Home | History | Annotate | Download | only in Utils
      1 //===-- Local.h - Functions to perform local transformations ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
     16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
     17 
     18 #include "llvm/IRBuilder.h"
     19 #include "llvm/Operator.h"
     20 #include "llvm/Support/GetElementPtrTypeIterator.h"
     21 #include "llvm/Target/TargetData.h"
     22 
     23 namespace llvm {
     24 
     25 class User;
     26 class BasicBlock;
     27 class Function;
     28 class BranchInst;
     29 class Instruction;
     30 class DbgDeclareInst;
     31 class StoreInst;
     32 class LoadInst;
     33 class Value;
     34 class Pass;
     35 class PHINode;
     36 class AllocaInst;
     37 class ConstantExpr;
     38 class TargetData;
     39 class TargetLibraryInfo;
     40 class DIBuilder;
     41 
     42 template<typename T> class SmallVectorImpl;
     43 
     44 //===----------------------------------------------------------------------===//
     45 //  Local constant propagation.
     46 //
     47 
     48 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     49 /// constant value, convert it into an unconditional branch to the constant
     50 /// destination.  This is a nontrivial operation because the successors of this
     51 /// basic block must have their PHI nodes updated.
     52 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     53 /// conditions and indirectbr addresses this might make dead if
     54 /// DeleteDeadConditions is true.
     55 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
     56                             const TargetLibraryInfo *TLI = 0);
     57 
     58 //===----------------------------------------------------------------------===//
     59 //  Local dead code elimination.
     60 //
     61 
     62 /// isInstructionTriviallyDead - Return true if the result produced by the
     63 /// instruction is not used, and the instruction has no side effects.
     64 ///
     65 bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0);
     66 
     67 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
     68 /// trivially dead instruction, delete it.  If that makes any of its operands
     69 /// trivially dead, delete them too, recursively.  Return true if any
     70 /// instructions were deleted.
     71 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
     72                                                 const TargetLibraryInfo *TLI=0);
     73 
     74 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
     75 /// dead PHI node, due to being a def-use chain of single-use nodes that
     76 /// either forms a cycle or is terminated by a trivially dead instruction,
     77 /// delete it.  If that makes any of its operands trivially dead, delete them
     78 /// too, recursively.  Return true if a change was made.
     79 bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=0);
     80 
     81 
     82 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
     83 /// simplify any instructions in it and recursively delete dead instructions.
     84 ///
     85 /// This returns true if it changed the code, note that it can delete
     86 /// instructions in other blocks as well in this block.
     87 bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD = 0,
     88                                  const TargetLibraryInfo *TLI = 0);
     89 
     90 //===----------------------------------------------------------------------===//
     91 //  Control Flow Graph Restructuring.
     92 //
     93 
     94 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
     95 /// method is called when we're about to delete Pred as a predecessor of BB.  If
     96 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
     97 ///
     98 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
     99 /// nodes that collapse into identity values.  For example, if we have:
    100 ///   x = phi(1, 0, 0, 0)
    101 ///   y = and x, z
    102 ///
    103 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    104 /// recursively fold the 'and' to 0.
    105 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    106                                   TargetData *TD = 0);
    107 
    108 
    109 /// MergeBasicBlockIntoOnlyPred - BB is a block with one predecessor and its
    110 /// predecessor is known to have one successor (BB!).  Eliminate the edge
    111 /// between them, moving the instructions in the predecessor into BB.  This
    112 /// deletes the predecessor block.
    113 ///
    114 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P = 0);
    115 
    116 
    117 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    118 /// unconditional branch, and contains no instructions other than PHI nodes,
    119 /// potential debug intrinsics and the branch.  If possible, eliminate BB by
    120 /// rewriting all the predecessors to branch to the successor block and return
    121 /// true.  If we can't transform, return false.
    122 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB);
    123 
    124 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    125 /// nodes in this block. This doesn't try to be clever about PHI nodes
    126 /// which differ only in the order of the incoming values, but instcombine
    127 /// orders them so it usually won't matter.
    128 ///
    129 bool EliminateDuplicatePHINodes(BasicBlock *BB);
    130 
    131 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
    132 /// example, it adjusts branches to branches to eliminate the extra hop, it
    133 /// eliminates unreachable basic blocks, and does other "peephole" optimization
    134 /// of the CFG.  It returns true if a modification was made, possibly deleting
    135 /// the basic block that was pointed to.
    136 ///
    137 bool SimplifyCFG(BasicBlock *BB, const TargetData *TD = 0);
    138 
    139 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
    140 /// and if a predecessor branches to us and one of our successors, fold the
    141 /// setcc into the predecessor and use logical operations to pick the right
    142 /// destination.
    143 bool FoldBranchToCommonDest(BranchInst *BI);
    144 
    145 /// DemoteRegToStack - This function takes a virtual register computed by an
    146 /// Instruction and replaces it with a slot in the stack frame, allocated via
    147 /// alloca.  This allows the CFG to be changed around without fear of
    148 /// invalidating the SSA information for the value.  It returns the pointer to
    149 /// the alloca inserted to create a stack slot for X.
    150 ///
    151 AllocaInst *DemoteRegToStack(Instruction &X,
    152                              bool VolatileLoads = false,
    153                              Instruction *AllocaPoint = 0);
    154 
    155 /// DemotePHIToStack - This function takes a virtual register computed by a phi
    156 /// node and replaces it with a slot in the stack frame, allocated via alloca.
    157 /// The phi node is deleted and it returns the pointer to the alloca inserted.
    158 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = 0);
    159 
    160 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    161 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    162 /// and it is more than the alignment of the ultimate object, see if we can
    163 /// increase the alignment of the ultimate object, making this check succeed.
    164 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    165                                     const TargetData *TD = 0);
    166 
    167 /// getKnownAlignment - Try to infer an alignment for the specified pointer.
    168 static inline unsigned getKnownAlignment(Value *V, const TargetData *TD = 0) {
    169   return getOrEnforceKnownAlignment(V, 0, TD);
    170 }
    171 
    172 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
    173 /// code necessary to compute the offset from the base pointer (without adding
    174 /// in the base pointer).  Return the result as a signed integer of intptr size.
    175 /// When NoAssumptions is true, no assumptions about index computation not
    176 /// overflowing is made.
    177 template<typename IRBuilderTy>
    178 Value *EmitGEPOffset(IRBuilderTy *Builder, const TargetData &TD, User *GEP,
    179                      bool NoAssumptions = false) {
    180   gep_type_iterator GTI = gep_type_begin(GEP);
    181   Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
    182   Value *Result = Constant::getNullValue(IntPtrTy);
    183 
    184   // If the GEP is inbounds, we know that none of the addressing operations will
    185   // overflow in an unsigned sense.
    186   bool isInBounds = cast<GEPOperator>(GEP)->isInBounds() && !NoAssumptions;
    187 
    188   // Build a mask for high order bits.
    189   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    190   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    191 
    192   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    193        ++i, ++GTI) {
    194     Value *Op = *i;
    195     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    196     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
    197       if (OpC->isZero()) continue;
    198 
    199       // Handle a struct index, which adds its field offset to the pointer.
    200       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    201         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
    202 
    203         if (Size)
    204           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    205                                       GEP->getName()+".offs");
    206         continue;
    207       }
    208 
    209       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    210       Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    211       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    212       // Emit an add instruction.
    213       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    214       continue;
    215     }
    216     // Convert to correct type.
    217     if (Op->getType() != IntPtrTy)
    218       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    219     if (Size != 1) {
    220       // We'll let instcombine(mul) convert this to a shl if possible.
    221       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    222                               GEP->getName()+".idx", isInBounds /*NUW*/);
    223     }
    224 
    225     // Emit an add instruction.
    226     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    227   }
    228   return Result;
    229 }
    230 
    231 ///===---------------------------------------------------------------------===//
    232 ///  Dbg Intrinsic utilities
    233 ///
    234 
    235 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    236 /// that has an associated llvm.dbg.decl intrinsic.
    237 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    238                                      StoreInst *SI, DIBuilder &Builder);
    239 
    240 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
    241 /// that has an associated llvm.dbg.decl intrinsic.
    242 bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
    243                                      LoadInst *LI, DIBuilder &Builder);
    244 
    245 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
    246 /// of llvm.dbg.value intrinsics.
    247 bool LowerDbgDeclare(Function &F);
    248 
    249 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic corresponding to
    250 /// an alloca, if any.
    251 DbgDeclareInst *FindAllocaDbgDeclare(Value *V);
    252 
    253 } // End llvm namespace
    254 
    255 #endif
    256