Home | History | Annotate | Download | only in Analysis
      1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass statically checks for common and easily-identified constructs
     11 // which produce undefined or likely unintended behavior in LLVM IR.
     12 //
     13 // It is not a guarantee of correctness, in two ways. First, it isn't
     14 // comprehensive. There are checks which could be done statically which are
     15 // not yet implemented. Some of these are indicated by TODO comments, but
     16 // those aren't comprehensive either. Second, many conditions cannot be
     17 // checked statically. This pass does no dynamic instrumentation, so it
     18 // can't check for all possible problems.
     19 //
     20 // Another limitation is that it assumes all code will be executed. A store
     21 // through a null pointer in a basic block which is never reached is harmless,
     22 // but this pass will warn about it anyway. This is the main reason why most
     23 // of these checks live here instead of in the Verifier pass.
     24 //
     25 // Optimization passes may make conditions that this pass checks for more or
     26 // less obvious. If an optimization pass appears to be introducing a warning,
     27 // it may be that the optimization pass is merely exposing an existing
     28 // condition in the code.
     29 //
     30 // This code may be run before instcombine. In many cases, instcombine checks
     31 // for the same kinds of things and turns instructions with undefined behavior
     32 // into unreachable (or equivalent). Because of this, this pass makes some
     33 // effort to look through bitcasts and so on.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/Analysis/Passes.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/Analysis/InstructionSimplify.h"
     40 #include "llvm/Analysis/ConstantFolding.h"
     41 #include "llvm/Analysis/Dominators.h"
     42 #include "llvm/Analysis/Lint.h"
     43 #include "llvm/Analysis/Loads.h"
     44 #include "llvm/Analysis/ValueTracking.h"
     45 #include "llvm/Assembly/Writer.h"
     46 #include "llvm/Target/TargetData.h"
     47 #include "llvm/Target/TargetLibraryInfo.h"
     48 #include "llvm/Pass.h"
     49 #include "llvm/PassManager.h"
     50 #include "llvm/IntrinsicInst.h"
     51 #include "llvm/Function.h"
     52 #include "llvm/Support/CallSite.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Support/InstVisitor.h"
     55 #include "llvm/Support/raw_ostream.h"
     56 #include "llvm/ADT/STLExtras.h"
     57 using namespace llvm;
     58 
     59 namespace {
     60   namespace MemRef {
     61     static unsigned Read     = 1;
     62     static unsigned Write    = 2;
     63     static unsigned Callee   = 4;
     64     static unsigned Branchee = 8;
     65   }
     66 
     67   class Lint : public FunctionPass, public InstVisitor<Lint> {
     68     friend class InstVisitor<Lint>;
     69 
     70     void visitFunction(Function &F);
     71 
     72     void visitCallSite(CallSite CS);
     73     void visitMemoryReference(Instruction &I, Value *Ptr,
     74                               uint64_t Size, unsigned Align,
     75                               Type *Ty, unsigned Flags);
     76 
     77     void visitCallInst(CallInst &I);
     78     void visitInvokeInst(InvokeInst &I);
     79     void visitReturnInst(ReturnInst &I);
     80     void visitLoadInst(LoadInst &I);
     81     void visitStoreInst(StoreInst &I);
     82     void visitXor(BinaryOperator &I);
     83     void visitSub(BinaryOperator &I);
     84     void visitLShr(BinaryOperator &I);
     85     void visitAShr(BinaryOperator &I);
     86     void visitShl(BinaryOperator &I);
     87     void visitSDiv(BinaryOperator &I);
     88     void visitUDiv(BinaryOperator &I);
     89     void visitSRem(BinaryOperator &I);
     90     void visitURem(BinaryOperator &I);
     91     void visitAllocaInst(AllocaInst &I);
     92     void visitVAArgInst(VAArgInst &I);
     93     void visitIndirectBrInst(IndirectBrInst &I);
     94     void visitExtractElementInst(ExtractElementInst &I);
     95     void visitInsertElementInst(InsertElementInst &I);
     96     void visitUnreachableInst(UnreachableInst &I);
     97 
     98     Value *findValue(Value *V, bool OffsetOk) const;
     99     Value *findValueImpl(Value *V, bool OffsetOk,
    100                          SmallPtrSet<Value *, 4> &Visited) const;
    101 
    102   public:
    103     Module *Mod;
    104     AliasAnalysis *AA;
    105     DominatorTree *DT;
    106     TargetData *TD;
    107     TargetLibraryInfo *TLI;
    108 
    109     std::string Messages;
    110     raw_string_ostream MessagesStr;
    111 
    112     static char ID; // Pass identification, replacement for typeid
    113     Lint() : FunctionPass(ID), MessagesStr(Messages) {
    114       initializeLintPass(*PassRegistry::getPassRegistry());
    115     }
    116 
    117     virtual bool runOnFunction(Function &F);
    118 
    119     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    120       AU.setPreservesAll();
    121       AU.addRequired<AliasAnalysis>();
    122       AU.addRequired<TargetLibraryInfo>();
    123       AU.addRequired<DominatorTree>();
    124     }
    125     virtual void print(raw_ostream &O, const Module *M) const {}
    126 
    127     void WriteValue(const Value *V) {
    128       if (!V) return;
    129       if (isa<Instruction>(V)) {
    130         MessagesStr << *V << '\n';
    131       } else {
    132         WriteAsOperand(MessagesStr, V, true, Mod);
    133         MessagesStr << '\n';
    134       }
    135     }
    136 
    137     // CheckFailed - A check failed, so print out the condition and the message
    138     // that failed.  This provides a nice place to put a breakpoint if you want
    139     // to see why something is not correct.
    140     void CheckFailed(const Twine &Message,
    141                      const Value *V1 = 0, const Value *V2 = 0,
    142                      const Value *V3 = 0, const Value *V4 = 0) {
    143       MessagesStr << Message.str() << "\n";
    144       WriteValue(V1);
    145       WriteValue(V2);
    146       WriteValue(V3);
    147       WriteValue(V4);
    148     }
    149   };
    150 }
    151 
    152 char Lint::ID = 0;
    153 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
    154                       false, true)
    155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    156 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    157 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    158 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
    159                     false, true)
    160 
    161 // Assert - We know that cond should be true, if not print an error message.
    162 #define Assert(C, M) \
    163     do { if (!(C)) { CheckFailed(M); return; } } while (0)
    164 #define Assert1(C, M, V1) \
    165     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    166 #define Assert2(C, M, V1, V2) \
    167     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    168 #define Assert3(C, M, V1, V2, V3) \
    169     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    170 #define Assert4(C, M, V1, V2, V3, V4) \
    171     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    172 
    173 // Lint::run - This is the main Analysis entry point for a
    174 // function.
    175 //
    176 bool Lint::runOnFunction(Function &F) {
    177   Mod = F.getParent();
    178   AA = &getAnalysis<AliasAnalysis>();
    179   DT = &getAnalysis<DominatorTree>();
    180   TD = getAnalysisIfAvailable<TargetData>();
    181   TLI = &getAnalysis<TargetLibraryInfo>();
    182   visit(F);
    183   dbgs() << MessagesStr.str();
    184   Messages.clear();
    185   return false;
    186 }
    187 
    188 void Lint::visitFunction(Function &F) {
    189   // This isn't undefined behavior, it's just a little unusual, and it's a
    190   // fairly common mistake to neglect to name a function.
    191   Assert1(F.hasName() || F.hasLocalLinkage(),
    192           "Unusual: Unnamed function with non-local linkage", &F);
    193 
    194   // TODO: Check for irreducible control flow.
    195 }
    196 
    197 void Lint::visitCallSite(CallSite CS) {
    198   Instruction &I = *CS.getInstruction();
    199   Value *Callee = CS.getCalledValue();
    200 
    201   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
    202                        0, 0, MemRef::Callee);
    203 
    204   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
    205     Assert1(CS.getCallingConv() == F->getCallingConv(),
    206             "Undefined behavior: Caller and callee calling convention differ",
    207             &I);
    208 
    209     FunctionType *FT = F->getFunctionType();
    210     unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
    211 
    212     Assert1(FT->isVarArg() ?
    213               FT->getNumParams() <= NumActualArgs :
    214               FT->getNumParams() == NumActualArgs,
    215             "Undefined behavior: Call argument count mismatches callee "
    216             "argument count", &I);
    217 
    218     Assert1(FT->getReturnType() == I.getType(),
    219             "Undefined behavior: Call return type mismatches "
    220             "callee return type", &I);
    221 
    222     // Check argument types (in case the callee was casted) and attributes.
    223     // TODO: Verify that caller and callee attributes are compatible.
    224     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    225     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    226     for (; AI != AE; ++AI) {
    227       Value *Actual = *AI;
    228       if (PI != PE) {
    229         Argument *Formal = PI++;
    230         Assert1(Formal->getType() == Actual->getType(),
    231                 "Undefined behavior: Call argument type mismatches "
    232                 "callee parameter type", &I);
    233 
    234         // Check that noalias arguments don't alias other arguments. This is
    235         // not fully precise because we don't know the sizes of the dereferenced
    236         // memory regions.
    237         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
    238           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
    239             if (AI != BI && (*BI)->getType()->isPointerTy()) {
    240               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
    241               Assert1(Result != AliasAnalysis::MustAlias &&
    242                       Result != AliasAnalysis::PartialAlias,
    243                       "Unusual: noalias argument aliases another argument", &I);
    244             }
    245 
    246         // Check that an sret argument points to valid memory.
    247         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
    248           Type *Ty =
    249             cast<PointerType>(Formal->getType())->getElementType();
    250           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
    251                                TD ? TD->getABITypeAlignment(Ty) : 0,
    252                                Ty, MemRef::Read | MemRef::Write);
    253         }
    254       }
    255     }
    256   }
    257 
    258   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
    259     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    260          AI != AE; ++AI) {
    261       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
    262       Assert1(!isa<AllocaInst>(Obj),
    263               "Undefined behavior: Call with \"tail\" keyword references "
    264               "alloca", &I);
    265     }
    266 
    267 
    268   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    269     switch (II->getIntrinsicID()) {
    270     default: break;
    271 
    272     // TODO: Check more intrinsics
    273 
    274     case Intrinsic::memcpy: {
    275       MemCpyInst *MCI = cast<MemCpyInst>(&I);
    276       // TODO: If the size is known, use it.
    277       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
    278                            MCI->getAlignment(), 0,
    279                            MemRef::Write);
    280       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
    281                            MCI->getAlignment(), 0,
    282                            MemRef::Read);
    283 
    284       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
    285       // isn't expressive enough for what we really want to do. Known partial
    286       // overlap is not distinguished from the case where nothing is known.
    287       uint64_t Size = 0;
    288       if (const ConstantInt *Len =
    289             dyn_cast<ConstantInt>(findValue(MCI->getLength(),
    290                                             /*OffsetOk=*/false)))
    291         if (Len->getValue().isIntN(32))
    292           Size = Len->getValue().getZExtValue();
    293       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
    294               AliasAnalysis::MustAlias,
    295               "Undefined behavior: memcpy source and destination overlap", &I);
    296       break;
    297     }
    298     case Intrinsic::memmove: {
    299       MemMoveInst *MMI = cast<MemMoveInst>(&I);
    300       // TODO: If the size is known, use it.
    301       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
    302                            MMI->getAlignment(), 0,
    303                            MemRef::Write);
    304       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
    305                            MMI->getAlignment(), 0,
    306                            MemRef::Read);
    307       break;
    308     }
    309     case Intrinsic::memset: {
    310       MemSetInst *MSI = cast<MemSetInst>(&I);
    311       // TODO: If the size is known, use it.
    312       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
    313                            MSI->getAlignment(), 0,
    314                            MemRef::Write);
    315       break;
    316     }
    317 
    318     case Intrinsic::vastart:
    319       Assert1(I.getParent()->getParent()->isVarArg(),
    320               "Undefined behavior: va_start called in a non-varargs function",
    321               &I);
    322 
    323       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    324                            0, 0, MemRef::Read | MemRef::Write);
    325       break;
    326     case Intrinsic::vacopy:
    327       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    328                            0, 0, MemRef::Write);
    329       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
    330                            0, 0, MemRef::Read);
    331       break;
    332     case Intrinsic::vaend:
    333       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    334                            0, 0, MemRef::Read | MemRef::Write);
    335       break;
    336 
    337     case Intrinsic::stackrestore:
    338       // Stackrestore doesn't read or write memory, but it sets the
    339       // stack pointer, which the compiler may read from or write to
    340       // at any time, so check it for both readability and writeability.
    341       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
    342                            0, 0, MemRef::Read | MemRef::Write);
    343       break;
    344     }
    345 }
    346 
    347 void Lint::visitCallInst(CallInst &I) {
    348   return visitCallSite(&I);
    349 }
    350 
    351 void Lint::visitInvokeInst(InvokeInst &I) {
    352   return visitCallSite(&I);
    353 }
    354 
    355 void Lint::visitReturnInst(ReturnInst &I) {
    356   Function *F = I.getParent()->getParent();
    357   Assert1(!F->doesNotReturn(),
    358           "Unusual: Return statement in function with noreturn attribute",
    359           &I);
    360 
    361   if (Value *V = I.getReturnValue()) {
    362     Value *Obj = findValue(V, /*OffsetOk=*/true);
    363     Assert1(!isa<AllocaInst>(Obj),
    364             "Unusual: Returning alloca value", &I);
    365   }
    366 }
    367 
    368 // TODO: Check that the reference is in bounds.
    369 // TODO: Check readnone/readonly function attributes.
    370 void Lint::visitMemoryReference(Instruction &I,
    371                                 Value *Ptr, uint64_t Size, unsigned Align,
    372                                 Type *Ty, unsigned Flags) {
    373   // If no memory is being referenced, it doesn't matter if the pointer
    374   // is valid.
    375   if (Size == 0)
    376     return;
    377 
    378   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
    379   Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
    380           "Undefined behavior: Null pointer dereference", &I);
    381   Assert1(!isa<UndefValue>(UnderlyingObject),
    382           "Undefined behavior: Undef pointer dereference", &I);
    383   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    384           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
    385           "Unusual: All-ones pointer dereference", &I);
    386   Assert1(!isa<ConstantInt>(UnderlyingObject) ||
    387           !cast<ConstantInt>(UnderlyingObject)->isOne(),
    388           "Unusual: Address one pointer dereference", &I);
    389 
    390   if (Flags & MemRef::Write) {
    391     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
    392       Assert1(!GV->isConstant(),
    393               "Undefined behavior: Write to read-only memory", &I);
    394     Assert1(!isa<Function>(UnderlyingObject) &&
    395             !isa<BlockAddress>(UnderlyingObject),
    396             "Undefined behavior: Write to text section", &I);
    397   }
    398   if (Flags & MemRef::Read) {
    399     Assert1(!isa<Function>(UnderlyingObject),
    400             "Unusual: Load from function body", &I);
    401     Assert1(!isa<BlockAddress>(UnderlyingObject),
    402             "Undefined behavior: Load from block address", &I);
    403   }
    404   if (Flags & MemRef::Callee) {
    405     Assert1(!isa<BlockAddress>(UnderlyingObject),
    406             "Undefined behavior: Call to block address", &I);
    407   }
    408   if (Flags & MemRef::Branchee) {
    409     Assert1(!isa<Constant>(UnderlyingObject) ||
    410             isa<BlockAddress>(UnderlyingObject),
    411             "Undefined behavior: Branch to non-blockaddress", &I);
    412   }
    413 
    414   if (TD) {
    415     if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
    416 
    417     if (Align != 0) {
    418       unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
    419       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    420       ComputeMaskedBits(Ptr, KnownZero, KnownOne, TD);
    421       Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
    422               "Undefined behavior: Memory reference address is misaligned", &I);
    423     }
    424   }
    425 }
    426 
    427 void Lint::visitLoadInst(LoadInst &I) {
    428   visitMemoryReference(I, I.getPointerOperand(),
    429                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
    430                        I.getType(), MemRef::Read);
    431 }
    432 
    433 void Lint::visitStoreInst(StoreInst &I) {
    434   visitMemoryReference(I, I.getPointerOperand(),
    435                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
    436                        I.getAlignment(),
    437                        I.getOperand(0)->getType(), MemRef::Write);
    438 }
    439 
    440 void Lint::visitXor(BinaryOperator &I) {
    441   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    442           !isa<UndefValue>(I.getOperand(1)),
    443           "Undefined result: xor(undef, undef)", &I);
    444 }
    445 
    446 void Lint::visitSub(BinaryOperator &I) {
    447   Assert1(!isa<UndefValue>(I.getOperand(0)) ||
    448           !isa<UndefValue>(I.getOperand(1)),
    449           "Undefined result: sub(undef, undef)", &I);
    450 }
    451 
    452 void Lint::visitLShr(BinaryOperator &I) {
    453   if (ConstantInt *CI =
    454         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    455     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    456             "Undefined result: Shift count out of range", &I);
    457 }
    458 
    459 void Lint::visitAShr(BinaryOperator &I) {
    460   if (ConstantInt *CI =
    461         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    462     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    463             "Undefined result: Shift count out of range", &I);
    464 }
    465 
    466 void Lint::visitShl(BinaryOperator &I) {
    467   if (ConstantInt *CI =
    468         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    469     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    470             "Undefined result: Shift count out of range", &I);
    471 }
    472 
    473 static bool isZero(Value *V, TargetData *TD) {
    474   // Assume undef could be zero.
    475   if (isa<UndefValue>(V)) return true;
    476 
    477   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
    478   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    479   ComputeMaskedBits(V, KnownZero, KnownOne, TD);
    480   return KnownZero.isAllOnesValue();
    481 }
    482 
    483 void Lint::visitSDiv(BinaryOperator &I) {
    484   Assert1(!isZero(I.getOperand(1), TD),
    485           "Undefined behavior: Division by zero", &I);
    486 }
    487 
    488 void Lint::visitUDiv(BinaryOperator &I) {
    489   Assert1(!isZero(I.getOperand(1), TD),
    490           "Undefined behavior: Division by zero", &I);
    491 }
    492 
    493 void Lint::visitSRem(BinaryOperator &I) {
    494   Assert1(!isZero(I.getOperand(1), TD),
    495           "Undefined behavior: Division by zero", &I);
    496 }
    497 
    498 void Lint::visitURem(BinaryOperator &I) {
    499   Assert1(!isZero(I.getOperand(1), TD),
    500           "Undefined behavior: Division by zero", &I);
    501 }
    502 
    503 void Lint::visitAllocaInst(AllocaInst &I) {
    504   if (isa<ConstantInt>(I.getArraySize()))
    505     // This isn't undefined behavior, it's just an obvious pessimization.
    506     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
    507             "Pessimization: Static alloca outside of entry block", &I);
    508 
    509   // TODO: Check for an unusual size (MSB set?)
    510 }
    511 
    512 void Lint::visitVAArgInst(VAArgInst &I) {
    513   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
    514                        MemRef::Read | MemRef::Write);
    515 }
    516 
    517 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
    518   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
    519                        MemRef::Branchee);
    520 
    521   Assert1(I.getNumDestinations() != 0,
    522           "Undefined behavior: indirectbr with no destinations", &I);
    523 }
    524 
    525 void Lint::visitExtractElementInst(ExtractElementInst &I) {
    526   if (ConstantInt *CI =
    527         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
    528                                         /*OffsetOk=*/false)))
    529     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
    530             "Undefined result: extractelement index out of range", &I);
    531 }
    532 
    533 void Lint::visitInsertElementInst(InsertElementInst &I) {
    534   if (ConstantInt *CI =
    535         dyn_cast<ConstantInt>(findValue(I.getOperand(2),
    536                                         /*OffsetOk=*/false)))
    537     Assert1(CI->getValue().ult(I.getType()->getNumElements()),
    538             "Undefined result: insertelement index out of range", &I);
    539 }
    540 
    541 void Lint::visitUnreachableInst(UnreachableInst &I) {
    542   // This isn't undefined behavior, it's merely suspicious.
    543   Assert1(&I == I.getParent()->begin() ||
    544           prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
    545           "Unusual: unreachable immediately preceded by instruction without "
    546           "side effects", &I);
    547 }
    548 
    549 /// findValue - Look through bitcasts and simple memory reference patterns
    550 /// to identify an equivalent, but more informative, value.  If OffsetOk
    551 /// is true, look through getelementptrs with non-zero offsets too.
    552 ///
    553 /// Most analysis passes don't require this logic, because instcombine
    554 /// will simplify most of these kinds of things away. But it's a goal of
    555 /// this Lint pass to be useful even on non-optimized IR.
    556 Value *Lint::findValue(Value *V, bool OffsetOk) const {
    557   SmallPtrSet<Value *, 4> Visited;
    558   return findValueImpl(V, OffsetOk, Visited);
    559 }
    560 
    561 /// findValueImpl - Implementation helper for findValue.
    562 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
    563                            SmallPtrSet<Value *, 4> &Visited) const {
    564   // Detect self-referential values.
    565   if (!Visited.insert(V))
    566     return UndefValue::get(V->getType());
    567 
    568   // TODO: Look through sext or zext cast, when the result is known to
    569   // be interpreted as signed or unsigned, respectively.
    570   // TODO: Look through eliminable cast pairs.
    571   // TODO: Look through calls with unique return values.
    572   // TODO: Look through vector insert/extract/shuffle.
    573   V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
    574   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    575     BasicBlock::iterator BBI = L;
    576     BasicBlock *BB = L->getParent();
    577     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    578     for (;;) {
    579       if (!VisitedBlocks.insert(BB)) break;
    580       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
    581                                               BB, BBI, 6, AA))
    582         return findValueImpl(U, OffsetOk, Visited);
    583       if (BBI != BB->begin()) break;
    584       BB = BB->getUniquePredecessor();
    585       if (!BB) break;
    586       BBI = BB->end();
    587     }
    588   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    589     if (Value *W = PN->hasConstantValue())
    590       if (W != V)
    591         return findValueImpl(W, OffsetOk, Visited);
    592   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    593     if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
    594                             Type::getInt64Ty(V->getContext())))
    595       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
    596   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    597     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
    598                                      Ex->getIndices()))
    599       if (W != V)
    600         return findValueImpl(W, OffsetOk, Visited);
    601   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    602     // Same as above, but for ConstantExpr instead of Instruction.
    603     if (Instruction::isCast(CE->getOpcode())) {
    604       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
    605                                CE->getOperand(0)->getType(),
    606                                CE->getType(),
    607                                TD ? TD->getIntPtrType(V->getContext()) :
    608                                     Type::getInt64Ty(V->getContext())))
    609         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    610     } else if (CE->getOpcode() == Instruction::ExtractValue) {
    611       ArrayRef<unsigned> Indices = CE->getIndices();
    612       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
    613         if (W != V)
    614           return findValueImpl(W, OffsetOk, Visited);
    615     }
    616   }
    617 
    618   // As a last resort, try SimplifyInstruction or constant folding.
    619   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    620     if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
    621       return findValueImpl(W, OffsetOk, Visited);
    622   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    623     if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
    624       if (W != V)
    625         return findValueImpl(W, OffsetOk, Visited);
    626   }
    627 
    628   return V;
    629 }
    630 
    631 //===----------------------------------------------------------------------===//
    632 //  Implement the public interfaces to this file...
    633 //===----------------------------------------------------------------------===//
    634 
    635 FunctionPass *llvm::createLintPass() {
    636   return new Lint();
    637 }
    638 
    639 /// lintFunction - Check a function for errors, printing messages on stderr.
    640 ///
    641 void llvm::lintFunction(const Function &f) {
    642   Function &F = const_cast<Function&>(f);
    643   assert(!F.isDeclaration() && "Cannot lint external functions");
    644 
    645   FunctionPassManager FPM(F.getParent());
    646   Lint *V = new Lint();
    647   FPM.add(V);
    648   FPM.run(F);
    649 }
    650 
    651 /// lintModule - Check a module for errors, printing messages on stderr.
    652 ///
    653 void llvm::lintModule(const Module &M) {
    654   PassManager PM;
    655   Lint *V = new Lint();
    656   PM.add(V);
    657   PM.run(const_cast<Module&>(M));
    658 }
    659