Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "loop-rotate"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/IntrinsicInst.h"
     18 #include "llvm/Analysis/CodeMetrics.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/Transforms/Utils/Local.h"
     24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     25 #include "llvm/Transforms/Utils/SSAUpdater.h"
     26 #include "llvm/Transforms/Utils/ValueMapper.h"
     27 #include "llvm/Support/CFG.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/ADT/Statistic.h"
     30 using namespace llvm;
     31 
     32 #define MAX_HEADER_SIZE 16
     33 
     34 STATISTIC(NumRotated, "Number of loops rotated");
     35 namespace {
     36 
     37   class LoopRotate : public LoopPass {
     38   public:
     39     static char ID; // Pass ID, replacement for typeid
     40     LoopRotate() : LoopPass(ID) {
     41       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     42     }
     43 
     44     // LCSSA form makes instruction renaming easier.
     45     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     46       AU.addPreserved<DominatorTree>();
     47       AU.addRequired<LoopInfo>();
     48       AU.addPreserved<LoopInfo>();
     49       AU.addRequiredID(LoopSimplifyID);
     50       AU.addPreservedID(LoopSimplifyID);
     51       AU.addRequiredID(LCSSAID);
     52       AU.addPreservedID(LCSSAID);
     53       AU.addPreserved<ScalarEvolution>();
     54     }
     55 
     56     bool runOnLoop(Loop *L, LPPassManager &LPM);
     57     void simplifyLoopLatch(Loop *L);
     58     bool rotateLoop(Loop *L);
     59 
     60   private:
     61     LoopInfo *LI;
     62   };
     63 }
     64 
     65 char LoopRotate::ID = 0;
     66 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     67 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     68 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     69 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     70 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     71 
     72 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
     73 
     74 /// Rotate Loop L as many times as possible. Return true if
     75 /// the loop is rotated at least once.
     76 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     77   LI = &getAnalysis<LoopInfo>();
     78 
     79   // Simplify the loop latch before attempting to rotate the header
     80   // upward. Rotation may not be needed if the loop tail can be folded into the
     81   // loop exit.
     82   simplifyLoopLatch(L);
     83 
     84   // One loop can be rotated multiple times.
     85   bool MadeChange = false;
     86   while (rotateLoop(L))
     87     MadeChange = true;
     88 
     89   return MadeChange;
     90 }
     91 
     92 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     93 /// old header into the preheader.  If there were uses of the values produced by
     94 /// these instruction that were outside of the loop, we have to insert PHI nodes
     95 /// to merge the two values.  Do this now.
     96 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
     97                                             BasicBlock *OrigPreheader,
     98                                             ValueToValueMapTy &ValueMap) {
     99   // Remove PHI node entries that are no longer live.
    100   BasicBlock::iterator I, E = OrigHeader->end();
    101   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    102     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    103 
    104   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    105   // as necessary.
    106   SSAUpdater SSA;
    107   for (I = OrigHeader->begin(); I != E; ++I) {
    108     Value *OrigHeaderVal = I;
    109 
    110     // If there are no uses of the value (e.g. because it returns void), there
    111     // is nothing to rewrite.
    112     if (OrigHeaderVal->use_empty())
    113       continue;
    114 
    115     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    116 
    117     // The value now exits in two versions: the initial value in the preheader
    118     // and the loop "next" value in the original header.
    119     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    120     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    121     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    122 
    123     // Visit each use of the OrigHeader instruction.
    124     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    125          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    126       // Grab the use before incrementing the iterator.
    127       Use &U = UI.getUse();
    128 
    129       // Increment the iterator before removing the use from the list.
    130       ++UI;
    131 
    132       // SSAUpdater can't handle a non-PHI use in the same block as an
    133       // earlier def. We can easily handle those cases manually.
    134       Instruction *UserInst = cast<Instruction>(U.getUser());
    135       if (!isa<PHINode>(UserInst)) {
    136         BasicBlock *UserBB = UserInst->getParent();
    137 
    138         // The original users in the OrigHeader are already using the
    139         // original definitions.
    140         if (UserBB == OrigHeader)
    141           continue;
    142 
    143         // Users in the OrigPreHeader need to use the value to which the
    144         // original definitions are mapped.
    145         if (UserBB == OrigPreheader) {
    146           U = OrigPreHeaderVal;
    147           continue;
    148         }
    149       }
    150 
    151       // Anything else can be handled by SSAUpdater.
    152       SSA.RewriteUse(U);
    153     }
    154   }
    155 }
    156 
    157 /// Determine whether the instructions in this range my be safely and cheaply
    158 /// speculated. This is not an important enough situation to develop complex
    159 /// heuristics. We handle a single arithmetic instruction along with any type
    160 /// conversions.
    161 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    162                                   BasicBlock::iterator End) {
    163   bool seenIncrement = false;
    164   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    165 
    166     if (!isSafeToSpeculativelyExecute(I))
    167       return false;
    168 
    169     if (isa<DbgInfoIntrinsic>(I))
    170       continue;
    171 
    172     switch (I->getOpcode()) {
    173     default:
    174       return false;
    175     case Instruction::GetElementPtr:
    176       // GEPs are cheap if all indices are constant.
    177       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    178         return false;
    179       // fall-thru to increment case
    180     case Instruction::Add:
    181     case Instruction::Sub:
    182     case Instruction::And:
    183     case Instruction::Or:
    184     case Instruction::Xor:
    185     case Instruction::Shl:
    186     case Instruction::LShr:
    187     case Instruction::AShr:
    188       if (seenIncrement)
    189         return false;
    190       seenIncrement = true;
    191       break;
    192     case Instruction::Trunc:
    193     case Instruction::ZExt:
    194     case Instruction::SExt:
    195       // ignore type conversions
    196       break;
    197     }
    198   }
    199   return true;
    200 }
    201 
    202 /// Fold the loop tail into the loop exit by speculating the loop tail
    203 /// instructions. Typically, this is a single post-increment. In the case of a
    204 /// simple 2-block loop, hoisting the increment can be much better than
    205 /// duplicating the entire loop header. In the cast of loops with early exits,
    206 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    207 /// canonical form so downstream passes can handle it.
    208 ///
    209 /// I don't believe this invalidates SCEV.
    210 void LoopRotate::simplifyLoopLatch(Loop *L) {
    211   BasicBlock *Latch = L->getLoopLatch();
    212   if (!Latch || Latch->hasAddressTaken())
    213     return;
    214 
    215   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    216   if (!Jmp || !Jmp->isUnconditional())
    217     return;
    218 
    219   BasicBlock *LastExit = Latch->getSinglePredecessor();
    220   if (!LastExit || !L->isLoopExiting(LastExit))
    221     return;
    222 
    223   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    224   if (!BI)
    225     return;
    226 
    227   if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    228     return;
    229 
    230   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    231         << LastExit->getName() << "\n");
    232 
    233   // Hoist the instructions from Latch into LastExit.
    234   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    235 
    236   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    237   BasicBlock *Header = Jmp->getSuccessor(0);
    238   assert(Header == L->getHeader() && "expected a backward branch");
    239 
    240   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    241   BI->setSuccessor(FallThruPath, Header);
    242   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    243   Jmp->eraseFromParent();
    244 
    245   // Nuke the Latch block.
    246   assert(Latch->empty() && "unable to evacuate Latch");
    247   LI->removeBlock(Latch);
    248   if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
    249     DT->eraseNode(Latch);
    250   Latch->eraseFromParent();
    251 }
    252 
    253 /// Rotate loop LP. Return true if the loop is rotated.
    254 bool LoopRotate::rotateLoop(Loop *L) {
    255   // If the loop has only one block then there is not much to rotate.
    256   if (L->getBlocks().size() == 1)
    257     return false;
    258 
    259   BasicBlock *OrigHeader = L->getHeader();
    260   BasicBlock *OrigLatch = L->getLoopLatch();
    261 
    262   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    263   if (BI == 0 || BI->isUnconditional())
    264     return false;
    265 
    266   // If the loop header is not one of the loop exiting blocks then
    267   // either this loop is already rotated or it is not
    268   // suitable for loop rotation transformations.
    269   if (!L->isLoopExiting(OrigHeader))
    270     return false;
    271 
    272   // If the loop latch already contains a branch that leaves the loop then the
    273   // loop is already rotated.
    274   if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
    275     return false;
    276 
    277   // Check size of original header and reject loop if it is very big.
    278   {
    279     CodeMetrics Metrics;
    280     Metrics.analyzeBasicBlock(OrigHeader);
    281     if (Metrics.NumInsts > MAX_HEADER_SIZE)
    282       return false;
    283   }
    284 
    285   // Now, this loop is suitable for rotation.
    286   BasicBlock *OrigPreheader = L->getLoopPreheader();
    287 
    288   // If the loop could not be converted to canonical form, it must have an
    289   // indirectbr in it, just give up.
    290   if (OrigPreheader == 0)
    291     return false;
    292 
    293   // Anything ScalarEvolution may know about this loop or the PHI nodes
    294   // in its header will soon be invalidated.
    295   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    296     SE->forgetLoop(L);
    297 
    298   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    299 
    300   // Find new Loop header. NewHeader is a Header's one and only successor
    301   // that is inside loop.  Header's other successor is outside the
    302   // loop.  Otherwise loop is not suitable for rotation.
    303   BasicBlock *Exit = BI->getSuccessor(0);
    304   BasicBlock *NewHeader = BI->getSuccessor(1);
    305   if (L->contains(Exit))
    306     std::swap(Exit, NewHeader);
    307   assert(NewHeader && "Unable to determine new loop header");
    308   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    309          "Unable to determine loop header and exit blocks");
    310 
    311   // This code assumes that the new header has exactly one predecessor.
    312   // Remove any single-entry PHI nodes in it.
    313   assert(NewHeader->getSinglePredecessor() &&
    314          "New header doesn't have one pred!");
    315   FoldSingleEntryPHINodes(NewHeader);
    316 
    317   // Begin by walking OrigHeader and populating ValueMap with an entry for
    318   // each Instruction.
    319   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    320   ValueToValueMapTy ValueMap;
    321 
    322   // For PHI nodes, the value available in OldPreHeader is just the
    323   // incoming value from OldPreHeader.
    324   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    325     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    326 
    327   // For the rest of the instructions, either hoist to the OrigPreheader if
    328   // possible or create a clone in the OldPreHeader if not.
    329   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    330   while (I != E) {
    331     Instruction *Inst = I++;
    332 
    333     // If the instruction's operands are invariant and it doesn't read or write
    334     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    335     // execution in the preheader, but does prevent the instruction from
    336     // executing in each iteration of the loop.  This means it is safe to hoist
    337     // something that might trap, but isn't safe to hoist something that reads
    338     // memory (without proving that the loop doesn't write).
    339     if (L->hasLoopInvariantOperands(Inst) &&
    340         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    341         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    342         !isa<AllocaInst>(Inst)) {
    343       Inst->moveBefore(LoopEntryBranch);
    344       continue;
    345     }
    346 
    347     // Otherwise, create a duplicate of the instruction.
    348     Instruction *C = Inst->clone();
    349 
    350     // Eagerly remap the operands of the instruction.
    351     RemapInstruction(C, ValueMap,
    352                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    353 
    354     // With the operands remapped, see if the instruction constant folds or is
    355     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    356     // nodes allows icmps and other instructions to fold.
    357     Value *V = SimplifyInstruction(C);
    358     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    359       // If so, then delete the temporary instruction and stick the folded value
    360       // in the map.
    361       delete C;
    362       ValueMap[Inst] = V;
    363     } else {
    364       // Otherwise, stick the new instruction into the new block!
    365       C->setName(Inst->getName());
    366       C->insertBefore(LoopEntryBranch);
    367       ValueMap[Inst] = C;
    368     }
    369   }
    370 
    371   // Along with all the other instructions, we just cloned OrigHeader's
    372   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    373   // successors by duplicating their incoming values for OrigHeader.
    374   TerminatorInst *TI = OrigHeader->getTerminator();
    375   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    376     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    377          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    378       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    379 
    380   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    381   // OrigPreHeader's old terminator (the original branch into the loop), and
    382   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    383   LoopEntryBranch->eraseFromParent();
    384 
    385   // If there were any uses of instructions in the duplicated block outside the
    386   // loop, update them, inserting PHI nodes as required
    387   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    388 
    389   // NewHeader is now the header of the loop.
    390   L->moveToHeader(NewHeader);
    391   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    392 
    393 
    394   // At this point, we've finished our major CFG changes.  As part of cloning
    395   // the loop into the preheader we've simplified instructions and the
    396   // duplicated conditional branch may now be branching on a constant.  If it is
    397   // branching on a constant and if that constant means that we enter the loop,
    398   // then we fold away the cond branch to an uncond branch.  This simplifies the
    399   // loop in cases important for nested loops, and it also means we don't have
    400   // to split as many edges.
    401   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    402   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    403   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    404       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    405           != NewHeader) {
    406     // The conditional branch can't be folded, handle the general case.
    407     // Update DominatorTree to reflect the CFG change we just made.  Then split
    408     // edges as necessary to preserve LoopSimplify form.
    409     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    410       // Everything that was dominated by the old loop header is now dominated
    411       // by the original loop preheader. Conceptually the header was merged
    412       // into the preheader, even though we reuse the actual block as a new
    413       // loop latch.
    414       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    415       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    416                                                    OrigHeaderNode->end());
    417       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    418       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    419         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    420 
    421       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    422       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    423 
    424       // Update OrigHeader to be dominated by the new header block.
    425       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    426     }
    427 
    428     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    429     // thus is not a preheader anymore.
    430     // Split the edge to form a real preheader.
    431     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    432     NewPH->setName(NewHeader->getName() + ".lr.ph");
    433 
    434     // Preserve canonical loop form, which means that 'Exit' should have only
    435     // one predecessor.
    436     BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    437     ExitSplit->moveBefore(Exit);
    438   } else {
    439     // We can fold the conditional branch in the preheader, this makes things
    440     // simpler. The first step is to remove the extra edge to the Exit block.
    441     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    442     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    443     NewBI->setDebugLoc(PHBI->getDebugLoc());
    444     PHBI->eraseFromParent();
    445 
    446     // With our CFG finalized, update DomTree if it is available.
    447     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    448       // Update OrigHeader to be dominated by the new header block.
    449       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    450       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    451 
    452       // Brute force incremental dominator tree update. Call
    453       // findNearestCommonDominator on all CFG predecessors of each child of the
    454       // original header.
    455       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    456       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    457                                                    OrigHeaderNode->end());
    458       bool Changed;
    459       do {
    460         Changed = false;
    461         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    462           DomTreeNode *Node = HeaderChildren[I];
    463           BasicBlock *BB = Node->getBlock();
    464 
    465           pred_iterator PI = pred_begin(BB);
    466           BasicBlock *NearestDom = *PI;
    467           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    468             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    469 
    470           // Remember if this changes the DomTree.
    471           if (Node->getIDom()->getBlock() != NearestDom) {
    472             DT->changeImmediateDominator(BB, NearestDom);
    473             Changed = true;
    474           }
    475         }
    476 
    477       // If the dominator changed, this may have an effect on other
    478       // predecessors, continue until we reach a fixpoint.
    479       } while (Changed);
    480     }
    481   }
    482 
    483   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    484   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    485 
    486   // Now that the CFG and DomTree are in a consistent state again, try to merge
    487   // the OrigHeader block into OrigLatch.  This will succeed if they are
    488   // connected by an unconditional branch.  This is just a cleanup so the
    489   // emitted code isn't too gross in this common case.
    490   MergeBlockIntoPredecessor(OrigHeader, this);
    491 
    492   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    493 
    494   ++NumRotated;
    495   return true;
    496 }
    497 
    498