Home | History | Annotate | Download | only in Mips
      1 //===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Mips FPU instruction set.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Floating Point Instructions
     16 // ------------------------
     17 // * 64bit fp:
     18 //    - 32 64-bit registers (default mode)
     19 //    - 16 even 32-bit registers (32-bit compatible mode) for
     20 //      single and double access.
     21 // * 32bit fp:
     22 //    - 16 even 32-bit registers - single and double (aliased)
     23 //    - 32 32-bit registers (within single-only mode)
     24 //===----------------------------------------------------------------------===//
     25 
     26 // Floating Point Compare and Branch
     27 def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
     28                                             SDTCisVT<1, OtherVT>]>;
     29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
     30                                          SDTCisVT<2, i32>]>;
     31 def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
     32                                           SDTCisSameAs<1, 2>]>;
     33 def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
     34                                                 SDTCisVT<1, i32>,
     35                                                 SDTCisSameAs<1, 2>]>;
     36 def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
     37                                                      SDTCisVT<1, f64>,
     38                                                      SDTCisVT<2, i32>]>;
     39 
     40 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
     41 def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
     42 def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
     43 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
     44                           [SDNPHasChain, SDNPOptInGlue]>;
     45 def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
     46 def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
     47                                    SDT_MipsExtractElementF64>;
     48 
     49 // Operand for printing out a condition code.
     50 let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
     51   def condcode : Operand<i32>;
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Feature predicates.
     55 //===----------------------------------------------------------------------===//
     56 
     57 def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
     58                        AssemblerPredicate<"FeatureFP64Bit">;
     59 def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
     60                        AssemblerPredicate<"!FeatureFP64Bit">;
     61 def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
     62                        AssemblerPredicate<"FeatureSingleFloat">;
     63 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
     64                        AssemblerPredicate<"!FeatureSingleFloat">;
     65 
     66 // FP immediate patterns.
     67 def fpimm0 : PatLeaf<(fpimm), [{
     68   return N->isExactlyValue(+0.0);
     69 }]>;
     70 
     71 def fpimm0neg : PatLeaf<(fpimm), [{
     72   return N->isExactlyValue(-0.0);
     73 }]>;
     74 
     75 //===----------------------------------------------------------------------===//
     76 // Instruction Class Templates
     77 //
     78 // A set of multiclasses is used to address the register usage.
     79 //
     80 // S32 - single precision in 16 32bit even fp registers
     81 //       single precision in 32 32bit fp registers in SingleOnly mode
     82 // S64 - single precision in 32 64bit fp registers (In64BitMode)
     83 // D32 - double precision in 16 32bit even fp registers
     84 // D64 - double precision in 32 64bit fp registers (In64BitMode)
     85 //
     86 // Only S32 and D32 are supported right now.
     87 //===----------------------------------------------------------------------===//
     88 
     89 // FP load.
     90 let DecoderMethod = "DecodeFMem" in {
     91 class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
     92   FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
     93       !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load_a addr:$addr))],
     94       IILoad>;
     95 
     96 // FP store.
     97 class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
     98   FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
     99       !strconcat(opstr, "\t$ft, $addr"), [(store_a RC:$ft, addr:$addr)],
    100       IIStore>;
    101 }
    102 // FP indexed load.
    103 class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
    104                 RegisterClass PRC, SDPatternOperator FOp = null_frag>:
    105   FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
    106            !strconcat(opstr, "\t$fd, ${index}(${base})"),
    107            [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
    108   let fs = 0;
    109 }
    110 
    111 // FP indexed store.
    112 class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
    113                  RegisterClass PRC, SDPatternOperator FOp= null_frag>:
    114   FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
    115            !strconcat(opstr, "\t$fs, ${index}(${base})"),
    116            [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
    117   let fd = 0;
    118 }
    119 
    120 // Instructions that convert an FP value to 32-bit fixed point.
    121 multiclass FFR1_W_M<bits<6> funct, string opstr> {
    122   def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
    123   def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
    124              Requires<[NotFP64bit, HasStandardEncoding]>;
    125   def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
    126              Requires<[IsFP64bit, HasStandardEncoding]> {
    127     let DecoderNamespace = "Mips64";
    128   }
    129 }
    130 
    131 // Instructions that convert an FP value to 64-bit fixed point.
    132 let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in
    133 multiclass FFR1_L_M<bits<6> funct, string opstr> {
    134   def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
    135   def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
    136 }
    137 
    138 // FP-to-FP conversion instructions.
    139 multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
    140   def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
    141   def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
    142              Requires<[NotFP64bit, HasStandardEncoding]>;
    143   def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
    144              Requires<[IsFP64bit, HasStandardEncoding]> {
    145     let DecoderNamespace = "Mips64";
    146   }
    147 }
    148 
    149 multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
    150   let isCommutable = isComm in {
    151   def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
    152   def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
    153              Requires<[NotFP64bit, HasStandardEncoding]>;
    154   def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
    155              Requires<[IsFP64bit, HasStandardEncoding]> {
    156     let DecoderNamespace = "Mips64";
    157   }
    158 }
    159 }
    160 
    161 // FP madd/msub/nmadd/nmsub instruction classes.
    162 class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
    163                SDNode OpNode, RegisterClass RC> :
    164   FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
    165             !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
    166             [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;
    167 
    168 class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr,
    169                 SDNode OpNode, RegisterClass RC> :
    170   FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
    171             !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"),
    172             [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;
    173 
    174 //===----------------------------------------------------------------------===//
    175 // Floating Point Instructions
    176 //===----------------------------------------------------------------------===//
    177 defm ROUND_W : FFR1_W_M<0xc, "round">;
    178 defm ROUND_L : FFR1_L_M<0x8, "round">;
    179 defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
    180 defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
    181 defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
    182 defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
    183 defm FLOOR_W : FFR1_W_M<0xf, "floor">;
    184 defm FLOOR_L : FFR1_L_M<0xb, "floor">;
    185 defm CVT_W   : FFR1_W_M<0x24, "cvt">;
    186 //defm CVT_L   : FFR1_L_M<0x25, "cvt">;
    187 
    188 def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
    189 def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>;
    190 def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>;
    191 
    192 let Predicates = [NotFP64bit, HasStandardEncoding] in {
    193   def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
    194   def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
    195   def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
    196 }
    197 
    198 let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in {
    199  def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
    200  def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
    201  def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
    202  def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
    203  def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
    204 }
    205 
    206 let Predicates = [NoNaNsFPMath, HasStandardEncoding] in {
    207   defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
    208   defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
    209 }
    210 defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
    211 
    212 // The odd-numbered registers are only referenced when doing loads,
    213 // stores, and moves between floating-point and integer registers.
    214 // When defining instructions, we reference all 32-bit registers,
    215 // regardless of register aliasing.
    216 
    217 class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
    218              FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
    219   bits<5> rt;
    220   let ft = rt;
    221   let fd = 0;
    222 }
    223 
    224 /// Move Control Registers From/To CPU Registers
    225 def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
    226                   "cfc1\t$rt, $fs", []>;
    227 
    228 def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
    229                   "ctc1\t$rt, $fs", []>;
    230 
    231 def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
    232                   "mfc1\t$rt, $fs",
    233                   [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
    234 
    235 def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
    236                   "mtc1\t$rt, $fs",
    237                   [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
    238 
    239 def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
    240                   "dmfc1\t$rt, $fs",
    241                   [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;
    242 
    243 def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
    244                   "dmtc1\t$rt, $fs",
    245                   [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;
    246 
    247 def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
    248 def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
    249                Requires<[NotFP64bit, HasStandardEncoding]>;
    250 def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
    251                Requires<[IsFP64bit, HasStandardEncoding]> {
    252   let DecoderNamespace = "Mips64";
    253 }
    254 
    255 /// Floating Point Memory Instructions
    256 let Predicates = [IsN64, HasStandardEncoding], DecoderNamespace = "Mips64" in {
    257   def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
    258   def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
    259   def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
    260     let isCodeGenOnly =1;
    261   }
    262   def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
    263     let isCodeGenOnly =1;
    264   }
    265 }
    266 
    267 let Predicates = [NotN64, HasStandardEncoding] in {
    268   def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
    269   def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
    270 }
    271 
    272 let Predicates = [NotN64, HasMips64, HasStandardEncoding],
    273   DecoderNamespace = "Mips64" in {
    274   def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
    275   def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
    276 }
    277 
    278 let Predicates = [NotN64, NotMips64, HasStandardEncoding] in {
    279   def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
    280   def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
    281 }
    282 
    283 // Indexed loads and stores.
    284 let Predicates = [HasMips32r2Or64, HasStandardEncoding] in {
    285   def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load_a>;
    286   def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store_a>;
    287 }
    288 
    289 let Predicates = [HasMips32r2, NotMips64, HasStandardEncoding] in {
    290   def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load_a>;
    291   def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store_a>;
    292 }
    293 
    294 let Predicates = [HasMips64, NotN64, HasStandardEncoding], DecoderNamespace="Mips64" in {
    295   def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load_a>;
    296   def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store_a>;
    297 }
    298 
    299 // n64
    300 let Predicates = [IsN64, HasStandardEncoding], isCodeGenOnly=1 in {
    301   def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load_a>;
    302   def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load_a>;
    303   def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store_a>;
    304   def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store_a>;
    305 }
    306 
    307 // Load/store doubleword indexed unaligned.
    308 let Predicates = [NotMips64, HasStandardEncoding] in {
    309   def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>;
    310   def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>;
    311 }
    312 
    313 let Predicates = [HasMips64, HasStandardEncoding],
    314   DecoderNamespace="Mips64" in {
    315   def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>;
    316   def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>;
    317 }
    318 
    319 /// Floating-point Aritmetic
    320 defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
    321 defm FDIV : FFR2P_M<0x03, "div", fdiv>;
    322 defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
    323 defm FSUB : FFR2P_M<0x01, "sub", fsub>;
    324 
    325 let Predicates = [HasMips32r2, HasStandardEncoding] in {
    326   def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>;
    327   def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>;
    328 }
    329 
    330 let Predicates = [HasMips32r2, NoNaNsFPMath, HasStandardEncoding] in {
    331   def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>;
    332   def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>;
    333 }
    334 
    335 let Predicates = [HasMips32r2, NotFP64bit, HasStandardEncoding] in {
    336   def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>;
    337   def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>;
    338 }
    339 
    340 let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStandardEncoding] in {
    341   def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>;
    342   def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>;
    343 }
    344 
    345 let Predicates = [HasMips32r2, IsFP64bit, HasStandardEncoding], isCodeGenOnly=1 in {
    346   def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>;
    347   def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>;
    348 }
    349 
    350 let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStandardEncoding],
    351     isCodeGenOnly=1 in {
    352   def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>;
    353   def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>;
    354 }
    355 
    356 //===----------------------------------------------------------------------===//
    357 // Floating Point Branch Codes
    358 //===----------------------------------------------------------------------===//
    359 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
    360 // They must be kept in synch.
    361 def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
    362 def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
    363 
    364 /// Floating Point Branch of False/True (Likely)
    365 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
    366   class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
    367       FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
    368         [(MipsFPBrcond op, bb:$dst)]> {
    369   let Inst{20-18} = 0;
    370   let Inst{17} = nd;
    371   let Inst{16} = tf;
    372 }
    373 
    374 let DecoderMethod = "DecodeBC1" in {
    375 def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
    376 def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
    377 }
    378 //===----------------------------------------------------------------------===//
    379 // Floating Point Flag Conditions
    380 //===----------------------------------------------------------------------===//
    381 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
    382 // They must be kept in synch.
    383 def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
    384 def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
    385 def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
    386 def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
    387 def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
    388 def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
    389 def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
    390 def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
    391 def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
    392 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
    393 def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
    394 def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
    395 def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
    396 def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
    397 def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
    398 def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
    399 
    400 class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
    401   FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
    402       !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
    403       [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;
    404 
    405 /// Floating Point Compare
    406 let Defs=[FCR31] in {
    407   def FCMP_S32 : FCMP<0x10, FGR32, "s">;
    408   def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
    409       Requires<[NotFP64bit, HasStandardEncoding]>;
    410   def FCMP_D64 : FCMP<0x11, FGR64, "d">,
    411       Requires<[IsFP64bit, HasStandardEncoding]> {
    412     let DecoderNamespace = "Mips64";
    413   }
    414 }
    415 
    416 //===----------------------------------------------------------------------===//
    417 // Floating Point Pseudo-Instructions
    418 //===----------------------------------------------------------------------===//
    419 def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src),
    420                            "# MOVCCRToCCR", []>;
    421 
    422 // This pseudo instr gets expanded into 2 mtc1 instrs after register
    423 // allocation.
    424 def BuildPairF64 :
    425   PseudoSE<(outs AFGR64:$dst),
    426            (ins CPURegs:$lo, CPURegs:$hi), "",
    427            [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
    428 
    429 // This pseudo instr gets expanded into 2 mfc1 instrs after register
    430 // allocation.
    431 // if n is 0, lower part of src is extracted.
    432 // if n is 1, higher part of src is extracted.
    433 def ExtractElementF64 :
    434   PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "",
    435            [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
    436 
    437 //===----------------------------------------------------------------------===//
    438 // Floating Point Patterns
    439 //===----------------------------------------------------------------------===//
    440 def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
    441 def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
    442 
    443 def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
    444 def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
    445 
    446 let Predicates = [NotFP64bit, HasStandardEncoding] in {
    447   def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
    448                 (CVT_D32_W (MTC1 CPURegs:$src))>;
    449   def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
    450                 (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
    451   def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
    452   def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
    453 }
    454 
    455 let Predicates = [IsFP64bit, HasStandardEncoding] in {
    456   def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
    457   def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
    458 
    459   def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
    460                 (CVT_D64_W (MTC1 CPURegs:$src))>;
    461   def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
    462                 (CVT_S_L (DMTC1 CPU64Regs:$src))>;
    463   def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
    464                 (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
    465 
    466   def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
    467                 (MFC1 (TRUNC_W_D64 FGR64:$src))>;
    468   def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
    469   def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
    470                 (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
    471 
    472   def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
    473   def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;
    474 }
    475