Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "loop-rotate"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/CodeMetrics.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/ScalarEvolution.h"
     21 #include "llvm/Analysis/TargetTransformInfo.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Transforms/Utils/SSAUpdater.h"
     30 #include "llvm/Transforms/Utils/ValueMapper.h"
     31 using namespace llvm;
     32 
     33 #define MAX_HEADER_SIZE 16
     34 
     35 STATISTIC(NumRotated, "Number of loops rotated");
     36 namespace {
     37 
     38   class LoopRotate : public LoopPass {
     39   public:
     40     static char ID; // Pass ID, replacement for typeid
     41     LoopRotate() : LoopPass(ID) {
     42       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     43     }
     44 
     45     // LCSSA form makes instruction renaming easier.
     46     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     47       AU.addPreserved<DominatorTree>();
     48       AU.addRequired<LoopInfo>();
     49       AU.addPreserved<LoopInfo>();
     50       AU.addRequiredID(LoopSimplifyID);
     51       AU.addPreservedID(LoopSimplifyID);
     52       AU.addRequiredID(LCSSAID);
     53       AU.addPreservedID(LCSSAID);
     54       AU.addPreserved<ScalarEvolution>();
     55       AU.addRequired<TargetTransformInfo>();
     56     }
     57 
     58     bool runOnLoop(Loop *L, LPPassManager &LPM);
     59     void simplifyLoopLatch(Loop *L);
     60     bool rotateLoop(Loop *L);
     61 
     62   private:
     63     LoopInfo *LI;
     64     const TargetTransformInfo *TTI;
     65   };
     66 }
     67 
     68 char LoopRotate::ID = 0;
     69 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     70 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
     71 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     72 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     73 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     74 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     75 
     76 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
     77 
     78 /// Rotate Loop L as many times as possible. Return true if
     79 /// the loop is rotated at least once.
     80 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     81   LI = &getAnalysis<LoopInfo>();
     82   TTI = &getAnalysis<TargetTransformInfo>();
     83 
     84   // Simplify the loop latch before attempting to rotate the header
     85   // upward. Rotation may not be needed if the loop tail can be folded into the
     86   // loop exit.
     87   simplifyLoopLatch(L);
     88 
     89   // One loop can be rotated multiple times.
     90   bool MadeChange = false;
     91   while (rotateLoop(L))
     92     MadeChange = true;
     93 
     94   return MadeChange;
     95 }
     96 
     97 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     98 /// old header into the preheader.  If there were uses of the values produced by
     99 /// these instruction that were outside of the loop, we have to insert PHI nodes
    100 /// to merge the two values.  Do this now.
    101 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
    102                                             BasicBlock *OrigPreheader,
    103                                             ValueToValueMapTy &ValueMap) {
    104   // Remove PHI node entries that are no longer live.
    105   BasicBlock::iterator I, E = OrigHeader->end();
    106   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    107     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    108 
    109   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    110   // as necessary.
    111   SSAUpdater SSA;
    112   for (I = OrigHeader->begin(); I != E; ++I) {
    113     Value *OrigHeaderVal = I;
    114 
    115     // If there are no uses of the value (e.g. because it returns void), there
    116     // is nothing to rewrite.
    117     if (OrigHeaderVal->use_empty())
    118       continue;
    119 
    120     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    121 
    122     // The value now exits in two versions: the initial value in the preheader
    123     // and the loop "next" value in the original header.
    124     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    125     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    126     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    127 
    128     // Visit each use of the OrigHeader instruction.
    129     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    130          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    131       // Grab the use before incrementing the iterator.
    132       Use &U = UI.getUse();
    133 
    134       // Increment the iterator before removing the use from the list.
    135       ++UI;
    136 
    137       // SSAUpdater can't handle a non-PHI use in the same block as an
    138       // earlier def. We can easily handle those cases manually.
    139       Instruction *UserInst = cast<Instruction>(U.getUser());
    140       if (!isa<PHINode>(UserInst)) {
    141         BasicBlock *UserBB = UserInst->getParent();
    142 
    143         // The original users in the OrigHeader are already using the
    144         // original definitions.
    145         if (UserBB == OrigHeader)
    146           continue;
    147 
    148         // Users in the OrigPreHeader need to use the value to which the
    149         // original definitions are mapped.
    150         if (UserBB == OrigPreheader) {
    151           U = OrigPreHeaderVal;
    152           continue;
    153         }
    154       }
    155 
    156       // Anything else can be handled by SSAUpdater.
    157       SSA.RewriteUse(U);
    158     }
    159   }
    160 }
    161 
    162 /// Determine whether the instructions in this range my be safely and cheaply
    163 /// speculated. This is not an important enough situation to develop complex
    164 /// heuristics. We handle a single arithmetic instruction along with any type
    165 /// conversions.
    166 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    167                                   BasicBlock::iterator End) {
    168   bool seenIncrement = false;
    169   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    170 
    171     if (!isSafeToSpeculativelyExecute(I))
    172       return false;
    173 
    174     if (isa<DbgInfoIntrinsic>(I))
    175       continue;
    176 
    177     switch (I->getOpcode()) {
    178     default:
    179       return false;
    180     case Instruction::GetElementPtr:
    181       // GEPs are cheap if all indices are constant.
    182       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    183         return false;
    184       // fall-thru to increment case
    185     case Instruction::Add:
    186     case Instruction::Sub:
    187     case Instruction::And:
    188     case Instruction::Or:
    189     case Instruction::Xor:
    190     case Instruction::Shl:
    191     case Instruction::LShr:
    192     case Instruction::AShr:
    193       if (seenIncrement)
    194         return false;
    195       seenIncrement = true;
    196       break;
    197     case Instruction::Trunc:
    198     case Instruction::ZExt:
    199     case Instruction::SExt:
    200       // ignore type conversions
    201       break;
    202     }
    203   }
    204   return true;
    205 }
    206 
    207 /// Fold the loop tail into the loop exit by speculating the loop tail
    208 /// instructions. Typically, this is a single post-increment. In the case of a
    209 /// simple 2-block loop, hoisting the increment can be much better than
    210 /// duplicating the entire loop header. In the cast of loops with early exits,
    211 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    212 /// canonical form so downstream passes can handle it.
    213 ///
    214 /// I don't believe this invalidates SCEV.
    215 void LoopRotate::simplifyLoopLatch(Loop *L) {
    216   BasicBlock *Latch = L->getLoopLatch();
    217   if (!Latch || Latch->hasAddressTaken())
    218     return;
    219 
    220   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    221   if (!Jmp || !Jmp->isUnconditional())
    222     return;
    223 
    224   BasicBlock *LastExit = Latch->getSinglePredecessor();
    225   if (!LastExit || !L->isLoopExiting(LastExit))
    226     return;
    227 
    228   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    229   if (!BI)
    230     return;
    231 
    232   if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    233     return;
    234 
    235   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    236         << LastExit->getName() << "\n");
    237 
    238   // Hoist the instructions from Latch into LastExit.
    239   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    240 
    241   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    242   BasicBlock *Header = Jmp->getSuccessor(0);
    243   assert(Header == L->getHeader() && "expected a backward branch");
    244 
    245   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    246   BI->setSuccessor(FallThruPath, Header);
    247   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    248   Jmp->eraseFromParent();
    249 
    250   // Nuke the Latch block.
    251   assert(Latch->empty() && "unable to evacuate Latch");
    252   LI->removeBlock(Latch);
    253   if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
    254     DT->eraseNode(Latch);
    255   Latch->eraseFromParent();
    256 }
    257 
    258 /// Rotate loop LP. Return true if the loop is rotated.
    259 bool LoopRotate::rotateLoop(Loop *L) {
    260   // If the loop has only one block then there is not much to rotate.
    261   if (L->getBlocks().size() == 1)
    262     return false;
    263 
    264   BasicBlock *OrigHeader = L->getHeader();
    265   BasicBlock *OrigLatch = L->getLoopLatch();
    266 
    267   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    268   if (BI == 0 || BI->isUnconditional())
    269     return false;
    270 
    271   // If the loop header is not one of the loop exiting blocks then
    272   // either this loop is already rotated or it is not
    273   // suitable for loop rotation transformations.
    274   if (!L->isLoopExiting(OrigHeader))
    275     return false;
    276 
    277   // If the loop latch already contains a branch that leaves the loop then the
    278   // loop is already rotated.
    279   if (OrigLatch == 0 || L->isLoopExiting(OrigLatch))
    280     return false;
    281 
    282   // Check size of original header and reject loop if it is very big or we can't
    283   // duplicate blocks inside it.
    284   {
    285     CodeMetrics Metrics;
    286     Metrics.analyzeBasicBlock(OrigHeader, *TTI);
    287     if (Metrics.notDuplicatable) {
    288       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
    289             << " instructions: "; L->dump());
    290       return false;
    291     }
    292     if (Metrics.NumInsts > MAX_HEADER_SIZE)
    293       return false;
    294   }
    295 
    296   // Now, this loop is suitable for rotation.
    297   BasicBlock *OrigPreheader = L->getLoopPreheader();
    298 
    299   // If the loop could not be converted to canonical form, it must have an
    300   // indirectbr in it, just give up.
    301   if (OrigPreheader == 0)
    302     return false;
    303 
    304   // Anything ScalarEvolution may know about this loop or the PHI nodes
    305   // in its header will soon be invalidated.
    306   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    307     SE->forgetLoop(L);
    308 
    309   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    310 
    311   // Find new Loop header. NewHeader is a Header's one and only successor
    312   // that is inside loop.  Header's other successor is outside the
    313   // loop.  Otherwise loop is not suitable for rotation.
    314   BasicBlock *Exit = BI->getSuccessor(0);
    315   BasicBlock *NewHeader = BI->getSuccessor(1);
    316   if (L->contains(Exit))
    317     std::swap(Exit, NewHeader);
    318   assert(NewHeader && "Unable to determine new loop header");
    319   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    320          "Unable to determine loop header and exit blocks");
    321 
    322   // This code assumes that the new header has exactly one predecessor.
    323   // Remove any single-entry PHI nodes in it.
    324   assert(NewHeader->getSinglePredecessor() &&
    325          "New header doesn't have one pred!");
    326   FoldSingleEntryPHINodes(NewHeader);
    327 
    328   // Begin by walking OrigHeader and populating ValueMap with an entry for
    329   // each Instruction.
    330   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    331   ValueToValueMapTy ValueMap;
    332 
    333   // For PHI nodes, the value available in OldPreHeader is just the
    334   // incoming value from OldPreHeader.
    335   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    336     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    337 
    338   // For the rest of the instructions, either hoist to the OrigPreheader if
    339   // possible or create a clone in the OldPreHeader if not.
    340   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    341   while (I != E) {
    342     Instruction *Inst = I++;
    343 
    344     // If the instruction's operands are invariant and it doesn't read or write
    345     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    346     // execution in the preheader, but does prevent the instruction from
    347     // executing in each iteration of the loop.  This means it is safe to hoist
    348     // something that might trap, but isn't safe to hoist something that reads
    349     // memory (without proving that the loop doesn't write).
    350     if (L->hasLoopInvariantOperands(Inst) &&
    351         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    352         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    353         !isa<AllocaInst>(Inst)) {
    354       Inst->moveBefore(LoopEntryBranch);
    355       continue;
    356     }
    357 
    358     // Otherwise, create a duplicate of the instruction.
    359     Instruction *C = Inst->clone();
    360 
    361     // Eagerly remap the operands of the instruction.
    362     RemapInstruction(C, ValueMap,
    363                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    364 
    365     // With the operands remapped, see if the instruction constant folds or is
    366     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    367     // nodes allows icmps and other instructions to fold.
    368     Value *V = SimplifyInstruction(C);
    369     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    370       // If so, then delete the temporary instruction and stick the folded value
    371       // in the map.
    372       delete C;
    373       ValueMap[Inst] = V;
    374     } else {
    375       // Otherwise, stick the new instruction into the new block!
    376       C->setName(Inst->getName());
    377       C->insertBefore(LoopEntryBranch);
    378       ValueMap[Inst] = C;
    379     }
    380   }
    381 
    382   // Along with all the other instructions, we just cloned OrigHeader's
    383   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    384   // successors by duplicating their incoming values for OrigHeader.
    385   TerminatorInst *TI = OrigHeader->getTerminator();
    386   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    387     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    388          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    389       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    390 
    391   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    392   // OrigPreHeader's old terminator (the original branch into the loop), and
    393   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    394   LoopEntryBranch->eraseFromParent();
    395 
    396   // If there were any uses of instructions in the duplicated block outside the
    397   // loop, update them, inserting PHI nodes as required
    398   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    399 
    400   // NewHeader is now the header of the loop.
    401   L->moveToHeader(NewHeader);
    402   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    403 
    404 
    405   // At this point, we've finished our major CFG changes.  As part of cloning
    406   // the loop into the preheader we've simplified instructions and the
    407   // duplicated conditional branch may now be branching on a constant.  If it is
    408   // branching on a constant and if that constant means that we enter the loop,
    409   // then we fold away the cond branch to an uncond branch.  This simplifies the
    410   // loop in cases important for nested loops, and it also means we don't have
    411   // to split as many edges.
    412   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    413   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    414   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    415       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    416           != NewHeader) {
    417     // The conditional branch can't be folded, handle the general case.
    418     // Update DominatorTree to reflect the CFG change we just made.  Then split
    419     // edges as necessary to preserve LoopSimplify form.
    420     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    421       // Everything that was dominated by the old loop header is now dominated
    422       // by the original loop preheader. Conceptually the header was merged
    423       // into the preheader, even though we reuse the actual block as a new
    424       // loop latch.
    425       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    426       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    427                                                    OrigHeaderNode->end());
    428       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    429       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    430         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    431 
    432       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    433       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    434 
    435       // Update OrigHeader to be dominated by the new header block.
    436       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    437     }
    438 
    439     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    440     // thus is not a preheader anymore.
    441     // Split the edge to form a real preheader.
    442     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    443     NewPH->setName(NewHeader->getName() + ".lr.ph");
    444 
    445     // Preserve canonical loop form, which means that 'Exit' should have only
    446     // one predecessor.
    447     BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    448     ExitSplit->moveBefore(Exit);
    449   } else {
    450     // We can fold the conditional branch in the preheader, this makes things
    451     // simpler. The first step is to remove the extra edge to the Exit block.
    452     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    453     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    454     NewBI->setDebugLoc(PHBI->getDebugLoc());
    455     PHBI->eraseFromParent();
    456 
    457     // With our CFG finalized, update DomTree if it is available.
    458     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    459       // Update OrigHeader to be dominated by the new header block.
    460       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    461       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    462 
    463       // Brute force incremental dominator tree update. Call
    464       // findNearestCommonDominator on all CFG predecessors of each child of the
    465       // original header.
    466       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    467       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    468                                                    OrigHeaderNode->end());
    469       bool Changed;
    470       do {
    471         Changed = false;
    472         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    473           DomTreeNode *Node = HeaderChildren[I];
    474           BasicBlock *BB = Node->getBlock();
    475 
    476           pred_iterator PI = pred_begin(BB);
    477           BasicBlock *NearestDom = *PI;
    478           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    479             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    480 
    481           // Remember if this changes the DomTree.
    482           if (Node->getIDom()->getBlock() != NearestDom) {
    483             DT->changeImmediateDominator(BB, NearestDom);
    484             Changed = true;
    485           }
    486         }
    487 
    488       // If the dominator changed, this may have an effect on other
    489       // predecessors, continue until we reach a fixpoint.
    490       } while (Changed);
    491     }
    492   }
    493 
    494   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    495   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    496 
    497   // Now that the CFG and DomTree are in a consistent state again, try to merge
    498   // the OrigHeader block into OrigLatch.  This will succeed if they are
    499   // connected by an unconditional branch.  This is just a cleanup so the
    500   // emitted code isn't too gross in this common case.
    501   MergeBlockIntoPredecessor(OrigHeader, this);
    502 
    503   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    504 
    505   ++NumRotated;
    506   return true;
    507 }
    508 
    509