op is in a map.
   1273   struct IsValueInMap {
   1274     const DenseMap<Value *, unsigned> &Map;
   1275 
   1276     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
   1277 
   1278     bool operator()(const ValueEntry &Entry) {
   1279       return Map.find(Entry.Op) != Map.end();
   1280     }
   1281   };
   1282 }
   1283 
   1284 /// \brief Build up a vector of value/power pairs factoring a product.
   1285 ///
   1286 /// Given a series of multiplication operands, build a vector of factors and
   1287 /// the powers each is raised to when forming the final product. Sort them in
   1288 /// the order of descending power.
   1289 ///
   1290 ///      (x*x)          -> [(x, 2)]
   1291 ///     ((x*x)*x)       -> [(x, 3)]
   1292 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1293 ///
   1294 /// \returns Whether any factors have a power greater than one.
   1295 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1296                                          SmallVectorImpl<Factor> &Factors) {
   1297   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1298   // Compute the sum of powers of simplifiable factors.
   1299   unsigned FactorPowerSum = 0;
   1300   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1301     Value *Op = Ops[Idx-1].Op;
   1302 
   1303     // Count the number of occurrences of this value.
   1304     unsigned Count = 1;
   1305     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1306       ++Count;
   1307     // Track for simplification all factors which occur 2 or more times.
   1308     if (Count > 1)
   1309       FactorPowerSum += Count;
   1310   }
   1311 
   1312   // We can only simplify factors if the sum of the powers of our simplifiable
   1313   // factors is 4 or higher. When that is the case, we will *always* have
   1314   // a simplification. This is an important invariant to prevent cyclicly
   1315   // trying to simplify already minimal formations.
   1316   if (FactorPowerSum < 4)
   1317     return false;
   1318 
   1319   // Now gather the simplifiable factors, removing them from Ops.
   1320   FactorPowerSum = 0;
   1321   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1322     Value *Op = Ops[Idx-1].Op;
   1323 
   1324     // Count the number of occurrences of this value.
   1325     unsigned Count = 1;
   1326     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1327       ++Count;
   1328     if (Count == 1)
   1329       continue;
   1330     // Move an even number of occurrences to Factors.
   1331     Count &= ~1U;
   1332     Idx -= Count;
   1333     FactorPowerSum += Count;
   1334     Factors.push_back(Factor(Op, Count));
   1335     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1336   }
   1337 
   1338   // None of the adjustments above should have reduced the sum of factor powers
   1339   // below our mininum of '4'.
   1340   assert(FactorPowerSum >= 4);
   1341 
   1342   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1343   return true;
   1344 }
   1345 
   1346 /// \brief Build a tree of multiplies, computing the product of Ops.
   1347 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1348                                 SmallVectorImpl<Value*> &Ops) {
   1349   if (Ops.size() == 1)
   1350     return Ops.back();
   1351 
   1352   Value *LHS = Ops.pop_back_val();
   1353   do {
   1354     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1355   } while (!Ops.empty());
   1356 
   1357   return LHS;
   1358 }
   1359 
   1360 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1361 ///
   1362 /// Given a vector of values raised to various powers, where no two values are
   1363 /// equal and the powers are sorted in decreasing order, compute the minimal
   1364 /// DAG of multiplies to compute the final product, and return that product
   1365 /// value.
   1366 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1367                                             SmallVectorImpl<Factor> &Factors) {
   1368   assert(Factors[0].Power);
   1369   SmallVector<Value *, 4> OuterProduct;
   1370   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1371        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1372     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1373       LastIdx = Idx;
   1374       continue;
   1375     }
   1376 
   1377     // We want to multiply across all the factors with the same power so that
   1378     // we can raise them to that power as a single entity. Build a mini tree
   1379     // for that.
   1380     SmallVector<Value *, 4> InnerProduct;
   1381     InnerProduct.push_back(Factors[LastIdx].Base);
   1382     do {
   1383       InnerProduct.push_back(Factors[Idx].Base);
   1384       ++Idx;
   1385     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1386 
   1387     // Reset the base value of the first factor to the new expression tree.
   1388     // We'll remove all the factors with the same power in a second pass.
   1389     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1390     if (Instruction *MI = dyn_cast<Instruction>(M))
   1391       RedoInsts.insert(MI);
   1392 
   1393     LastIdx = Idx;
   1394   }
   1395   // Unique factors with equal powers -- we've folded them into the first one's
   1396   // base.
   1397   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1398                             Factor::PowerEqual()),
   1399                 Factors.end());
   1400 
   1401   // Iteratively collect the base of each factor with an add power into the
   1402   // outer product, and halve each power in preparation for squaring the
   1403   // expression.
   1404   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1405     if (Factors[Idx].Power & 1)
   1406       OuterProduct.push_back(Factors[Idx].Base);
   1407     Factors[Idx].Power >>= 1;
   1408   }
   1409   if (Factors[0].Power) {
   1410     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1411     OuterProduct.push_back(SquareRoot);
   1412     OuterProduct.push_back(SquareRoot);
   1413   }
   1414   if (OuterProduct.size() == 1)
   1415     return OuterProduct.front();
   1416 
   1417   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1418   return V;
   1419 }
   1420 
   1421 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1422                                 SmallVectorImpl<ValueEntry> &Ops) {
   1423   // We can only optimize the multiplies when there is a chain of more than
   1424   // three, such that a balanced tree might require fewer total multiplies.
   1425   if (Ops.size() < 4)
   1426     return 0;
   1427 
   1428   // Try to turn linear trees of multiplies without other uses of the
   1429   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1430   // re-use.
   1431   SmallVector<Factor, 4> Factors;
   1432   if (!collectMultiplyFactors(Ops, Factors))
   1433     return 0; // All distinct factors, so nothing left for us to do.
   1434 
   1435   IRBuilder<> Builder(I);
   1436   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1437   if (Ops.empty())
   1438     return V;
   1439 
   1440   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1441   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1442   return 0;
   1443 }
   1444 
   1445 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1446                                        SmallVectorImpl<ValueEntry> &Ops) {
   1447   // Now that we have the linearized expression tree, try to optimize it.
   1448   // Start by folding any constants that we found.
   1449   if (Ops.size() == 1) return Ops[0].Op;
   1450 
   1451   unsigned Opcode = I->getOpcode();
   1452 
   1453   // Handle destructive annihilation due to identities between elements in the
   1454   // argument list here.
   1455   unsigned NumOps = Ops.size();
   1456   switch (Opcode) {
   1457   default: break;
   1458   case Instruction::And:
   1459   case Instruction::Or:
   1460   case Instruction::Xor:
   1461     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1462       return Result;
   1463     break;
   1464 
   1465   case Instruction::Add:
   1466     if (Value *Result = OptimizeAdd(I, Ops))
   1467       return Result;
   1468     break;
   1469 
   1470   case Instruction::Mul:
   1471     if (Value *Result = OptimizeMul(I, Ops))
   1472       return Result;
   1473     break;
   1474   }
   1475 
   1476   if (Ops.size() != NumOps)
   1477     return OptimizeExpression(I, Ops);
   1478   return 0;
   1479 }
   1480 
   1481 /// EraseInst - Zap the given instruction, adding interesting operands to the
   1482 /// work list.
   1483 void Reassociate::EraseInst(Instruction *I) {
   1484   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1485   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1486   // Erase the dead instruction.
   1487   ValueRankMap.erase(I);
   1488   RedoInsts.remove(I);
   1489   I->eraseFromParent();
   1490   // Optimize its operands.
   1491   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1492   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1493     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1494       // If this is a node in an expression tree, climb to the expression root
   1495       // and add that since that's where optimization actually happens.
   1496       unsigned Opcode = Op->getOpcode();
   1497       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
   1498              Visited.insert(Op))
   1499         Op = Op->use_back();
   1500       RedoInsts.insert(Op);
   1501     }
   1502 }
   1503 
   1504 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
   1505 /// instructions is not allowed.
   1506 void Reassociate::OptimizeInst(Instruction *I) {
   1507   // Only consider operations that we understand.
   1508   if (!isa<BinaryOperator>(I))
   1509     return;
   1510 
   1511   if (I->getOpcode() == Instruction::Shl &&
   1512       isa<ConstantInt>(I->getOperand(1)))
   1513     // If an operand of this shift is a reassociable multiply, or if the shift
   1514     // is used by a reassociable multiply or add, turn into a multiply.
   1515     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   1516         (I->hasOneUse() &&
   1517          (isReassociableOp(I->use_back(), Instruction::Mul) ||
   1518           isReassociableOp(I->use_back(), Instruction::Add)))) {
   1519       Instruction *NI = ConvertShiftToMul(I);
   1520       RedoInsts.insert(I);
   1521       MadeChange = true;
   1522       I = NI;
   1523     }
   1524 
   1525   // Floating point binary operators are not associative, but we can still
   1526   // commute (some) of them, to canonicalize the order of their operands.
   1527   // This can potentially expose more CSE opportunities, and makes writing
   1528   // other transformations simpler.
   1529   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
   1530     // FAdd and FMul can be commuted.
   1531     if (I->getOpcode() != Instruction::FMul &&
   1532         I->getOpcode() != Instruction::FAdd)
   1533       return;
   1534 
   1535     Value *LHS = I->getOperand(0);
   1536     Value *RHS = I->getOperand(1);
   1537     unsigned LHSRank = getRank(LHS);
   1538     unsigned RHSRank = getRank(RHS);
   1539 
   1540     // Sort the operands by rank.
   1541     if (RHSRank < LHSRank) {
   1542       I->setOperand(0, RHS);
   1543       I->setOperand(1, LHS);
   1544     }
   1545 
   1546     return;
   1547   }
   1548 
   1549   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   1550   // original order of evaluation for short-circuited comparisons that
   1551   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   1552   // is not further optimized, it is likely to be transformed back to a
   1553   // short-circuited form for code gen, and the source order may have been
   1554   // optimized for the most likely conditions.
   1555   if (I->getType()->isIntegerTy(1))
   1556     return;
   1557 
   1558   // If this is a subtract instruction which is not already in negate form,
   1559   // see if we can convert it to X+-Y.
   1560   if (I->getOpcode() == Instruction::Sub) {
   1561     if (ShouldBreakUpSubtract(I)) {
   1562       Instruction *NI = BreakUpSubtract(I);
   1563       RedoInsts.insert(I);
   1564       MadeChange = true;
   1565       I = NI;
   1566     } else if (BinaryOperator::isNeg(I)) {
   1567       // Otherwise, this is a negation.  See if the operand is a multiply tree
   1568       // and if this is not an inner node of a multiply tree.
   1569       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   1570           (!I->hasOneUse() ||
   1571            !isReassociableOp(I->use_back(), Instruction::Mul))) {
   1572         Instruction *NI = LowerNegateToMultiply(I);
   1573         RedoInsts.insert(I);
   1574         MadeChange = true;
   1575         I = NI;
   1576       }
   1577     }
   1578   }
   1579 
   1580   // If this instruction is an associative binary operator, process it.
   1581   if (!I->isAssociative()) return;
   1582   BinaryOperator *BO = cast<BinaryOperator>(I);
   1583 
   1584   // If this is an interior node of a reassociable tree, ignore it until we
   1585   // get to the root of the tree, to avoid N^2 analysis.
   1586   unsigned Opcode = BO->getOpcode();
   1587   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
   1588     return;
   1589 
   1590   // If this is an add tree that is used by a sub instruction, ignore it
   1591   // until we process the subtract.
   1592   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   1593       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
   1594     return;
   1595 
   1596   ReassociateExpression(BO);
   1597 }
   1598 
   1599 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   1600 
   1601   // First, walk the expression tree, linearizing the tree, collecting the
   1602   // operand information.
   1603   SmallVector<RepeatedValue, 8> Tree;
   1604   MadeChange |= LinearizeExprTree(I, Tree);
   1605   SmallVector<ValueEntry, 8> Ops;
   1606   Ops.reserve(Tree.size());
   1607   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1608     RepeatedValue E = Tree[i];
   1609     Ops.append(E.second.getZExtValue(),
   1610                ValueEntry(getRank(E.first), E.first));
   1611   }
   1612 
   1613   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1614 
   1615   // Now that we have linearized the tree to a list and have gathered all of
   1616   // the operands and their ranks, sort the operands by their rank.  Use a
   1617   // stable_sort so that values with equal ranks will have their relative
   1618   // positions maintained (and so the compiler is deterministic).  Note that
   1619   // this sorts so that the highest ranking values end up at the beginning of
   1620   // the vector.
   1621   std::stable_sort(Ops.begin(), Ops.end());
   1622 
   1623   // OptimizeExpression - Now that we have the expression tree in a convenient
   1624   // sorted form, optimize it globally if possible.
   1625   if (Value *V = OptimizeExpression(I, Ops)) {
   1626     if (V == I)
   1627       // Self-referential expression in unreachable code.
   1628       return;
   1629     // This expression tree simplified to something that isn't a tree,
   1630     // eliminate it.
   1631     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   1632     I->replaceAllUsesWith(V);
   1633     if (Instruction *VI = dyn_cast<Instruction>(V))
   1634       VI->setDebugLoc(I->getDebugLoc());
   1635     RedoInsts.insert(I);
   1636     ++NumAnnihil;
   1637     return;
   1638   }
   1639 
   1640   // We want to sink immediates as deeply as possible except in the case where
   1641   // this is a multiply tree used only by an add, and the immediate is a -1.
   1642   // In this case we reassociate to put the negation on the outside so that we
   1643   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   1644   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
   1645       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
   1646       isa<ConstantInt>(Ops.back().Op) &&
   1647       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   1648     ValueEntry Tmp = Ops.pop_back_val();
   1649     Ops.insert(Ops.begin(), Tmp);
   1650   }
   1651 
   1652   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1653 
   1654   if (Ops.size() == 1) {
   1655     if (Ops[0].Op == I)
   1656       // Self-referential expression in unreachable code.
   1657       return;
   1658 
   1659     // This expression tree simplified to something that isn't a tree,
   1660     // eliminate it.
   1661     I->replaceAllUsesWith(Ops[0].Op);
   1662     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   1663       OI->setDebugLoc(I->getDebugLoc());
   1664     RedoInsts.insert(I);
   1665     return;
   1666   }
   1667 
   1668   // Now that we ordered and optimized the expressions, splat them back into
   1669   // the expression tree, removing any unneeded nodes.
   1670   RewriteExprTree(I, Ops);
   1671 }
   1672 
   1673 bool Reassociate::runOnFunction(Function &F) {
   1674   // Calculate the rank map for F
   1675   BuildRankMap(F);
   1676 
   1677   MadeChange = false;
   1678   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1679     // Optimize every instruction in the basic block.
   1680     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   1681       if (isInstructionTriviallyDead(II)) {
   1682         EraseInst(II++);
   1683       } else {
   1684         OptimizeInst(II);
   1685         assert(II->getParent() == BI && "Moved to a different block!");
   1686         ++II;
   1687       }
   1688 
   1689     // If this produced extra instructions to optimize, handle them now.
   1690     while (!RedoInsts.empty()) {
   1691       Instruction *I = RedoInsts.pop_back_val();
   1692       if (isInstructionTriviallyDead(I))
   1693         EraseInst(I);
   1694       else
   1695         OptimizeInst(I);
   1696     }
   1697   }
   1698 
   1699   // We are done with the rank map.
   1700   RankMap.clear();
   1701   ValueRankMap.clear();
   1702 
   1703   return MadeChange;
   1704 }
   1705