Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_ARM_CONSTANTS_ARM_H_
     29 #define V8_ARM_CONSTANTS_ARM_H_
     30 
     31 // ARM EABI is required.
     32 #if defined(__arm__) && !defined(__ARM_EABI__)
     33 #error ARM EABI support is required.
     34 #endif
     35 
     36 // This means that interwork-compatible jump instructions are generated.  We
     37 // want to generate them on the simulator too so it makes snapshots that can
     38 // be used on real hardware.
     39 #if defined(__THUMB_INTERWORK__) || !defined(__arm__)
     40 # define USE_THUMB_INTERWORK 1
     41 #endif
     42 
     43 #if defined(__ARM_ARCH_7A__) || \
     44     defined(__ARM_ARCH_7R__) || \
     45     defined(__ARM_ARCH_7__)
     46 # define CAN_USE_ARMV7_INSTRUCTIONS 1
     47 #endif
     48 
     49 #if defined(__ARM_ARCH_6__) ||   \
     50     defined(__ARM_ARCH_6J__) ||  \
     51     defined(__ARM_ARCH_6K__) ||  \
     52     defined(__ARM_ARCH_6Z__) ||  \
     53     defined(__ARM_ARCH_6ZK__) || \
     54     defined(__ARM_ARCH_6T2__) || \
     55     defined(CAN_USE_ARMV7_INSTRUCTIONS)
     56 # define CAN_USE_ARMV6_INSTRUCTIONS 1
     57 #endif
     58 
     59 #if defined(__ARM_ARCH_5T__)            || \
     60     defined(__ARM_ARCH_5TE__)           || \
     61     defined(CAN_USE_ARMV6_INSTRUCTIONS)
     62 # define CAN_USE_ARMV5_INSTRUCTIONS 1
     63 # define CAN_USE_THUMB_INSTRUCTIONS 1
     64 #endif
     65 
     66 // Simulator should support ARM5 instructions and unaligned access by default.
     67 #if !defined(__arm__)
     68 # define CAN_USE_ARMV5_INSTRUCTIONS 1
     69 # define CAN_USE_THUMB_INSTRUCTIONS 1
     70 
     71 # ifndef CAN_USE_UNALIGNED_ACCESSES
     72 #  define CAN_USE_UNALIGNED_ACCESSES 1
     73 # endif
     74 
     75 #endif
     76 
     77 #if CAN_USE_UNALIGNED_ACCESSES
     78 #define V8_TARGET_CAN_READ_UNALIGNED 1
     79 #endif
     80 
     81 // Using blx may yield better code, so use it when required or when available
     82 #if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
     83 #define USE_BLX 1
     84 #endif
     85 
     86 namespace v8 {
     87 namespace internal {
     88 
     89 // Constant pool marker.
     90 const int kConstantPoolMarkerMask = 0xffe00000;
     91 const int kConstantPoolMarker = 0x0c000000;
     92 const int kConstantPoolLengthMask = 0x001ffff;
     93 
     94 // Number of registers in normal ARM mode.
     95 const int kNumRegisters = 16;
     96 
     97 // VFP support.
     98 const int kNumVFPSingleRegisters = 32;
     99 const int kNumVFPDoubleRegisters = 16;
    100 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
    101 
    102 // PC is register 15.
    103 const int kPCRegister = 15;
    104 const int kNoRegister = -1;
    105 
    106 // -----------------------------------------------------------------------------
    107 // Conditions.
    108 
    109 // Defines constants and accessor classes to assemble, disassemble and
    110 // simulate ARM instructions.
    111 //
    112 // Section references in the code refer to the "ARM Architecture Reference
    113 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
    114 //
    115 // Constants for specific fields are defined in their respective named enums.
    116 // General constants are in an anonymous enum in class Instr.
    117 
    118 // Values for the condition field as defined in section A3.2
    119 enum Condition {
    120   kNoCondition = -1,
    121 
    122   eq =  0 << 28,                 // Z set            Equal.
    123   ne =  1 << 28,                 // Z clear          Not equal.
    124   cs =  2 << 28,                 // C set            Unsigned higher or same.
    125   cc =  3 << 28,                 // C clear          Unsigned lower.
    126   mi =  4 << 28,                 // N set            Negative.
    127   pl =  5 << 28,                 // N clear          Positive or zero.
    128   vs =  6 << 28,                 // V set            Overflow.
    129   vc =  7 << 28,                 // V clear          No overflow.
    130   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
    131   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
    132   ge = 10 << 28,                 // N == V           Greater or equal.
    133   lt = 11 << 28,                 // N != V           Less than.
    134   gt = 12 << 28,                 // Z clear, N == V  Greater than.
    135   le = 13 << 28,                 // Z set or N != V  Less then or equal
    136   al = 14 << 28,                 //                  Always.
    137 
    138   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
    139   kNumberOfConditions = 16,
    140 
    141   // Aliases.
    142   hs = cs,                       // C set            Unsigned higher or same.
    143   lo = cc                        // C clear          Unsigned lower.
    144 };
    145 
    146 
    147 inline Condition NegateCondition(Condition cond) {
    148   ASSERT(cond != al);
    149   return static_cast<Condition>(cond ^ ne);
    150 }
    151 
    152 
    153 // Corresponds to transposing the operands of a comparison.
    154 inline Condition ReverseCondition(Condition cond) {
    155   switch (cond) {
    156     case lo:
    157       return hi;
    158     case hi:
    159       return lo;
    160     case hs:
    161       return ls;
    162     case ls:
    163       return hs;
    164     case lt:
    165       return gt;
    166     case gt:
    167       return lt;
    168     case ge:
    169       return le;
    170     case le:
    171       return ge;
    172     default:
    173       return cond;
    174   };
    175 }
    176 
    177 
    178 // -----------------------------------------------------------------------------
    179 // Instructions encoding.
    180 
    181 // Instr is merely used by the Assembler to distinguish 32bit integers
    182 // representing instructions from usual 32 bit values.
    183 // Instruction objects are pointers to 32bit values, and provide methods to
    184 // access the various ISA fields.
    185 typedef int32_t Instr;
    186 
    187 
    188 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    189 // as defined in section A3.4
    190 enum Opcode {
    191   AND =  0 << 21,  // Logical AND.
    192   EOR =  1 << 21,  // Logical Exclusive OR.
    193   SUB =  2 << 21,  // Subtract.
    194   RSB =  3 << 21,  // Reverse Subtract.
    195   ADD =  4 << 21,  // Add.
    196   ADC =  5 << 21,  // Add with Carry.
    197   SBC =  6 << 21,  // Subtract with Carry.
    198   RSC =  7 << 21,  // Reverse Subtract with Carry.
    199   TST =  8 << 21,  // Test.
    200   TEQ =  9 << 21,  // Test Equivalence.
    201   CMP = 10 << 21,  // Compare.
    202   CMN = 11 << 21,  // Compare Negated.
    203   ORR = 12 << 21,  // Logical (inclusive) OR.
    204   MOV = 13 << 21,  // Move.
    205   BIC = 14 << 21,  // Bit Clear.
    206   MVN = 15 << 21   // Move Not.
    207 };
    208 
    209 
    210 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    211 enum MiscInstructionsBits74 {
    212   // With bits 22-21 01.
    213   BX   =  1 << 4,
    214   BXJ  =  2 << 4,
    215   BLX  =  3 << 4,
    216   BKPT =  7 << 4,
    217 
    218   // With bits 22-21 11.
    219   CLZ  =  1 << 4
    220 };
    221 
    222 
    223 // Instruction encoding bits and masks.
    224 enum {
    225   H   = 1 << 5,   // Halfword (or byte).
    226   S6  = 1 << 6,   // Signed (or unsigned).
    227   L   = 1 << 20,  // Load (or store).
    228   S   = 1 << 20,  // Set condition code (or leave unchanged).
    229   W   = 1 << 21,  // Writeback base register (or leave unchanged).
    230   A   = 1 << 21,  // Accumulate in multiply instruction (or not).
    231   B   = 1 << 22,  // Unsigned byte (or word).
    232   N   = 1 << 22,  // Long (or short).
    233   U   = 1 << 23,  // Positive (or negative) offset/index.
    234   P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    235   I   = 1 << 25,  // Immediate shifter operand (or not).
    236 
    237   B4  = 1 << 4,
    238   B5  = 1 << 5,
    239   B6  = 1 << 6,
    240   B7  = 1 << 7,
    241   B8  = 1 << 8,
    242   B9  = 1 << 9,
    243   B12 = 1 << 12,
    244   B16 = 1 << 16,
    245   B18 = 1 << 18,
    246   B19 = 1 << 19,
    247   B20 = 1 << 20,
    248   B21 = 1 << 21,
    249   B22 = 1 << 22,
    250   B23 = 1 << 23,
    251   B24 = 1 << 24,
    252   B25 = 1 << 25,
    253   B26 = 1 << 26,
    254   B27 = 1 << 27,
    255   B28 = 1 << 28,
    256 
    257   // Instruction bit masks.
    258   kCondMask   = 15 << 28,
    259   kALUMask    = 0x6f << 21,
    260   kRdMask     = 15 << 12,  // In str instruction.
    261   kCoprocessorMask = 15 << 8,
    262   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    263   kImm24Mask  = (1 << 24) - 1,
    264   kOff12Mask  = (1 << 12) - 1
    265 };
    266 
    267 
    268 // -----------------------------------------------------------------------------
    269 // Addressing modes and instruction variants.
    270 
    271 // Condition code updating mode.
    272 enum SBit {
    273   SetCC   = 1 << 20,  // Set condition code.
    274   LeaveCC = 0 << 20   // Leave condition code unchanged.
    275 };
    276 
    277 
    278 // Status register selection.
    279 enum SRegister {
    280   CPSR = 0 << 22,
    281   SPSR = 1 << 22
    282 };
    283 
    284 
    285 // Shifter types for Data-processing operands as defined in section A5.1.2.
    286 enum ShiftOp {
    287   LSL = 0 << 5,   // Logical shift left.
    288   LSR = 1 << 5,   // Logical shift right.
    289   ASR = 2 << 5,   // Arithmetic shift right.
    290   ROR = 3 << 5,   // Rotate right.
    291 
    292   // RRX is encoded as ROR with shift_imm == 0.
    293   // Use a special code to make the distinction. The RRX ShiftOp is only used
    294   // as an argument, and will never actually be encoded. The Assembler will
    295   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    296   RRX = -1,
    297   kNumberOfShifts = 4
    298 };
    299 
    300 
    301 // Status register fields.
    302 enum SRegisterField {
    303   CPSR_c = CPSR | 1 << 16,
    304   CPSR_x = CPSR | 1 << 17,
    305   CPSR_s = CPSR | 1 << 18,
    306   CPSR_f = CPSR | 1 << 19,
    307   SPSR_c = SPSR | 1 << 16,
    308   SPSR_x = SPSR | 1 << 17,
    309   SPSR_s = SPSR | 1 << 18,
    310   SPSR_f = SPSR | 1 << 19
    311 };
    312 
    313 // Status register field mask (or'ed SRegisterField enum values).
    314 typedef uint32_t SRegisterFieldMask;
    315 
    316 
    317 // Memory operand addressing mode.
    318 enum AddrMode {
    319   // Bit encoding P U W.
    320   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    321   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    322   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    323   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    324   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    325   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    326 };
    327 
    328 
    329 // Load/store multiple addressing mode.
    330 enum BlockAddrMode {
    331   // Bit encoding P U W .
    332   da           = (0|0|0) << 21,  // Decrement after.
    333   ia           = (0|4|0) << 21,  // Increment after.
    334   db           = (8|0|0) << 21,  // Decrement before.
    335   ib           = (8|4|0) << 21,  // Increment before.
    336   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    337   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    338   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    339   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    340 
    341   // Alias modes for comparison when writeback does not matter.
    342   da_x         = (0|0|0) << 21,  // Decrement after.
    343   ia_x         = (0|4|0) << 21,  // Increment after.
    344   db_x         = (8|0|0) << 21,  // Decrement before.
    345   ib_x         = (8|4|0) << 21,  // Increment before.
    346 
    347   kBlockAddrModeMask = (8|4|1) << 21
    348 };
    349 
    350 
    351 // Coprocessor load/store operand size.
    352 enum LFlag {
    353   Long  = 1 << 22,  // Long load/store coprocessor.
    354   Short = 0 << 22   // Short load/store coprocessor.
    355 };
    356 
    357 
    358 // -----------------------------------------------------------------------------
    359 // Supervisor Call (svc) specific support.
    360 
    361 // Special Software Interrupt codes when used in the presence of the ARM
    362 // simulator.
    363 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    364 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    365 enum SoftwareInterruptCodes {
    366   // transition to C code
    367   kCallRtRedirected= 0x10,
    368   // break point
    369   kBreakpoint= 0x20,
    370   // stop
    371   kStopCode = 1 << 23
    372 };
    373 const uint32_t kStopCodeMask = kStopCode - 1;
    374 const uint32_t kMaxStopCode = kStopCode - 1;
    375 const int32_t  kDefaultStopCode = -1;
    376 
    377 
    378 // Type of VFP register. Determines register encoding.
    379 enum VFPRegPrecision {
    380   kSinglePrecision = 0,
    381   kDoublePrecision = 1
    382 };
    383 
    384 
    385 // VFP FPSCR constants.
    386 enum VFPConversionMode {
    387   kFPSCRRounding = 0,
    388   kDefaultRoundToZero = 1
    389 };
    390 
    391 // This mask does not include the "inexact" or "input denormal" cumulative
    392 // exceptions flags, because we usually don't want to check for it.
    393 const uint32_t kVFPExceptionMask = 0xf;
    394 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    395 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    396 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    397 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    398 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    399 
    400 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    401 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    402 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    403 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    404 
    405 
    406 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    407 enum VFPRoundingMode {
    408   RN = 0 << 22,   // Round to Nearest.
    409   RP = 1 << 22,   // Round towards Plus Infinity.
    410   RM = 2 << 22,   // Round towards Minus Infinity.
    411   RZ = 3 << 22,   // Round towards zero.
    412 
    413   // Aliases.
    414   kRoundToNearest = RN,
    415   kRoundToPlusInf = RP,
    416   kRoundToMinusInf = RM,
    417   kRoundToZero = RZ
    418 };
    419 
    420 const uint32_t kVFPRoundingModeMask = 3 << 22;
    421 
    422 enum CheckForInexactConversion {
    423   kCheckForInexactConversion,
    424   kDontCheckForInexactConversion
    425 };
    426 
    427 // -----------------------------------------------------------------------------
    428 // Hints.
    429 
    430 // Branch hints are not used on the ARM.  They are defined so that they can
    431 // appear in shared function signatures, but will be ignored in ARM
    432 // implementations.
    433 enum Hint { no_hint };
    434 
    435 // Hints are not used on the arm.  Negating is trivial.
    436 inline Hint NegateHint(Hint ignored) { return no_hint; }
    437 
    438 
    439 // -----------------------------------------------------------------------------
    440 // Specific instructions, constants, and masks.
    441 // These constants are declared in assembler-arm.cc, as they use named registers
    442 // and other constants.
    443 
    444 
    445 // add(sp, sp, 4) instruction (aka Pop())
    446 extern const Instr kPopInstruction;
    447 
    448 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    449 // register r is not encoded.
    450 extern const Instr kPushRegPattern;
    451 
    452 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    453 // register r is not encoded.
    454 extern const Instr kPopRegPattern;
    455 
    456 // mov lr, pc
    457 extern const Instr kMovLrPc;
    458 // ldr rd, [pc, #offset]
    459 extern const Instr kLdrPCMask;
    460 extern const Instr kLdrPCPattern;
    461 // blxcc rm
    462 extern const Instr kBlxRegMask;
    463 
    464 extern const Instr kBlxRegPattern;
    465 
    466 extern const Instr kMovMvnMask;
    467 extern const Instr kMovMvnPattern;
    468 extern const Instr kMovMvnFlip;
    469 extern const Instr kMovLeaveCCMask;
    470 extern const Instr kMovLeaveCCPattern;
    471 extern const Instr kMovwMask;
    472 extern const Instr kMovwPattern;
    473 extern const Instr kMovwLeaveCCFlip;
    474 extern const Instr kCmpCmnMask;
    475 extern const Instr kCmpCmnPattern;
    476 extern const Instr kCmpCmnFlip;
    477 extern const Instr kAddSubFlip;
    478 extern const Instr kAndBicFlip;
    479 
    480 // A mask for the Rd register for push, pop, ldr, str instructions.
    481 extern const Instr kLdrRegFpOffsetPattern;
    482 
    483 extern const Instr kStrRegFpOffsetPattern;
    484 
    485 extern const Instr kLdrRegFpNegOffsetPattern;
    486 
    487 extern const Instr kStrRegFpNegOffsetPattern;
    488 
    489 extern const Instr kLdrStrInstrTypeMask;
    490 extern const Instr kLdrStrInstrArgumentMask;
    491 extern const Instr kLdrStrOffsetMask;
    492 
    493 
    494 // -----------------------------------------------------------------------------
    495 // Instruction abstraction.
    496 
    497 // The class Instruction enables access to individual fields defined in the ARM
    498 // architecture instruction set encoding as described in figure A3-1.
    499 // Note that the Assembler uses typedef int32_t Instr.
    500 //
    501 // Example: Test whether the instruction at ptr does set the condition code
    502 // bits.
    503 //
    504 // bool InstructionSetsConditionCodes(byte* ptr) {
    505 //   Instruction* instr = Instruction::At(ptr);
    506 //   int type = instr->TypeValue();
    507 //   return ((type == 0) || (type == 1)) && instr->HasS();
    508 // }
    509 //
    510 class Instruction {
    511  public:
    512   enum {
    513     kInstrSize = 4,
    514     kInstrSizeLog2 = 2,
    515     kPCReadOffset = 8
    516   };
    517 
    518   // Helper macro to define static accessors.
    519   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    520   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    521     static inline return_type Name(Instr instr) {                              \
    522       char* temp = reinterpret_cast<char*>(&instr);                            \
    523       return reinterpret_cast<Instruction*>(temp)->Name();                     \
    524     }
    525 
    526   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    527 
    528   // Get the raw instruction bits.
    529   inline Instr InstructionBits() const {
    530     return *reinterpret_cast<const Instr*>(this);
    531   }
    532 
    533   // Set the raw instruction bits to value.
    534   inline void SetInstructionBits(Instr value) {
    535     *reinterpret_cast<Instr*>(this) = value;
    536   }
    537 
    538   // Read one particular bit out of the instruction bits.
    539   inline int Bit(int nr) const {
    540     return (InstructionBits() >> nr) & 1;
    541   }
    542 
    543   // Read a bit field's value out of the instruction bits.
    544   inline int Bits(int hi, int lo) const {
    545     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    546   }
    547 
    548   // Read a bit field out of the instruction bits.
    549   inline int BitField(int hi, int lo) const {
    550     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    551   }
    552 
    553   // Static support.
    554 
    555   // Read one particular bit out of the instruction bits.
    556   static inline int Bit(Instr instr, int nr) {
    557     return (instr >> nr) & 1;
    558   }
    559 
    560   // Read the value of a bit field out of the instruction bits.
    561   static inline int Bits(Instr instr, int hi, int lo) {
    562     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    563   }
    564 
    565 
    566   // Read a bit field out of the instruction bits.
    567   static inline int BitField(Instr instr, int hi, int lo) {
    568     return instr & (((2 << (hi - lo)) - 1) << lo);
    569   }
    570 
    571 
    572   // Accessors for the different named fields used in the ARM encoding.
    573   // The naming of these accessor corresponds to figure A3-1.
    574   //
    575   // Two kind of accessors are declared:
    576   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    577   //   original place in the instruction encoding.
    578   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    579   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    580   // - <Name>Value() will return the field value, shifted back to bit 0.
    581   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    582   //   0xC0810002 ConditionField(instr) will return 0xC.
    583 
    584 
    585   // Generally applicable fields
    586   inline Condition ConditionValue() const {
    587     return static_cast<Condition>(Bits(31, 28));
    588   }
    589   inline Condition ConditionField() const {
    590     return static_cast<Condition>(BitField(31, 28));
    591   }
    592   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
    593   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    594 
    595   inline int TypeValue() const { return Bits(27, 25); }
    596 
    597   inline int RnValue() const { return Bits(19, 16); }
    598   DECLARE_STATIC_ACCESSOR(RnValue);
    599   inline int RdValue() const { return Bits(15, 12); }
    600   DECLARE_STATIC_ACCESSOR(RdValue);
    601 
    602   inline int CoprocessorValue() const { return Bits(11, 8); }
    603   // Support for VFP.
    604   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    605   inline int VnValue() const { return Bits(19, 16); }
    606   inline int VmValue() const { return Bits(3, 0); }
    607   inline int VdValue() const { return Bits(15, 12); }
    608   inline int NValue() const { return Bit(7); }
    609   inline int MValue() const { return Bit(5); }
    610   inline int DValue() const { return Bit(22); }
    611   inline int RtValue() const { return Bits(15, 12); }
    612   inline int PValue() const { return Bit(24); }
    613   inline int UValue() const { return Bit(23); }
    614   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    615   inline int Opc2Value() const { return Bits(19, 16); }
    616   inline int Opc3Value() const { return Bits(7, 6); }
    617   inline int SzValue() const { return Bit(8); }
    618   inline int VLValue() const { return Bit(20); }
    619   inline int VCValue() const { return Bit(8); }
    620   inline int VAValue() const { return Bits(23, 21); }
    621   inline int VBValue() const { return Bits(6, 5); }
    622   inline int VFPNRegValue(VFPRegPrecision pre) {
    623     return VFPGlueRegValue(pre, 16, 7);
    624   }
    625   inline int VFPMRegValue(VFPRegPrecision pre) {
    626     return VFPGlueRegValue(pre, 0, 5);
    627   }
    628   inline int VFPDRegValue(VFPRegPrecision pre) {
    629     return VFPGlueRegValue(pre, 12, 22);
    630   }
    631 
    632   // Fields used in Data processing instructions
    633   inline int OpcodeValue() const {
    634     return static_cast<Opcode>(Bits(24, 21));
    635   }
    636   inline Opcode OpcodeField() const {
    637     return static_cast<Opcode>(BitField(24, 21));
    638   }
    639   inline int SValue() const { return Bit(20); }
    640     // with register
    641   inline int RmValue() const { return Bits(3, 0); }
    642   DECLARE_STATIC_ACCESSOR(RmValue);
    643   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    644   inline ShiftOp ShiftField() const {
    645     return static_cast<ShiftOp>(BitField(6, 5));
    646   }
    647   inline int RegShiftValue() const { return Bit(4); }
    648   inline int RsValue() const { return Bits(11, 8); }
    649   inline int ShiftAmountValue() const { return Bits(11, 7); }
    650     // with immediate
    651   inline int RotateValue() const { return Bits(11, 8); }
    652   inline int Immed8Value() const { return Bits(7, 0); }
    653   inline int Immed4Value() const { return Bits(19, 16); }
    654   inline int ImmedMovwMovtValue() const {
    655       return Immed4Value() << 12 | Offset12Value(); }
    656 
    657   // Fields used in Load/Store instructions
    658   inline int PUValue() const { return Bits(24, 23); }
    659   inline int PUField() const { return BitField(24, 23); }
    660   inline int  BValue() const { return Bit(22); }
    661   inline int  WValue() const { return Bit(21); }
    662   inline int  LValue() const { return Bit(20); }
    663     // with register uses same fields as Data processing instructions above
    664     // with immediate
    665   inline int Offset12Value() const { return Bits(11, 0); }
    666     // multiple
    667   inline int RlistValue() const { return Bits(15, 0); }
    668     // extra loads and stores
    669   inline int SignValue() const { return Bit(6); }
    670   inline int HValue() const { return Bit(5); }
    671   inline int ImmedHValue() const { return Bits(11, 8); }
    672   inline int ImmedLValue() const { return Bits(3, 0); }
    673 
    674   // Fields used in Branch instructions
    675   inline int LinkValue() const { return Bit(24); }
    676   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
    677 
    678   // Fields used in Software interrupt instructions
    679   inline SoftwareInterruptCodes SvcValue() const {
    680     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    681   }
    682 
    683   // Test for special encodings of type 0 instructions (extra loads and stores,
    684   // as well as multiplications).
    685   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    686 
    687   // Test for miscellaneous instructions encodings of type 0 instructions.
    688   inline bool IsMiscType0() const { return (Bit(24) == 1)
    689                                            && (Bit(23) == 0)
    690                                            && (Bit(20) == 0)
    691                                            && ((Bit(7) == 0)); }
    692 
    693   // Test for a stop instruction.
    694   inline bool IsStop() const {
    695     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    696   }
    697 
    698   // Special accessors that test for existence of a value.
    699   inline bool HasS()    const { return SValue() == 1; }
    700   inline bool HasB()    const { return BValue() == 1; }
    701   inline bool HasW()    const { return WValue() == 1; }
    702   inline bool HasL()    const { return LValue() == 1; }
    703   inline bool HasU()    const { return UValue() == 1; }
    704   inline bool HasSign() const { return SignValue() == 1; }
    705   inline bool HasH()    const { return HValue() == 1; }
    706   inline bool HasLink() const { return LinkValue() == 1; }
    707 
    708   // Decoding the double immediate in the vmov instruction.
    709   double DoubleImmedVmov() const;
    710 
    711   // Instructions are read of out a code stream. The only way to get a
    712   // reference to an instruction is to convert a pointer. There is no way
    713   // to allocate or create instances of class Instruction.
    714   // Use the At(pc) function to create references to Instruction.
    715   static Instruction* At(byte* pc) {
    716     return reinterpret_cast<Instruction*>(pc);
    717   }
    718 
    719 
    720  private:
    721   // Join split register codes, depending on single or double precision.
    722   // four_bit is the position of the least-significant bit of the four
    723   // bit specifier. one_bit is the position of the additional single bit
    724   // specifier.
    725   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    726     if (pre == kSinglePrecision) {
    727       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    728     }
    729     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    730   }
    731 
    732   // We need to prevent the creation of instances of class Instruction.
    733   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    734 };
    735 
    736 
    737 // Helper functions for converting between register numbers and names.
    738 class Registers {
    739  public:
    740   // Return the name of the register.
    741   static const char* Name(int reg);
    742 
    743   // Lookup the register number for the name provided.
    744   static int Number(const char* name);
    745 
    746   struct RegisterAlias {
    747     int reg;
    748     const char* name;
    749   };
    750 
    751  private:
    752   static const char* names_[kNumRegisters];
    753   static const RegisterAlias aliases_[];
    754 };
    755 
    756 // Helper functions for converting between VFP register numbers and names.
    757 class VFPRegisters {
    758  public:
    759   // Return the name of the register.
    760   static const char* Name(int reg, bool is_double);
    761 
    762   // Lookup the register number for the name provided.
    763   // Set flag pointed by is_double to true if register
    764   // is double-precision.
    765   static int Number(const char* name, bool* is_double);
    766 
    767  private:
    768   static const char* names_[kNumVFPRegisters];
    769 };
    770 
    771 
    772 } }  // namespace v8::internal
    773 
    774 #endif  // V8_ARM_CONSTANTS_ARM_H_
    775