Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities for loops with run-time
     11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
     12 // trip counts.
     13 //
     14 // The functions in this file are used to generate extra code when the
     15 // run-time trip count modulo the unroll factor is not 0.  When this is the
     16 // case, we need to generate code to execute these 'left over' iterations.
     17 //
     18 // The current strategy generates an if-then-else sequence prior to the
     19 // unrolled loop to execute the 'left over' iterations.  Other strategies
     20 // include generate a loop before or after the unrolled loop.
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #define DEBUG_TYPE "loop-unroll"
     25 #include "llvm/Transforms/Utils/UnrollLoop.h"
     26 #include "llvm/BasicBlock.h"
     27 #include "llvm/ADT/Statistic.h"
     28 #include "llvm/Analysis/LoopIterator.h"
     29 #include "llvm/Analysis/LoopPass.h"
     30 #include "llvm/Analysis/ScalarEvolution.h"
     31 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/Cloning.h"
     36 #include <algorithm>
     37 
     38 using namespace llvm;
     39 
     40 STATISTIC(NumRuntimeUnrolled,
     41           "Number of loops unrolled with run-time trip counts");
     42 
     43 /// Connect the unrolling prolog code to the original loop.
     44 /// The unrolling prolog code contains code to execute the
     45 /// 'extra' iterations if the run-time trip count modulo the
     46 /// unroll count is non-zero.
     47 ///
     48 /// This function performs the following:
     49 /// - Create PHI nodes at prolog end block to combine values
     50 ///   that exit the prolog code and jump around the prolog.
     51 /// - Add a PHI operand to a PHI node at the loop exit block
     52 ///   for values that exit the prolog and go around the loop.
     53 /// - Branch around the original loop if the trip count is less
     54 ///   than the unroll factor.
     55 ///
     56 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
     57                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
     58                           BasicBlock *OrigPH, BasicBlock *NewPH,
     59                           ValueToValueMapTy &LVMap, Pass *P) {
     60   BasicBlock *Latch = L->getLoopLatch();
     61   assert(Latch != 0 && "Loop must have a latch");
     62 
     63   // Create a PHI node for each outgoing value from the original loop
     64   // (which means it is an outgoing value from the prolog code too).
     65   // The new PHI node is inserted in the prolog end basic block.
     66   // The new PHI name is added as an operand of a PHI node in either
     67   // the loop header or the loop exit block.
     68   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
     69        SBI != SBE; ++SBI) {
     70     for (BasicBlock::iterator BBI = (*SBI)->begin();
     71          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
     72 
     73       // Add a new PHI node to the prolog end block and add the
     74       // appropriate incoming values.
     75       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
     76                                        PrologEnd->getTerminator());
     77       // Adding a value to the new PHI node from the original loop preheader.
     78       // This is the value that skips all the prolog code.
     79       if (L->contains(PN)) {
     80         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
     81       } else {
     82         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
     83       }
     84 
     85       Value *V = PN->getIncomingValueForBlock(Latch);
     86       if (Instruction *I = dyn_cast<Instruction>(V)) {
     87         if (L->contains(I)) {
     88           V = LVMap[I];
     89         }
     90       }
     91       // Adding a value to the new PHI node from the last prolog block
     92       // that was created.
     93       NewPN->addIncoming(V, LastPrologBB);
     94 
     95       // Update the existing PHI node operand with the value from the
     96       // new PHI node.  How this is done depends on if the existing
     97       // PHI node is in the original loop block, or the exit block.
     98       if (L->contains(PN)) {
     99         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
    100       } else {
    101         PN->addIncoming(NewPN, PrologEnd);
    102       }
    103     }
    104   }
    105 
    106   // Create a branch around the orignal loop, which is taken if the
    107   // trip count is less than the unroll factor.
    108   Instruction *InsertPt = PrologEnd->getTerminator();
    109   Instruction *BrLoopExit =
    110     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
    111                  ConstantInt::get(TripCount->getType(), Count));
    112   BasicBlock *Exit = L->getUniqueExitBlock();
    113   assert(Exit != 0 && "Loop must have a single exit block only");
    114   // Split the exit to maintain loop canonicalization guarantees
    115   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
    116   if (!Exit->isLandingPad()) {
    117     SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
    118   } else {
    119     SmallVector<BasicBlock*, 2> NewBBs;
    120     SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
    121                                 P, NewBBs);
    122   }
    123   // Add the branch to the exit block (around the unrolled loop)
    124   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
    125   InsertPt->eraseFromParent();
    126 }
    127 
    128 /// Create a clone of the blocks in a loop and connect them together.
    129 /// This function doesn't create a clone of the loop structure.
    130 ///
    131 /// There are two value maps that are defined and used.  VMap is
    132 /// for the values in the current loop instance.  LVMap contains
    133 /// the values from the last loop instance.  We need the LVMap values
    134 /// to update the initial values for the current loop instance.
    135 ///
    136 static void CloneLoopBlocks(Loop *L,
    137                             bool FirstCopy,
    138                             BasicBlock *InsertTop,
    139                             BasicBlock *InsertBot,
    140                             std::vector<BasicBlock *> &NewBlocks,
    141                             LoopBlocksDFS &LoopBlocks,
    142                             ValueToValueMapTy &VMap,
    143                             ValueToValueMapTy &LVMap,
    144                             LoopInfo *LI) {
    145 
    146   BasicBlock *Preheader = L->getLoopPreheader();
    147   BasicBlock *Header = L->getHeader();
    148   BasicBlock *Latch = L->getLoopLatch();
    149   Function *F = Header->getParent();
    150   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
    151   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
    152   // For each block in the original loop, create a new copy,
    153   // and update the value map with the newly created values.
    154   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    155     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
    156     NewBlocks.push_back(NewBB);
    157 
    158     if (Loop *ParentLoop = L->getParentLoop())
    159       ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    160 
    161     VMap[*BB] = NewBB;
    162     if (Header == *BB) {
    163       // For the first block, add a CFG connection to this newly
    164       // created block
    165       InsertTop->getTerminator()->setSuccessor(0, NewBB);
    166 
    167       // Change the incoming values to the ones defined in the
    168       // previously cloned loop.
    169       for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    170         PHINode *NewPHI = cast<PHINode>(VMap[I]);
    171         if (FirstCopy) {
    172           // We replace the first phi node with the value from the preheader
    173           VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
    174           NewBB->getInstList().erase(NewPHI);
    175         } else {
    176           // Update VMap with values from the previous block
    177           unsigned idx = NewPHI->getBasicBlockIndex(Latch);
    178           Value *InVal = NewPHI->getIncomingValue(idx);
    179           if (Instruction *I = dyn_cast<Instruction>(InVal))
    180             if (L->contains(I))
    181               InVal = LVMap[InVal];
    182           NewPHI->setIncomingValue(idx, InVal);
    183           NewPHI->setIncomingBlock(idx, InsertTop);
    184         }
    185       }
    186     }
    187 
    188     if (Latch == *BB) {
    189       VMap.erase((*BB)->getTerminator());
    190       NewBB->getTerminator()->eraseFromParent();
    191       BranchInst::Create(InsertBot, NewBB);
    192     }
    193   }
    194   // LastValueMap is updated with the values for the current loop
    195   // which are used the next time this function is called.
    196   for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
    197        VI != VE; ++VI) {
    198     LVMap[VI->first] = VI->second;
    199   }
    200 }
    201 
    202 /// Insert code in the prolog code when unrolling a loop with a
    203 /// run-time trip-count.
    204 ///
    205 /// This method assumes that the loop unroll factor is total number
    206 /// of loop bodes in the loop after unrolling. (Some folks refer
    207 /// to the unroll factor as the number of *extra* copies added).
    208 /// We assume also that the loop unroll factor is a power-of-two. So, after
    209 /// unrolling the loop, the number of loop bodies executed is 2,
    210 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
    211 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
    212 /// the switch instruction is generated.
    213 ///
    214 ///    extraiters = tripcount % loopfactor
    215 ///    if (extraiters == 0) jump Loop:
    216 ///    if (extraiters == loopfactor) jump L1
    217 ///    if (extraiters == loopfactor-1) jump L2
    218 ///    ...
    219 ///    L1:  LoopBody;
    220 ///    L2:  LoopBody;
    221 ///    ...
    222 ///    if tripcount < loopfactor jump End
    223 ///    Loop:
    224 ///    ...
    225 ///    End:
    226 ///
    227 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
    228                                    LPPassManager *LPM) {
    229   // for now, only unroll loops that contain a single exit
    230   if (!L->getExitingBlock())
    231     return false;
    232 
    233   // Make sure the loop is in canonical form, and there is a single
    234   // exit block only.
    235   if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
    236     return false;
    237 
    238   // Use Scalar Evolution to compute the trip count.  This allows more
    239   // loops to be unrolled than relying on induction var simplification
    240   if (!LPM)
    241     return false;
    242   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
    243   if (SE == 0)
    244     return false;
    245 
    246   // Only unroll loops with a computable trip count and the trip count needs
    247   // to be an int value (allowing a pointer type is a TODO item)
    248   const SCEV *BECount = SE->getBackedgeTakenCount(L);
    249   if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
    250     return false;
    251 
    252   // Add 1 since the backedge count doesn't include the first loop iteration
    253   const SCEV *TripCountSC =
    254     SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
    255   if (isa<SCEVCouldNotCompute>(TripCountSC))
    256     return false;
    257 
    258   // We only handle cases when the unroll factor is a power of 2.
    259   // Count is the loop unroll factor, the number of extra copies added + 1.
    260   if ((Count & (Count-1)) != 0)
    261     return false;
    262 
    263   // If this loop is nested, then the loop unroller changes the code in
    264   // parent loop, so the Scalar Evolution pass needs to be run again
    265   if (Loop *ParentLoop = L->getParentLoop())
    266     SE->forgetLoop(ParentLoop);
    267 
    268   BasicBlock *PH = L->getLoopPreheader();
    269   BasicBlock *Header = L->getHeader();
    270   BasicBlock *Latch = L->getLoopLatch();
    271   // It helps to splits the original preheader twice, one for the end of the
    272   // prolog code and one for a new loop preheader
    273   BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
    274   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
    275   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
    276 
    277   // Compute the number of extra iterations required, which is:
    278   //  extra iterations = run-time trip count % (loop unroll factor + 1)
    279   SCEVExpander Expander(*SE, "loop-unroll");
    280   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
    281                                             PreHeaderBR);
    282   Type *CountTy = TripCount->getType();
    283   BinaryOperator *ModVal =
    284     BinaryOperator::CreateURem(TripCount,
    285                                ConstantInt::get(CountTy, Count),
    286                                "xtraiter");
    287   ModVal->insertBefore(PreHeaderBR);
    288 
    289   // Check if for no extra iterations, then jump to unrolled loop
    290   Value *BranchVal = new ICmpInst(PreHeaderBR,
    291                                   ICmpInst::ICMP_NE, ModVal,
    292                                   ConstantInt::get(CountTy, 0), "lcmp");
    293   // Branch to either the extra iterations or the unrolled loop
    294   // We will fix up the true branch label when adding loop body copies
    295   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
    296   assert(PreHeaderBR->isUnconditional() &&
    297          PreHeaderBR->getSuccessor(0) == PEnd &&
    298          "CFG edges in Preheader are not correct");
    299   PreHeaderBR->eraseFromParent();
    300 
    301   ValueToValueMapTy LVMap;
    302   Function *F = Header->getParent();
    303   // These variables are used to update the CFG links in each iteration
    304   BasicBlock *CompareBB = 0;
    305   BasicBlock *LastLoopBB = PH;
    306   // Get an ordered list of blocks in the loop to help with the ordering of the
    307   // cloned blocks in the prolog code
    308   LoopBlocksDFS LoopBlocks(L);
    309   LoopBlocks.perform(LI);
    310 
    311   //
    312   // For each extra loop iteration, create a copy of the loop's basic blocks
    313   // and generate a condition that branches to the copy depending on the
    314   // number of 'left over' iterations.
    315   //
    316   for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
    317     std::vector<BasicBlock*> NewBlocks;
    318     ValueToValueMapTy VMap;
    319 
    320     // Clone all the basic blocks in the loop, but we don't clone the loop
    321     // This function adds the appropriate CFG connections.
    322     CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
    323                     LoopBlocks, VMap, LVMap, LI);
    324     LastLoopBB = cast<BasicBlock>(VMap[Latch]);
    325 
    326     // Insert the cloned blocks into function just before the original loop
    327     F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
    328                                   NewBlocks[0], F->end());
    329 
    330     // Generate the code for the comparison which determines if the loop
    331     // prolog code needs to be executed.
    332     if (leftOverIters == Count-1) {
    333       // There is no compare block for the fall-thru case when for the last
    334       // left over iteration
    335       CompareBB = NewBlocks[0];
    336     } else {
    337       // Create a new block for the comparison
    338       BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
    339                                              F, CompareBB);
    340       if (Loop *ParentLoop = L->getParentLoop()) {
    341         // Add the new block to the parent loop, if needed
    342         ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
    343       }
    344 
    345       // The comparison w/ the extra iteration value and branch
    346       Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
    347                                       ConstantInt::get(CountTy, leftOverIters),
    348                                       "un.tmp");
    349       // Branch to either the extra iterations or the unrolled loop
    350       BranchInst::Create(NewBlocks[0], CompareBB,
    351                          BranchVal, NewBB);
    352       CompareBB = NewBB;
    353       PH->getTerminator()->setSuccessor(0, NewBB);
    354       VMap[NewPH] = CompareBB;
    355     }
    356 
    357     // Rewrite the cloned instruction operands to use the values
    358     // created when the clone is created.
    359     for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
    360       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    361              E = NewBlocks[i]->end(); I != E; ++I) {
    362         RemapInstruction(I, VMap,
    363                          RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    364       }
    365     }
    366   }
    367 
    368   // Connect the prolog code to the original loop and update the
    369   // PHI functions.
    370   ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
    371                 LPM->getAsPass());
    372   NumRuntimeUnrolled++;
    373   return true;
    374 }
    375