Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Target/TargetLibraryInfo.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     23 /// expression.  If so, decompose it, returning some value X, such that Val is
     24 /// X*Scale+Offset.
     25 ///
     26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     27                                         uint64_t &Offset) {
     28   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     29     Offset = CI->getZExtValue();
     30     Scale  = 0;
     31     return ConstantInt::get(Val->getType(), 0);
     32   }
     33 
     34   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     35     // Cannot look past anything that might overflow.
     36     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     37     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
     38       Scale = 1;
     39       Offset = 0;
     40       return Val;
     41     }
     42 
     43     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     44       if (I->getOpcode() == Instruction::Shl) {
     45         // This is a value scaled by '1 << the shift amt'.
     46         Scale = UINT64_C(1) << RHS->getZExtValue();
     47         Offset = 0;
     48         return I->getOperand(0);
     49       }
     50 
     51       if (I->getOpcode() == Instruction::Mul) {
     52         // This value is scaled by 'RHS'.
     53         Scale = RHS->getZExtValue();
     54         Offset = 0;
     55         return I->getOperand(0);
     56       }
     57 
     58       if (I->getOpcode() == Instruction::Add) {
     59         // We have X+C.  Check to see if we really have (X*C2)+C1,
     60         // where C1 is divisible by C2.
     61         unsigned SubScale;
     62         Value *SubVal =
     63           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     64         Offset += RHS->getZExtValue();
     65         Scale = SubScale;
     66         return SubVal;
     67       }
     68     }
     69   }
     70 
     71   // Otherwise, we can't look past this.
     72   Scale = 1;
     73   Offset = 0;
     74   return Val;
     75 }
     76 
     77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     78 /// try to eliminate the cast by moving the type information into the alloc.
     79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     80                                                    AllocaInst &AI) {
     81   // This requires TargetData to get the alloca alignment and size information.
     82   if (!TD) return 0;
     83 
     84   PointerType *PTy = cast<PointerType>(CI.getType());
     85 
     86   BuilderTy AllocaBuilder(*Builder);
     87   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     88 
     89   // Get the type really allocated and the type casted to.
     90   Type *AllocElTy = AI.getAllocatedType();
     91   Type *CastElTy = PTy->getElementType();
     92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
     93 
     94   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
     95   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
     96   if (CastElTyAlign < AllocElTyAlign) return 0;
     97 
     98   // If the allocation has multiple uses, only promote it if we are strictly
     99   // increasing the alignment of the resultant allocation.  If we keep it the
    100   // same, we open the door to infinite loops of various kinds.
    101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
    102 
    103   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
    104   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
    105   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
    106 
    107   // See if we can satisfy the modulus by pulling a scale out of the array
    108   // size argument.
    109   unsigned ArraySizeScale;
    110   uint64_t ArrayOffset;
    111   Value *NumElements = // See if the array size is a decomposable linear expr.
    112     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    113 
    114   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    115   // do the xform.
    116   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    117       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
    118 
    119   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    120   Value *Amt = 0;
    121   if (Scale == 1) {
    122     Amt = NumElements;
    123   } else {
    124     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    125     // Insert before the alloca, not before the cast.
    126     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    127   }
    128 
    129   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    130     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    131                                   Offset, true);
    132     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    133   }
    134 
    135   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    136   New->setAlignment(AI.getAlignment());
    137   New->takeName(&AI);
    138 
    139   // If the allocation has multiple real uses, insert a cast and change all
    140   // things that used it to use the new cast.  This will also hack on CI, but it
    141   // will die soon.
    142   if (!AI.hasOneUse()) {
    143     // New is the allocation instruction, pointer typed. AI is the original
    144     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    145     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    146     ReplaceInstUsesWith(AI, NewCast);
    147   }
    148   return ReplaceInstUsesWith(CI, New);
    149 }
    150 
    151 /// EvaluateInDifferentType - Given an expression that
    152 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    153 /// insert the code to evaluate the expression.
    154 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    155                                              bool isSigned) {
    156   if (Constant *C = dyn_cast<Constant>(V)) {
    157     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    158     // If we got a constantexpr back, try to simplify it with TD info.
    159     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    160       C = ConstantFoldConstantExpression(CE, TD, TLI);
    161     return C;
    162   }
    163 
    164   // Otherwise, it must be an instruction.
    165   Instruction *I = cast<Instruction>(V);
    166   Instruction *Res = 0;
    167   unsigned Opc = I->getOpcode();
    168   switch (Opc) {
    169   case Instruction::Add:
    170   case Instruction::Sub:
    171   case Instruction::Mul:
    172   case Instruction::And:
    173   case Instruction::Or:
    174   case Instruction::Xor:
    175   case Instruction::AShr:
    176   case Instruction::LShr:
    177   case Instruction::Shl:
    178   case Instruction::UDiv:
    179   case Instruction::URem: {
    180     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    181     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    182     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    183     break;
    184   }
    185   case Instruction::Trunc:
    186   case Instruction::ZExt:
    187   case Instruction::SExt:
    188     // If the source type of the cast is the type we're trying for then we can
    189     // just return the source.  There's no need to insert it because it is not
    190     // new.
    191     if (I->getOperand(0)->getType() == Ty)
    192       return I->getOperand(0);
    193 
    194     // Otherwise, must be the same type of cast, so just reinsert a new one.
    195     // This also handles the case of zext(trunc(x)) -> zext(x).
    196     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    197                                       Opc == Instruction::SExt);
    198     break;
    199   case Instruction::Select: {
    200     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    201     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    202     Res = SelectInst::Create(I->getOperand(0), True, False);
    203     break;
    204   }
    205   case Instruction::PHI: {
    206     PHINode *OPN = cast<PHINode>(I);
    207     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    208     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    209       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    210       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    211     }
    212     Res = NPN;
    213     break;
    214   }
    215   default:
    216     // TODO: Can handle more cases here.
    217     llvm_unreachable("Unreachable!");
    218   }
    219 
    220   Res->takeName(I);
    221   return InsertNewInstWith(Res, *I);
    222 }
    223 
    224 
    225 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    226 /// simply extracts arguments and returns what that function returns.
    227 static Instruction::CastOps
    228 isEliminableCastPair(
    229   const CastInst *CI, ///< The first cast instruction
    230   unsigned opcode,       ///< The opcode of the second cast instruction
    231   Type *DstTy,     ///< The target type for the second cast instruction
    232   TargetData *TD         ///< The target data for pointer size
    233 ) {
    234 
    235   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    236   Type *MidTy = CI->getType();                  // B from above
    237 
    238   // Get the opcodes of the two Cast instructions
    239   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    240   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    241 
    242   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    243                                                 DstTy,
    244                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
    245 
    246   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    247   // type that differs from the pointer size.
    248   if ((Res == Instruction::IntToPtr &&
    249           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
    250       (Res == Instruction::PtrToInt &&
    251           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
    252     Res = 0;
    253 
    254   return Instruction::CastOps(Res);
    255 }
    256 
    257 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    258 /// results in any code being generated and is interesting to optimize out. If
    259 /// the cast can be eliminated by some other simple transformation, we prefer
    260 /// to do the simplification first.
    261 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    262                                       Type *Ty) {
    263   // Noop casts and casts of constants should be eliminated trivially.
    264   if (V->getType() == Ty || isa<Constant>(V)) return false;
    265 
    266   // If this is another cast that can be eliminated, we prefer to have it
    267   // eliminated.
    268   if (const CastInst *CI = dyn_cast<CastInst>(V))
    269     if (isEliminableCastPair(CI, opc, Ty, TD))
    270       return false;
    271 
    272   // If this is a vector sext from a compare, then we don't want to break the
    273   // idiom where each element of the extended vector is either zero or all ones.
    274   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    275     return false;
    276 
    277   return true;
    278 }
    279 
    280 
    281 /// @brief Implement the transforms common to all CastInst visitors.
    282 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    283   Value *Src = CI.getOperand(0);
    284 
    285   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    286   // eliminate it now.
    287   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    288     if (Instruction::CastOps opc =
    289         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
    290       // The first cast (CSrc) is eliminable so we need to fix up or replace
    291       // the second cast (CI). CSrc will then have a good chance of being dead.
    292       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    293     }
    294   }
    295 
    296   // If we are casting a select then fold the cast into the select
    297   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    298     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    299       return NV;
    300 
    301   // If we are casting a PHI then fold the cast into the PHI
    302   if (isa<PHINode>(Src)) {
    303     // We don't do this if this would create a PHI node with an illegal type if
    304     // it is currently legal.
    305     if (!Src->getType()->isIntegerTy() ||
    306         !CI.getType()->isIntegerTy() ||
    307         ShouldChangeType(CI.getType(), Src->getType()))
    308       if (Instruction *NV = FoldOpIntoPhi(CI))
    309         return NV;
    310   }
    311 
    312   return 0;
    313 }
    314 
    315 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    316 /// expression tree as type Ty instead of its larger type, and arrive with the
    317 /// same value.  This is used by code that tries to eliminate truncates.
    318 ///
    319 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    320 /// can be computed by computing V in the smaller type.  If V is an instruction,
    321 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    322 /// makes sense if x and y can be efficiently truncated.
    323 ///
    324 /// This function works on both vectors and scalars.
    325 ///
    326 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    327   // We can always evaluate constants in another type.
    328   if (isa<Constant>(V))
    329     return true;
    330 
    331   Instruction *I = dyn_cast<Instruction>(V);
    332   if (!I) return false;
    333 
    334   Type *OrigTy = V->getType();
    335 
    336   // If this is an extension from the dest type, we can eliminate it, even if it
    337   // has multiple uses.
    338   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    339       I->getOperand(0)->getType() == Ty)
    340     return true;
    341 
    342   // We can't extend or shrink something that has multiple uses: doing so would
    343   // require duplicating the instruction in general, which isn't profitable.
    344   if (!I->hasOneUse()) return false;
    345 
    346   unsigned Opc = I->getOpcode();
    347   switch (Opc) {
    348   case Instruction::Add:
    349   case Instruction::Sub:
    350   case Instruction::Mul:
    351   case Instruction::And:
    352   case Instruction::Or:
    353   case Instruction::Xor:
    354     // These operators can all arbitrarily be extended or truncated.
    355     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    356            CanEvaluateTruncated(I->getOperand(1), Ty);
    357 
    358   case Instruction::UDiv:
    359   case Instruction::URem: {
    360     // UDiv and URem can be truncated if all the truncated bits are zero.
    361     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    362     uint32_t BitWidth = Ty->getScalarSizeInBits();
    363     if (BitWidth < OrigBitWidth) {
    364       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    365       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    366           MaskedValueIsZero(I->getOperand(1), Mask)) {
    367         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    368                CanEvaluateTruncated(I->getOperand(1), Ty);
    369       }
    370     }
    371     break;
    372   }
    373   case Instruction::Shl:
    374     // If we are truncating the result of this SHL, and if it's a shift of a
    375     // constant amount, we can always perform a SHL in a smaller type.
    376     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    377       uint32_t BitWidth = Ty->getScalarSizeInBits();
    378       if (CI->getLimitedValue(BitWidth) < BitWidth)
    379         return CanEvaluateTruncated(I->getOperand(0), Ty);
    380     }
    381     break;
    382   case Instruction::LShr:
    383     // If this is a truncate of a logical shr, we can truncate it to a smaller
    384     // lshr iff we know that the bits we would otherwise be shifting in are
    385     // already zeros.
    386     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    387       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    388       uint32_t BitWidth = Ty->getScalarSizeInBits();
    389       if (MaskedValueIsZero(I->getOperand(0),
    390             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    391           CI->getLimitedValue(BitWidth) < BitWidth) {
    392         return CanEvaluateTruncated(I->getOperand(0), Ty);
    393       }
    394     }
    395     break;
    396   case Instruction::Trunc:
    397     // trunc(trunc(x)) -> trunc(x)
    398     return true;
    399   case Instruction::ZExt:
    400   case Instruction::SExt:
    401     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    402     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    403     return true;
    404   case Instruction::Select: {
    405     SelectInst *SI = cast<SelectInst>(I);
    406     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    407            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    408   }
    409   case Instruction::PHI: {
    410     // We can change a phi if we can change all operands.  Note that we never
    411     // get into trouble with cyclic PHIs here because we only consider
    412     // instructions with a single use.
    413     PHINode *PN = cast<PHINode>(I);
    414     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    415       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    416         return false;
    417     return true;
    418   }
    419   default:
    420     // TODO: Can handle more cases here.
    421     break;
    422   }
    423 
    424   return false;
    425 }
    426 
    427 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    428   if (Instruction *Result = commonCastTransforms(CI))
    429     return Result;
    430 
    431   // See if we can simplify any instructions used by the input whose sole
    432   // purpose is to compute bits we don't care about.
    433   if (SimplifyDemandedInstructionBits(CI))
    434     return &CI;
    435 
    436   Value *Src = CI.getOperand(0);
    437   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    438 
    439   // Attempt to truncate the entire input expression tree to the destination
    440   // type.   Only do this if the dest type is a simple type, don't convert the
    441   // expression tree to something weird like i93 unless the source is also
    442   // strange.
    443   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    444       CanEvaluateTruncated(Src, DestTy)) {
    445 
    446     // If this cast is a truncate, evaluting in a different type always
    447     // eliminates the cast, so it is always a win.
    448     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    449           " to avoid cast: " << CI << '\n');
    450     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    451     assert(Res->getType() == DestTy);
    452     return ReplaceInstUsesWith(CI, Res);
    453   }
    454 
    455   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    456   if (DestTy->getScalarSizeInBits() == 1) {
    457     Constant *One = ConstantInt::get(Src->getType(), 1);
    458     Src = Builder->CreateAnd(Src, One);
    459     Value *Zero = Constant::getNullValue(Src->getType());
    460     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    461   }
    462 
    463   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    464   Value *A = 0; ConstantInt *Cst = 0;
    465   if (Src->hasOneUse() &&
    466       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    467     // We have three types to worry about here, the type of A, the source of
    468     // the truncate (MidSize), and the destination of the truncate. We know that
    469     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    470     // between ASize and ResultSize.
    471     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    472 
    473     // If the shift amount is larger than the size of A, then the result is
    474     // known to be zero because all the input bits got shifted out.
    475     if (Cst->getZExtValue() >= ASize)
    476       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    477 
    478     // Since we're doing an lshr and a zero extend, and know that the shift
    479     // amount is smaller than ASize, it is always safe to do the shift in A's
    480     // type, then zero extend or truncate to the result.
    481     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    482     Shift->takeName(Src);
    483     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    484   }
    485 
    486   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    487   // type isn't non-native.
    488   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    489       ShouldChangeType(Src->getType(), CI.getType()) &&
    490       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    491     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    492     return BinaryOperator::CreateAnd(NewTrunc,
    493                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    494   }
    495 
    496   return 0;
    497 }
    498 
    499 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    500 /// in order to eliminate the icmp.
    501 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    502                                              bool DoXform) {
    503   // If we are just checking for a icmp eq of a single bit and zext'ing it
    504   // to an integer, then shift the bit to the appropriate place and then
    505   // cast to integer to avoid the comparison.
    506   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    507     const APInt &Op1CV = Op1C->getValue();
    508 
    509     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    510     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    511     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    512         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    513       if (!DoXform) return ICI;
    514 
    515       Value *In = ICI->getOperand(0);
    516       Value *Sh = ConstantInt::get(In->getType(),
    517                                    In->getType()->getScalarSizeInBits()-1);
    518       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    519       if (In->getType() != CI.getType())
    520         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
    521 
    522       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    523         Constant *One = ConstantInt::get(In->getType(), 1);
    524         In = Builder->CreateXor(In, One, In->getName()+".not");
    525       }
    526 
    527       return ReplaceInstUsesWith(CI, In);
    528     }
    529 
    530     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    531     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    532     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    533     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    534     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    535     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    536     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    537     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    538     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    539         // This only works for EQ and NE
    540         ICI->isEquality()) {
    541       // If Op1C some other power of two, convert:
    542       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    543       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    544       ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
    545 
    546       APInt KnownZeroMask(~KnownZero);
    547       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    548         if (!DoXform) return ICI;
    549 
    550         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    551         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    552           // (X&4) == 2 --> false
    553           // (X&4) != 2 --> true
    554           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    555                                            isNE);
    556           Res = ConstantExpr::getZExt(Res, CI.getType());
    557           return ReplaceInstUsesWith(CI, Res);
    558         }
    559 
    560         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    561         Value *In = ICI->getOperand(0);
    562         if (ShiftAmt) {
    563           // Perform a logical shr by shiftamt.
    564           // Insert the shift to put the result in the low bit.
    565           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    566                                    In->getName()+".lobit");
    567         }
    568 
    569         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    570           Constant *One = ConstantInt::get(In->getType(), 1);
    571           In = Builder->CreateXor(In, One);
    572         }
    573 
    574         if (CI.getType() == In->getType())
    575           return ReplaceInstUsesWith(CI, In);
    576         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    577       }
    578     }
    579   }
    580 
    581   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    582   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    583   // may lead to additional simplifications.
    584   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    585     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    586       uint32_t BitWidth = ITy->getBitWidth();
    587       Value *LHS = ICI->getOperand(0);
    588       Value *RHS = ICI->getOperand(1);
    589 
    590       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    591       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    592       ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
    593       ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
    594 
    595       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    596         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    597         APInt UnknownBit = ~KnownBits;
    598         if (UnknownBit.countPopulation() == 1) {
    599           if (!DoXform) return ICI;
    600 
    601           Value *Result = Builder->CreateXor(LHS, RHS);
    602 
    603           // Mask off any bits that are set and won't be shifted away.
    604           if (KnownOneLHS.uge(UnknownBit))
    605             Result = Builder->CreateAnd(Result,
    606                                         ConstantInt::get(ITy, UnknownBit));
    607 
    608           // Shift the bit we're testing down to the lsb.
    609           Result = Builder->CreateLShr(
    610                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    611 
    612           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    613             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    614           Result->takeName(ICI);
    615           return ReplaceInstUsesWith(CI, Result);
    616         }
    617       }
    618     }
    619   }
    620 
    621   return 0;
    622 }
    623 
    624 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    625 /// specified wider type and produce the same low bits.  If not, return false.
    626 ///
    627 /// If this function returns true, it can also return a non-zero number of bits
    628 /// (in BitsToClear) which indicates that the value it computes is correct for
    629 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    630 /// out.  For example, to promote something like:
    631 ///
    632 ///   %B = trunc i64 %A to i32
    633 ///   %C = lshr i32 %B, 8
    634 ///   %E = zext i32 %C to i64
    635 ///
    636 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    637 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    638 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    639 /// clear the top bits anyway, doing this has no extra cost.
    640 ///
    641 /// This function works on both vectors and scalars.
    642 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    643   BitsToClear = 0;
    644   if (isa<Constant>(V))
    645     return true;
    646 
    647   Instruction *I = dyn_cast<Instruction>(V);
    648   if (!I) return false;
    649 
    650   // If the input is a truncate from the destination type, we can trivially
    651   // eliminate it.
    652   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    653     return true;
    654 
    655   // We can't extend or shrink something that has multiple uses: doing so would
    656   // require duplicating the instruction in general, which isn't profitable.
    657   if (!I->hasOneUse()) return false;
    658 
    659   unsigned Opc = I->getOpcode(), Tmp;
    660   switch (Opc) {
    661   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    662   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    663   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    664     return true;
    665   case Instruction::And:
    666   case Instruction::Or:
    667   case Instruction::Xor:
    668   case Instruction::Add:
    669   case Instruction::Sub:
    670   case Instruction::Mul:
    671   case Instruction::Shl:
    672     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    673         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    674       return false;
    675     // These can all be promoted if neither operand has 'bits to clear'.
    676     if (BitsToClear == 0 && Tmp == 0)
    677       return true;
    678 
    679     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    680     // other side, BitsToClear is ok.
    681     if (Tmp == 0 &&
    682         (Opc == Instruction::And || Opc == Instruction::Or ||
    683          Opc == Instruction::Xor)) {
    684       // We use MaskedValueIsZero here for generality, but the case we care
    685       // about the most is constant RHS.
    686       unsigned VSize = V->getType()->getScalarSizeInBits();
    687       if (MaskedValueIsZero(I->getOperand(1),
    688                             APInt::getHighBitsSet(VSize, BitsToClear)))
    689         return true;
    690     }
    691 
    692     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    693     return false;
    694 
    695   case Instruction::LShr:
    696     // We can promote lshr(x, cst) if we can promote x.  This requires the
    697     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    698     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    699       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    700         return false;
    701       BitsToClear += Amt->getZExtValue();
    702       if (BitsToClear > V->getType()->getScalarSizeInBits())
    703         BitsToClear = V->getType()->getScalarSizeInBits();
    704       return true;
    705     }
    706     // Cannot promote variable LSHR.
    707     return false;
    708   case Instruction::Select:
    709     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    710         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    711         // TODO: If important, we could handle the case when the BitsToClear are
    712         // known zero in the disagreeing side.
    713         Tmp != BitsToClear)
    714       return false;
    715     return true;
    716 
    717   case Instruction::PHI: {
    718     // We can change a phi if we can change all operands.  Note that we never
    719     // get into trouble with cyclic PHIs here because we only consider
    720     // instructions with a single use.
    721     PHINode *PN = cast<PHINode>(I);
    722     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    723       return false;
    724     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    725       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    726           // TODO: If important, we could handle the case when the BitsToClear
    727           // are known zero in the disagreeing input.
    728           Tmp != BitsToClear)
    729         return false;
    730     return true;
    731   }
    732   default:
    733     // TODO: Can handle more cases here.
    734     return false;
    735   }
    736 }
    737 
    738 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    739   // If this zero extend is only used by a truncate, let the truncate by
    740   // eliminated before we try to optimize this zext.
    741   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
    742     return 0;
    743 
    744   // If one of the common conversion will work, do it.
    745   if (Instruction *Result = commonCastTransforms(CI))
    746     return Result;
    747 
    748   // See if we can simplify any instructions used by the input whose sole
    749   // purpose is to compute bits we don't care about.
    750   if (SimplifyDemandedInstructionBits(CI))
    751     return &CI;
    752 
    753   Value *Src = CI.getOperand(0);
    754   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    755 
    756   // Attempt to extend the entire input expression tree to the destination
    757   // type.   Only do this if the dest type is a simple type, don't convert the
    758   // expression tree to something weird like i93 unless the source is also
    759   // strange.
    760   unsigned BitsToClear;
    761   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    762       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    763     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    764            "Unreasonable BitsToClear");
    765 
    766     // Okay, we can transform this!  Insert the new expression now.
    767     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    768           " to avoid zero extend: " << CI);
    769     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    770     assert(Res->getType() == DestTy);
    771 
    772     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    773     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    774 
    775     // If the high bits are already filled with zeros, just replace this
    776     // cast with the result.
    777     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    778                                                      DestBitSize-SrcBitsKept)))
    779       return ReplaceInstUsesWith(CI, Res);
    780 
    781     // We need to emit an AND to clear the high bits.
    782     Constant *C = ConstantInt::get(Res->getType(),
    783                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    784     return BinaryOperator::CreateAnd(Res, C);
    785   }
    786 
    787   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    788   // types and if the sizes are just right we can convert this into a logical
    789   // 'and' which will be much cheaper than the pair of casts.
    790   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    791     // TODO: Subsume this into EvaluateInDifferentType.
    792 
    793     // Get the sizes of the types involved.  We know that the intermediate type
    794     // will be smaller than A or C, but don't know the relation between A and C.
    795     Value *A = CSrc->getOperand(0);
    796     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    797     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    798     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    799     // If we're actually extending zero bits, then if
    800     // SrcSize <  DstSize: zext(a & mask)
    801     // SrcSize == DstSize: a & mask
    802     // SrcSize  > DstSize: trunc(a) & mask
    803     if (SrcSize < DstSize) {
    804       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    805       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    806       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    807       return new ZExtInst(And, CI.getType());
    808     }
    809 
    810     if (SrcSize == DstSize) {
    811       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    812       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    813                                                            AndValue));
    814     }
    815     if (SrcSize > DstSize) {
    816       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
    817       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    818       return BinaryOperator::CreateAnd(Trunc,
    819                                        ConstantInt::get(Trunc->getType(),
    820                                                         AndValue));
    821     }
    822   }
    823 
    824   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    825     return transformZExtICmp(ICI, CI);
    826 
    827   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    828   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    829     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    830     // of the (zext icmp) will be transformed.
    831     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    832     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    833     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    834         (transformZExtICmp(LHS, CI, false) ||
    835          transformZExtICmp(RHS, CI, false))) {
    836       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    837       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    838       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    839     }
    840   }
    841 
    842   // zext(trunc(t) & C) -> (t & zext(C)).
    843   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
    844     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    845       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
    846         Value *TI0 = TI->getOperand(0);
    847         if (TI0->getType() == CI.getType())
    848           return
    849             BinaryOperator::CreateAnd(TI0,
    850                                 ConstantExpr::getZExt(C, CI.getType()));
    851       }
    852 
    853   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
    854   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
    855     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    856       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
    857         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
    858             And->getOperand(1) == C)
    859           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
    860             Value *TI0 = TI->getOperand(0);
    861             if (TI0->getType() == CI.getType()) {
    862               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    863               Value *NewAnd = Builder->CreateAnd(TI0, ZC);
    864               return BinaryOperator::CreateXor(NewAnd, ZC);
    865             }
    866           }
    867 
    868   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    869   Value *X;
    870   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
    871       match(SrcI, m_Not(m_Value(X))) &&
    872       (!X->hasOneUse() || !isa<CmpInst>(X))) {
    873     Value *New = Builder->CreateZExt(X, CI.getType());
    874     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    875   }
    876 
    877   return 0;
    878 }
    879 
    880 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    881 /// in order to eliminate the icmp.
    882 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    883   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    884   ICmpInst::Predicate Pred = ICI->getPredicate();
    885 
    886   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    887     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    888     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    889     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
    890         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    891 
    892       Value *Sh = ConstantInt::get(Op0->getType(),
    893                                    Op0->getType()->getScalarSizeInBits()-1);
    894       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    895       if (In->getType() != CI.getType())
    896         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
    897 
    898       if (Pred == ICmpInst::ICMP_SGT)
    899         In = Builder->CreateNot(In, In->getName()+".not");
    900       return ReplaceInstUsesWith(CI, In);
    901     }
    902 
    903     // If we know that only one bit of the LHS of the icmp can be set and we
    904     // have an equality comparison with zero or a power of 2, we can transform
    905     // the icmp and sext into bitwise/integer operations.
    906     if (ICI->hasOneUse() &&
    907         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    908       unsigned BitWidth = Op1C->getType()->getBitWidth();
    909       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    910       ComputeMaskedBits(Op0, KnownZero, KnownOne);
    911 
    912       APInt KnownZeroMask(~KnownZero);
    913       if (KnownZeroMask.isPowerOf2()) {
    914         Value *In = ICI->getOperand(0);
    915 
    916         // If the icmp tests for a known zero bit we can constant fold it.
    917         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    918           Value *V = Pred == ICmpInst::ICMP_NE ?
    919                        ConstantInt::getAllOnesValue(CI.getType()) :
    920                        ConstantInt::getNullValue(CI.getType());
    921           return ReplaceInstUsesWith(CI, V);
    922         }
    923 
    924         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    925           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    926           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    927           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    928           // Perform a right shift to place the desired bit in the LSB.
    929           if (ShiftAmt)
    930             In = Builder->CreateLShr(In,
    931                                      ConstantInt::get(In->getType(), ShiftAmt));
    932 
    933           // At this point "In" is either 1 or 0. Subtract 1 to turn
    934           // {1, 0} -> {0, -1}.
    935           In = Builder->CreateAdd(In,
    936                                   ConstantInt::getAllOnesValue(In->getType()),
    937                                   "sext");
    938         } else {
    939           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    940           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    941           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    942           // Perform a left shift to place the desired bit in the MSB.
    943           if (ShiftAmt)
    944             In = Builder->CreateShl(In,
    945                                     ConstantInt::get(In->getType(), ShiftAmt));
    946 
    947           // Distribute the bit over the whole bit width.
    948           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    949                                                         BitWidth - 1), "sext");
    950         }
    951 
    952         if (CI.getType() == In->getType())
    953           return ReplaceInstUsesWith(CI, In);
    954         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    955       }
    956     }
    957   }
    958 
    959   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
    960   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
    961     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
    962         Op0->getType() == CI.getType()) {
    963       Type *EltTy = VTy->getElementType();
    964 
    965       // splat the shift constant to a constant vector.
    966       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
    967       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
    968       return ReplaceInstUsesWith(CI, In);
    969     }
    970   }
    971 
    972   return 0;
    973 }
    974 
    975 /// CanEvaluateSExtd - Return true if we can take the specified value
    976 /// and return it as type Ty without inserting any new casts and without
    977 /// changing the value of the common low bits.  This is used by code that tries
    978 /// to promote integer operations to a wider types will allow us to eliminate
    979 /// the extension.
    980 ///
    981 /// This function works on both vectors and scalars.
    982 ///
    983 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
    984   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
    985          "Can't sign extend type to a smaller type");
    986   // If this is a constant, it can be trivially promoted.
    987   if (isa<Constant>(V))
    988     return true;
    989 
    990   Instruction *I = dyn_cast<Instruction>(V);
    991   if (!I) return false;
    992 
    993   // If this is a truncate from the dest type, we can trivially eliminate it.
    994   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    995     return true;
    996 
    997   // We can't extend or shrink something that has multiple uses: doing so would
    998   // require duplicating the instruction in general, which isn't profitable.
    999   if (!I->hasOneUse()) return false;
   1000 
   1001   switch (I->getOpcode()) {
   1002   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1003   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1004   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1005     return true;
   1006   case Instruction::And:
   1007   case Instruction::Or:
   1008   case Instruction::Xor:
   1009   case Instruction::Add:
   1010   case Instruction::Sub:
   1011   case Instruction::Mul:
   1012     // These operators can all arbitrarily be extended if their inputs can.
   1013     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1014            CanEvaluateSExtd(I->getOperand(1), Ty);
   1015 
   1016   //case Instruction::Shl:   TODO
   1017   //case Instruction::LShr:  TODO
   1018 
   1019   case Instruction::Select:
   1020     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1021            CanEvaluateSExtd(I->getOperand(2), Ty);
   1022 
   1023   case Instruction::PHI: {
   1024     // We can change a phi if we can change all operands.  Note that we never
   1025     // get into trouble with cyclic PHIs here because we only consider
   1026     // instructions with a single use.
   1027     PHINode *PN = cast<PHINode>(I);
   1028     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1029       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1030     return true;
   1031   }
   1032   default:
   1033     // TODO: Can handle more cases here.
   1034     break;
   1035   }
   1036 
   1037   return false;
   1038 }
   1039 
   1040 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1041   // If this sign extend is only used by a truncate, let the truncate by
   1042   // eliminated before we try to optimize this zext.
   1043   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
   1044     return 0;
   1045 
   1046   if (Instruction *I = commonCastTransforms(CI))
   1047     return I;
   1048 
   1049   // See if we can simplify any instructions used by the input whose sole
   1050   // purpose is to compute bits we don't care about.
   1051   if (SimplifyDemandedInstructionBits(CI))
   1052     return &CI;
   1053 
   1054   Value *Src = CI.getOperand(0);
   1055   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1056 
   1057   // Attempt to extend the entire input expression tree to the destination
   1058   // type.   Only do this if the dest type is a simple type, don't convert the
   1059   // expression tree to something weird like i93 unless the source is also
   1060   // strange.
   1061   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1062       CanEvaluateSExtd(Src, DestTy)) {
   1063     // Okay, we can transform this!  Insert the new expression now.
   1064     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1065           " to avoid sign extend: " << CI);
   1066     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1067     assert(Res->getType() == DestTy);
   1068 
   1069     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1070     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1071 
   1072     // If the high bits are already filled with sign bit, just replace this
   1073     // cast with the result.
   1074     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1075       return ReplaceInstUsesWith(CI, Res);
   1076 
   1077     // We need to emit a shl + ashr to do the sign extend.
   1078     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1079     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1080                                       ShAmt);
   1081   }
   1082 
   1083   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1084   // into shifts.
   1085   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1086     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1087       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1088       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1089 
   1090       // We need to emit a shl + ashr to do the sign extend.
   1091       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1092       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1093       return BinaryOperator::CreateAShr(Res, ShAmt);
   1094     }
   1095 
   1096   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1097     return transformSExtICmp(ICI, CI);
   1098 
   1099   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1100   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1101   // integers, we could turn this into a truncate to the smaller bit and then
   1102   // use a sext for the whole extension.  Since we don't, look deeper and check
   1103   // for a truncate.  If the source and dest are the same type, eliminate the
   1104   // trunc and extend and just do shifts.  For example, turn:
   1105   //   %a = trunc i32 %i to i8
   1106   //   %b = shl i8 %a, 6
   1107   //   %c = ashr i8 %b, 6
   1108   //   %d = sext i8 %c to i32
   1109   // into:
   1110   //   %a = shl i32 %i, 30
   1111   //   %d = ashr i32 %a, 30
   1112   Value *A = 0;
   1113   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1114   ConstantInt *BA = 0, *CA = 0;
   1115   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1116                         m_ConstantInt(CA))) &&
   1117       BA == CA && A->getType() == CI.getType()) {
   1118     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1119     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1120     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1121     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1122     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1123     return BinaryOperator::CreateAShr(A, ShAmtV);
   1124   }
   1125 
   1126   return 0;
   1127 }
   1128 
   1129 
   1130 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1131 /// in the specified FP type without changing its value.
   1132 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1133   bool losesInfo;
   1134   APFloat F = CFP->getValueAPF();
   1135   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1136   if (!losesInfo)
   1137     return ConstantFP::get(CFP->getContext(), F);
   1138   return 0;
   1139 }
   1140 
   1141 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1142 /// through it until we get the source value.
   1143 static Value *LookThroughFPExtensions(Value *V) {
   1144   if (Instruction *I = dyn_cast<Instruction>(V))
   1145     if (I->getOpcode() == Instruction::FPExt)
   1146       return LookThroughFPExtensions(I->getOperand(0));
   1147 
   1148   // If this value is a constant, return the constant in the smallest FP type
   1149   // that can accurately represent it.  This allows us to turn
   1150   // (float)((double)X+2.0) into x+2.0f.
   1151   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1152     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1153       return V;  // No constant folding of this.
   1154     // See if the value can be truncated to half and then reextended.
   1155     if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
   1156       return V;
   1157     // See if the value can be truncated to float and then reextended.
   1158     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1159       return V;
   1160     if (CFP->getType()->isDoubleTy())
   1161       return V;  // Won't shrink.
   1162     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1163       return V;
   1164     // Don't try to shrink to various long double types.
   1165   }
   1166 
   1167   return V;
   1168 }
   1169 
   1170 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1171   if (Instruction *I = commonCastTransforms(CI))
   1172     return I;
   1173 
   1174   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
   1175   // smaller than the destination type, we can eliminate the truncate by doing
   1176   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
   1177   // as many builtins (sqrt, etc).
   1178   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1179   if (OpI && OpI->hasOneUse()) {
   1180     switch (OpI->getOpcode()) {
   1181     default: break;
   1182     case Instruction::FAdd:
   1183     case Instruction::FSub:
   1184     case Instruction::FMul:
   1185     case Instruction::FDiv:
   1186     case Instruction::FRem:
   1187       Type *SrcTy = OpI->getType();
   1188       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
   1189       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
   1190       if (LHSTrunc->getType() != SrcTy &&
   1191           RHSTrunc->getType() != SrcTy) {
   1192         unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1193         // If the source types were both smaller than the destination type of
   1194         // the cast, do this xform.
   1195         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
   1196             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
   1197           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
   1198           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
   1199           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
   1200         }
   1201       }
   1202       break;
   1203     }
   1204   }
   1205 
   1206   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1207   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1208   if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
   1209       Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
   1210       Call->getNumArgOperands() == 1 &&
   1211       Call->hasOneUse()) {
   1212     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1213     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1214         CI.getType()->isFloatTy() &&
   1215         Call->getType()->isDoubleTy() &&
   1216         Arg->getType()->isDoubleTy() &&
   1217         Arg->getOperand(0)->getType()->isFloatTy()) {
   1218       Function *Callee = Call->getCalledFunction();
   1219       Module *M = CI.getParent()->getParent()->getParent();
   1220       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
   1221                                                    Callee->getAttributes(),
   1222                                                    Builder->getFloatTy(),
   1223                                                    Builder->getFloatTy(),
   1224                                                    NULL);
   1225       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1226                                        "sqrtfcall");
   1227       ret->setAttributes(Callee->getAttributes());
   1228 
   1229 
   1230       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1231       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1232       EraseInstFromFunction(*Call);
   1233       return ret;
   1234     }
   1235   }
   1236 
   1237   return 0;
   1238 }
   1239 
   1240 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1241   return commonCastTransforms(CI);
   1242 }
   1243 
   1244 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1245   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1246   if (OpI == 0)
   1247     return commonCastTransforms(FI);
   1248 
   1249   // fptoui(uitofp(X)) --> X
   1250   // fptoui(sitofp(X)) --> X
   1251   // This is safe if the intermediate type has enough bits in its mantissa to
   1252   // accurately represent all values of X.  For example, do not do this with
   1253   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1254   // 'X' value would cause an undefined result for the fptoui.
   1255   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1256       OpI->getOperand(0)->getType() == FI.getType() &&
   1257       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1258                     OpI->getType()->getFPMantissaWidth())
   1259     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1260 
   1261   return commonCastTransforms(FI);
   1262 }
   1263 
   1264 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1265   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1266   if (OpI == 0)
   1267     return commonCastTransforms(FI);
   1268 
   1269   // fptosi(sitofp(X)) --> X
   1270   // fptosi(uitofp(X)) --> X
   1271   // This is safe if the intermediate type has enough bits in its mantissa to
   1272   // accurately represent all values of X.  For example, do not do this with
   1273   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1274   // 'X' value would cause an undefined result for the fptoui.
   1275   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1276       OpI->getOperand(0)->getType() == FI.getType() &&
   1277       (int)FI.getType()->getScalarSizeInBits() <=
   1278                     OpI->getType()->getFPMantissaWidth())
   1279     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1280 
   1281   return commonCastTransforms(FI);
   1282 }
   1283 
   1284 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1285   return commonCastTransforms(CI);
   1286 }
   1287 
   1288 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1289   return commonCastTransforms(CI);
   1290 }
   1291 
   1292 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1293   // If the source integer type is not the intptr_t type for this target, do a
   1294   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1295   // cast to be exposed to other transforms.
   1296   if (TD) {
   1297     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
   1298         TD->getPointerSizeInBits()) {
   1299       Value *P = Builder->CreateTrunc(CI.getOperand(0),
   1300                                       TD->getIntPtrType(CI.getContext()));
   1301       return new IntToPtrInst(P, CI.getType());
   1302     }
   1303     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
   1304         TD->getPointerSizeInBits()) {
   1305       Value *P = Builder->CreateZExt(CI.getOperand(0),
   1306                                      TD->getIntPtrType(CI.getContext()));
   1307       return new IntToPtrInst(P, CI.getType());
   1308     }
   1309   }
   1310 
   1311   if (Instruction *I = commonCastTransforms(CI))
   1312     return I;
   1313 
   1314   return 0;
   1315 }
   1316 
   1317 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1318 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1319   Value *Src = CI.getOperand(0);
   1320 
   1321   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1322     // If casting the result of a getelementptr instruction with no offset, turn
   1323     // this into a cast of the original pointer!
   1324     if (GEP->hasAllZeroIndices()) {
   1325       // Changing the cast operand is usually not a good idea but it is safe
   1326       // here because the pointer operand is being replaced with another
   1327       // pointer operand so the opcode doesn't need to change.
   1328       Worklist.Add(GEP);
   1329       CI.setOperand(0, GEP->getOperand(0));
   1330       return &CI;
   1331     }
   1332 
   1333     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1334     // GEP computes a constant offset, see if we can convert these three
   1335     // instructions into fewer.  This typically happens with unions and other
   1336     // non-type-safe code.
   1337     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
   1338         GEP->hasAllConstantIndices()) {
   1339       SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
   1340       int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
   1341 
   1342       // Get the base pointer input of the bitcast, and the type it points to.
   1343       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
   1344       Type *GEPIdxTy =
   1345       cast<PointerType>(OrigBase->getType())->getElementType();
   1346       SmallVector<Value*, 8> NewIndices;
   1347       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
   1348         // If we were able to index down into an element, create the GEP
   1349         // and bitcast the result.  This eliminates one bitcast, potentially
   1350         // two.
   1351         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1352         Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
   1353         Builder->CreateGEP(OrigBase, NewIndices);
   1354         NGEP->takeName(GEP);
   1355 
   1356         if (isa<BitCastInst>(CI))
   1357           return new BitCastInst(NGEP, CI.getType());
   1358         assert(isa<PtrToIntInst>(CI));
   1359         return new PtrToIntInst(NGEP, CI.getType());
   1360       }
   1361     }
   1362   }
   1363 
   1364   return commonCastTransforms(CI);
   1365 }
   1366 
   1367 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1368   // If the destination integer type is not the intptr_t type for this target,
   1369   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1370   // to be exposed to other transforms.
   1371   if (TD) {
   1372     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
   1373       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1374                                          TD->getIntPtrType(CI.getContext()));
   1375       return new TruncInst(P, CI.getType());
   1376     }
   1377     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
   1378       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1379                                          TD->getIntPtrType(CI.getContext()));
   1380       return new ZExtInst(P, CI.getType());
   1381     }
   1382   }
   1383 
   1384   return commonPointerCastTransforms(CI);
   1385 }
   1386 
   1387 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1388 /// is being zero extended or truncated to the specified vector type.  Try to
   1389 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1390 ///
   1391 /// The source and destination vector types may have different element types.
   1392 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1393                                          InstCombiner &IC) {
   1394   // We can only do this optimization if the output is a multiple of the input
   1395   // element size, or the input is a multiple of the output element size.
   1396   // Convert the input type to have the same element type as the output.
   1397   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1398 
   1399   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1400     // The input types don't need to be identical, but for now they must be the
   1401     // same size.  There is no specific reason we couldn't handle things like
   1402     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1403     // there yet.
   1404     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1405         DestTy->getElementType()->getPrimitiveSizeInBits())
   1406       return 0;
   1407 
   1408     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1409     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1410   }
   1411 
   1412   // Now that the element types match, get the shuffle mask and RHS of the
   1413   // shuffle to use, which depends on whether we're increasing or decreasing the
   1414   // size of the input.
   1415   SmallVector<uint32_t, 16> ShuffleMask;
   1416   Value *V2;
   1417 
   1418   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1419     // If we're shrinking the number of elements, just shuffle in the low
   1420     // elements from the input and use undef as the second shuffle input.
   1421     V2 = UndefValue::get(SrcTy);
   1422     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1423       ShuffleMask.push_back(i);
   1424 
   1425   } else {
   1426     // If we're increasing the number of elements, shuffle in all of the
   1427     // elements from InVal and fill the rest of the result elements with zeros
   1428     // from a constant zero.
   1429     V2 = Constant::getNullValue(SrcTy);
   1430     unsigned SrcElts = SrcTy->getNumElements();
   1431     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1432       ShuffleMask.push_back(i);
   1433 
   1434     // The excess elements reference the first element of the zero input.
   1435     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
   1436       ShuffleMask.push_back(SrcElts);
   1437   }
   1438 
   1439   return new ShuffleVectorInst(InVal, V2,
   1440                                ConstantDataVector::get(V2->getContext(),
   1441                                                        ShuffleMask));
   1442 }
   1443 
   1444 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1445   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1446 }
   1447 
   1448 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1449   return Value / Ty->getPrimitiveSizeInBits();
   1450 }
   1451 
   1452 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1453 /// VecEltTy.  Look through the value to see if we can decompose it into
   1454 /// insertions into the vector.  See the example in the comment for
   1455 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1456 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1457 ///
   1458 /// This returns false if the pattern can't be matched or true if it can,
   1459 /// filling in Elements with the elements found here.
   1460 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
   1461                                      SmallVectorImpl<Value*> &Elements,
   1462                                      Type *VecEltTy) {
   1463   // Undef values never contribute useful bits to the result.
   1464   if (isa<UndefValue>(V)) return true;
   1465 
   1466   // If we got down to a value of the right type, we win, try inserting into the
   1467   // right element.
   1468   if (V->getType() == VecEltTy) {
   1469     // Inserting null doesn't actually insert any elements.
   1470     if (Constant *C = dyn_cast<Constant>(V))
   1471       if (C->isNullValue())
   1472         return true;
   1473 
   1474     // Fail if multiple elements are inserted into this slot.
   1475     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
   1476       return false;
   1477 
   1478     Elements[ElementIndex] = V;
   1479     return true;
   1480   }
   1481 
   1482   if (Constant *C = dyn_cast<Constant>(V)) {
   1483     // Figure out the # elements this provides, and bitcast it or slice it up
   1484     // as required.
   1485     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1486                                         VecEltTy);
   1487     // If the constant is the size of a vector element, we just need to bitcast
   1488     // it to the right type so it gets properly inserted.
   1489     if (NumElts == 1)
   1490       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1491                                       ElementIndex, Elements, VecEltTy);
   1492 
   1493     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1494     // pieces and insert each element-sized piece into the vector.
   1495     if (!isa<IntegerType>(C->getType()))
   1496       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1497                                        C->getType()->getPrimitiveSizeInBits()));
   1498     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1499     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1500 
   1501     for (unsigned i = 0; i != NumElts; ++i) {
   1502       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1503                                                                i*ElementSize));
   1504       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1505       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
   1506         return false;
   1507     }
   1508     return true;
   1509   }
   1510 
   1511   if (!V->hasOneUse()) return false;
   1512 
   1513   Instruction *I = dyn_cast<Instruction>(V);
   1514   if (I == 0) return false;
   1515   switch (I->getOpcode()) {
   1516   default: return false; // Unhandled case.
   1517   case Instruction::BitCast:
   1518     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1519                                     Elements, VecEltTy);
   1520   case Instruction::ZExt:
   1521     if (!isMultipleOfTypeSize(
   1522                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1523                               VecEltTy))
   1524       return false;
   1525     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1526                                     Elements, VecEltTy);
   1527   case Instruction::Or:
   1528     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1529                                     Elements, VecEltTy) &&
   1530            CollectInsertionElements(I->getOperand(1), ElementIndex,
   1531                                     Elements, VecEltTy);
   1532   case Instruction::Shl: {
   1533     // Must be shifting by a constant that is a multiple of the element size.
   1534     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1535     if (CI == 0) return false;
   1536     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
   1537     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
   1538 
   1539     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
   1540                                     Elements, VecEltTy);
   1541   }
   1542 
   1543   }
   1544 }
   1545 
   1546 
   1547 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1548 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1549 /// Try to rip the code out and replace it with insertelements.  This is to
   1550 /// optimize code like this:
   1551 ///
   1552 ///    %tmp37 = bitcast float %inc to i32
   1553 ///    %tmp38 = zext i32 %tmp37 to i64
   1554 ///    %tmp31 = bitcast float %inc5 to i32
   1555 ///    %tmp32 = zext i32 %tmp31 to i64
   1556 ///    %tmp33 = shl i64 %tmp32, 32
   1557 ///    %ins35 = or i64 %tmp33, %tmp38
   1558 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1559 ///
   1560 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1561 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1562                                                 InstCombiner &IC) {
   1563   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1564   Value *IntInput = CI.getOperand(0);
   1565 
   1566   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1567   if (!CollectInsertionElements(IntInput, 0, Elements,
   1568                                 DestVecTy->getElementType()))
   1569     return 0;
   1570 
   1571   // If we succeeded, we know that all of the element are specified by Elements
   1572   // or are zero if Elements has a null entry.  Recast this as a set of
   1573   // insertions.
   1574   Value *Result = Constant::getNullValue(CI.getType());
   1575   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1576     if (Elements[i] == 0) continue;  // Unset element.
   1577 
   1578     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1579                                              IC.Builder->getInt32(i));
   1580   }
   1581 
   1582   return Result;
   1583 }
   1584 
   1585 
   1586 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1587 /// bitcast.  The various long double bitcasts can't get in here.
   1588 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1589   Value *Src = CI.getOperand(0);
   1590   Type *DestTy = CI.getType();
   1591 
   1592   // If this is a bitcast from int to float, check to see if the int is an
   1593   // extraction from a vector.
   1594   Value *VecInput = 0;
   1595   // bitcast(trunc(bitcast(somevector)))
   1596   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1597       isa<VectorType>(VecInput->getType())) {
   1598     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1599     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1600 
   1601     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1602       // If the element type of the vector doesn't match the result type,
   1603       // bitcast it to be a vector type we can extract from.
   1604       if (VecTy->getElementType() != DestTy) {
   1605         VecTy = VectorType::get(DestTy,
   1606                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1607         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1608       }
   1609 
   1610       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
   1611     }
   1612   }
   1613 
   1614   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1615   ConstantInt *ShAmt = 0;
   1616   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1617                                 m_ConstantInt(ShAmt)))) &&
   1618       isa<VectorType>(VecInput->getType())) {
   1619     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1620     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1621     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1622         ShAmt->getZExtValue() % DestWidth == 0) {
   1623       // If the element type of the vector doesn't match the result type,
   1624       // bitcast it to be a vector type we can extract from.
   1625       if (VecTy->getElementType() != DestTy) {
   1626         VecTy = VectorType::get(DestTy,
   1627                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1628         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1629       }
   1630 
   1631       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1632       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1633     }
   1634   }
   1635   return 0;
   1636 }
   1637 
   1638 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1639   // If the operands are integer typed then apply the integer transforms,
   1640   // otherwise just apply the common ones.
   1641   Value *Src = CI.getOperand(0);
   1642   Type *SrcTy = Src->getType();
   1643   Type *DestTy = CI.getType();
   1644 
   1645   // Get rid of casts from one type to the same type. These are useless and can
   1646   // be replaced by the operand.
   1647   if (DestTy == Src->getType())
   1648     return ReplaceInstUsesWith(CI, Src);
   1649 
   1650   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1651     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1652     Type *DstElTy = DstPTy->getElementType();
   1653     Type *SrcElTy = SrcPTy->getElementType();
   1654 
   1655     // If the address spaces don't match, don't eliminate the bitcast, which is
   1656     // required for changing types.
   1657     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
   1658       return 0;
   1659 
   1660     // If we are casting a alloca to a pointer to a type of the same
   1661     // size, rewrite the allocation instruction to allocate the "right" type.
   1662     // There is no need to modify malloc calls because it is their bitcast that
   1663     // needs to be cleaned up.
   1664     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1665       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1666         return V;
   1667 
   1668     // If the source and destination are pointers, and this cast is equivalent
   1669     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1670     // This can enhance SROA and other transforms that want type-safe pointers.
   1671     Constant *ZeroUInt =
   1672       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1673     unsigned NumZeros = 0;
   1674     while (SrcElTy != DstElTy &&
   1675            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1676            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1677       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1678       ++NumZeros;
   1679     }
   1680 
   1681     // If we found a path from the src to dest, create the getelementptr now.
   1682     if (SrcElTy == DstElTy) {
   1683       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1684       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   1685     }
   1686   }
   1687 
   1688   // Try to optimize int -> float bitcasts.
   1689   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1690     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1691       return I;
   1692 
   1693   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1694     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1695       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1696       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1697                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1698       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1699     }
   1700 
   1701     if (isa<IntegerType>(SrcTy)) {
   1702       // If this is a cast from an integer to vector, check to see if the input
   1703       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1704       // the casts with a shuffle and (potentially) a bitcast.
   1705       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1706         CastInst *SrcCast = cast<CastInst>(Src);
   1707         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1708           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1709             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1710                                                cast<VectorType>(DestTy), *this))
   1711               return I;
   1712       }
   1713 
   1714       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1715       // assemble the elements of the vector manually.  Try to rip the code out
   1716       // and replace it with insertelements.
   1717       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1718         return ReplaceInstUsesWith(CI, V);
   1719     }
   1720   }
   1721 
   1722   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1723     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
   1724       Value *Elem =
   1725         Builder->CreateExtractElement(Src,
   1726                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1727       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1728     }
   1729   }
   1730 
   1731   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1732     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1733     // a bitcast to a vector with the same # elts.
   1734     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1735         cast<VectorType>(DestTy)->getNumElements() ==
   1736               SVI->getType()->getNumElements() &&
   1737         SVI->getType()->getNumElements() ==
   1738           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
   1739       BitCastInst *Tmp;
   1740       // If either of the operands is a cast from CI.getType(), then
   1741       // evaluating the shuffle in the casted destination's type will allow
   1742       // us to eliminate at least one cast.
   1743       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1744            Tmp->getOperand(0)->getType() == DestTy) ||
   1745           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1746            Tmp->getOperand(0)->getType() == DestTy)) {
   1747         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1748         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1749         // Return a new shuffle vector.  Use the same element ID's, as we
   1750         // know the vector types match #elts.
   1751         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1752       }
   1753     }
   1754   }
   1755 
   1756   if (SrcTy->isPointerTy())
   1757     return commonPointerCastTransforms(CI);
   1758   return commonCastTransforms(CI);
   1759 }
   1760