1 //===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the Mips FPU instruction set. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Floating Point Instructions 16 // ------------------------ 17 // * 64bit fp: 18 // - 32 64-bit registers (default mode) 19 // - 16 even 32-bit registers (32-bit compatible mode) for 20 // single and double access. 21 // * 32bit fp: 22 // - 16 even 32-bit registers - single and double (aliased) 23 // - 32 32-bit registers (within single-only mode) 24 //===----------------------------------------------------------------------===// 25 26 // Floating Point Compare and Branch 27 def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>, 28 SDTCisVT<1, OtherVT>]>; 29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, 30 SDTCisVT<2, i32>]>; 31 def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 32 SDTCisSameAs<1, 2>]>; 33 def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, 34 SDTCisVT<1, i32>, 35 SDTCisSameAs<1, 2>]>; 36 def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, 37 SDTCisVT<1, f64>, 38 SDTCisVT<2, i32>]>; 39 40 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; 41 def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; 42 def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; 43 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, 44 [SDNPHasChain, SDNPOptInGlue]>; 45 def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; 46 def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", 47 SDT_MipsExtractElementF64>; 48 49 // Operand for printing out a condition code. 50 let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in 51 def condcode : Operand<i32>; 52 53 //===----------------------------------------------------------------------===// 54 // Feature predicates. 55 //===----------------------------------------------------------------------===// 56 57 def IsFP64bit : Predicate<"Subtarget.isFP64bit()">, 58 AssemblerPredicate<"FeatureFP64Bit">; 59 def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">, 60 AssemblerPredicate<"!FeatureFP64Bit">; 61 def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">, 62 AssemblerPredicate<"FeatureSingleFloat">; 63 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">, 64 AssemblerPredicate<"!FeatureSingleFloat">; 65 66 // FP immediate patterns. 67 def fpimm0 : PatLeaf<(fpimm), [{ 68 return N->isExactlyValue(+0.0); 69 }]>; 70 71 def fpimm0neg : PatLeaf<(fpimm), [{ 72 return N->isExactlyValue(-0.0); 73 }]>; 74 75 //===----------------------------------------------------------------------===// 76 // Instruction Class Templates 77 // 78 // A set of multiclasses is used to address the register usage. 79 // 80 // S32 - single precision in 16 32bit even fp registers 81 // single precision in 32 32bit fp registers in SingleOnly mode 82 // S64 - single precision in 32 64bit fp registers (In64BitMode) 83 // D32 - double precision in 16 32bit even fp registers 84 // D64 - double precision in 32 64bit fp registers (In64BitMode) 85 // 86 // Only S32 and D32 are supported right now. 87 //===----------------------------------------------------------------------===// 88 89 // FP load. 90 let DecoderMethod = "DecodeFMem" in { 91 class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>: 92 FMem<op, (outs RC:$ft), (ins MemOpnd:$addr), 93 !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load_a addr:$addr))], 94 IILoad>; 95 96 // FP store. 97 class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>: 98 FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr), 99 !strconcat(opstr, "\t$ft, $addr"), [(store_a RC:$ft, addr:$addr)], 100 IIStore>; 101 } 102 // FP indexed load. 103 class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC, 104 RegisterClass PRC, SDPatternOperator FOp = null_frag>: 105 FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index), 106 !strconcat(opstr, "\t$fd, ${index}(${base})"), 107 [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> { 108 let fs = 0; 109 } 110 111 // FP indexed store. 112 class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC, 113 RegisterClass PRC, SDPatternOperator FOp= null_frag>: 114 FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index), 115 !strconcat(opstr, "\t$fs, ${index}(${base})"), 116 [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> { 117 let fd = 0; 118 } 119 120 // Instructions that convert an FP value to 32-bit fixed point. 121 multiclass FFR1_W_M<bits<6> funct, string opstr> { 122 def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>; 123 def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>, 124 Requires<[NotFP64bit, HasStandardEncoding]>; 125 def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>, 126 Requires<[IsFP64bit, HasStandardEncoding]> { 127 let DecoderNamespace = "Mips64"; 128 } 129 } 130 131 // Instructions that convert an FP value to 64-bit fixed point. 132 let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in 133 multiclass FFR1_L_M<bits<6> funct, string opstr> { 134 def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>; 135 def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>; 136 } 137 138 // FP-to-FP conversion instructions. 139 multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> { 140 def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>; 141 def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>, 142 Requires<[NotFP64bit, HasStandardEncoding]>; 143 def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>, 144 Requires<[IsFP64bit, HasStandardEncoding]> { 145 let DecoderNamespace = "Mips64"; 146 } 147 } 148 149 multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> { 150 let isCommutable = isComm in { 151 def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>; 152 def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>, 153 Requires<[NotFP64bit, HasStandardEncoding]>; 154 def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>, 155 Requires<[IsFP64bit, HasStandardEncoding]> { 156 let DecoderNamespace = "Mips64"; 157 } 158 } 159 } 160 161 // FP madd/msub/nmadd/nmsub instruction classes. 162 class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr, 163 SDNode OpNode, RegisterClass RC> : 164 FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), 165 !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"), 166 [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>; 167 168 class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr, string fmtstr, 169 SDNode OpNode, RegisterClass RC> : 170 FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft), 171 !strconcat(opstr, ".", fmtstr, "\t$fd, $fr, $fs, $ft"), 172 [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>; 173 174 //===----------------------------------------------------------------------===// 175 // Floating Point Instructions 176 //===----------------------------------------------------------------------===// 177 defm ROUND_W : FFR1_W_M<0xc, "round">; 178 defm ROUND_L : FFR1_L_M<0x8, "round">; 179 defm TRUNC_W : FFR1_W_M<0xd, "trunc">; 180 defm TRUNC_L : FFR1_L_M<0x9, "trunc">; 181 defm CEIL_W : FFR1_W_M<0xe, "ceil">; 182 defm CEIL_L : FFR1_L_M<0xa, "ceil">; 183 defm FLOOR_W : FFR1_W_M<0xf, "floor">; 184 defm FLOOR_L : FFR1_L_M<0xb, "floor">; 185 defm CVT_W : FFR1_W_M<0x24, "cvt">; 186 //defm CVT_L : FFR1_L_M<0x25, "cvt">; 187 188 def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>; 189 def CVT_L_S : FFR1<0x25, 16, "cvt", "l.s", FGR64, FGR32>; 190 def CVT_L_D64: FFR1<0x25, 17, "cvt", "l.d", FGR64, FGR64>; 191 192 let Predicates = [NotFP64bit, HasStandardEncoding] in { 193 def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>; 194 def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>; 195 def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>; 196 } 197 198 let Predicates = [IsFP64bit, HasStandardEncoding], DecoderNamespace = "Mips64" in { 199 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>; 200 def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>; 201 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>; 202 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>; 203 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>; 204 } 205 206 let Predicates = [NoNaNsFPMath, HasStandardEncoding] in { 207 defm FABS : FFR1P_M<0x5, "abs", fabs>; 208 defm FNEG : FFR1P_M<0x7, "neg", fneg>; 209 } 210 defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>; 211 212 // The odd-numbered registers are only referenced when doing loads, 213 // stores, and moves between floating-point and integer registers. 214 // When defining instructions, we reference all 32-bit registers, 215 // regardless of register aliasing. 216 217 class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>: 218 FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> { 219 bits<5> rt; 220 let ft = rt; 221 let fd = 0; 222 } 223 224 /// Move Control Registers From/To CPU Registers 225 def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs), 226 "cfc1\t$rt, $fs", []>; 227 228 def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt), 229 "ctc1\t$rt, $fs", []>; 230 231 def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs), 232 "mfc1\t$rt, $fs", 233 [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>; 234 235 def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt), 236 "mtc1\t$rt, $fs", 237 [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>; 238 239 def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs), 240 "dmfc1\t$rt, $fs", 241 [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>; 242 243 def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt), 244 "dmtc1\t$rt, $fs", 245 [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>; 246 247 def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>; 248 def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>, 249 Requires<[NotFP64bit, HasStandardEncoding]>; 250 def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>, 251 Requires<[IsFP64bit, HasStandardEncoding]> { 252 let DecoderNamespace = "Mips64"; 253 } 254 255 /// Floating Point Memory Instructions 256 let Predicates = [IsN64, HasStandardEncoding], DecoderNamespace = "Mips64" in { 257 def LWC1_P8 : FPLoad<0x31, "lwc1", FGR32, mem64>; 258 def SWC1_P8 : FPStore<0x39, "swc1", FGR32, mem64>; 259 def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> { 260 let isCodeGenOnly =1; 261 } 262 def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> { 263 let isCodeGenOnly =1; 264 } 265 } 266 267 let Predicates = [NotN64, HasStandardEncoding] in { 268 def LWC1 : FPLoad<0x31, "lwc1", FGR32, mem>; 269 def SWC1 : FPStore<0x39, "swc1", FGR32, mem>; 270 } 271 272 let Predicates = [NotN64, HasMips64, HasStandardEncoding], 273 DecoderNamespace = "Mips64" in { 274 def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>; 275 def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>; 276 } 277 278 let Predicates = [NotN64, NotMips64, HasStandardEncoding] in { 279 def LDC1 : FPLoad<0x35, "ldc1", AFGR64, mem>; 280 def SDC1 : FPStore<0x3d, "sdc1", AFGR64, mem>; 281 } 282 283 // Indexed loads and stores. 284 let Predicates = [HasMips32r2Or64, HasStandardEncoding] in { 285 def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load_a>; 286 def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store_a>; 287 } 288 289 let Predicates = [HasMips32r2, NotMips64, HasStandardEncoding] in { 290 def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load_a>; 291 def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store_a>; 292 } 293 294 let Predicates = [HasMips64, NotN64, HasStandardEncoding], DecoderNamespace="Mips64" in { 295 def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load_a>; 296 def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store_a>; 297 } 298 299 // n64 300 let Predicates = [IsN64, HasStandardEncoding], isCodeGenOnly=1 in { 301 def LWXC1_P8 : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load_a>; 302 def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load_a>; 303 def SWXC1_P8 : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store_a>; 304 def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store_a>; 305 } 306 307 // Load/store doubleword indexed unaligned. 308 let Predicates = [NotMips64, HasStandardEncoding] in { 309 def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>; 310 def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>; 311 } 312 313 let Predicates = [HasMips64, HasStandardEncoding], 314 DecoderNamespace="Mips64" in { 315 def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>; 316 def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>; 317 } 318 319 /// Floating-point Aritmetic 320 defm FADD : FFR2P_M<0x00, "add", fadd, 1>; 321 defm FDIV : FFR2P_M<0x03, "div", fdiv>; 322 defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>; 323 defm FSUB : FFR2P_M<0x01, "sub", fsub>; 324 325 let Predicates = [HasMips32r2, HasStandardEncoding] in { 326 def MADD_S : FMADDSUB<0x4, 0, "madd", "s", fadd, FGR32>; 327 def MSUB_S : FMADDSUB<0x5, 0, "msub", "s", fsub, FGR32>; 328 } 329 330 let Predicates = [HasMips32r2, NoNaNsFPMath, HasStandardEncoding] in { 331 def NMADD_S : FNMADDSUB<0x6, 0, "nmadd", "s", fadd, FGR32>; 332 def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub", "s", fsub, FGR32>; 333 } 334 335 let Predicates = [HasMips32r2, NotFP64bit, HasStandardEncoding] in { 336 def MADD_D32 : FMADDSUB<0x4, 1, "madd", "d", fadd, AFGR64>; 337 def MSUB_D32 : FMADDSUB<0x5, 1, "msub", "d", fsub, AFGR64>; 338 } 339 340 let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStandardEncoding] in { 341 def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, AFGR64>; 342 def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, AFGR64>; 343 } 344 345 let Predicates = [HasMips32r2, IsFP64bit, HasStandardEncoding], isCodeGenOnly=1 in { 346 def MADD_D64 : FMADDSUB<0x4, 1, "madd", "d", fadd, FGR64>; 347 def MSUB_D64 : FMADDSUB<0x5, 1, "msub", "d", fsub, FGR64>; 348 } 349 350 let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStandardEncoding], 351 isCodeGenOnly=1 in { 352 def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd", "d", fadd, FGR64>; 353 def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub", "d", fsub, FGR64>; 354 } 355 356 //===----------------------------------------------------------------------===// 357 // Floating Point Branch Codes 358 //===----------------------------------------------------------------------===// 359 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h. 360 // They must be kept in synch. 361 def MIPS_BRANCH_F : PatLeaf<(i32 0)>; 362 def MIPS_BRANCH_T : PatLeaf<(i32 1)>; 363 364 /// Floating Point Branch of False/True (Likely) 365 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in 366 class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> : 367 FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"), 368 [(MipsFPBrcond op, bb:$dst)]> { 369 let Inst{20-18} = 0; 370 let Inst{17} = nd; 371 let Inst{16} = tf; 372 } 373 374 let DecoderMethod = "DecodeBC1" in { 375 def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">; 376 def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">; 377 } 378 //===----------------------------------------------------------------------===// 379 // Floating Point Flag Conditions 380 //===----------------------------------------------------------------------===// 381 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h. 382 // They must be kept in synch. 383 def MIPS_FCOND_F : PatLeaf<(i32 0)>; 384 def MIPS_FCOND_UN : PatLeaf<(i32 1)>; 385 def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>; 386 def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>; 387 def MIPS_FCOND_OLT : PatLeaf<(i32 4)>; 388 def MIPS_FCOND_ULT : PatLeaf<(i32 5)>; 389 def MIPS_FCOND_OLE : PatLeaf<(i32 6)>; 390 def MIPS_FCOND_ULE : PatLeaf<(i32 7)>; 391 def MIPS_FCOND_SF : PatLeaf<(i32 8)>; 392 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>; 393 def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>; 394 def MIPS_FCOND_NGL : PatLeaf<(i32 11)>; 395 def MIPS_FCOND_LT : PatLeaf<(i32 12)>; 396 def MIPS_FCOND_NGE : PatLeaf<(i32 13)>; 397 def MIPS_FCOND_LE : PatLeaf<(i32 14)>; 398 def MIPS_FCOND_NGT : PatLeaf<(i32 15)>; 399 400 class FCMP<bits<5> fmt, RegisterClass RC, string typestr> : 401 FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc), 402 !strconcat("c.$cc.", typestr, "\t$fs, $ft"), 403 [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>; 404 405 /// Floating Point Compare 406 let Defs=[FCR31] in { 407 def FCMP_S32 : FCMP<0x10, FGR32, "s">; 408 def FCMP_D32 : FCMP<0x11, AFGR64, "d">, 409 Requires<[NotFP64bit, HasStandardEncoding]>; 410 def FCMP_D64 : FCMP<0x11, FGR64, "d">, 411 Requires<[IsFP64bit, HasStandardEncoding]> { 412 let DecoderNamespace = "Mips64"; 413 } 414 } 415 416 //===----------------------------------------------------------------------===// 417 // Floating Point Pseudo-Instructions 418 //===----------------------------------------------------------------------===// 419 def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src), 420 "# MOVCCRToCCR", []>; 421 422 // This pseudo instr gets expanded into 2 mtc1 instrs after register 423 // allocation. 424 def BuildPairF64 : 425 PseudoSE<(outs AFGR64:$dst), 426 (ins CPURegs:$lo, CPURegs:$hi), "", 427 [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>; 428 429 // This pseudo instr gets expanded into 2 mfc1 instrs after register 430 // allocation. 431 // if n is 0, lower part of src is extracted. 432 // if n is 1, higher part of src is extracted. 433 def ExtractElementF64 : 434 PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "", 435 [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>; 436 437 //===----------------------------------------------------------------------===// 438 // Floating Point Patterns 439 //===----------------------------------------------------------------------===// 440 def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>; 441 def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; 442 443 def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>; 444 def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>; 445 446 let Predicates = [NotFP64bit, HasStandardEncoding] in { 447 def : MipsPat<(f64 (sint_to_fp CPURegs:$src)), 448 (CVT_D32_W (MTC1 CPURegs:$src))>; 449 def : MipsPat<(i32 (fp_to_sint AFGR64:$src)), 450 (MFC1 (TRUNC_W_D32 AFGR64:$src))>; 451 def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>; 452 def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>; 453 } 454 455 let Predicates = [IsFP64bit, HasStandardEncoding] in { 456 def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>; 457 def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>; 458 459 def : MipsPat<(f64 (sint_to_fp CPURegs:$src)), 460 (CVT_D64_W (MTC1 CPURegs:$src))>; 461 def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)), 462 (CVT_S_L (DMTC1 CPU64Regs:$src))>; 463 def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)), 464 (CVT_D64_L (DMTC1 CPU64Regs:$src))>; 465 466 def : MipsPat<(i32 (fp_to_sint FGR64:$src)), 467 (MFC1 (TRUNC_W_D64 FGR64:$src))>; 468 def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>; 469 def : MipsPat<(i64 (fp_to_sint FGR64:$src)), 470 (DMFC1 (TRUNC_L_D64 FGR64:$src))>; 471 472 def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>; 473 def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>; 474 } 475