Home | History | Annotate | Download | only in Core
      1 //== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SymbolManager, a class that manages symbolic values
     11 //  created for use by ExprEngine and related classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
     16 #include "clang/Analysis/Analyses/LiveVariables.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 
     21 using namespace clang;
     22 using namespace ento;
     23 
     24 void SymExpr::anchor() { }
     25 
     26 void SymExpr::dump() const {
     27   dumpToStream(llvm::errs());
     28 }
     29 
     30 static void print(raw_ostream &os, BinaryOperator::Opcode Op) {
     31   switch (Op) {
     32     default:
     33       llvm_unreachable("operator printing not implemented");
     34     case BO_Mul: os << '*'  ; break;
     35     case BO_Div: os << '/'  ; break;
     36     case BO_Rem: os << '%'  ; break;
     37     case BO_Add: os << '+'  ; break;
     38     case BO_Sub: os << '-'  ; break;
     39     case BO_Shl: os << "<<" ; break;
     40     case BO_Shr: os << ">>" ; break;
     41     case BO_LT:  os << "<"  ; break;
     42     case BO_GT:  os << '>'  ; break;
     43     case BO_LE:  os << "<=" ; break;
     44     case BO_GE:  os << ">=" ; break;
     45     case BO_EQ:  os << "==" ; break;
     46     case BO_NE:  os << "!=" ; break;
     47     case BO_And: os << '&'  ; break;
     48     case BO_Xor: os << '^'  ; break;
     49     case BO_Or:  os << '|'  ; break;
     50   }
     51 }
     52 
     53 void SymIntExpr::dumpToStream(raw_ostream &os) const {
     54   os << '(';
     55   getLHS()->dumpToStream(os);
     56   os << ") ";
     57   print(os, getOpcode());
     58   os << ' ' << getRHS().getZExtValue();
     59   if (getRHS().isUnsigned()) os << 'U';
     60 }
     61 
     62 void IntSymExpr::dumpToStream(raw_ostream &os) const {
     63   os << ' ' << getLHS().getZExtValue();
     64   if (getLHS().isUnsigned()) os << 'U';
     65   print(os, getOpcode());
     66   os << '(';
     67   getRHS()->dumpToStream(os);
     68   os << ") ";
     69 }
     70 
     71 void SymSymExpr::dumpToStream(raw_ostream &os) const {
     72   os << '(';
     73   getLHS()->dumpToStream(os);
     74   os << ") ";
     75   os << '(';
     76   getRHS()->dumpToStream(os);
     77   os << ')';
     78 }
     79 
     80 void SymbolCast::dumpToStream(raw_ostream &os) const {
     81   os << '(' << ToTy.getAsString() << ") (";
     82   Operand->dumpToStream(os);
     83   os << ')';
     84 }
     85 
     86 void SymbolConjured::dumpToStream(raw_ostream &os) const {
     87   os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}';
     88 }
     89 
     90 void SymbolDerived::dumpToStream(raw_ostream &os) const {
     91   os << "derived_$" << getSymbolID() << '{'
     92      << getParentSymbol() << ',' << getRegion() << '}';
     93 }
     94 
     95 void SymbolExtent::dumpToStream(raw_ostream &os) const {
     96   os << "extent_$" << getSymbolID() << '{' << getRegion() << '}';
     97 }
     98 
     99 void SymbolMetadata::dumpToStream(raw_ostream &os) const {
    100   os << "meta_$" << getSymbolID() << '{'
    101      << getRegion() << ',' << T.getAsString() << '}';
    102 }
    103 
    104 void SymbolData::anchor() { }
    105 
    106 void SymbolRegionValue::dumpToStream(raw_ostream &os) const {
    107   os << "reg_$" << getSymbolID() << "<" << R << ">";
    108 }
    109 
    110 bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const {
    111   return itr == X.itr;
    112 }
    113 
    114 bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const {
    115   return itr != X.itr;
    116 }
    117 
    118 SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) {
    119   itr.push_back(SE);
    120 }
    121 
    122 SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() {
    123   assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
    124   expand();
    125   return *this;
    126 }
    127 
    128 SymbolRef SymExpr::symbol_iterator::operator*() {
    129   assert(!itr.empty() && "attempting to dereference an 'end' iterator");
    130   return itr.back();
    131 }
    132 
    133 void SymExpr::symbol_iterator::expand() {
    134   const SymExpr *SE = itr.back();
    135   itr.pop_back();
    136 
    137   switch (SE->getKind()) {
    138     case SymExpr::RegionValueKind:
    139     case SymExpr::ConjuredKind:
    140     case SymExpr::DerivedKind:
    141     case SymExpr::ExtentKind:
    142     case SymExpr::MetadataKind:
    143       return;
    144     case SymExpr::CastSymbolKind:
    145       itr.push_back(cast<SymbolCast>(SE)->getOperand());
    146       return;
    147     case SymExpr::SymIntKind:
    148       itr.push_back(cast<SymIntExpr>(SE)->getLHS());
    149       return;
    150     case SymExpr::IntSymKind:
    151       itr.push_back(cast<IntSymExpr>(SE)->getRHS());
    152       return;
    153     case SymExpr::SymSymKind: {
    154       const SymSymExpr *x = cast<SymSymExpr>(SE);
    155       itr.push_back(x->getLHS());
    156       itr.push_back(x->getRHS());
    157       return;
    158     }
    159   }
    160   llvm_unreachable("unhandled expansion case");
    161 }
    162 
    163 unsigned SymExpr::computeComplexity() const {
    164   unsigned R = 0;
    165   for (symbol_iterator I = symbol_begin(), E = symbol_end(); I != E; ++I)
    166     R++;
    167   return R;
    168 }
    169 
    170 const SymbolRegionValue*
    171 SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) {
    172   llvm::FoldingSetNodeID profile;
    173   SymbolRegionValue::Profile(profile, R);
    174   void *InsertPos;
    175   SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
    176   if (!SD) {
    177     SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>();
    178     new (SD) SymbolRegionValue(SymbolCounter, R);
    179     DataSet.InsertNode(SD, InsertPos);
    180     ++SymbolCounter;
    181   }
    182 
    183   return cast<SymbolRegionValue>(SD);
    184 }
    185 
    186 const SymbolConjured* SymbolManager::conjureSymbol(const Stmt *E,
    187                                                    const LocationContext *LCtx,
    188                                                    QualType T,
    189                                                    unsigned Count,
    190                                                    const void *SymbolTag) {
    191   llvm::FoldingSetNodeID profile;
    192   SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag);
    193   void *InsertPos;
    194   SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
    195   if (!SD) {
    196     SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>();
    197     new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag);
    198     DataSet.InsertNode(SD, InsertPos);
    199     ++SymbolCounter;
    200   }
    201 
    202   return cast<SymbolConjured>(SD);
    203 }
    204 
    205 const SymbolDerived*
    206 SymbolManager::getDerivedSymbol(SymbolRef parentSymbol,
    207                                 const TypedValueRegion *R) {
    208 
    209   llvm::FoldingSetNodeID profile;
    210   SymbolDerived::Profile(profile, parentSymbol, R);
    211   void *InsertPos;
    212   SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
    213   if (!SD) {
    214     SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>();
    215     new (SD) SymbolDerived(SymbolCounter, parentSymbol, R);
    216     DataSet.InsertNode(SD, InsertPos);
    217     ++SymbolCounter;
    218   }
    219 
    220   return cast<SymbolDerived>(SD);
    221 }
    222 
    223 const SymbolExtent*
    224 SymbolManager::getExtentSymbol(const SubRegion *R) {
    225   llvm::FoldingSetNodeID profile;
    226   SymbolExtent::Profile(profile, R);
    227   void *InsertPos;
    228   SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
    229   if (!SD) {
    230     SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>();
    231     new (SD) SymbolExtent(SymbolCounter, R);
    232     DataSet.InsertNode(SD, InsertPos);
    233     ++SymbolCounter;
    234   }
    235 
    236   return cast<SymbolExtent>(SD);
    237 }
    238 
    239 const SymbolMetadata*
    240 SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T,
    241                                  unsigned Count, const void *SymbolTag) {
    242 
    243   llvm::FoldingSetNodeID profile;
    244   SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag);
    245   void *InsertPos;
    246   SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
    247   if (!SD) {
    248     SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>();
    249     new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag);
    250     DataSet.InsertNode(SD, InsertPos);
    251     ++SymbolCounter;
    252   }
    253 
    254   return cast<SymbolMetadata>(SD);
    255 }
    256 
    257 const SymbolCast*
    258 SymbolManager::getCastSymbol(const SymExpr *Op,
    259                              QualType From, QualType To) {
    260   llvm::FoldingSetNodeID ID;
    261   SymbolCast::Profile(ID, Op, From, To);
    262   void *InsertPos;
    263   SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
    264   if (!data) {
    265     data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>();
    266     new (data) SymbolCast(Op, From, To);
    267     DataSet.InsertNode(data, InsertPos);
    268   }
    269 
    270   return cast<SymbolCast>(data);
    271 }
    272 
    273 const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs,
    274                                                BinaryOperator::Opcode op,
    275                                                const llvm::APSInt& v,
    276                                                QualType t) {
    277   llvm::FoldingSetNodeID ID;
    278   SymIntExpr::Profile(ID, lhs, op, v, t);
    279   void *InsertPos;
    280   SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
    281 
    282   if (!data) {
    283     data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>();
    284     new (data) SymIntExpr(lhs, op, v, t);
    285     DataSet.InsertNode(data, InsertPos);
    286   }
    287 
    288   return cast<SymIntExpr>(data);
    289 }
    290 
    291 const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs,
    292                                                BinaryOperator::Opcode op,
    293                                                const SymExpr *rhs,
    294                                                QualType t) {
    295   llvm::FoldingSetNodeID ID;
    296   IntSymExpr::Profile(ID, lhs, op, rhs, t);
    297   void *InsertPos;
    298   SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
    299 
    300   if (!data) {
    301     data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>();
    302     new (data) IntSymExpr(lhs, op, rhs, t);
    303     DataSet.InsertNode(data, InsertPos);
    304   }
    305 
    306   return cast<IntSymExpr>(data);
    307 }
    308 
    309 const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs,
    310                                                BinaryOperator::Opcode op,
    311                                                const SymExpr *rhs,
    312                                                QualType t) {
    313   llvm::FoldingSetNodeID ID;
    314   SymSymExpr::Profile(ID, lhs, op, rhs, t);
    315   void *InsertPos;
    316   SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
    317 
    318   if (!data) {
    319     data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>();
    320     new (data) SymSymExpr(lhs, op, rhs, t);
    321     DataSet.InsertNode(data, InsertPos);
    322   }
    323 
    324   return cast<SymSymExpr>(data);
    325 }
    326 
    327 QualType SymbolConjured::getType(ASTContext&) const {
    328   return T;
    329 }
    330 
    331 QualType SymbolDerived::getType(ASTContext &Ctx) const {
    332   return R->getValueType();
    333 }
    334 
    335 QualType SymbolExtent::getType(ASTContext &Ctx) const {
    336   return Ctx.getSizeType();
    337 }
    338 
    339 QualType SymbolMetadata::getType(ASTContext&) const {
    340   return T;
    341 }
    342 
    343 QualType SymbolRegionValue::getType(ASTContext &C) const {
    344   return R->getValueType();
    345 }
    346 
    347 SymbolManager::~SymbolManager() {
    348   for (SymbolDependTy::const_iterator I = SymbolDependencies.begin(),
    349        E = SymbolDependencies.end(); I != E; ++I) {
    350     delete I->second;
    351   }
    352 
    353 }
    354 
    355 bool SymbolManager::canSymbolicate(QualType T) {
    356   T = T.getCanonicalType();
    357 
    358   if (Loc::isLocType(T))
    359     return true;
    360 
    361   if (T->isIntegerType())
    362     return T->isScalarType();
    363 
    364   if (T->isRecordType() && !T->isUnionType())
    365     return true;
    366 
    367   return false;
    368 }
    369 
    370 void SymbolManager::addSymbolDependency(const SymbolRef Primary,
    371                                         const SymbolRef Dependent) {
    372   SymbolDependTy::iterator I = SymbolDependencies.find(Primary);
    373   SymbolRefSmallVectorTy *dependencies = 0;
    374   if (I == SymbolDependencies.end()) {
    375     dependencies = new SymbolRefSmallVectorTy();
    376     SymbolDependencies[Primary] = dependencies;
    377   } else {
    378     dependencies = I->second;
    379   }
    380   dependencies->push_back(Dependent);
    381 }
    382 
    383 const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols(
    384                                                      const SymbolRef Primary) {
    385   SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary);
    386   if (I == SymbolDependencies.end())
    387     return 0;
    388   return I->second;
    389 }
    390 
    391 void SymbolReaper::markDependentsLive(SymbolRef sym) {
    392   // Do not mark dependents more then once.
    393   SymbolMapTy::iterator LI = TheLiving.find(sym);
    394   assert(LI != TheLiving.end() && "The primary symbol is not live.");
    395   if (LI->second == HaveMarkedDependents)
    396     return;
    397   LI->second = HaveMarkedDependents;
    398 
    399   if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) {
    400     for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(),
    401                                                 E = Deps->end(); I != E; ++I) {
    402       if (TheLiving.find(*I) != TheLiving.end())
    403         continue;
    404       markLive(*I);
    405     }
    406   }
    407 }
    408 
    409 void SymbolReaper::markLive(SymbolRef sym) {
    410   TheLiving[sym] = NotProcessed;
    411   TheDead.erase(sym);
    412   markDependentsLive(sym);
    413 }
    414 
    415 void SymbolReaper::markLive(const MemRegion *region) {
    416   RegionRoots.insert(region);
    417 }
    418 
    419 void SymbolReaper::markInUse(SymbolRef sym) {
    420   if (isa<SymbolMetadata>(sym))
    421     MetadataInUse.insert(sym);
    422 }
    423 
    424 bool SymbolReaper::maybeDead(SymbolRef sym) {
    425   if (isLive(sym))
    426     return false;
    427 
    428   TheDead.insert(sym);
    429   return true;
    430 }
    431 
    432 bool SymbolReaper::isLiveRegion(const MemRegion *MR) {
    433   if (RegionRoots.count(MR))
    434     return true;
    435 
    436   MR = MR->getBaseRegion();
    437 
    438   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
    439     return isLive(SR->getSymbol());
    440 
    441   if (const VarRegion *VR = dyn_cast<VarRegion>(MR))
    442     return isLive(VR, true);
    443 
    444   // FIXME: This is a gross over-approximation. What we really need is a way to
    445   // tell if anything still refers to this region. Unlike SymbolicRegions,
    446   // AllocaRegions don't have associated symbols, though, so we don't actually
    447   // have a way to track their liveness.
    448   if (isa<AllocaRegion>(MR))
    449     return true;
    450 
    451   if (isa<CXXThisRegion>(MR))
    452     return true;
    453 
    454   if (isa<MemSpaceRegion>(MR))
    455     return true;
    456 
    457   return false;
    458 }
    459 
    460 bool SymbolReaper::isLive(SymbolRef sym) {
    461   if (TheLiving.count(sym)) {
    462     markDependentsLive(sym);
    463     return true;
    464   }
    465 
    466   if (const SymbolDerived *derived = dyn_cast<SymbolDerived>(sym)) {
    467     if (isLive(derived->getParentSymbol())) {
    468       markLive(sym);
    469       return true;
    470     }
    471     return false;
    472   }
    473 
    474   if (const SymbolExtent *extent = dyn_cast<SymbolExtent>(sym)) {
    475     if (isLiveRegion(extent->getRegion())) {
    476       markLive(sym);
    477       return true;
    478     }
    479     return false;
    480   }
    481 
    482   if (const SymbolMetadata *metadata = dyn_cast<SymbolMetadata>(sym)) {
    483     if (MetadataInUse.count(sym)) {
    484       if (isLiveRegion(metadata->getRegion())) {
    485         markLive(sym);
    486         MetadataInUse.erase(sym);
    487         return true;
    488       }
    489     }
    490     return false;
    491   }
    492 
    493   // Interogate the symbol.  It may derive from an input value to
    494   // the analyzed function/method.
    495   return isa<SymbolRegionValue>(sym);
    496 }
    497 
    498 bool
    499 SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const {
    500   if (LCtx != ELCtx) {
    501     // If the reaper's location context is a parent of the expression's
    502     // location context, then the expression value is now "out of scope".
    503     if (LCtx->isParentOf(ELCtx))
    504       return false;
    505     return true;
    506   }
    507   // If no statement is provided, everything is this and parent contexts is live.
    508   if (!Loc)
    509     return true;
    510 
    511   return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal);
    512 }
    513 
    514 bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{
    515   const StackFrameContext *VarContext = VR->getStackFrame();
    516   const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame();
    517 
    518   if (VarContext == CurrentContext) {
    519     // If no statement is provided, everything is live.
    520     if (!Loc)
    521       return true;
    522 
    523     if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl()))
    524       return true;
    525 
    526     if (!includeStoreBindings)
    527       return false;
    528 
    529     unsigned &cachedQuery =
    530       const_cast<SymbolReaper*>(this)->includedRegionCache[VR];
    531 
    532     if (cachedQuery) {
    533       return cachedQuery == 1;
    534     }
    535 
    536     // Query the store to see if the region occurs in any live bindings.
    537     if (Store store = reapedStore.getStore()) {
    538       bool hasRegion =
    539         reapedStore.getStoreManager().includedInBindings(store, VR);
    540       cachedQuery = hasRegion ? 1 : 2;
    541       return hasRegion;
    542     }
    543 
    544     return false;
    545   }
    546 
    547   return !VarContext || VarContext->isParentOf(CurrentContext);
    548 }
    549 
    550 SymbolVisitor::~SymbolVisitor() {}
    551