1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #define DEBUG_TYPE "reassociate" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include "llvm/Constants.h" 27 #include "llvm/DerivedTypes.h" 28 #include "llvm/Function.h" 29 #include "llvm/IRBuilder.h" 30 #include "llvm/Instructions.h" 31 #include "llvm/IntrinsicInst.h" 32 #include "llvm/Pass.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Assembly/Writer.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ValueHandle.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 WriteAsOperand(dbgs(), Ops[i].Op, false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 } 114 115 namespace { 116 class Reassociate : public FunctionPass { 117 DenseMap<BasicBlock*, unsigned> RankMap; 118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 119 SetVector<AssertingVH<Instruction> > RedoInsts; 120 bool MadeChange; 121 public: 122 static char ID; // Pass identification, replacement for typeid 123 Reassociate() : FunctionPass(ID) { 124 initializeReassociatePass(*PassRegistry::getPassRegistry()); 125 } 126 127 bool runOnFunction(Function &F); 128 129 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 130 AU.setPreservesCFG(); 131 } 132 private: 133 void BuildRankMap(Function &F); 134 unsigned getRank(Value *V); 135 void ReassociateExpression(BinaryOperator *I); 136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 137 Value *OptimizeExpression(BinaryOperator *I, 138 SmallVectorImpl<ValueEntry> &Ops); 139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 141 SmallVectorImpl<Factor> &Factors); 142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 143 SmallVectorImpl<Factor> &Factors); 144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 145 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 146 void EraseInst(Instruction *I); 147 void OptimizeInst(Instruction *I); 148 }; 149 } 150 151 char Reassociate::ID = 0; 152 INITIALIZE_PASS(Reassociate, "reassociate", 153 "Reassociate expressions", false, false) 154 155 // Public interface to the Reassociate pass 156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 157 158 /// isReassociableOp - Return true if V is an instruction of the specified 159 /// opcode and if it only has one use. 160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 161 if (V->hasOneUse() && isa<Instruction>(V) && 162 cast<Instruction>(V)->getOpcode() == Opcode) 163 return cast<BinaryOperator>(V); 164 return 0; 165 } 166 167 static bool isUnmovableInstruction(Instruction *I) { 168 if (I->getOpcode() == Instruction::PHI || 169 I->getOpcode() == Instruction::LandingPad || 170 I->getOpcode() == Instruction::Alloca || 171 I->getOpcode() == Instruction::Load || 172 I->getOpcode() == Instruction::Invoke || 173 (I->getOpcode() == Instruction::Call && 174 !isa<DbgInfoIntrinsic>(I)) || 175 I->getOpcode() == Instruction::UDiv || 176 I->getOpcode() == Instruction::SDiv || 177 I->getOpcode() == Instruction::FDiv || 178 I->getOpcode() == Instruction::URem || 179 I->getOpcode() == Instruction::SRem || 180 I->getOpcode() == Instruction::FRem) 181 return true; 182 return false; 183 } 184 185 void Reassociate::BuildRankMap(Function &F) { 186 unsigned i = 2; 187 188 // Assign distinct ranks to function arguments 189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 190 ValueRankMap[&*I] = ++i; 191 192 ReversePostOrderTraversal<Function*> RPOT(&F); 193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 194 E = RPOT.end(); I != E; ++I) { 195 BasicBlock *BB = *I; 196 unsigned BBRank = RankMap[BB] = ++i << 16; 197 198 // Walk the basic block, adding precomputed ranks for any instructions that 199 // we cannot move. This ensures that the ranks for these instructions are 200 // all different in the block. 201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 202 if (isUnmovableInstruction(I)) 203 ValueRankMap[&*I] = ++BBRank; 204 } 205 } 206 207 unsigned Reassociate::getRank(Value *V) { 208 Instruction *I = dyn_cast<Instruction>(V); 209 if (I == 0) { 210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 211 return 0; // Otherwise it's a global or constant, rank 0. 212 } 213 214 if (unsigned Rank = ValueRankMap[I]) 215 return Rank; // Rank already known? 216 217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 218 // we can reassociate expressions for code motion! Since we do not recurse 219 // for PHI nodes, we cannot have infinite recursion here, because there 220 // cannot be loops in the value graph that do not go through PHI nodes. 221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 222 for (unsigned i = 0, e = I->getNumOperands(); 223 i != e && Rank != MaxRank; ++i) 224 Rank = std::max(Rank, getRank(I->getOperand(i))); 225 226 // If this is a not or neg instruction, do not count it for rank. This 227 // assures us that X and ~X will have the same rank. 228 if (!I->getType()->isIntegerTy() || 229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) 230 ++Rank; 231 232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 233 // << Rank << "\n"); 234 235 return ValueRankMap[I] = Rank; 236 } 237 238 /// LowerNegateToMultiply - Replace 0-X with X*-1. 239 /// 240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 241 Constant *Cst = Constant::getAllOnesValue(Neg->getType()); 242 243 BinaryOperator *Res = 244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); 245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. 246 Res->takeName(Neg); 247 Neg->replaceAllUsesWith(Res); 248 Res->setDebugLoc(Neg->getDebugLoc()); 249 return Res; 250 } 251 252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 256 /// even x in Bitwidth-bit arithmetic. 257 static unsigned CarmichaelShift(unsigned Bitwidth) { 258 if (Bitwidth < 3) 259 return Bitwidth - 1; 260 return Bitwidth - 2; 261 } 262 263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 264 /// reducing the combined weight using any special properties of the operation. 265 /// The existing weight LHS represents the computation X op X op ... op X where 266 /// X occurs LHS times. The combined weight represents X op X op ... op X with 267 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 271 // If we were working with infinite precision arithmetic then the combined 272 // weight would be LHS + RHS. But we are using finite precision arithmetic, 273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 274 // for nilpotent operations and addition, but not for idempotent operations 275 // and multiplication), so it is important to correctly reduce the combined 276 // weight back into range if wrapping would be wrong. 277 278 // If RHS is zero then the weight didn't change. 279 if (RHS.isMinValue()) 280 return; 281 // If LHS is zero then the combined weight is RHS. 282 if (LHS.isMinValue()) { 283 LHS = RHS; 284 return; 285 } 286 // From this point on we know that neither LHS nor RHS is zero. 287 288 if (Instruction::isIdempotent(Opcode)) { 289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 290 // weight of 1. Keeping weights at zero or one also means that wrapping is 291 // not a problem. 292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 293 return; // Return a weight of 1. 294 } 295 if (Instruction::isNilpotent(Opcode)) { 296 // Nilpotent means X op X === 0, so reduce weights modulo 2. 297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 298 LHS = 0; // 1 + 1 === 0 modulo 2. 299 return; 300 } 301 if (Opcode == Instruction::Add) { 302 // TODO: Reduce the weight by exploiting nsw/nuw? 303 LHS += RHS; 304 return; 305 } 306 307 assert(Opcode == Instruction::Mul && "Unknown associative operation!"); 308 unsigned Bitwidth = LHS.getBitWidth(); 309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 314 // which by a happy accident means that they can always be represented using 315 // Bitwidth bits. 316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 317 // the Carmichael number). 318 if (Bitwidth > 3) { 319 /// CM - The value of Carmichael's lambda function. 320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 321 // Any weight W >= Threshold can be replaced with W - CM. 322 APInt Threshold = CM + Bitwidth; 323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 324 // For Bitwidth 4 or more the following sum does not overflow. 325 LHS += RHS; 326 while (LHS.uge(Threshold)) 327 LHS -= CM; 328 } else { 329 // To avoid problems with overflow do everything the same as above but using 330 // a larger type. 331 unsigned CM = 1U << CarmichaelShift(Bitwidth); 332 unsigned Threshold = CM + Bitwidth; 333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 334 "Weights not reduced!"); 335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 336 while (Total >= Threshold) 337 Total -= CM; 338 LHS = Total; 339 } 340 } 341 342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C 343 /// is repeated Weight times. 344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C, 345 APInt Weight) { 346 // For addition the result can be efficiently computed as the product of the 347 // constant and the weight. 348 if (Opcode == Instruction::Add) 349 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight)); 350 351 // The weight might be huge, so compute by repeated squaring to ensure that 352 // compile time is proportional to the logarithm of the weight. 353 Constant *Result = 0; 354 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc. 355 // Visit the bits in Weight. 356 while (Weight != 0) { 357 // If the current bit in Weight is non-zero do Result = Result op Power. 358 if (Weight[0]) 359 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power; 360 // Move on to the next bit if any more are non-zero. 361 Weight = Weight.lshr(1); 362 if (Weight.isMinValue()) 363 break; 364 // Square the power. 365 Power = ConstantExpr::get(Opcode, Power, Power); 366 } 367 368 assert(Result && "Only positive weights supported!"); 369 return Result; 370 } 371 372 typedef std::pair<Value*, APInt> RepeatedValue; 373 374 /// LinearizeExprTree - Given an associative binary expression, return the leaf 375 /// nodes in Ops along with their weights (how many times the leaf occurs). The 376 /// original expression is the same as 377 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 378 /// op 379 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 380 /// op 381 /// ... 382 /// op 383 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 384 /// 385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and 386 /// they are all non-constant except possibly for the last one, which if it is 387 /// constant will have weight one (Ops[N].second === 1). 388 /// 389 /// This routine may modify the function, in which case it returns 'true'. The 390 /// changes it makes may well be destructive, changing the value computed by 'I' 391 /// to something completely different. Thus if the routine returns 'true' then 392 /// you MUST either replace I with a new expression computed from the Ops array, 393 /// or use RewriteExprTree to put the values back in. 394 /// 395 /// A leaf node is either not a binary operation of the same kind as the root 396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 397 /// opcode), or is the same kind of binary operator but has a use which either 398 /// does not belong to the expression, or does belong to the expression but is 399 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 400 /// of the expression, while for non-leaf nodes (except for the root 'I') every 401 /// use is a non-leaf node of the expression. 402 /// 403 /// For example: 404 /// expression graph node names 405 /// 406 /// + | I 407 /// / \ | 408 /// + + | A, B 409 /// / \ / \ | 410 /// * + * | C, D, E 411 /// / \ / \ / \ | 412 /// + * | F, G 413 /// 414 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 416 /// 417 /// The expression is maximal: if some instruction is a binary operator of the 418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 419 /// then the instruction also belongs to the expression, is not a leaf node of 420 /// it, and its operands also belong to the expression (but may be leaf nodes). 421 /// 422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 423 /// order to ensure that every non-root node in the expression has *exactly one* 424 /// use by a non-leaf node of the expression. This destruction means that the 425 /// caller MUST either replace 'I' with a new expression or use something like 426 /// RewriteExprTree to put the values back in if the routine indicates that it 427 /// made a change by returning 'true'. 428 /// 429 /// In the above example either the right operand of A or the left operand of B 430 /// will be replaced by undef. If it is B's operand then this gives: 431 /// 432 /// + | I 433 /// / \ | 434 /// + + | A, B - operand of B replaced with undef 435 /// / \ \ | 436 /// * + * | C, D, E 437 /// / \ / \ / \ | 438 /// + * | F, G 439 /// 440 /// Note that such undef operands can only be reached by passing through 'I'. 441 /// For example, if you visit operands recursively starting from a leaf node 442 /// then you will never see such an undef operand unless you get back to 'I', 443 /// which requires passing through a phi node. 444 /// 445 /// Note that this routine may also mutate binary operators of the wrong type 446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 447 /// of the expression) if it can turn them into binary operators of the right 448 /// type and thus make the expression bigger. 449 450 static bool LinearizeExprTree(BinaryOperator *I, 451 SmallVectorImpl<RepeatedValue> &Ops) { 452 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 453 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 454 unsigned Opcode = I->getOpcode(); 455 assert(Instruction::isAssociative(Opcode) && 456 Instruction::isCommutative(Opcode) && 457 "Expected an associative and commutative operation!"); 458 // If we see an absorbing element then the entire expression must be equal to 459 // it. For example, if this is a multiplication expression and zero occurs as 460 // an operand somewhere in it then the result of the expression must be zero. 461 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 462 463 // Visit all operands of the expression, keeping track of their weight (the 464 // number of paths from the expression root to the operand, or if you like 465 // the number of times that operand occurs in the linearized expression). 466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 467 // while A has weight two. 468 469 // Worklist of non-leaf nodes (their operands are in the expression too) along 470 // with their weights, representing a certain number of paths to the operator. 471 // If an operator occurs in the worklist multiple times then we found multiple 472 // ways to get to it. 473 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 475 bool MadeChange = false; 476 477 // Leaves of the expression are values that either aren't the right kind of 478 // operation (eg: a constant, or a multiply in an add tree), or are, but have 479 // some uses that are not inside the expression. For example, in I = X + X, 480 // X = A + B, the value X has two uses (by I) that are in the expression. If 481 // X has any other uses, for example in a return instruction, then we consider 482 // X to be a leaf, and won't analyze it further. When we first visit a value, 483 // if it has more than one use then at first we conservatively consider it to 484 // be a leaf. Later, as the expression is explored, we may discover some more 485 // uses of the value from inside the expression. If all uses turn out to be 486 // from within the expression (and the value is a binary operator of the right 487 // kind) then the value is no longer considered to be a leaf, and its operands 488 // are explored. 489 490 // Leaves - Keeps track of the set of putative leaves as well as the number of 491 // paths to each leaf seen so far. 492 typedef DenseMap<Value*, APInt> LeafMap; 493 LeafMap Leaves; // Leaf -> Total weight so far. 494 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 495 496 #ifndef NDEBUG 497 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 498 #endif 499 while (!Worklist.empty()) { 500 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 501 I = P.first; // We examine the operands of this binary operator. 502 503 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 504 Value *Op = I->getOperand(OpIdx); 505 APInt Weight = P.second; // Number of paths to this operand. 506 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 507 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 508 509 // If the expression contains an absorbing element then there is no need 510 // to analyze it further: it must evaluate to the absorbing element. 511 if (Op == Absorber && !Weight.isMinValue()) { 512 Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1))); 513 return MadeChange; 514 } 515 516 // If this is a binary operation of the right kind with only one use then 517 // add its operands to the expression. 518 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 519 assert(Visited.insert(Op) && "Not first visit!"); 520 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 521 Worklist.push_back(std::make_pair(BO, Weight)); 522 continue; 523 } 524 525 // Appears to be a leaf. Is the operand already in the set of leaves? 526 LeafMap::iterator It = Leaves.find(Op); 527 if (It == Leaves.end()) { 528 // Not in the leaf map. Must be the first time we saw this operand. 529 assert(Visited.insert(Op) && "Not first visit!"); 530 if (!Op->hasOneUse()) { 531 // This value has uses not accounted for by the expression, so it is 532 // not safe to modify. Mark it as being a leaf. 533 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 534 LeafOrder.push_back(Op); 535 Leaves[Op] = Weight; 536 continue; 537 } 538 // No uses outside the expression, try morphing it. 539 } else if (It != Leaves.end()) { 540 // Already in the leaf map. 541 assert(Visited.count(Op) && "In leaf map but not visited!"); 542 543 // Update the number of paths to the leaf. 544 IncorporateWeight(It->second, Weight, Opcode); 545 546 #if 0 // TODO: Re-enable once PR13021 is fixed. 547 // The leaf already has one use from inside the expression. As we want 548 // exactly one such use, drop this new use of the leaf. 549 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 550 I->setOperand(OpIdx, UndefValue::get(I->getType())); 551 MadeChange = true; 552 553 // If the leaf is a binary operation of the right kind and we now see 554 // that its multiple original uses were in fact all by nodes belonging 555 // to the expression, then no longer consider it to be a leaf and add 556 // its operands to the expression. 557 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 558 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 559 Worklist.push_back(std::make_pair(BO, It->second)); 560 Leaves.erase(It); 561 continue; 562 } 563 #endif 564 565 // If we still have uses that are not accounted for by the expression 566 // then it is not safe to modify the value. 567 if (!Op->hasOneUse()) 568 continue; 569 570 // No uses outside the expression, try morphing it. 571 Weight = It->second; 572 Leaves.erase(It); // Since the value may be morphed below. 573 } 574 575 // At this point we have a value which, first of all, is not a binary 576 // expression of the right kind, and secondly, is only used inside the 577 // expression. This means that it can safely be modified. See if we 578 // can usefully morph it into an expression of the right kind. 579 assert((!isa<Instruction>(Op) || 580 cast<Instruction>(Op)->getOpcode() != Opcode) && 581 "Should have been handled above!"); 582 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 583 584 // If this is a multiply expression, turn any internal negations into 585 // multiplies by -1 so they can be reassociated. 586 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); 587 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { 588 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 589 BO = LowerNegateToMultiply(BO); 590 DEBUG(dbgs() << *BO << 'n'); 591 Worklist.push_back(std::make_pair(BO, Weight)); 592 MadeChange = true; 593 continue; 594 } 595 596 // Failed to morph into an expression of the right type. This really is 597 // a leaf. 598 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 599 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 600 LeafOrder.push_back(Op); 601 Leaves[Op] = Weight; 602 } 603 } 604 605 // The leaves, repeated according to their weights, represent the linearized 606 // form of the expression. 607 Constant *Cst = 0; // Accumulate constants here. 608 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 609 Value *V = LeafOrder[i]; 610 LeafMap::iterator It = Leaves.find(V); 611 if (It == Leaves.end()) 612 // Node initially thought to be a leaf wasn't. 613 continue; 614 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 615 APInt Weight = It->second; 616 if (Weight.isMinValue()) 617 // Leaf already output or weight reduction eliminated it. 618 continue; 619 // Ensure the leaf is only output once. 620 It->second = 0; 621 // Glob all constants together into Cst. 622 if (Constant *C = dyn_cast<Constant>(V)) { 623 C = EvaluateRepeatedConstant(Opcode, C, Weight); 624 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C; 625 continue; 626 } 627 // Add non-constant 628 Ops.push_back(std::make_pair(V, Weight)); 629 } 630 631 // Add any constants back into Ops, all globbed together and reduced to having 632 // weight 1 for the convenience of users. 633 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 634 if (Cst && Cst != Identity) { 635 // If combining multiple constants resulted in the absorber then the entire 636 // expression must evaluate to the absorber. 637 if (Cst == Absorber) 638 Ops.clear(); 639 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1))); 640 } 641 642 // For nilpotent operations or addition there may be no operands, for example 643 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 644 // in both cases the weight reduces to 0 causing the value to be skipped. 645 if (Ops.empty()) { 646 assert(Identity && "Associative operation without identity!"); 647 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 648 } 649 650 return MadeChange; 651 } 652 653 // RewriteExprTree - Now that the operands for this expression tree are 654 // linearized and optimized, emit them in-order. 655 void Reassociate::RewriteExprTree(BinaryOperator *I, 656 SmallVectorImpl<ValueEntry> &Ops) { 657 assert(Ops.size() > 1 && "Single values should be used directly!"); 658 659 // Since our optimizations never increase the number of operations, the new 660 // expression can always be written by reusing the existing binary operators 661 // from the original expression tree, without creating any new instructions, 662 // though the rewritten expression may have a completely different topology. 663 // We take care to not change anything if the new expression will be the same 664 // as the original. If more than trivial changes (like commuting operands) 665 // were made then we are obliged to clear out any optional subclass data like 666 // nsw flags. 667 668 /// NodesToRewrite - Nodes from the original expression available for writing 669 /// the new expression into. 670 SmallVector<BinaryOperator*, 8> NodesToRewrite; 671 unsigned Opcode = I->getOpcode(); 672 BinaryOperator *Op = I; 673 674 // ExpressionChanged - Non-null if the rewritten expression differs from the 675 // original in some non-trivial way, requiring the clearing of optional flags. 676 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 677 BinaryOperator *ExpressionChanged = 0; 678 for (unsigned i = 0; ; ++i) { 679 // The last operation (which comes earliest in the IR) is special as both 680 // operands will come from Ops, rather than just one with the other being 681 // a subexpression. 682 if (i+2 == Ops.size()) { 683 Value *NewLHS = Ops[i].Op; 684 Value *NewRHS = Ops[i+1].Op; 685 Value *OldLHS = Op->getOperand(0); 686 Value *OldRHS = Op->getOperand(1); 687 688 if (NewLHS == OldLHS && NewRHS == OldRHS) 689 // Nothing changed, leave it alone. 690 break; 691 692 if (NewLHS == OldRHS && NewRHS == OldLHS) { 693 // The order of the operands was reversed. Swap them. 694 DEBUG(dbgs() << "RA: " << *Op << '\n'); 695 Op->swapOperands(); 696 DEBUG(dbgs() << "TO: " << *Op << '\n'); 697 MadeChange = true; 698 ++NumChanged; 699 break; 700 } 701 702 // The new operation differs non-trivially from the original. Overwrite 703 // the old operands with the new ones. 704 DEBUG(dbgs() << "RA: " << *Op << '\n'); 705 if (NewLHS != OldLHS) { 706 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode)) 707 NodesToRewrite.push_back(BO); 708 Op->setOperand(0, NewLHS); 709 } 710 if (NewRHS != OldRHS) { 711 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode)) 712 NodesToRewrite.push_back(BO); 713 Op->setOperand(1, NewRHS); 714 } 715 DEBUG(dbgs() << "TO: " << *Op << '\n'); 716 717 ExpressionChanged = Op; 718 MadeChange = true; 719 ++NumChanged; 720 721 break; 722 } 723 724 // Not the last operation. The left-hand side will be a sub-expression 725 // while the right-hand side will be the current element of Ops. 726 Value *NewRHS = Ops[i].Op; 727 if (NewRHS != Op->getOperand(1)) { 728 DEBUG(dbgs() << "RA: " << *Op << '\n'); 729 if (NewRHS == Op->getOperand(0)) { 730 // The new right-hand side was already present as the left operand. If 731 // we are lucky then swapping the operands will sort out both of them. 732 Op->swapOperands(); 733 } else { 734 // Overwrite with the new right-hand side. 735 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode)) 736 NodesToRewrite.push_back(BO); 737 Op->setOperand(1, NewRHS); 738 ExpressionChanged = Op; 739 } 740 DEBUG(dbgs() << "TO: " << *Op << '\n'); 741 MadeChange = true; 742 ++NumChanged; 743 } 744 745 // Now deal with the left-hand side. If this is already an operation node 746 // from the original expression then just rewrite the rest of the expression 747 // into it. 748 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) { 749 Op = BO; 750 continue; 751 } 752 753 // Otherwise, grab a spare node from the original expression and use that as 754 // the left-hand side. If there are no nodes left then the optimizers made 755 // an expression with more nodes than the original! This usually means that 756 // they did something stupid but it might mean that the problem was just too 757 // hard (finding the mimimal number of multiplications needed to realize a 758 // multiplication expression is NP-complete). Whatever the reason, smart or 759 // stupid, create a new node if there are none left. 760 BinaryOperator *NewOp; 761 if (NodesToRewrite.empty()) { 762 Constant *Undef = UndefValue::get(I->getType()); 763 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 764 Undef, Undef, "", I); 765 } else { 766 NewOp = NodesToRewrite.pop_back_val(); 767 } 768 769 DEBUG(dbgs() << "RA: " << *Op << '\n'); 770 Op->setOperand(0, NewOp); 771 DEBUG(dbgs() << "TO: " << *Op << '\n'); 772 ExpressionChanged = Op; 773 MadeChange = true; 774 ++NumChanged; 775 Op = NewOp; 776 } 777 778 // If the expression changed non-trivially then clear out all subclass data 779 // starting from the operator specified in ExpressionChanged, and compactify 780 // the operators to just before the expression root to guarantee that the 781 // expression tree is dominated by all of Ops. 782 if (ExpressionChanged) 783 do { 784 ExpressionChanged->clearSubclassOptionalData(); 785 if (ExpressionChanged == I) 786 break; 787 ExpressionChanged->moveBefore(I); 788 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin()); 789 } while (1); 790 791 // Throw away any left over nodes from the original expression. 792 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 793 RedoInsts.insert(NodesToRewrite[i]); 794 } 795 796 /// NegateValue - Insert instructions before the instruction pointed to by BI, 797 /// that computes the negative version of the value specified. The negative 798 /// version of the value is returned, and BI is left pointing at the instruction 799 /// that should be processed next by the reassociation pass. 800 static Value *NegateValue(Value *V, Instruction *BI) { 801 if (Constant *C = dyn_cast<Constant>(V)) 802 return ConstantExpr::getNeg(C); 803 804 // We are trying to expose opportunity for reassociation. One of the things 805 // that we want to do to achieve this is to push a negation as deep into an 806 // expression chain as possible, to expose the add instructions. In practice, 807 // this means that we turn this: 808 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 809 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 810 // the constants. We assume that instcombine will clean up the mess later if 811 // we introduce tons of unnecessary negation instructions. 812 // 813 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { 814 // Push the negates through the add. 815 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 816 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 817 818 // We must move the add instruction here, because the neg instructions do 819 // not dominate the old add instruction in general. By moving it, we are 820 // assured that the neg instructions we just inserted dominate the 821 // instruction we are about to insert after them. 822 // 823 I->moveBefore(BI); 824 I->setName(I->getName()+".neg"); 825 return I; 826 } 827 828 // Okay, we need to materialize a negated version of V with an instruction. 829 // Scan the use lists of V to see if we have one already. 830 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ 831 User *U = *UI; 832 if (!BinaryOperator::isNeg(U)) continue; 833 834 // We found one! Now we have to make sure that the definition dominates 835 // this use. We do this by moving it to the entry block (if it is a 836 // non-instruction value) or right after the definition. These negates will 837 // be zapped by reassociate later, so we don't need much finesse here. 838 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 839 840 // Verify that the negate is in this function, V might be a constant expr. 841 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 842 continue; 843 844 BasicBlock::iterator InsertPt; 845 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 846 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 847 InsertPt = II->getNormalDest()->begin(); 848 } else { 849 InsertPt = InstInput; 850 ++InsertPt; 851 } 852 while (isa<PHINode>(InsertPt)) ++InsertPt; 853 } else { 854 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 855 } 856 TheNeg->moveBefore(InsertPt); 857 return TheNeg; 858 } 859 860 // Insert a 'neg' instruction that subtracts the value from zero to get the 861 // negation. 862 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); 863 } 864 865 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 866 /// X-Y into (X + -Y). 867 static bool ShouldBreakUpSubtract(Instruction *Sub) { 868 // If this is a negation, we can't split it up! 869 if (BinaryOperator::isNeg(Sub)) 870 return false; 871 872 // Don't bother to break this up unless either the LHS is an associable add or 873 // subtract or if this is only used by one. 874 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || 875 isReassociableOp(Sub->getOperand(0), Instruction::Sub)) 876 return true; 877 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || 878 isReassociableOp(Sub->getOperand(1), Instruction::Sub)) 879 return true; 880 if (Sub->hasOneUse() && 881 (isReassociableOp(Sub->use_back(), Instruction::Add) || 882 isReassociableOp(Sub->use_back(), Instruction::Sub))) 883 return true; 884 885 return false; 886 } 887 888 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 889 /// only used by an add, transform this into (X+(0-Y)) to promote better 890 /// reassociation. 891 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 892 // Convert a subtract into an add and a neg instruction. This allows sub 893 // instructions to be commuted with other add instructions. 894 // 895 // Calculate the negative value of Operand 1 of the sub instruction, 896 // and set it as the RHS of the add instruction we just made. 897 // 898 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 899 BinaryOperator *New = 900 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); 901 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 902 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 903 New->takeName(Sub); 904 905 // Everyone now refers to the add instruction. 906 Sub->replaceAllUsesWith(New); 907 New->setDebugLoc(Sub->getDebugLoc()); 908 909 DEBUG(dbgs() << "Negated: " << *New << '\n'); 910 return New; 911 } 912 913 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 914 /// by one, change this into a multiply by a constant to assist with further 915 /// reassociation. 916 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 917 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 918 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 919 920 BinaryOperator *Mul = 921 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 922 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 923 Mul->takeName(Shl); 924 Shl->replaceAllUsesWith(Mul); 925 Mul->setDebugLoc(Shl->getDebugLoc()); 926 return Mul; 927 } 928 929 /// FindInOperandList - Scan backwards and forwards among values with the same 930 /// rank as element i to see if X exists. If X does not exist, return i. This 931 /// is useful when scanning for 'x' when we see '-x' because they both get the 932 /// same rank. 933 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 934 Value *X) { 935 unsigned XRank = Ops[i].Rank; 936 unsigned e = Ops.size(); 937 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 938 if (Ops[j].Op == X) 939 return j; 940 // Scan backwards. 941 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 942 if (Ops[j].Op == X) 943 return j; 944 return i; 945 } 946 947 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 948 /// and returning the result. Insert the tree before I. 949 static Value *EmitAddTreeOfValues(Instruction *I, 950 SmallVectorImpl<WeakVH> &Ops){ 951 if (Ops.size() == 1) return Ops.back(); 952 953 Value *V1 = Ops.back(); 954 Ops.pop_back(); 955 Value *V2 = EmitAddTreeOfValues(I, Ops); 956 return BinaryOperator::CreateAdd(V2, V1, "tmp", I); 957 } 958 959 /// RemoveFactorFromExpression - If V is an expression tree that is a 960 /// multiplication sequence, and if this sequence contains a multiply by Factor, 961 /// remove Factor from the tree and return the new tree. 962 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 963 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 964 if (!BO) return 0; 965 966 SmallVector<RepeatedValue, 8> Tree; 967 MadeChange |= LinearizeExprTree(BO, Tree); 968 SmallVector<ValueEntry, 8> Factors; 969 Factors.reserve(Tree.size()); 970 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 971 RepeatedValue E = Tree[i]; 972 Factors.append(E.second.getZExtValue(), 973 ValueEntry(getRank(E.first), E.first)); 974 } 975 976 bool FoundFactor = false; 977 bool NeedsNegate = false; 978 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 979 if (Factors[i].Op == Factor) { 980 FoundFactor = true; 981 Factors.erase(Factors.begin()+i); 982 break; 983 } 984 985 // If this is a negative version of this factor, remove it. 986 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) 987 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 988 if (FC1->getValue() == -FC2->getValue()) { 989 FoundFactor = NeedsNegate = true; 990 Factors.erase(Factors.begin()+i); 991 break; 992 } 993 } 994 995 if (!FoundFactor) { 996 // Make sure to restore the operands to the expression tree. 997 RewriteExprTree(BO, Factors); 998 return 0; 999 } 1000 1001 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1002 1003 // If this was just a single multiply, remove the multiply and return the only 1004 // remaining operand. 1005 if (Factors.size() == 1) { 1006 RedoInsts.insert(BO); 1007 V = Factors[0].Op; 1008 } else { 1009 RewriteExprTree(BO, Factors); 1010 V = BO; 1011 } 1012 1013 if (NeedsNegate) 1014 V = BinaryOperator::CreateNeg(V, "neg", InsertPt); 1015 1016 return V; 1017 } 1018 1019 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1020 /// add its operands as factors, otherwise add V to the list of factors. 1021 /// 1022 /// Ops is the top-level list of add operands we're trying to factor. 1023 static void FindSingleUseMultiplyFactors(Value *V, 1024 SmallVectorImpl<Value*> &Factors, 1025 const SmallVectorImpl<ValueEntry> &Ops) { 1026 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 1027 if (!BO) { 1028 Factors.push_back(V); 1029 return; 1030 } 1031 1032 // Otherwise, add the LHS and RHS to the list of factors. 1033 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1034 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1035 } 1036 1037 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1038 /// instruction. This optimizes based on identities. If it can be reduced to 1039 /// a single Value, it is returned, otherwise the Ops list is mutated as 1040 /// necessary. 1041 static Value *OptimizeAndOrXor(unsigned Opcode, 1042 SmallVectorImpl<ValueEntry> &Ops) { 1043 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1044 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1045 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1046 // First, check for X and ~X in the operand list. 1047 assert(i < Ops.size()); 1048 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1049 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1050 unsigned FoundX = FindInOperandList(Ops, i, X); 1051 if (FoundX != i) { 1052 if (Opcode == Instruction::And) // ...&X&~X = 0 1053 return Constant::getNullValue(X->getType()); 1054 1055 if (Opcode == Instruction::Or) // ...|X|~X = -1 1056 return Constant::getAllOnesValue(X->getType()); 1057 } 1058 } 1059 1060 // Next, check for duplicate pairs of values, which we assume are next to 1061 // each other, due to our sorting criteria. 1062 assert(i < Ops.size()); 1063 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1064 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1065 // Drop duplicate values for And and Or. 1066 Ops.erase(Ops.begin()+i); 1067 --i; --e; 1068 ++NumAnnihil; 1069 continue; 1070 } 1071 1072 // Drop pairs of values for Xor. 1073 assert(Opcode == Instruction::Xor); 1074 if (e == 2) 1075 return Constant::getNullValue(Ops[0].Op->getType()); 1076 1077 // Y ^ X^X -> Y 1078 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1079 i -= 1; e -= 2; 1080 ++NumAnnihil; 1081 } 1082 } 1083 return 0; 1084 } 1085 1086 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1087 /// optimizes based on identities. If it can be reduced to a single Value, it 1088 /// is returned, otherwise the Ops list is mutated as necessary. 1089 Value *Reassociate::OptimizeAdd(Instruction *I, 1090 SmallVectorImpl<ValueEntry> &Ops) { 1091 // Scan the operand lists looking for X and -X pairs. If we find any, we 1092 // can simplify the expression. X+-X == 0. While we're at it, scan for any 1093 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1094 // 1095 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1". 1096 // 1097 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1098 Value *TheOp = Ops[i].Op; 1099 // Check to see if we've seen this operand before. If so, we factor all 1100 // instances of the operand together. Due to our sorting criteria, we know 1101 // that these need to be next to each other in the vector. 1102 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1103 // Rescan the list, remove all instances of this operand from the expr. 1104 unsigned NumFound = 0; 1105 do { 1106 Ops.erase(Ops.begin()+i); 1107 ++NumFound; 1108 } while (i != Ops.size() && Ops[i].Op == TheOp); 1109 1110 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1111 ++NumFactor; 1112 1113 // Insert a new multiply. 1114 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); 1115 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); 1116 1117 // Now that we have inserted a multiply, optimize it. This allows us to 1118 // handle cases that require multiple factoring steps, such as this: 1119 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1120 RedoInsts.insert(cast<Instruction>(Mul)); 1121 1122 // If every add operand was a duplicate, return the multiply. 1123 if (Ops.empty()) 1124 return Mul; 1125 1126 // Otherwise, we had some input that didn't have the dupe, such as 1127 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1128 // things being added by this operation. 1129 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1130 1131 --i; 1132 e = Ops.size(); 1133 continue; 1134 } 1135 1136 // Check for X and -X in the operand list. 1137 if (!BinaryOperator::isNeg(TheOp)) 1138 continue; 1139 1140 Value *X = BinaryOperator::getNegArgument(TheOp); 1141 unsigned FoundX = FindInOperandList(Ops, i, X); 1142 if (FoundX == i) 1143 continue; 1144 1145 // Remove X and -X from the operand list. 1146 if (Ops.size() == 2) 1147 return Constant::getNullValue(X->getType()); 1148 1149 Ops.erase(Ops.begin()+i); 1150 if (i < FoundX) 1151 --FoundX; 1152 else 1153 --i; // Need to back up an extra one. 1154 Ops.erase(Ops.begin()+FoundX); 1155 ++NumAnnihil; 1156 --i; // Revisit element. 1157 e -= 2; // Removed two elements. 1158 } 1159 1160 // Scan the operand list, checking to see if there are any common factors 1161 // between operands. Consider something like A*A+A*B*C+D. We would like to 1162 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1163 // To efficiently find this, we count the number of times a factor occurs 1164 // for any ADD operands that are MULs. 1165 DenseMap<Value*, unsigned> FactorOccurrences; 1166 1167 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1168 // where they are actually the same multiply. 1169 unsigned MaxOcc = 0; 1170 Value *MaxOccVal = 0; 1171 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1172 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1173 if (!BOp) 1174 continue; 1175 1176 // Compute all of the factors of this added value. 1177 SmallVector<Value*, 8> Factors; 1178 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1179 assert(Factors.size() > 1 && "Bad linearize!"); 1180 1181 // Add one to FactorOccurrences for each unique factor in this op. 1182 SmallPtrSet<Value*, 8> Duplicates; 1183 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1184 Value *Factor = Factors[i]; 1185 if (!Duplicates.insert(Factor)) continue; 1186 1187 unsigned Occ = ++FactorOccurrences[Factor]; 1188 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1189 1190 // If Factor is a negative constant, add the negated value as a factor 1191 // because we can percolate the negate out. Watch for minint, which 1192 // cannot be positivified. 1193 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) 1194 if (CI->isNegative() && !CI->isMinValue(true)) { 1195 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1196 assert(!Duplicates.count(Factor) && 1197 "Shouldn't have two constant factors, missed a canonicalize"); 1198 1199 unsigned Occ = ++FactorOccurrences[Factor]; 1200 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1201 } 1202 } 1203 } 1204 1205 // If any factor occurred more than one time, we can pull it out. 1206 if (MaxOcc > 1) { 1207 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1208 ++NumFactor; 1209 1210 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1211 // this, we could otherwise run into situations where removing a factor 1212 // from an expression will drop a use of maxocc, and this can cause 1213 // RemoveFactorFromExpression on successive values to behave differently. 1214 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); 1215 SmallVector<WeakVH, 4> NewMulOps; 1216 for (unsigned i = 0; i != Ops.size(); ++i) { 1217 // Only try to remove factors from expressions we're allowed to. 1218 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1219 if (!BOp) 1220 continue; 1221 1222 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1223 // The factorized operand may occur several times. Convert them all in 1224 // one fell swoop. 1225 for (unsigned j = Ops.size(); j != i;) { 1226 --j; 1227 if (Ops[j].Op == Ops[i].Op) { 1228 NewMulOps.push_back(V); 1229 Ops.erase(Ops.begin()+j); 1230 } 1231 } 1232 --i; 1233 } 1234 } 1235 1236 // No need for extra uses anymore. 1237 delete DummyInst; 1238 1239 unsigned NumAddedValues = NewMulOps.size(); 1240 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1241 1242 // Now that we have inserted the add tree, optimize it. This allows us to 1243 // handle cases that require multiple factoring steps, such as this: 1244 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1245 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1246 (void)NumAddedValues; 1247 if (Instruction *VI = dyn_cast<Instruction>(V)) 1248 RedoInsts.insert(VI); 1249 1250 // Create the multiply. 1251 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); 1252 1253 // Rerun associate on the multiply in case the inner expression turned into 1254 // a multiply. We want to make sure that we keep things in canonical form. 1255 RedoInsts.insert(V2); 1256 1257 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1258 // entire result expression is just the multiply "A*(B+C)". 1259 if (Ops.empty()) 1260 return V2; 1261 1262 // Otherwise, we had some input that didn't have the factor, such as 1263 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1264 // things being added by this operation. 1265 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1266 } 1267 1268 return 0; 1269 } 1270 1271 namespace { 1272 /// \brief Predicate tests whether a ValueEntry's op is in a map. 1273 struct IsValueInMap { 1274 const DenseMap<Value *, unsigned> ⤅ 1275 1276 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {} 1277 1278 bool operator()(const ValueEntry &Entry) { 1279 return Map.find(Entry.Op) != Map.end(); 1280 } 1281 }; 1282 } 1283 1284 /// \brief Build up a vector of value/power pairs factoring a product. 1285 /// 1286 /// Given a series of multiplication operands, build a vector of factors and 1287 /// the powers each is raised to when forming the final product. Sort them in 1288 /// the order of descending power. 1289 /// 1290 /// (x*x) -> [(x, 2)] 1291 /// ((x*x)*x) -> [(x, 3)] 1292 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1293 /// 1294 /// \returns Whether any factors have a power greater than one. 1295 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1296 SmallVectorImpl<Factor> &Factors) { 1297 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1298 // Compute the sum of powers of simplifiable factors. 1299 unsigned FactorPowerSum = 0; 1300 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1301 Value *Op = Ops[Idx-1].Op; 1302 1303 // Count the number of occurrences of this value. 1304 unsigned Count = 1; 1305 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1306 ++Count; 1307 // Track for simplification all factors which occur 2 or more times. 1308 if (Count > 1) 1309 FactorPowerSum += Count; 1310 } 1311 1312 // We can only simplify factors if the sum of the powers of our simplifiable 1313 // factors is 4 or higher. When that is the case, we will *always* have 1314 // a simplification. This is an important invariant to prevent cyclicly 1315 // trying to simplify already minimal formations. 1316 if (FactorPowerSum < 4) 1317 return false; 1318 1319 // Now gather the simplifiable factors, removing them from Ops. 1320 FactorPowerSum = 0; 1321 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1322 Value *Op = Ops[Idx-1].Op; 1323 1324 // Count the number of occurrences of this value. 1325 unsigned Count = 1; 1326 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1327 ++Count; 1328 if (Count == 1) 1329 continue; 1330 // Move an even number of occurrences to Factors. 1331 Count &= ~1U; 1332 Idx -= Count; 1333 FactorPowerSum += Count; 1334 Factors.push_back(Factor(Op, Count)); 1335 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1336 } 1337 1338 // None of the adjustments above should have reduced the sum of factor powers 1339 // below our mininum of '4'. 1340 assert(FactorPowerSum >= 4); 1341 1342 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1343 return true; 1344 } 1345 1346 /// \brief Build a tree of multiplies, computing the product of Ops. 1347 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1348 SmallVectorImpl<Value*> &Ops) { 1349 if (Ops.size() == 1) 1350 return Ops.back(); 1351 1352 Value *LHS = Ops.pop_back_val(); 1353 do { 1354 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1355 } while (!Ops.empty()); 1356 1357 return LHS; 1358 } 1359 1360 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1361 /// 1362 /// Given a vector of values raised to various powers, where no two values are 1363 /// equal and the powers are sorted in decreasing order, compute the minimal 1364 /// DAG of multiplies to compute the final product, and return that product 1365 /// value. 1366 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1367 SmallVectorImpl<Factor> &Factors) { 1368 assert(Factors[0].Power); 1369 SmallVector<Value *, 4> OuterProduct; 1370 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1371 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1372 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1373 LastIdx = Idx; 1374 continue; 1375 } 1376 1377 // We want to multiply across all the factors with the same power so that 1378 // we can raise them to that power as a single entity. Build a mini tree 1379 // for that. 1380 SmallVector<Value *, 4> InnerProduct; 1381 InnerProduct.push_back(Factors[LastIdx].Base); 1382 do { 1383 InnerProduct.push_back(Factors[Idx].Base); 1384 ++Idx; 1385 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1386 1387 // Reset the base value of the first factor to the new expression tree. 1388 // We'll remove all the factors with the same power in a second pass. 1389 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1390 if (Instruction *MI = dyn_cast<Instruction>(M)) 1391 RedoInsts.insert(MI); 1392 1393 LastIdx = Idx; 1394 } 1395 // Unique factors with equal powers -- we've folded them into the first one's 1396 // base. 1397 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1398 Factor::PowerEqual()), 1399 Factors.end()); 1400 1401 // Iteratively collect the base of each factor with an add power into the 1402 // outer product, and halve each power in preparation for squaring the 1403 // expression. 1404 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1405 if (Factors[Idx].Power & 1) 1406 OuterProduct.push_back(Factors[Idx].Base); 1407 Factors[Idx].Power >>= 1; 1408 } 1409 if (Factors[0].Power) { 1410 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1411 OuterProduct.push_back(SquareRoot); 1412 OuterProduct.push_back(SquareRoot); 1413 } 1414 if (OuterProduct.size() == 1) 1415 return OuterProduct.front(); 1416 1417 Value *V = buildMultiplyTree(Builder, OuterProduct); 1418 return V; 1419 } 1420 1421 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1422 SmallVectorImpl<ValueEntry> &Ops) { 1423 // We can only optimize the multiplies when there is a chain of more than 1424 // three, such that a balanced tree might require fewer total multiplies. 1425 if (Ops.size() < 4) 1426 return 0; 1427 1428 // Try to turn linear trees of multiplies without other uses of the 1429 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1430 // re-use. 1431 SmallVector<Factor, 4> Factors; 1432 if (!collectMultiplyFactors(Ops, Factors)) 1433 return 0; // All distinct factors, so nothing left for us to do. 1434 1435 IRBuilder<> Builder(I); 1436 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1437 if (Ops.empty()) 1438 return V; 1439 1440 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1441 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1442 return 0; 1443 } 1444 1445 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1446 SmallVectorImpl<ValueEntry> &Ops) { 1447 // Now that we have the linearized expression tree, try to optimize it. 1448 // Start by folding any constants that we found. 1449 if (Ops.size() == 1) return Ops[0].Op; 1450 1451 unsigned Opcode = I->getOpcode(); 1452 1453 // Handle destructive annihilation due to identities between elements in the 1454 // argument list here. 1455 unsigned NumOps = Ops.size(); 1456 switch (Opcode) { 1457 default: break; 1458 case Instruction::And: 1459 case Instruction::Or: 1460 case Instruction::Xor: 1461 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1462 return Result; 1463 break; 1464 1465 case Instruction::Add: 1466 if (Value *Result = OptimizeAdd(I, Ops)) 1467 return Result; 1468 break; 1469 1470 case Instruction::Mul: 1471 if (Value *Result = OptimizeMul(I, Ops)) 1472 return Result; 1473 break; 1474 } 1475 1476 if (Ops.size() != NumOps) 1477 return OptimizeExpression(I, Ops); 1478 return 0; 1479 } 1480 1481 /// EraseInst - Zap the given instruction, adding interesting operands to the 1482 /// work list. 1483 void Reassociate::EraseInst(Instruction *I) { 1484 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1485 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1486 // Erase the dead instruction. 1487 ValueRankMap.erase(I); 1488 RedoInsts.remove(I); 1489 I->eraseFromParent(); 1490 // Optimize its operands. 1491 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1492 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1493 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1494 // If this is a node in an expression tree, climb to the expression root 1495 // and add that since that's where optimization actually happens. 1496 unsigned Opcode = Op->getOpcode(); 1497 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode && 1498 Visited.insert(Op)) 1499 Op = Op->use_back(); 1500 RedoInsts.insert(Op); 1501 } 1502 } 1503 1504 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1505 /// instructions is not allowed. 1506 void Reassociate::OptimizeInst(Instruction *I) { 1507 // Only consider operations that we understand. 1508 if (!isa<BinaryOperator>(I)) 1509 return; 1510 1511 if (I->getOpcode() == Instruction::Shl && 1512 isa<ConstantInt>(I->getOperand(1))) 1513 // If an operand of this shift is a reassociable multiply, or if the shift 1514 // is used by a reassociable multiply or add, turn into a multiply. 1515 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1516 (I->hasOneUse() && 1517 (isReassociableOp(I->use_back(), Instruction::Mul) || 1518 isReassociableOp(I->use_back(), Instruction::Add)))) { 1519 Instruction *NI = ConvertShiftToMul(I); 1520 RedoInsts.insert(I); 1521 MadeChange = true; 1522 I = NI; 1523 } 1524 1525 // Floating point binary operators are not associative, but we can still 1526 // commute (some) of them, to canonicalize the order of their operands. 1527 // This can potentially expose more CSE opportunities, and makes writing 1528 // other transformations simpler. 1529 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { 1530 // FAdd and FMul can be commuted. 1531 if (I->getOpcode() != Instruction::FMul && 1532 I->getOpcode() != Instruction::FAdd) 1533 return; 1534 1535 Value *LHS = I->getOperand(0); 1536 Value *RHS = I->getOperand(1); 1537 unsigned LHSRank = getRank(LHS); 1538 unsigned RHSRank = getRank(RHS); 1539 1540 // Sort the operands by rank. 1541 if (RHSRank < LHSRank) { 1542 I->setOperand(0, RHS); 1543 I->setOperand(1, LHS); 1544 } 1545 1546 return; 1547 } 1548 1549 // Do not reassociate boolean (i1) expressions. We want to preserve the 1550 // original order of evaluation for short-circuited comparisons that 1551 // SimplifyCFG has folded to AND/OR expressions. If the expression 1552 // is not further optimized, it is likely to be transformed back to a 1553 // short-circuited form for code gen, and the source order may have been 1554 // optimized for the most likely conditions. 1555 if (I->getType()->isIntegerTy(1)) 1556 return; 1557 1558 // If this is a subtract instruction which is not already in negate form, 1559 // see if we can convert it to X+-Y. 1560 if (I->getOpcode() == Instruction::Sub) { 1561 if (ShouldBreakUpSubtract(I)) { 1562 Instruction *NI = BreakUpSubtract(I); 1563 RedoInsts.insert(I); 1564 MadeChange = true; 1565 I = NI; 1566 } else if (BinaryOperator::isNeg(I)) { 1567 // Otherwise, this is a negation. See if the operand is a multiply tree 1568 // and if this is not an inner node of a multiply tree. 1569 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 1570 (!I->hasOneUse() || 1571 !isReassociableOp(I->use_back(), Instruction::Mul))) { 1572 Instruction *NI = LowerNegateToMultiply(I); 1573 RedoInsts.insert(I); 1574 MadeChange = true; 1575 I = NI; 1576 } 1577 } 1578 } 1579 1580 // If this instruction is an associative binary operator, process it. 1581 if (!I->isAssociative()) return; 1582 BinaryOperator *BO = cast<BinaryOperator>(I); 1583 1584 // If this is an interior node of a reassociable tree, ignore it until we 1585 // get to the root of the tree, to avoid N^2 analysis. 1586 unsigned Opcode = BO->getOpcode(); 1587 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode) 1588 return; 1589 1590 // If this is an add tree that is used by a sub instruction, ignore it 1591 // until we process the subtract. 1592 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 1593 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub) 1594 return; 1595 1596 ReassociateExpression(BO); 1597 } 1598 1599 void Reassociate::ReassociateExpression(BinaryOperator *I) { 1600 1601 // First, walk the expression tree, linearizing the tree, collecting the 1602 // operand information. 1603 SmallVector<RepeatedValue, 8> Tree; 1604 MadeChange |= LinearizeExprTree(I, Tree); 1605 SmallVector<ValueEntry, 8> Ops; 1606 Ops.reserve(Tree.size()); 1607 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1608 RepeatedValue E = Tree[i]; 1609 Ops.append(E.second.getZExtValue(), 1610 ValueEntry(getRank(E.first), E.first)); 1611 } 1612 1613 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1614 1615 // Now that we have linearized the tree to a list and have gathered all of 1616 // the operands and their ranks, sort the operands by their rank. Use a 1617 // stable_sort so that values with equal ranks will have their relative 1618 // positions maintained (and so the compiler is deterministic). Note that 1619 // this sorts so that the highest ranking values end up at the beginning of 1620 // the vector. 1621 std::stable_sort(Ops.begin(), Ops.end()); 1622 1623 // OptimizeExpression - Now that we have the expression tree in a convenient 1624 // sorted form, optimize it globally if possible. 1625 if (Value *V = OptimizeExpression(I, Ops)) { 1626 if (V == I) 1627 // Self-referential expression in unreachable code. 1628 return; 1629 // This expression tree simplified to something that isn't a tree, 1630 // eliminate it. 1631 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 1632 I->replaceAllUsesWith(V); 1633 if (Instruction *VI = dyn_cast<Instruction>(V)) 1634 VI->setDebugLoc(I->getDebugLoc()); 1635 RedoInsts.insert(I); 1636 ++NumAnnihil; 1637 return; 1638 } 1639 1640 // We want to sink immediates as deeply as possible except in the case where 1641 // this is a multiply tree used only by an add, and the immediate is a -1. 1642 // In this case we reassociate to put the negation on the outside so that we 1643 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 1644 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && 1645 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add && 1646 isa<ConstantInt>(Ops.back().Op) && 1647 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 1648 ValueEntry Tmp = Ops.pop_back_val(); 1649 Ops.insert(Ops.begin(), Tmp); 1650 } 1651 1652 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1653 1654 if (Ops.size() == 1) { 1655 if (Ops[0].Op == I) 1656 // Self-referential expression in unreachable code. 1657 return; 1658 1659 // This expression tree simplified to something that isn't a tree, 1660 // eliminate it. 1661 I->replaceAllUsesWith(Ops[0].Op); 1662 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 1663 OI->setDebugLoc(I->getDebugLoc()); 1664 RedoInsts.insert(I); 1665 return; 1666 } 1667 1668 // Now that we ordered and optimized the expressions, splat them back into 1669 // the expression tree, removing any unneeded nodes. 1670 RewriteExprTree(I, Ops); 1671 } 1672 1673 bool Reassociate::runOnFunction(Function &F) { 1674 // Calculate the rank map for F 1675 BuildRankMap(F); 1676 1677 MadeChange = false; 1678 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 1679 // Optimize every instruction in the basic block. 1680 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 1681 if (isInstructionTriviallyDead(II)) { 1682 EraseInst(II++); 1683 } else { 1684 OptimizeInst(II); 1685 assert(II->getParent() == BI && "Moved to a different block!"); 1686 ++II; 1687 } 1688 1689 // If this produced extra instructions to optimize, handle them now. 1690 while (!RedoInsts.empty()) { 1691 Instruction *I = RedoInsts.pop_back_val(); 1692 if (isInstructionTriviallyDead(I)) 1693 EraseInst(I); 1694 else 1695 OptimizeInst(I); 1696 } 1697 } 1698 1699 // We are done with the rank map. 1700 RankMap.clear(); 1701 ValueRankMap.clear(); 1702 1703 return MadeChange; 1704 } 1705