Home | History | Annotate | Download | only in VMCore
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * All landingpad instructions must use the same personality function with
     43 //    the same function.
     44 //  * All other things that are tested by asserts spread about the code...
     45 //
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "llvm/Analysis/Verifier.h"
     49 #include "llvm/CallingConv.h"
     50 #include "llvm/Constants.h"
     51 #include "llvm/DerivedTypes.h"
     52 #include "llvm/InlineAsm.h"
     53 #include "llvm/IntrinsicInst.h"
     54 #include "llvm/LLVMContext.h"
     55 #include "llvm/Metadata.h"
     56 #include "llvm/Module.h"
     57 #include "llvm/Pass.h"
     58 #include "llvm/PassManager.h"
     59 #include "llvm/Analysis/Dominators.h"
     60 #include "llvm/Assembly/Writer.h"
     61 #include "llvm/CodeGen/ValueTypes.h"
     62 #include "llvm/Support/CallSite.h"
     63 #include "llvm/Support/CFG.h"
     64 #include "llvm/Support/Debug.h"
     65 #include "llvm/Support/InstVisitor.h"
     66 #include "llvm/ADT/SetVector.h"
     67 #include "llvm/ADT/SmallPtrSet.h"
     68 #include "llvm/ADT/SmallVector.h"
     69 #include "llvm/ADT/StringExtras.h"
     70 #include "llvm/ADT/STLExtras.h"
     71 #include "llvm/Support/ConstantRange.h"
     72 #include "llvm/Support/ErrorHandling.h"
     73 #include "llvm/Support/raw_ostream.h"
     74 #include <algorithm>
     75 #include <cstdarg>
     76 using namespace llvm;
     77 
     78 namespace {  // Anonymous namespace for class
     79   struct PreVerifier : public FunctionPass {
     80     static char ID; // Pass ID, replacement for typeid
     81 
     82     PreVerifier() : FunctionPass(ID) {
     83       initializePreVerifierPass(*PassRegistry::getPassRegistry());
     84     }
     85 
     86     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     87       AU.setPreservesAll();
     88     }
     89 
     90     // Check that the prerequisites for successful DominatorTree construction
     91     // are satisfied.
     92     bool runOnFunction(Function &F) {
     93       bool Broken = false;
     94 
     95       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
     96         if (I->empty() || !I->back().isTerminator()) {
     97           dbgs() << "Basic Block in function '" << F.getName()
     98                  << "' does not have terminator!\n";
     99           WriteAsOperand(dbgs(), I, true);
    100           dbgs() << "\n";
    101           Broken = true;
    102         }
    103       }
    104 
    105       if (Broken)
    106         report_fatal_error("Broken module, no Basic Block terminator!");
    107 
    108       return false;
    109     }
    110   };
    111 }
    112 
    113 char PreVerifier::ID = 0;
    114 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
    115                 false, false)
    116 static char &PreVerifyID = PreVerifier::ID;
    117 
    118 namespace {
    119   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    120     static char ID; // Pass ID, replacement for typeid
    121     bool Broken;          // Is this module found to be broken?
    122     VerifierFailureAction action;
    123                           // What to do if verification fails.
    124     Module *Mod;          // Module we are verifying right now
    125     LLVMContext *Context; // Context within which we are verifying
    126     DominatorTree *DT;    // Dominator Tree, caution can be null!
    127 
    128     std::string Messages;
    129     raw_string_ostream MessagesStr;
    130 
    131     /// InstInThisBlock - when verifying a basic block, keep track of all of the
    132     /// instructions we have seen so far.  This allows us to do efficient
    133     /// dominance checks for the case when an instruction has an operand that is
    134     /// an instruction in the same block.
    135     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
    136 
    137     /// MDNodes - keep track of the metadata nodes that have been checked
    138     /// already.
    139     SmallPtrSet<MDNode *, 32> MDNodes;
    140 
    141     /// PersonalityFn - The personality function referenced by the
    142     /// LandingPadInsts. All LandingPadInsts within the same function must use
    143     /// the same personality function.
    144     const Value *PersonalityFn;
    145 
    146     Verifier()
    147       : FunctionPass(ID), Broken(false),
    148         action(AbortProcessAction), Mod(0), Context(0), DT(0),
    149         MessagesStr(Messages), PersonalityFn(0) {
    150       initializeVerifierPass(*PassRegistry::getPassRegistry());
    151     }
    152     explicit Verifier(VerifierFailureAction ctn)
    153       : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
    154         Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
    155       initializeVerifierPass(*PassRegistry::getPassRegistry());
    156     }
    157 
    158     bool doInitialization(Module &M) {
    159       Mod = &M;
    160       Context = &M.getContext();
    161 
    162       // We must abort before returning back to the pass manager, or else the
    163       // pass manager may try to run other passes on the broken module.
    164       return abortIfBroken();
    165     }
    166 
    167     bool runOnFunction(Function &F) {
    168       // Get dominator information if we are being run by PassManager
    169       DT = &getAnalysis<DominatorTree>();
    170 
    171       Mod = F.getParent();
    172       if (!Context) Context = &F.getContext();
    173 
    174       visit(F);
    175       InstsInThisBlock.clear();
    176       PersonalityFn = 0;
    177 
    178       // We must abort before returning back to the pass manager, or else the
    179       // pass manager may try to run other passes on the broken module.
    180       return abortIfBroken();
    181     }
    182 
    183     bool doFinalization(Module &M) {
    184       // Scan through, checking all of the external function's linkage now...
    185       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    186         visitGlobalValue(*I);
    187 
    188         // Check to make sure function prototypes are okay.
    189         if (I->isDeclaration()) visitFunction(*I);
    190       }
    191 
    192       for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    193            I != E; ++I)
    194         visitGlobalVariable(*I);
    195 
    196       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
    197            I != E; ++I)
    198         visitGlobalAlias(*I);
    199 
    200       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    201            E = M.named_metadata_end(); I != E; ++I)
    202         visitNamedMDNode(*I);
    203 
    204       // If the module is broken, abort at this time.
    205       return abortIfBroken();
    206     }
    207 
    208     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    209       AU.setPreservesAll();
    210       AU.addRequiredID(PreVerifyID);
    211       AU.addRequired<DominatorTree>();
    212     }
    213 
    214     /// abortIfBroken - If the module is broken and we are supposed to abort on
    215     /// this condition, do so.
    216     ///
    217     bool abortIfBroken() {
    218       if (!Broken) return false;
    219       MessagesStr << "Broken module found, ";
    220       switch (action) {
    221       case AbortProcessAction:
    222         MessagesStr << "compilation aborted!\n";
    223         dbgs() << MessagesStr.str();
    224         // Client should choose different reaction if abort is not desired
    225         abort();
    226       case PrintMessageAction:
    227         MessagesStr << "verification continues.\n";
    228         dbgs() << MessagesStr.str();
    229         return false;
    230       case ReturnStatusAction:
    231         MessagesStr << "compilation terminated.\n";
    232         return true;
    233       }
    234       llvm_unreachable("Invalid action");
    235     }
    236 
    237 
    238     // Verification methods...
    239     void visitGlobalValue(GlobalValue &GV);
    240     void visitGlobalVariable(GlobalVariable &GV);
    241     void visitGlobalAlias(GlobalAlias &GA);
    242     void visitNamedMDNode(NamedMDNode &NMD);
    243     void visitMDNode(MDNode &MD, Function *F);
    244     void visitFunction(Function &F);
    245     void visitBasicBlock(BasicBlock &BB);
    246     using InstVisitor<Verifier>::visit;
    247 
    248     void visit(Instruction &I);
    249 
    250     void visitTruncInst(TruncInst &I);
    251     void visitZExtInst(ZExtInst &I);
    252     void visitSExtInst(SExtInst &I);
    253     void visitFPTruncInst(FPTruncInst &I);
    254     void visitFPExtInst(FPExtInst &I);
    255     void visitFPToUIInst(FPToUIInst &I);
    256     void visitFPToSIInst(FPToSIInst &I);
    257     void visitUIToFPInst(UIToFPInst &I);
    258     void visitSIToFPInst(SIToFPInst &I);
    259     void visitIntToPtrInst(IntToPtrInst &I);
    260     void visitPtrToIntInst(PtrToIntInst &I);
    261     void visitBitCastInst(BitCastInst &I);
    262     void visitPHINode(PHINode &PN);
    263     void visitBinaryOperator(BinaryOperator &B);
    264     void visitICmpInst(ICmpInst &IC);
    265     void visitFCmpInst(FCmpInst &FC);
    266     void visitExtractElementInst(ExtractElementInst &EI);
    267     void visitInsertElementInst(InsertElementInst &EI);
    268     void visitShuffleVectorInst(ShuffleVectorInst &EI);
    269     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    270     void visitCallInst(CallInst &CI);
    271     void visitInvokeInst(InvokeInst &II);
    272     void visitGetElementPtrInst(GetElementPtrInst &GEP);
    273     void visitLoadInst(LoadInst &LI);
    274     void visitStoreInst(StoreInst &SI);
    275     void verifyDominatesUse(Instruction &I, unsigned i);
    276     void visitInstruction(Instruction &I);
    277     void visitTerminatorInst(TerminatorInst &I);
    278     void visitBranchInst(BranchInst &BI);
    279     void visitReturnInst(ReturnInst &RI);
    280     void visitSwitchInst(SwitchInst &SI);
    281     void visitIndirectBrInst(IndirectBrInst &BI);
    282     void visitSelectInst(SelectInst &SI);
    283     void visitUserOp1(Instruction &I);
    284     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    285     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    286     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    287     void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    288     void visitFenceInst(FenceInst &FI);
    289     void visitAllocaInst(AllocaInst &AI);
    290     void visitExtractValueInst(ExtractValueInst &EVI);
    291     void visitInsertValueInst(InsertValueInst &IVI);
    292     void visitLandingPadInst(LandingPadInst &LPI);
    293 
    294     void VerifyCallSite(CallSite CS);
    295     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
    296                           int VT, unsigned ArgNo, std::string &Suffix);
    297     bool VerifyIntrinsicType(Type *Ty,
    298                              ArrayRef<Intrinsic::IITDescriptor> &Infos,
    299                              SmallVectorImpl<Type*> &ArgTys);
    300     void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    301                               bool isReturnValue, const Value *V);
    302     void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
    303                              const Value *V);
    304 
    305     void WriteValue(const Value *V) {
    306       if (!V) return;
    307       if (isa<Instruction>(V)) {
    308         MessagesStr << *V << '\n';
    309       } else {
    310         WriteAsOperand(MessagesStr, V, true, Mod);
    311         MessagesStr << '\n';
    312       }
    313     }
    314 
    315     void WriteType(Type *T) {
    316       if (!T) return;
    317       MessagesStr << ' ' << *T;
    318     }
    319 
    320 
    321     // CheckFailed - A check failed, so print out the condition and the message
    322     // that failed.  This provides a nice place to put a breakpoint if you want
    323     // to see why something is not correct.
    324     void CheckFailed(const Twine &Message,
    325                      const Value *V1 = 0, const Value *V2 = 0,
    326                      const Value *V3 = 0, const Value *V4 = 0) {
    327       MessagesStr << Message.str() << "\n";
    328       WriteValue(V1);
    329       WriteValue(V2);
    330       WriteValue(V3);
    331       WriteValue(V4);
    332       Broken = true;
    333     }
    334 
    335     void CheckFailed(const Twine &Message, const Value *V1,
    336                      Type *T2, const Value *V3 = 0) {
    337       MessagesStr << Message.str() << "\n";
    338       WriteValue(V1);
    339       WriteType(T2);
    340       WriteValue(V3);
    341       Broken = true;
    342     }
    343 
    344     void CheckFailed(const Twine &Message, Type *T1,
    345                      Type *T2 = 0, Type *T3 = 0) {
    346       MessagesStr << Message.str() << "\n";
    347       WriteType(T1);
    348       WriteType(T2);
    349       WriteType(T3);
    350       Broken = true;
    351     }
    352   };
    353 } // End anonymous namespace
    354 
    355 char Verifier::ID = 0;
    356 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
    357 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
    358 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    359 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
    360 
    361 // Assert - We know that cond should be true, if not print an error message.
    362 #define Assert(C, M) \
    363   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    364 #define Assert1(C, M, V1) \
    365   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    366 #define Assert2(C, M, V1, V2) \
    367   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    368 #define Assert3(C, M, V1, V2, V3) \
    369   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    370 #define Assert4(C, M, V1, V2, V3, V4) \
    371   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    372 
    373 void Verifier::visit(Instruction &I) {
    374   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    375     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
    376   InstVisitor<Verifier>::visit(I);
    377 }
    378 
    379 
    380 void Verifier::visitGlobalValue(GlobalValue &GV) {
    381   Assert1(!GV.isDeclaration() ||
    382           GV.isMaterializable() ||
    383           GV.hasExternalLinkage() ||
    384           GV.hasDLLImportLinkage() ||
    385           GV.hasExternalWeakLinkage() ||
    386           (isa<GlobalAlias>(GV) &&
    387            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
    388   "Global is external, but doesn't have external or dllimport or weak linkage!",
    389           &GV);
    390 
    391   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
    392           "Global is marked as dllimport, but not external", &GV);
    393 
    394   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    395           "Only global variables can have appending linkage!", &GV);
    396 
    397   if (GV.hasAppendingLinkage()) {
    398     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    399     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    400             "Only global arrays can have appending linkage!", GVar);
    401   }
    402 
    403   Assert1(!GV.hasLinkOnceODRAutoHideLinkage() || GV.hasDefaultVisibility(),
    404           "linkonce_odr_auto_hide can only have default visibility!",
    405           &GV);
    406 }
    407 
    408 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
    409   if (GV.hasInitializer()) {
    410     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    411             "Global variable initializer type does not match global "
    412             "variable type!", &GV);
    413 
    414     // If the global has common linkage, it must have a zero initializer and
    415     // cannot be constant.
    416     if (GV.hasCommonLinkage()) {
    417       Assert1(GV.getInitializer()->isNullValue(),
    418               "'common' global must have a zero initializer!", &GV);
    419       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    420               &GV);
    421     }
    422   } else {
    423     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
    424             GV.hasExternalWeakLinkage(),
    425             "invalid linkage type for global declaration", &GV);
    426   }
    427 
    428   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    429                        GV.getName() == "llvm.global_dtors")) {
    430     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    431             "invalid linkage for intrinsic global variable", &GV);
    432     // Don't worry about emitting an error for it not being an array,
    433     // visitGlobalValue will complain on appending non-array.
    434     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
    435       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    436       PointerType *FuncPtrTy =
    437           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    438       Assert1(STy && STy->getNumElements() == 2 &&
    439               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    440               STy->getTypeAtIndex(1) == FuncPtrTy,
    441               "wrong type for intrinsic global variable", &GV);
    442     }
    443   }
    444 
    445   visitGlobalValue(GV);
    446 }
    447 
    448 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
    449   Assert1(!GA.getName().empty(),
    450           "Alias name cannot be empty!", &GA);
    451   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
    452           GA.hasWeakLinkage(),
    453           "Alias should have external or external weak linkage!", &GA);
    454   Assert1(GA.getAliasee(),
    455           "Aliasee cannot be NULL!", &GA);
    456   Assert1(GA.getType() == GA.getAliasee()->getType(),
    457           "Alias and aliasee types should match!", &GA);
    458   Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
    459 
    460   if (!isa<GlobalValue>(GA.getAliasee())) {
    461     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    462     Assert1(CE &&
    463             (CE->getOpcode() == Instruction::BitCast ||
    464              CE->getOpcode() == Instruction::GetElementPtr) &&
    465             isa<GlobalValue>(CE->getOperand(0)),
    466             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
    467             &GA);
    468   }
    469 
    470   const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
    471   Assert1(Aliasee,
    472           "Aliasing chain should end with function or global variable", &GA);
    473 
    474   visitGlobalValue(GA);
    475 }
    476 
    477 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
    478   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    479     MDNode *MD = NMD.getOperand(i);
    480     if (!MD)
    481       continue;
    482 
    483     Assert1(!MD->isFunctionLocal(),
    484             "Named metadata operand cannot be function local!", MD);
    485     visitMDNode(*MD, 0);
    486   }
    487 }
    488 
    489 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    490   // Only visit each node once.  Metadata can be mutually recursive, so this
    491   // avoids infinite recursion here, as well as being an optimization.
    492   if (!MDNodes.insert(&MD))
    493     return;
    494 
    495   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    496     Value *Op = MD.getOperand(i);
    497     if (!Op)
    498       continue;
    499     if (isa<Constant>(Op) || isa<MDString>(Op))
    500       continue;
    501     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    502       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    503               "Global metadata operand cannot be function local!", &MD, N);
    504       visitMDNode(*N, F);
    505       continue;
    506     }
    507     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    508 
    509     // If this was an instruction, bb, or argument, verify that it is in the
    510     // function that we expect.
    511     Function *ActualF = 0;
    512     if (Instruction *I = dyn_cast<Instruction>(Op))
    513       ActualF = I->getParent()->getParent();
    514     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    515       ActualF = BB->getParent();
    516     else if (Argument *A = dyn_cast<Argument>(Op))
    517       ActualF = A->getParent();
    518     assert(ActualF && "Unimplemented function local metadata case!");
    519 
    520     Assert2(ActualF == F, "function-local metadata used in wrong function",
    521             &MD, Op);
    522   }
    523 }
    524 
    525 // VerifyParameterAttrs - Check the given attributes for an argument or return
    526 // value of the specified type.  The value V is printed in error messages.
    527 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    528                                     bool isReturnValue, const Value *V) {
    529   if (Attrs == Attribute::None)
    530     return;
    531 
    532   Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
    533   Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
    534           " only applies to the function!", V);
    535 
    536   if (isReturnValue) {
    537     Attributes RetI = Attrs & Attribute::ParameterOnly;
    538     Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
    539             " does not apply to return values!", V);
    540   }
    541 
    542   for (unsigned i = 0;
    543        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    544     Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    545     Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
    546             Attribute::getAsString(MutI) + " are incompatible!", V);
    547   }
    548 
    549   Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
    550   Assert1(!TypeI, "Wrong type for attribute " +
    551           Attribute::getAsString(TypeI), V);
    552 
    553   Attributes ByValI = Attrs & Attribute::ByVal;
    554   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    555     Assert1(!ByValI || PTy->getElementType()->isSized(),
    556             "Attribute " + Attribute::getAsString(ByValI) +
    557             " does not support unsized types!", V);
    558   } else {
    559     Assert1(!ByValI,
    560             "Attribute " + Attribute::getAsString(ByValI) +
    561             " only applies to parameters with pointer type!", V);
    562   }
    563 }
    564 
    565 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    566 // The value V is printed in error messages.
    567 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
    568                                    const AttrListPtr &Attrs,
    569                                    const Value *V) {
    570   if (Attrs.isEmpty())
    571     return;
    572 
    573   bool SawNest = false;
    574 
    575   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    576     const AttributeWithIndex &Attr = Attrs.getSlot(i);
    577 
    578     Type *Ty;
    579     if (Attr.Index == 0)
    580       Ty = FT->getReturnType();
    581     else if (Attr.Index-1 < FT->getNumParams())
    582       Ty = FT->getParamType(Attr.Index-1);
    583     else
    584       break;  // VarArgs attributes, verified elsewhere.
    585 
    586     VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
    587 
    588     if (Attr.Attrs & Attribute::Nest) {
    589       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    590       SawNest = true;
    591     }
    592 
    593     if (Attr.Attrs & Attribute::StructRet)
    594       Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
    595   }
    596 
    597   Attributes FAttrs = Attrs.getFnAttributes();
    598   Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
    599   Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
    600           " does not apply to the function!", V);
    601 
    602   for (unsigned i = 0;
    603        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    604     Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    605     Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
    606             Attribute::getAsString(MutI) + " are incompatible!", V);
    607   }
    608 }
    609 
    610 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
    611   if (Attrs.isEmpty())
    612     return true;
    613 
    614   unsigned LastSlot = Attrs.getNumSlots() - 1;
    615   unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
    616   if (LastIndex <= Params
    617       || (LastIndex == (unsigned)~0
    618           && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
    619     return true;
    620 
    621   return false;
    622 }
    623 
    624 // visitFunction - Verify that a function is ok.
    625 //
    626 void Verifier::visitFunction(Function &F) {
    627   // Check function arguments.
    628   FunctionType *FT = F.getFunctionType();
    629   unsigned NumArgs = F.arg_size();
    630 
    631   Assert1(Context == &F.getContext(),
    632           "Function context does not match Module context!", &F);
    633 
    634   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
    635   Assert2(FT->getNumParams() == NumArgs,
    636           "# formal arguments must match # of arguments for function type!",
    637           &F, FT);
    638   Assert1(F.getReturnType()->isFirstClassType() ||
    639           F.getReturnType()->isVoidTy() ||
    640           F.getReturnType()->isStructTy(),
    641           "Functions cannot return aggregate values!", &F);
    642 
    643   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
    644           "Invalid struct return type!", &F);
    645 
    646   const AttrListPtr &Attrs = F.getAttributes();
    647 
    648   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
    649           "Attributes after last parameter!", &F);
    650 
    651   // Check function attributes.
    652   VerifyFunctionAttrs(FT, Attrs, &F);
    653 
    654   // Check that this function meets the restrictions on this calling convention.
    655   switch (F.getCallingConv()) {
    656   default:
    657     break;
    658   case CallingConv::C:
    659     break;
    660   case CallingConv::Fast:
    661   case CallingConv::Cold:
    662   case CallingConv::X86_FastCall:
    663   case CallingConv::X86_ThisCall:
    664   case CallingConv::PTX_Kernel:
    665   case CallingConv::PTX_Device:
    666     Assert1(!F.isVarArg(),
    667             "Varargs functions must have C calling conventions!", &F);
    668     break;
    669   }
    670 
    671   bool isLLVMdotName = F.getName().size() >= 5 &&
    672                        F.getName().substr(0, 5) == "llvm.";
    673 
    674   // Check that the argument values match the function type for this function...
    675   unsigned i = 0;
    676   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
    677        I != E; ++I, ++i) {
    678     Assert2(I->getType() == FT->getParamType(i),
    679             "Argument value does not match function argument type!",
    680             I, FT->getParamType(i));
    681     Assert1(I->getType()->isFirstClassType(),
    682             "Function arguments must have first-class types!", I);
    683     if (!isLLVMdotName)
    684       Assert2(!I->getType()->isMetadataTy(),
    685               "Function takes metadata but isn't an intrinsic", I, &F);
    686   }
    687 
    688   if (F.isMaterializable()) {
    689     // Function has a body somewhere we can't see.
    690   } else if (F.isDeclaration()) {
    691     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
    692             F.hasExternalWeakLinkage(),
    693             "invalid linkage type for function declaration", &F);
    694   } else {
    695     // Verify that this function (which has a body) is not named "llvm.*".  It
    696     // is not legal to define intrinsics.
    697     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    698 
    699     // Check the entry node
    700     BasicBlock *Entry = &F.getEntryBlock();
    701     Assert1(pred_begin(Entry) == pred_end(Entry),
    702             "Entry block to function must not have predecessors!", Entry);
    703 
    704     // The address of the entry block cannot be taken, unless it is dead.
    705     if (Entry->hasAddressTaken()) {
    706       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
    707               "blockaddress may not be used with the entry block!", Entry);
    708     }
    709   }
    710 
    711   // If this function is actually an intrinsic, verify that it is only used in
    712   // direct call/invokes, never having its "address taken".
    713   if (F.getIntrinsicID()) {
    714     const User *U;
    715     if (F.hasAddressTaken(&U))
    716       Assert1(0, "Invalid user of intrinsic instruction!", U);
    717   }
    718 }
    719 
    720 // verifyBasicBlock - Verify that a basic block is well formed...
    721 //
    722 void Verifier::visitBasicBlock(BasicBlock &BB) {
    723   InstsInThisBlock.clear();
    724 
    725   // Ensure that basic blocks have terminators!
    726   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
    727 
    728   // Check constraints that this basic block imposes on all of the PHI nodes in
    729   // it.
    730   if (isa<PHINode>(BB.front())) {
    731     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    732     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    733     std::sort(Preds.begin(), Preds.end());
    734     PHINode *PN;
    735     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
    736       // Ensure that PHI nodes have at least one entry!
    737       Assert1(PN->getNumIncomingValues() != 0,
    738               "PHI nodes must have at least one entry.  If the block is dead, "
    739               "the PHI should be removed!", PN);
    740       Assert1(PN->getNumIncomingValues() == Preds.size(),
    741               "PHINode should have one entry for each predecessor of its "
    742               "parent basic block!", PN);
    743 
    744       // Get and sort all incoming values in the PHI node...
    745       Values.clear();
    746       Values.reserve(PN->getNumIncomingValues());
    747       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    748         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
    749                                         PN->getIncomingValue(i)));
    750       std::sort(Values.begin(), Values.end());
    751 
    752       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    753         // Check to make sure that if there is more than one entry for a
    754         // particular basic block in this PHI node, that the incoming values are
    755         // all identical.
    756         //
    757         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
    758                 Values[i].second == Values[i-1].second,
    759                 "PHI node has multiple entries for the same basic block with "
    760                 "different incoming values!", PN, Values[i].first,
    761                 Values[i].second, Values[i-1].second);
    762 
    763         // Check to make sure that the predecessors and PHI node entries are
    764         // matched up.
    765         Assert3(Values[i].first == Preds[i],
    766                 "PHI node entries do not match predecessors!", PN,
    767                 Values[i].first, Preds[i]);
    768       }
    769     }
    770   }
    771 }
    772 
    773 void Verifier::visitTerminatorInst(TerminatorInst &I) {
    774   // Ensure that terminators only exist at the end of the basic block.
    775   Assert1(&I == I.getParent()->getTerminator(),
    776           "Terminator found in the middle of a basic block!", I.getParent());
    777   visitInstruction(I);
    778 }
    779 
    780 void Verifier::visitBranchInst(BranchInst &BI) {
    781   if (BI.isConditional()) {
    782     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
    783             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
    784   }
    785   visitTerminatorInst(BI);
    786 }
    787 
    788 void Verifier::visitReturnInst(ReturnInst &RI) {
    789   Function *F = RI.getParent()->getParent();
    790   unsigned N = RI.getNumOperands();
    791   if (F->getReturnType()->isVoidTy())
    792     Assert2(N == 0,
    793             "Found return instr that returns non-void in Function of void "
    794             "return type!", &RI, F->getReturnType());
    795   else
    796     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
    797             "Function return type does not match operand "
    798             "type of return inst!", &RI, F->getReturnType());
    799 
    800   // Check to make sure that the return value has necessary properties for
    801   // terminators...
    802   visitTerminatorInst(RI);
    803 }
    804 
    805 void Verifier::visitSwitchInst(SwitchInst &SI) {
    806   // Check to make sure that all of the constants in the switch instruction
    807   // have the same type as the switched-on value.
    808   Type *SwitchTy = SI.getCondition()->getType();
    809   IntegerType *IntTy = cast<IntegerType>(SwitchTy);
    810   IntegersSubsetToBB Mapping;
    811   std::map<IntegersSubset::Range, unsigned> RangeSetMap;
    812   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
    813     IntegersSubset CaseRanges = i.getCaseValueEx();
    814     for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
    815       IntegersSubset::Range r = CaseRanges.getItem(ri);
    816       Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
    817               "Switch constants must all be same type as switch value!", &SI);
    818       Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
    819               "Switch constants must all be same type as switch value!", &SI);
    820       Mapping.add(r);
    821       RangeSetMap[r] = i.getCaseIndex();
    822     }
    823   }
    824 
    825   IntegersSubsetToBB::RangeIterator errItem;
    826   if (!Mapping.verify(errItem)) {
    827     unsigned CaseIndex = RangeSetMap[errItem->first];
    828     SwitchInst::CaseIt i(&SI, CaseIndex);
    829     Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
    830   }
    831 
    832   visitTerminatorInst(SI);
    833 }
    834 
    835 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
    836   Assert1(BI.getAddress()->getType()->isPointerTy(),
    837           "Indirectbr operand must have pointer type!", &BI);
    838   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    839     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
    840             "Indirectbr destinations must all have pointer type!", &BI);
    841 
    842   visitTerminatorInst(BI);
    843 }
    844 
    845 void Verifier::visitSelectInst(SelectInst &SI) {
    846   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
    847                                           SI.getOperand(2)),
    848           "Invalid operands for select instruction!", &SI);
    849 
    850   Assert1(SI.getTrueValue()->getType() == SI.getType(),
    851           "Select values must have same type as select instruction!", &SI);
    852   visitInstruction(SI);
    853 }
    854 
    855 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
    856 /// a pass, if any exist, it's an error.
    857 ///
    858 void Verifier::visitUserOp1(Instruction &I) {
    859   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
    860 }
    861 
    862 void Verifier::visitTruncInst(TruncInst &I) {
    863   // Get the source and destination types
    864   Type *SrcTy = I.getOperand(0)->getType();
    865   Type *DestTy = I.getType();
    866 
    867   // Get the size of the types in bits, we'll need this later
    868   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    869   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    870 
    871   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
    872   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
    873   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    874           "trunc source and destination must both be a vector or neither", &I);
    875   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
    876 
    877   visitInstruction(I);
    878 }
    879 
    880 void Verifier::visitZExtInst(ZExtInst &I) {
    881   // Get the source and destination types
    882   Type *SrcTy = I.getOperand(0)->getType();
    883   Type *DestTy = I.getType();
    884 
    885   // Get the size of the types in bits, we'll need this later
    886   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
    887   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
    888   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    889           "zext source and destination must both be a vector or neither", &I);
    890   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    891   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    892 
    893   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
    894 
    895   visitInstruction(I);
    896 }
    897 
    898 void Verifier::visitSExtInst(SExtInst &I) {
    899   // Get the source and destination types
    900   Type *SrcTy = I.getOperand(0)->getType();
    901   Type *DestTy = I.getType();
    902 
    903   // Get the size of the types in bits, we'll need this later
    904   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    905   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    906 
    907   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
    908   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
    909   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    910           "sext source and destination must both be a vector or neither", &I);
    911   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
    912 
    913   visitInstruction(I);
    914 }
    915 
    916 void Verifier::visitFPTruncInst(FPTruncInst &I) {
    917   // Get the source and destination types
    918   Type *SrcTy = I.getOperand(0)->getType();
    919   Type *DestTy = I.getType();
    920   // Get the size of the types in bits, we'll need this later
    921   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    922   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    923 
    924   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
    925   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
    926   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    927           "fptrunc source and destination must both be a vector or neither",&I);
    928   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
    929 
    930   visitInstruction(I);
    931 }
    932 
    933 void Verifier::visitFPExtInst(FPExtInst &I) {
    934   // Get the source and destination types
    935   Type *SrcTy = I.getOperand(0)->getType();
    936   Type *DestTy = I.getType();
    937 
    938   // Get the size of the types in bits, we'll need this later
    939   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    940   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    941 
    942   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
    943   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
    944   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    945           "fpext source and destination must both be a vector or neither", &I);
    946   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
    947 
    948   visitInstruction(I);
    949 }
    950 
    951 void Verifier::visitUIToFPInst(UIToFPInst &I) {
    952   // Get the source and destination types
    953   Type *SrcTy = I.getOperand(0)->getType();
    954   Type *DestTy = I.getType();
    955 
    956   bool SrcVec = SrcTy->isVectorTy();
    957   bool DstVec = DestTy->isVectorTy();
    958 
    959   Assert1(SrcVec == DstVec,
    960           "UIToFP source and dest must both be vector or scalar", &I);
    961   Assert1(SrcTy->isIntOrIntVectorTy(),
    962           "UIToFP source must be integer or integer vector", &I);
    963   Assert1(DestTy->isFPOrFPVectorTy(),
    964           "UIToFP result must be FP or FP vector", &I);
    965 
    966   if (SrcVec && DstVec)
    967     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    968             cast<VectorType>(DestTy)->getNumElements(),
    969             "UIToFP source and dest vector length mismatch", &I);
    970 
    971   visitInstruction(I);
    972 }
    973 
    974 void Verifier::visitSIToFPInst(SIToFPInst &I) {
    975   // Get the source and destination types
    976   Type *SrcTy = I.getOperand(0)->getType();
    977   Type *DestTy = I.getType();
    978 
    979   bool SrcVec = SrcTy->isVectorTy();
    980   bool DstVec = DestTy->isVectorTy();
    981 
    982   Assert1(SrcVec == DstVec,
    983           "SIToFP source and dest must both be vector or scalar", &I);
    984   Assert1(SrcTy->isIntOrIntVectorTy(),
    985           "SIToFP source must be integer or integer vector", &I);
    986   Assert1(DestTy->isFPOrFPVectorTy(),
    987           "SIToFP result must be FP or FP vector", &I);
    988 
    989   if (SrcVec && DstVec)
    990     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    991             cast<VectorType>(DestTy)->getNumElements(),
    992             "SIToFP source and dest vector length mismatch", &I);
    993 
    994   visitInstruction(I);
    995 }
    996 
    997 void Verifier::visitFPToUIInst(FPToUIInst &I) {
    998   // Get the source and destination types
    999   Type *SrcTy = I.getOperand(0)->getType();
   1000   Type *DestTy = I.getType();
   1001 
   1002   bool SrcVec = SrcTy->isVectorTy();
   1003   bool DstVec = DestTy->isVectorTy();
   1004 
   1005   Assert1(SrcVec == DstVec,
   1006           "FPToUI source and dest must both be vector or scalar", &I);
   1007   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
   1008           &I);
   1009   Assert1(DestTy->isIntOrIntVectorTy(),
   1010           "FPToUI result must be integer or integer vector", &I);
   1011 
   1012   if (SrcVec && DstVec)
   1013     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1014             cast<VectorType>(DestTy)->getNumElements(),
   1015             "FPToUI source and dest vector length mismatch", &I);
   1016 
   1017   visitInstruction(I);
   1018 }
   1019 
   1020 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   1021   // Get the source and destination types
   1022   Type *SrcTy = I.getOperand(0)->getType();
   1023   Type *DestTy = I.getType();
   1024 
   1025   bool SrcVec = SrcTy->isVectorTy();
   1026   bool DstVec = DestTy->isVectorTy();
   1027 
   1028   Assert1(SrcVec == DstVec,
   1029           "FPToSI source and dest must both be vector or scalar", &I);
   1030   Assert1(SrcTy->isFPOrFPVectorTy(),
   1031           "FPToSI source must be FP or FP vector", &I);
   1032   Assert1(DestTy->isIntOrIntVectorTy(),
   1033           "FPToSI result must be integer or integer vector", &I);
   1034 
   1035   if (SrcVec && DstVec)
   1036     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1037             cast<VectorType>(DestTy)->getNumElements(),
   1038             "FPToSI source and dest vector length mismatch", &I);
   1039 
   1040   visitInstruction(I);
   1041 }
   1042 
   1043 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1044   // Get the source and destination types
   1045   Type *SrcTy = I.getOperand(0)->getType();
   1046   Type *DestTy = I.getType();
   1047 
   1048   Assert1(SrcTy->getScalarType()->isPointerTy(),
   1049           "PtrToInt source must be pointer", &I);
   1050   Assert1(DestTy->getScalarType()->isIntegerTy(),
   1051           "PtrToInt result must be integral", &I);
   1052   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1053           "PtrToInt type mismatch", &I);
   1054 
   1055   if (SrcTy->isVectorTy()) {
   1056     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1057     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1058     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1059           "PtrToInt Vector width mismatch", &I);
   1060   }
   1061 
   1062   visitInstruction(I);
   1063 }
   1064 
   1065 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1066   // Get the source and destination types
   1067   Type *SrcTy = I.getOperand(0)->getType();
   1068   Type *DestTy = I.getType();
   1069 
   1070   Assert1(SrcTy->getScalarType()->isIntegerTy(),
   1071           "IntToPtr source must be an integral", &I);
   1072   Assert1(DestTy->getScalarType()->isPointerTy(),
   1073           "IntToPtr result must be a pointer",&I);
   1074   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1075           "IntToPtr type mismatch", &I);
   1076   if (SrcTy->isVectorTy()) {
   1077     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1078     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1079     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1080           "IntToPtr Vector width mismatch", &I);
   1081   }
   1082   visitInstruction(I);
   1083 }
   1084 
   1085 void Verifier::visitBitCastInst(BitCastInst &I) {
   1086   // Get the source and destination types
   1087   Type *SrcTy = I.getOperand(0)->getType();
   1088   Type *DestTy = I.getType();
   1089 
   1090   // Get the size of the types in bits, we'll need this later
   1091   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
   1092   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
   1093 
   1094   // BitCast implies a no-op cast of type only. No bits change.
   1095   // However, you can't cast pointers to anything but pointers.
   1096   Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
   1097           "Bitcast requires both operands to be pointer or neither", &I);
   1098   Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
   1099 
   1100   // Disallow aggregates.
   1101   Assert1(!SrcTy->isAggregateType(),
   1102           "Bitcast operand must not be aggregate", &I);
   1103   Assert1(!DestTy->isAggregateType(),
   1104           "Bitcast type must not be aggregate", &I);
   1105 
   1106   visitInstruction(I);
   1107 }
   1108 
   1109 /// visitPHINode - Ensure that a PHI node is well formed.
   1110 ///
   1111 void Verifier::visitPHINode(PHINode &PN) {
   1112   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1113   // This can be tested by checking whether the instruction before this is
   1114   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1115   // then there is some other instruction before a PHI.
   1116   Assert2(&PN == &PN.getParent()->front() ||
   1117           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1118           "PHI nodes not grouped at top of basic block!",
   1119           &PN, PN.getParent());
   1120 
   1121   // Check that all of the values of the PHI node have the same type as the
   1122   // result, and that the incoming blocks are really basic blocks.
   1123   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1124     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1125             "PHI node operands are not the same type as the result!", &PN);
   1126   }
   1127 
   1128   // All other PHI node constraints are checked in the visitBasicBlock method.
   1129 
   1130   visitInstruction(PN);
   1131 }
   1132 
   1133 void Verifier::VerifyCallSite(CallSite CS) {
   1134   Instruction *I = CS.getInstruction();
   1135 
   1136   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1137           "Called function must be a pointer!", I);
   1138   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1139 
   1140   Assert1(FPTy->getElementType()->isFunctionTy(),
   1141           "Called function is not pointer to function type!", I);
   1142   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1143 
   1144   // Verify that the correct number of arguments are being passed
   1145   if (FTy->isVarArg())
   1146     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1147             "Called function requires more parameters than were provided!",I);
   1148   else
   1149     Assert1(CS.arg_size() == FTy->getNumParams(),
   1150             "Incorrect number of arguments passed to called function!", I);
   1151 
   1152   // Verify that all arguments to the call match the function type.
   1153   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1154     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1155             "Call parameter type does not match function signature!",
   1156             CS.getArgument(i), FTy->getParamType(i), I);
   1157 
   1158   const AttrListPtr &Attrs = CS.getAttributes();
   1159 
   1160   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1161           "Attributes after last parameter!", I);
   1162 
   1163   // Verify call attributes.
   1164   VerifyFunctionAttrs(FTy, Attrs, I);
   1165 
   1166   if (FTy->isVarArg())
   1167     // Check attributes on the varargs part.
   1168     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1169       Attributes Attr = Attrs.getParamAttributes(Idx);
   1170 
   1171       VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
   1172 
   1173       Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
   1174       Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
   1175               " cannot be used for vararg call arguments!", I);
   1176     }
   1177 
   1178   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1179   if (CS.getCalledFunction() == 0 ||
   1180       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1181     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1182            PE = FTy->param_end(); PI != PE; ++PI)
   1183       Assert1(!(*PI)->isMetadataTy(),
   1184               "Function has metadata parameter but isn't an intrinsic", I);
   1185   }
   1186 
   1187   visitInstruction(*I);
   1188 }
   1189 
   1190 void Verifier::visitCallInst(CallInst &CI) {
   1191   VerifyCallSite(&CI);
   1192 
   1193   if (Function *F = CI.getCalledFunction())
   1194     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1195       visitIntrinsicFunctionCall(ID, CI);
   1196 }
   1197 
   1198 void Verifier::visitInvokeInst(InvokeInst &II) {
   1199   VerifyCallSite(&II);
   1200 
   1201   // Verify that there is a landingpad instruction as the first non-PHI
   1202   // instruction of the 'unwind' destination.
   1203   Assert1(II.getUnwindDest()->isLandingPad(),
   1204           "The unwind destination does not have a landingpad instruction!",&II);
   1205 
   1206   visitTerminatorInst(II);
   1207 }
   1208 
   1209 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1210 /// of the same type!
   1211 ///
   1212 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1213   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1214           "Both operands to a binary operator are not of the same type!", &B);
   1215 
   1216   switch (B.getOpcode()) {
   1217   // Check that integer arithmetic operators are only used with
   1218   // integral operands.
   1219   case Instruction::Add:
   1220   case Instruction::Sub:
   1221   case Instruction::Mul:
   1222   case Instruction::SDiv:
   1223   case Instruction::UDiv:
   1224   case Instruction::SRem:
   1225   case Instruction::URem:
   1226     Assert1(B.getType()->isIntOrIntVectorTy(),
   1227             "Integer arithmetic operators only work with integral types!", &B);
   1228     Assert1(B.getType() == B.getOperand(0)->getType(),
   1229             "Integer arithmetic operators must have same type "
   1230             "for operands and result!", &B);
   1231     break;
   1232   // Check that floating-point arithmetic operators are only used with
   1233   // floating-point operands.
   1234   case Instruction::FAdd:
   1235   case Instruction::FSub:
   1236   case Instruction::FMul:
   1237   case Instruction::FDiv:
   1238   case Instruction::FRem:
   1239     Assert1(B.getType()->isFPOrFPVectorTy(),
   1240             "Floating-point arithmetic operators only work with "
   1241             "floating-point types!", &B);
   1242     Assert1(B.getType() == B.getOperand(0)->getType(),
   1243             "Floating-point arithmetic operators must have same type "
   1244             "for operands and result!", &B);
   1245     break;
   1246   // Check that logical operators are only used with integral operands.
   1247   case Instruction::And:
   1248   case Instruction::Or:
   1249   case Instruction::Xor:
   1250     Assert1(B.getType()->isIntOrIntVectorTy(),
   1251             "Logical operators only work with integral types!", &B);
   1252     Assert1(B.getType() == B.getOperand(0)->getType(),
   1253             "Logical operators must have same type for operands and result!",
   1254             &B);
   1255     break;
   1256   case Instruction::Shl:
   1257   case Instruction::LShr:
   1258   case Instruction::AShr:
   1259     Assert1(B.getType()->isIntOrIntVectorTy(),
   1260             "Shifts only work with integral types!", &B);
   1261     Assert1(B.getType() == B.getOperand(0)->getType(),
   1262             "Shift return type must be same as operands!", &B);
   1263     break;
   1264   default:
   1265     llvm_unreachable("Unknown BinaryOperator opcode!");
   1266   }
   1267 
   1268   visitInstruction(B);
   1269 }
   1270 
   1271 void Verifier::visitICmpInst(ICmpInst &IC) {
   1272   // Check that the operands are the same type
   1273   Type *Op0Ty = IC.getOperand(0)->getType();
   1274   Type *Op1Ty = IC.getOperand(1)->getType();
   1275   Assert1(Op0Ty == Op1Ty,
   1276           "Both operands to ICmp instruction are not of the same type!", &IC);
   1277   // Check that the operands are the right type
   1278   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   1279           "Invalid operand types for ICmp instruction", &IC);
   1280   // Check that the predicate is valid.
   1281   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1282           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1283           "Invalid predicate in ICmp instruction!", &IC);
   1284 
   1285   visitInstruction(IC);
   1286 }
   1287 
   1288 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1289   // Check that the operands are the same type
   1290   Type *Op0Ty = FC.getOperand(0)->getType();
   1291   Type *Op1Ty = FC.getOperand(1)->getType();
   1292   Assert1(Op0Ty == Op1Ty,
   1293           "Both operands to FCmp instruction are not of the same type!", &FC);
   1294   // Check that the operands are the right type
   1295   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1296           "Invalid operand types for FCmp instruction", &FC);
   1297   // Check that the predicate is valid.
   1298   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1299           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1300           "Invalid predicate in FCmp instruction!", &FC);
   1301 
   1302   visitInstruction(FC);
   1303 }
   1304 
   1305 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1306   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1307                                               EI.getOperand(1)),
   1308           "Invalid extractelement operands!", &EI);
   1309   visitInstruction(EI);
   1310 }
   1311 
   1312 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1313   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1314                                              IE.getOperand(1),
   1315                                              IE.getOperand(2)),
   1316           "Invalid insertelement operands!", &IE);
   1317   visitInstruction(IE);
   1318 }
   1319 
   1320 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1321   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1322                                              SV.getOperand(2)),
   1323           "Invalid shufflevector operands!", &SV);
   1324   visitInstruction(SV);
   1325 }
   1326 
   1327 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1328   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   1329 
   1330   Assert1(isa<PointerType>(TargetTy),
   1331     "GEP base pointer is not a vector or a vector of pointers", &GEP);
   1332   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
   1333           "GEP into unsized type!", &GEP);
   1334 
   1335   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1336   Type *ElTy =
   1337     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
   1338   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1339 
   1340   if (GEP.getPointerOperandType()->isPointerTy()) {
   1341     // Validate GEPs with scalar indices.
   1342     Assert2(GEP.getType()->isPointerTy() &&
   1343            cast<PointerType>(GEP.getType())->getElementType() == ElTy,
   1344            "GEP is not of right type for indices!", &GEP, ElTy);
   1345   } else {
   1346     // Validate GEPs with a vector index.
   1347     Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP);
   1348     Value *Index = Idxs[0];
   1349     Type  *IndexTy = Index->getType();
   1350     Assert1(IndexTy->isVectorTy(),
   1351       "Vector GEP must have vector indices!", &GEP);
   1352     Assert1(GEP.getType()->isVectorTy(),
   1353       "Vector GEP must return a vector value", &GEP);
   1354     Type *ElemPtr = cast<VectorType>(GEP.getType())->getElementType();
   1355     Assert1(ElemPtr->isPointerTy(),
   1356       "Vector GEP pointer operand is not a pointer!", &GEP);
   1357     unsigned IndexWidth = cast<VectorType>(IndexTy)->getNumElements();
   1358     unsigned GepWidth = cast<VectorType>(GEP.getType())->getNumElements();
   1359     Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
   1360     Assert1(ElTy == cast<PointerType>(ElemPtr)->getElementType(),
   1361       "Vector GEP type does not match pointer type!", &GEP);
   1362   }
   1363   visitInstruction(GEP);
   1364 }
   1365 
   1366 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
   1367   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
   1368 }
   1369 
   1370 void Verifier::visitLoadInst(LoadInst &LI) {
   1371   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1372   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1373   Type *ElTy = PTy->getElementType();
   1374   Assert2(ElTy == LI.getType(),
   1375           "Load result type does not match pointer operand type!", &LI, ElTy);
   1376   if (LI.isAtomic()) {
   1377     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   1378             "Load cannot have Release ordering", &LI);
   1379     Assert1(LI.getAlignment() != 0,
   1380             "Atomic load must specify explicit alignment", &LI);
   1381     if (!ElTy->isPointerTy()) {
   1382       Assert2(ElTy->isIntegerTy(),
   1383               "atomic store operand must have integer type!",
   1384               &LI, ElTy);
   1385       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1386       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1387               "atomic store operand must be power-of-two byte-sized integer",
   1388               &LI, ElTy);
   1389     }
   1390   } else {
   1391     Assert1(LI.getSynchScope() == CrossThread,
   1392             "Non-atomic load cannot have SynchronizationScope specified", &LI);
   1393   }
   1394 
   1395   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
   1396     unsigned NumOperands = Range->getNumOperands();
   1397     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
   1398     unsigned NumRanges = NumOperands / 2;
   1399     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
   1400 
   1401     ConstantRange LastRange(1); // Dummy initial value
   1402     for (unsigned i = 0; i < NumRanges; ++i) {
   1403       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
   1404       Assert1(Low, "The lower limit must be an integer!", Low);
   1405       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
   1406       Assert1(High, "The upper limit must be an integer!", High);
   1407       Assert1(High->getType() == Low->getType() &&
   1408               High->getType() == ElTy, "Range types must match load type!",
   1409               &LI);
   1410 
   1411       APInt HighV = High->getValue();
   1412       APInt LowV = Low->getValue();
   1413       ConstantRange CurRange(LowV, HighV);
   1414       Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
   1415               "Range must not be empty!", Range);
   1416       if (i != 0) {
   1417         Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
   1418                 "Intervals are overlapping", Range);
   1419         Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
   1420                 Range);
   1421         Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
   1422                 Range);
   1423       }
   1424       LastRange = ConstantRange(LowV, HighV);
   1425     }
   1426     if (NumRanges > 2) {
   1427       APInt FirstLow =
   1428         dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
   1429       APInt FirstHigh =
   1430         dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
   1431       ConstantRange FirstRange(FirstLow, FirstHigh);
   1432       Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
   1433               "Intervals are overlapping", Range);
   1434       Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
   1435               Range);
   1436     }
   1437 
   1438 
   1439   }
   1440 
   1441   visitInstruction(LI);
   1442 }
   1443 
   1444 void Verifier::visitStoreInst(StoreInst &SI) {
   1445   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1446   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1447   Type *ElTy = PTy->getElementType();
   1448   Assert2(ElTy == SI.getOperand(0)->getType(),
   1449           "Stored value type does not match pointer operand type!",
   1450           &SI, ElTy);
   1451   if (SI.isAtomic()) {
   1452     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   1453             "Store cannot have Acquire ordering", &SI);
   1454     Assert1(SI.getAlignment() != 0,
   1455             "Atomic store must specify explicit alignment", &SI);
   1456     if (!ElTy->isPointerTy()) {
   1457       Assert2(ElTy->isIntegerTy(),
   1458               "atomic store operand must have integer type!",
   1459               &SI, ElTy);
   1460       unsigned Size = ElTy->getPrimitiveSizeInBits();
   1461       Assert2(Size >= 8 && !(Size & (Size - 1)),
   1462               "atomic store operand must be power-of-two byte-sized integer",
   1463               &SI, ElTy);
   1464     }
   1465   } else {
   1466     Assert1(SI.getSynchScope() == CrossThread,
   1467             "Non-atomic store cannot have SynchronizationScope specified", &SI);
   1468   }
   1469   visitInstruction(SI);
   1470 }
   1471 
   1472 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1473   PointerType *PTy = AI.getType();
   1474   Assert1(PTy->getAddressSpace() == 0,
   1475           "Allocation instruction pointer not in the generic address space!",
   1476           &AI);
   1477   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
   1478           &AI);
   1479   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   1480           "Alloca array size must have integer type", &AI);
   1481   visitInstruction(AI);
   1482 }
   1483 
   1484 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   1485   Assert1(CXI.getOrdering() != NotAtomic,
   1486           "cmpxchg instructions must be atomic.", &CXI);
   1487   Assert1(CXI.getOrdering() != Unordered,
   1488           "cmpxchg instructions cannot be unordered.", &CXI);
   1489   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   1490   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   1491   Type *ElTy = PTy->getElementType();
   1492   Assert2(ElTy->isIntegerTy(),
   1493           "cmpxchg operand must have integer type!",
   1494           &CXI, ElTy);
   1495   unsigned Size = ElTy->getPrimitiveSizeInBits();
   1496   Assert2(Size >= 8 && !(Size & (Size - 1)),
   1497           "cmpxchg operand must be power-of-two byte-sized integer",
   1498           &CXI, ElTy);
   1499   Assert2(ElTy == CXI.getOperand(1)->getType(),
   1500           "Expected value type does not match pointer operand type!",
   1501           &CXI, ElTy);
   1502   Assert2(ElTy == CXI.getOperand(2)->getType(),
   1503           "Stored value type does not match pointer operand type!",
   1504           &CXI, ElTy);
   1505   visitInstruction(CXI);
   1506 }
   1507 
   1508 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   1509   Assert1(RMWI.getOrdering() != NotAtomic,
   1510           "atomicrmw instructions must be atomic.", &RMWI);
   1511   Assert1(RMWI.getOrdering() != Unordered,
   1512           "atomicrmw instructions cannot be unordered.", &RMWI);
   1513   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   1514   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   1515   Type *ElTy = PTy->getElementType();
   1516   Assert2(ElTy->isIntegerTy(),
   1517           "atomicrmw operand must have integer type!",
   1518           &RMWI, ElTy);
   1519   unsigned Size = ElTy->getPrimitiveSizeInBits();
   1520   Assert2(Size >= 8 && !(Size & (Size - 1)),
   1521           "atomicrmw operand must be power-of-two byte-sized integer",
   1522           &RMWI, ElTy);
   1523   Assert2(ElTy == RMWI.getOperand(1)->getType(),
   1524           "Argument value type does not match pointer operand type!",
   1525           &RMWI, ElTy);
   1526   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   1527           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   1528           "Invalid binary operation!", &RMWI);
   1529   visitInstruction(RMWI);
   1530 }
   1531 
   1532 void Verifier::visitFenceInst(FenceInst &FI) {
   1533   const AtomicOrdering Ordering = FI.getOrdering();
   1534   Assert1(Ordering == Acquire || Ordering == Release ||
   1535           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   1536           "fence instructions may only have "
   1537           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
   1538   visitInstruction(FI);
   1539 }
   1540 
   1541 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   1542   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   1543                                            EVI.getIndices()) ==
   1544           EVI.getType(),
   1545           "Invalid ExtractValueInst operands!", &EVI);
   1546 
   1547   visitInstruction(EVI);
   1548 }
   1549 
   1550 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   1551   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   1552                                            IVI.getIndices()) ==
   1553           IVI.getOperand(1)->getType(),
   1554           "Invalid InsertValueInst operands!", &IVI);
   1555 
   1556   visitInstruction(IVI);
   1557 }
   1558 
   1559 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   1560   BasicBlock *BB = LPI.getParent();
   1561 
   1562   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   1563   // isn't a cleanup.
   1564   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   1565           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   1566 
   1567   // The landingpad instruction defines its parent as a landing pad block. The
   1568   // landing pad block may be branched to only by the unwind edge of an invoke.
   1569   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
   1570     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
   1571     Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
   1572             "Block containing LandingPadInst must be jumped to "
   1573             "only by the unwind edge of an invoke.", &LPI);
   1574   }
   1575 
   1576   // The landingpad instruction must be the first non-PHI instruction in the
   1577   // block.
   1578   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
   1579           "LandingPadInst not the first non-PHI instruction in the block.",
   1580           &LPI);
   1581 
   1582   // The personality functions for all landingpad instructions within the same
   1583   // function should match.
   1584   if (PersonalityFn)
   1585     Assert1(LPI.getPersonalityFn() == PersonalityFn,
   1586             "Personality function doesn't match others in function", &LPI);
   1587   PersonalityFn = LPI.getPersonalityFn();
   1588 
   1589   // All operands must be constants.
   1590   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
   1591           &LPI);
   1592   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   1593     Value *Clause = LPI.getClause(i);
   1594     Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
   1595     if (LPI.isCatch(i)) {
   1596       Assert1(isa<PointerType>(Clause->getType()),
   1597               "Catch operand does not have pointer type!", &LPI);
   1598     } else {
   1599       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   1600       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   1601               "Filter operand is not an array of constants!", &LPI);
   1602     }
   1603   }
   1604 
   1605   visitInstruction(LPI);
   1606 }
   1607 
   1608 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   1609   Instruction *Op = cast<Instruction>(I.getOperand(i));
   1610   // If the we have an invalid invoke, don't try to compute the dominance.
   1611   // We already reject it in the invoke specific checks and the dominance
   1612   // computation doesn't handle multiple edges.
   1613   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   1614     if (II->getNormalDest() == II->getUnwindDest())
   1615       return;
   1616   }
   1617 
   1618   const Use &U = I.getOperandUse(i);
   1619   Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
   1620           "Instruction does not dominate all uses!", Op, &I);
   1621 }
   1622 
   1623 /// verifyInstruction - Verify that an instruction is well formed.
   1624 ///
   1625 void Verifier::visitInstruction(Instruction &I) {
   1626   BasicBlock *BB = I.getParent();
   1627   Assert1(BB, "Instruction not embedded in basic block!", &I);
   1628 
   1629   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   1630     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
   1631          UI != UE; ++UI)
   1632       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
   1633               "Only PHI nodes may reference their own value!", &I);
   1634   }
   1635 
   1636   // Check that void typed values don't have names
   1637   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   1638           "Instruction has a name, but provides a void value!", &I);
   1639 
   1640   // Check that the return value of the instruction is either void or a legal
   1641   // value type.
   1642   Assert1(I.getType()->isVoidTy() ||
   1643           I.getType()->isFirstClassType(),
   1644           "Instruction returns a non-scalar type!", &I);
   1645 
   1646   // Check that the instruction doesn't produce metadata. Calls are already
   1647   // checked against the callee type.
   1648   Assert1(!I.getType()->isMetadataTy() ||
   1649           isa<CallInst>(I) || isa<InvokeInst>(I),
   1650           "Invalid use of metadata!", &I);
   1651 
   1652   // Check that all uses of the instruction, if they are instructions
   1653   // themselves, actually have parent basic blocks.  If the use is not an
   1654   // instruction, it is an error!
   1655   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
   1656        UI != UE; ++UI) {
   1657     if (Instruction *Used = dyn_cast<Instruction>(*UI))
   1658       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
   1659               " embedded in a basic block!", &I, Used);
   1660     else {
   1661       CheckFailed("Use of instruction is not an instruction!", *UI);
   1662       return;
   1663     }
   1664   }
   1665 
   1666   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1667     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
   1668 
   1669     // Check to make sure that only first-class-values are operands to
   1670     // instructions.
   1671     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   1672       Assert1(0, "Instruction operands must be first-class values!", &I);
   1673     }
   1674 
   1675     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   1676       // Check to make sure that the "address of" an intrinsic function is never
   1677       // taken.
   1678       Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
   1679               "Cannot take the address of an intrinsic!", &I);
   1680       Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
   1681               F->getIntrinsicID() == Intrinsic::donothing,
   1682               "Cannot invoke an intrinsinc other than donothing", &I);
   1683       Assert1(F->getParent() == Mod, "Referencing function in another module!",
   1684               &I);
   1685     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   1686       Assert1(OpBB->getParent() == BB->getParent(),
   1687               "Referring to a basic block in another function!", &I);
   1688     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   1689       Assert1(OpArg->getParent() == BB->getParent(),
   1690               "Referring to an argument in another function!", &I);
   1691     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   1692       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
   1693               &I);
   1694     } else if (isa<Instruction>(I.getOperand(i))) {
   1695       verifyDominatesUse(I, i);
   1696     } else if (isa<InlineAsm>(I.getOperand(i))) {
   1697       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   1698               (i + 3 == e && isa<InvokeInst>(I)),
   1699               "Cannot take the address of an inline asm!", &I);
   1700     }
   1701   }
   1702 
   1703   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   1704     Assert1(I.getType()->isFPOrFPVectorTy(),
   1705             "fpmath requires a floating point result!", &I);
   1706     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   1707     Value *Op0 = MD->getOperand(0);
   1708     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
   1709       APFloat Accuracy = CFP0->getValueAPF();
   1710       Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
   1711               "fpmath accuracy not a positive number!", &I);
   1712     } else {
   1713       Assert1(false, "invalid fpmath accuracy!", &I);
   1714     }
   1715   }
   1716 
   1717   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
   1718   Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
   1719 
   1720   InstsInThisBlock.insert(&I);
   1721 }
   1722 
   1723 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
   1724 /// intrinsic argument or return value) matches the type constraints specified
   1725 /// by the .td file (e.g. an "any integer" argument really is an integer).
   1726 ///
   1727 /// This return true on error but does not print a message.
   1728 bool Verifier::VerifyIntrinsicType(Type *Ty,
   1729                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
   1730                                    SmallVectorImpl<Type*> &ArgTys) {
   1731   using namespace Intrinsic;
   1732 
   1733   // If we ran out of descriptors, there are too many arguments.
   1734   if (Infos.empty()) return true;
   1735   IITDescriptor D = Infos.front();
   1736   Infos = Infos.slice(1);
   1737 
   1738   switch (D.Kind) {
   1739   case IITDescriptor::Void: return !Ty->isVoidTy();
   1740   case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
   1741   case IITDescriptor::Metadata: return !Ty->isMetadataTy();
   1742   case IITDescriptor::Float: return !Ty->isFloatTy();
   1743   case IITDescriptor::Double: return !Ty->isDoubleTy();
   1744   case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
   1745   case IITDescriptor::Vector: {
   1746     VectorType *VT = dyn_cast<VectorType>(Ty);
   1747     return VT == 0 || VT->getNumElements() != D.Vector_Width ||
   1748            VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
   1749   }
   1750   case IITDescriptor::Pointer: {
   1751     PointerType *PT = dyn_cast<PointerType>(Ty);
   1752     return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
   1753            VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
   1754   }
   1755 
   1756   case IITDescriptor::Struct: {
   1757     StructType *ST = dyn_cast<StructType>(Ty);
   1758     if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
   1759       return true;
   1760 
   1761     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
   1762       if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
   1763         return true;
   1764     return false;
   1765   }
   1766 
   1767   case IITDescriptor::Argument:
   1768     // Two cases here - If this is the second occurrence of an argument, verify
   1769     // that the later instance matches the previous instance.
   1770     if (D.getArgumentNumber() < ArgTys.size())
   1771       return Ty != ArgTys[D.getArgumentNumber()];
   1772 
   1773     // Otherwise, if this is the first instance of an argument, record it and
   1774     // verify the "Any" kind.
   1775     assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
   1776     ArgTys.push_back(Ty);
   1777 
   1778     switch (D.getArgumentKind()) {
   1779     case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
   1780     case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
   1781     case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
   1782     case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
   1783     }
   1784     llvm_unreachable("all argument kinds not covered");
   1785 
   1786   case IITDescriptor::ExtendVecArgument:
   1787     // This may only be used when referring to a previous vector argument.
   1788     return D.getArgumentNumber() >= ArgTys.size() ||
   1789            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   1790            VectorType::getExtendedElementVectorType(
   1791                        cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   1792 
   1793   case IITDescriptor::TruncVecArgument:
   1794     // This may only be used when referring to a previous vector argument.
   1795     return D.getArgumentNumber() >= ArgTys.size() ||
   1796            !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   1797            VectorType::getTruncatedElementVectorType(
   1798                          cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   1799   }
   1800   llvm_unreachable("unhandled");
   1801 }
   1802 
   1803 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   1804 ///
   1805 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   1806   Function *IF = CI.getCalledFunction();
   1807   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   1808           IF);
   1809 
   1810   // Verify that the intrinsic prototype lines up with what the .td files
   1811   // describe.
   1812   FunctionType *IFTy = IF->getFunctionType();
   1813   Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
   1814 
   1815   SmallVector<Intrinsic::IITDescriptor, 8> Table;
   1816   getIntrinsicInfoTableEntries(ID, Table);
   1817   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   1818 
   1819   SmallVector<Type *, 4> ArgTys;
   1820   Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
   1821           "Intrinsic has incorrect return type!", IF);
   1822   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
   1823     Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
   1824             "Intrinsic has incorrect argument type!", IF);
   1825   Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
   1826 
   1827   // Now that we have the intrinsic ID and the actual argument types (and we
   1828   // know they are legal for the intrinsic!) get the intrinsic name through the
   1829   // usual means.  This allows us to verify the mangling of argument types into
   1830   // the name.
   1831   Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
   1832           "Intrinsic name not mangled correctly for type arguments!", IF);
   1833 
   1834   // If the intrinsic takes MDNode arguments, verify that they are either global
   1835   // or are local to *this* function.
   1836   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   1837     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   1838       visitMDNode(*MD, CI.getParent()->getParent());
   1839 
   1840   switch (ID) {
   1841   default:
   1842     break;
   1843   case Intrinsic::ctlz:  // llvm.ctlz
   1844   case Intrinsic::cttz:  // llvm.cttz
   1845     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1846             "is_zero_undef argument of bit counting intrinsics must be a "
   1847             "constant int", &CI);
   1848     break;
   1849   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   1850     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   1851                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   1852     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   1853     Assert1(MD->getNumOperands() == 1,
   1854                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   1855   } break;
   1856   case Intrinsic::memcpy:
   1857   case Intrinsic::memmove:
   1858   case Intrinsic::memset:
   1859     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   1860             "alignment argument of memory intrinsics must be a constant int",
   1861             &CI);
   1862     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   1863             "isvolatile argument of memory intrinsics must be a constant int",
   1864             &CI);
   1865     break;
   1866   case Intrinsic::gcroot:
   1867   case Intrinsic::gcwrite:
   1868   case Intrinsic::gcread:
   1869     if (ID == Intrinsic::gcroot) {
   1870       AllocaInst *AI =
   1871         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   1872       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   1873       Assert1(isa<Constant>(CI.getArgOperand(1)),
   1874               "llvm.gcroot parameter #2 must be a constant.", &CI);
   1875       if (!AI->getType()->getElementType()->isPointerTy()) {
   1876         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   1877                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   1878                 "or argument #2 must be a non-null constant.", &CI);
   1879       }
   1880     }
   1881 
   1882     Assert1(CI.getParent()->getParent()->hasGC(),
   1883             "Enclosing function does not use GC.", &CI);
   1884     break;
   1885   case Intrinsic::init_trampoline:
   1886     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   1887             "llvm.init_trampoline parameter #2 must resolve to a function.",
   1888             &CI);
   1889     break;
   1890   case Intrinsic::prefetch:
   1891     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   1892             isa<ConstantInt>(CI.getArgOperand(2)) &&
   1893             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   1894             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   1895             "invalid arguments to llvm.prefetch",
   1896             &CI);
   1897     break;
   1898   case Intrinsic::stackprotector:
   1899     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   1900             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   1901             &CI);
   1902     break;
   1903   case Intrinsic::lifetime_start:
   1904   case Intrinsic::lifetime_end:
   1905   case Intrinsic::invariant_start:
   1906     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   1907             "size argument of memory use markers must be a constant integer",
   1908             &CI);
   1909     break;
   1910   case Intrinsic::invariant_end:
   1911     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1912             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   1913     break;
   1914   }
   1915 }
   1916 
   1917 //===----------------------------------------------------------------------===//
   1918 //  Implement the public interfaces to this file...
   1919 //===----------------------------------------------------------------------===//
   1920 
   1921 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
   1922   return new Verifier(action);
   1923 }
   1924 
   1925 
   1926 /// verifyFunction - Check a function for errors, printing messages on stderr.
   1927 /// Return true if the function is corrupt.
   1928 ///
   1929 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
   1930   Function &F = const_cast<Function&>(f);
   1931   assert(!F.isDeclaration() && "Cannot verify external functions");
   1932 
   1933   FunctionPassManager FPM(F.getParent());
   1934   Verifier *V = new Verifier(action);
   1935   FPM.add(V);
   1936   FPM.run(F);
   1937   return V->Broken;
   1938 }
   1939 
   1940 /// verifyModule - Check a module for errors, printing messages on stderr.
   1941 /// Return true if the module is corrupt.
   1942 ///
   1943 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
   1944                         std::string *ErrorInfo) {
   1945   PassManager PM;
   1946   Verifier *V = new Verifier(action);
   1947   PM.add(V);
   1948   PM.run(const_cast<Module&>(M));
   1949 
   1950   if (ErrorInfo && V->Broken)
   1951     *ErrorInfo = V->MessagesStr.str();
   1952   return V->Broken;
   1953 }
   1954